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On w-hyponormal operators
by

EunaiL Ko (Seoul)

Abstract. We study some properties of w-hyponormal operators. In particular we
show that some w-hyponormal operators are subscalar. Also we state some theorems on
invariant subspaces of w-hyponormal operators.

1. Introduction. Let H be a complex Hilbert space, and denote by
L(H) the algebra of all bounded linear operators on H. If T' € L(H), we write
o(T), 0ap(T'), and o, (T') for the spectrum, approximate point spectrum, and
point spectrum of T, respectively.

An operator T' € L(H) is said to be p-hyponormal, 0 < p < 1,if (T*T)P >
(T'T*)P where T* is the adjoint of T'. If p = 1, T' is called hyponormal, and
if p=1/2, T is called semi-hyponormal. Semi-hyponormal operators were
introduced by Xia (see [Xi]), and p-hyponormal operators for a general p,
0 < p < 1, have been studied by Aluthge. Any p-hyponormal operator is g-
hyponormal if ¢ < p by Léwner’s theorem (see [Lo]). But there are examples
to show that the converse of the above statement is not true (see [Al]).

An arbitrary operator T' € L(H) has a unique polar decomposition
T = U|T|, where |T| = (T*T)"/? and U is the appropriate partial isom-
etry satisfying ker U = ker |T| = ker T and ker U* = ker T*. Associated with
T is a related operator |T|Y/2U|T|'/2, called the Aluthge transform of T, and
denoted by T throughout this paper.

An operator T' = U|T| (polar decomposition) in £(H) is w-hyponormal
if |T| > |T| > |T*| where |T| = (T*T)'/2. This class of operators was
introduced by Aluthge and Wang (see [AW 1] and [AW 2]).

An operator T' € L(H) is said to satisfy the single-valued extension
property if for any open subset U in C, the function

2~ T:0U,H) — OU,H)
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defined by the obvious pointwise multiplication is one-to-one, where O(U, H)
denotes the Fréchet space of H-valued analytic functions on U with respect
to uniform topology. If T" has the single-valued extension property, then for
any * € H there exists a unique maximal open set or(z) (D o(T), the
resolvent set) and a unique H-valued analytic function f defined in o (x)
such that

(T=NfN) =z, A€ or(z)

An operator T' € L(H) is said to have the property (3) if for every open
subset G of C and every sequence f, : G — H of H-valued analytic functions
such that (T'— A) f,,(\) converges uniformly to 0 in norm on compact subsets
of G, fn(X) converges uniformly to 0 in norm on compact subsets of G.

A bounded linear operator S on H is called scalar of order m if it has a
spectral distribution of order m, i.e., if there is a continuous unital morphism
of topological algebras

& : O7(C) — L(H)

such that ¢(z) = S, where as usual z stands for the identity function on
C and CJ*(C) stands for the space of compactly supported functions on C,
continuously differentiable of order m, 0 < m < oco. An operator is subscalar
if it is similar to the restriction of a scalar operator.

In this paper we study some properties of w-hyponormal operators. In
particular we show that some w-hyponormal operators are subscalar. Also
we study invariant subspaces of w-hyponormal operators.

2. Preliminaries. Let du(z) denote the planar Lebesgue measure. Fix
a complex (separable) Hilbert space H and a bounded open disk D of C.
We shall denote by L?(D,H) the Hilbert space of measurable functions
f D — H such that

1/2
120 = { SIF2du(2) ) < .
D
The space of functions f € L?(D,H) which are analytic on D (i.e. 9f =0) is
denoted by
A%*(D,H) = L*(D,H) N O(D, H).

A?(D,H) is called the Bergman space for D. Note that A2(D, H) is complete
(i.e. A%(D,H) is a Hilbert space). We denote by P the orthogonal projection
of L?(D,H) onto A%(D,H).

Let us now define a Sobolev type space called W?2(D,H) where D is
a bounded disk in C. W?(D,H) will be the space of those functions f €
L?(D,H) whose derivatives df, 0% f in the sense of distributions still belong
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to L?(D,H). Endowed with the norm

2
1= =D 119"
i=0

W?2(D,H) becomes a Hilbert space contained continuously in L?(D,H).

Now for f € C3(C), let My denote the operator on W?(D,H) given by
multiplication by f. It has a spectral distribution of order 2, defined by the
functional calculus

Therefore, M, is a scalar operator of order 2.

3. Single-valued extension property. In this section, we show that
some w-hyponormal operators have the single-valued extension property. We
also give an analogue of the single-valued extension property for W?2(D, H)
and some w-hyponormal operators T

Recall that an operator T' € L(H) has finite ascent if for all A € C there
is an n € N such that ker (T — \)™ = ker (T — \)" "1,

LEMMA 3.1. An operator |T|'/? is one-to-one if and only if the operator
IT|Y/2 is one-to-one.

Proof. Assume that |T|*/2 is one-to-one. If z € ker |T|*/2, then Tz = 0.
Since T(U|T|Y/2) = (U|T|Y?)T, we have |T|(U|T|*/2z) = 0. Since |T|*/2 is
one-to-one, r = 0. _

Conversely, assume that |T|'/2 is one-to-one. If z € ker|T|'/2, then
U|T|x = Tz = |T|*2U|T|*?x = 0. Since |T|*/2 is one-to-one, z = 0. m

THEOREM 3.2. If T = U|T| (polar decomposition) is w-hyponormal with
0 ¢ ap(|T|Y?), then T has finite ascent.

Proof. Assume that T' is w-hyponormal with 0 ¢ o,(|T|*/2). Then T is
hyponormal from the definition of a w-hyponormal operator and [Al]. Since

T is hyponormal, ker(T -A) = ker (T )\)2 for all A € C. So it suffices to show
that ker(T — A) D ker (T A)2. Let T = U|T| be the polar decomposition
of T and let 2 € ker (T — \)2. Since
(T — N2|T| Y22 = |T|VAT — N2z =0,
it follows from the hypothesis that
7122 € ker (T — \)? = ker(T — \).

Hence B B - B
|T|Y2(T = Nz = (T — N)|T|*?z = 0.
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Since |T'|'/2 is one-to-one by Lemma 3.1, (T'—\)z = 0. Hence x € ker(T'—\).
Thus T has finite ascent. By a similar method we deduce that T has finite
ascent. m

COROLLARY 3.3. If T = U|T| (polar decomposition) is a w-hyponormal
operator with 0 & o, (|T|*/?), then T has the single-valued extension property.

Proof. This follows from Theorem 3.2 and [Lal. =

COROLLARY 3.4. Let T=U|T| (polar decomposition) be a w-hyponormal
operator with 0 & ap(|T\1/2). If f:G — C is an analytic function noncon-
stant on every component of G where G is open and G D o(T), then f(T)
has the single-valued extension property.

Proof. Since T has the single-valued extension property by Corollary 3.3,
the assertion follows from [CF, Theorem 1.1.5]. m

Recall that an X € L(H,K) is called a quasi-affinity if it has trivial
kernel and dense range. An operator A € L(H) is said to be a quasi-affine
transform of an operator T' € L(K) if there is a quasi-affinity X € £(H, K)
such that XA =TX.

COROLLARY 3.5. Let T=U|T| (polar decomposition) be a w-hyponormal
operator with 0 ¢ ap(\T|1/2). If A is any quasi-affine transform of T, then
A has the single-valued extension property.

Proof. From [La], it suffices to show that ker (A — \)? C ker(A4 — \) for
all A € C. Let X be a quasi-affinity such that XA = TX. If z € ker (A—\)?,
then X (A—\)?z = 0. Hence (T'—\)2Xz = 0. Since ker (T'—\)? = ker(T —\)
from Theorem 3.2, (T — A\)Xx = 0. Hence X(A — X\)z = 0. Since X is
one-to-one, x € ker(A—\). m

The next result gives an analogue of the single-valued extension property
for W2(D, H) and some w-hyponormal operators 7.

THEOREM 3.6. Let T = U|T| (polar decomposition) be a w-hyponormal
operator with 0 ¢ o,(|T|"/?) in L(H) and let D be an arbitrary bounded
disk in C. Then the operator

T—z:W*D,H) - W?(D,H)
18 one-to-one.
Proof. Let f € W2(D,H) be such that (T — z)f = 0. Then
(1) (T —2)|T|'/f =0.
Let T = U|T)| be the polar decomposition of T. Then from (1) we get
o) (T = 2)[T12Tf = 0.
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Since T~V is hyponormal from the definition of a w-hyponormal operator and
[Al], [Pu, Corollary 2.2] implies that

3) ([TIV2|T2 f = P(T2|T) f)

where P is the orthogonal projection of L?(D,H) onto A%(D,H). From (2)
and (3), we have

(T = 2)P(IT|"*|T2f) = 0.
Since % has the single-valued extension property,
[T|"/2|T(2 f = P(TV?TV? f) = 0.

‘1/2

Since |T|'/2 is one-to-one, |T|'/? is also one-to-one from Lemma 3.1. Hence

f=0.n

COROLLARY 3.7. Let T' = U|T| (polar decomposition) be any w-hyponor-
mal operator in L(H). If T has no nontrivial invariant subspace, then the

operator
T—z: WQ(D,H) — W2(D,H)

15 one-to-one.

Proof. Since T has no nontrivial invariant subspace for T, ker T = {0}.
Hence ker |T|'/? = {0}. By Theorem 3.6, T — z is one-to-one. m

COROLLARY 3.8. Let Ty and T5 be w-hyponormal operators with 0 &
ap(|T1\1/2)Uap(\T3|1/2). Then

o T1 —Z TQ .
A—Z— ( 0 T3 —Z> ’
W?(D,H) ® W*(D,H) - W*(D,H) @ W*(D,H)

1S one-to-one.
Proof. Let f=f1®foeW?(D,H)®W?(D,H) be such that (A—z)f=0.

Then
<T1—Z Ty ><f1>:<(T1—Z)f1+T2f2>:<0>
0 T3 —z fo (T5 — 2)f2 0/
So we have
(4) (T1 = 2)f1 + Taf2 =0,
(5) (T5 — 2)f2 = 0.

By Theorem 3.6 and (5), fo = 0. Hence from (4) we have (11 — z)f1 = 0.
Again by Theorem 3.6, fi = 0. Thus f =0. =

4. Subscalarity. In this section we show that some w-hyponormal op-
erators have scalar extensions.
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LEMMA 4.1. An operator ]T|1/2 18 bounded below if and only if the op-

1/2

erator |T|Y/2 is bounded below.

Proof. If |T|'/? is bounded below, then there exists ¢ > 0 such that
I|T|2/22|| > ¢||z|| for all 2 € H. An easy calculation shows that |Tz| =
I|T]M20| T 22| > 2|z for all z € H. Hence |||T|z| > |z for all
2 € H. Thus |T]'/2 is bounded below.

Conversely, if |TV |'/2 is bounded below, then it is clear that T is bounded
below. Since ooy (T) = 0ap(T) by [JKP], T is bounded below. Hence |T) is
bounded below. So we conclude that |T|'/2 is bounded below. =

COROLLARY 4.2. An operator |T|'/? has closed range if and only if the

|'/2 has closed range.

operator |T
Proof. This is clear from Lemma 4.1. m

LEMMA 4.3. Let T € L(H) be a semi-hyponormal operator. If {fn} is a
sequence in L*(D,H) such that lim, o ||[(T — 2) full2.p = 0 for all z € D,
then lim,, .o ||(T — 2)* fnll2,p0 = 0.

Proof. Assume that {f,} is as in the hypothesis. Let Q = |T'| — |T"*|,
z = 0", 0 < o, and |e"| = 1 where |T*| = (TT*)'/2. Since T is semi-
hyponormal, [Xi, Lemma 2.1] implies
Tim (7] = &) ulla.0 = 0,
Tim || (IT1Y*(U = )" full2.p = 0,
lim o(Qfn, fn) =0.
n—oo
Since
(T = 2)" fo =TI (T12(U — )" fu] + e~ [(IT] = 0) ful,
we have
T —2)" fallzp < NT12I - 1T (U =€) fallzp + 171 = o) full2p-
This completes the proof. m

LEMMA 4.4. Let T = U|T| (polar decomposition) be a w-hyponormal
operator with 0 & a.,(|T|*/?), and let D be a bounded disk which contains
o(T). Then the map V : H — H(D) defined by

Vh=1@ h(=1®h+ (T —2)W2(D,H))

is one-to-one and has closed range, where 1®@h denotes the constant function
sending any z € D to h and H(D) :== W%(D,H)/(T — z)W?2(D,H).

Proof. Let h, € H and f,, € W2(D, H) be sequences such that
(6) lim ||(T —2)fn+1® hpllwz =0.
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Then by the definition of the norm of Sobolev space, (6) implies

(7) lim |(U|T] ~ 20 fullap =0
for i = 1,2. Since T = |T|/2U|T|*/2,
(8) lim (T = 2)7 (T fu) 2.0 = 0

for i = 1,2. Let T = U|T)| be the polar decomposition of 7. Then from (8)
we have, for 1 = 1, 2,

(9) Tim [(T = 2)0" (1712|712 fu)l|2,0 = 0.

Since T is hyponormal, by [Pu, Corollary 2.2],
(10) Tim [[(7 = PY(T|2(T1Y? f) 2.0 = 0

where P denotes the orthogonal projection of L?(D,H) onto A?(D,H).
From (6) and (10) we get

(1) lim (T = 2) P(TIV2(T2 £,) +10 [TV2T Y o, p = 0.

Let I" be a curve in D surrounding o(T) (= o(T) = a(f) by [JKP]).
Then for z € I',

lim [[P(T1Y2(T1V2£,)() + (T = 2)" (1@ (T[T 2h,)] = 0

uniformly, from (11). Hence

n—o0

1 ~ ~
lim Hz_m \ P(TI2ITM fo) (2) dz + |T|1/2|T|1/2hnH = 0.
r

But by Cauchy’s theorem,
1 = 1/2(1/2 _
o § PUTIITY ) () d= = 0.
r
Hence lim,_.o0 |T|'/2|T|'/2h,, = 0. Since 0 ¢ oap(|T[*/?), by Lemma 4.1,
|T|*/2|T|'/? is bounded below. Hence lim,,_o h, = 0. Thus the map V is
one-to-one and has closed range. m

THEOREM 4.5. If T = U|T| (polar decomposition) is a w-hyponormal
operator with 0 ¢ 0., (|T|"/?), then T is a subscalar operator of order 2.

Proof. Suppose that T' = U|T'| (polar decomposition) is a w-hyponormal
operator with 0 ¢ 7,,(|7|'/2). Consider an arbitrary bounded open disk D
in the complex plane C and the quotient space

H(D)=W?*D,H)/(T — z)W2(D,H)
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endowed with the Hilbert space norm. The class of a vector f or an operator
A on H(D) will be denoted by f, respectively A. Let M be the operator of
multiplication by z on W?2(D,H). As noted at the end of Section 2, M is
a scalar operator of order 2 and has a spectral distribution @. Let S = M.
Since (T — z)W2(D,H) is invariant under every operator My, f € C?*(D),
we infer that S is a scalar operator of order 2 with spectral distribution P,

Consider the natural map V : H — H(D) defined by Vh = (1 ® h)™
for h € H, where 1 ® h denotes the constant function identically equal to
h. Note that VI' = SV. In particular ran V is an invariant subspace for S.
Since V' is one-to-one and has closed range by Lemma 4.4, T is a subscalar
operator of order 2. m

COROLLARY 4.6. Invertible w-hyponormal operators are subscalar of or-
der 2.

Proof. Let T = U|T| (polar decomposition) be any invertible w-hyponor-
mal operator. Then |T| is invertible and U is unitary. By [Ru, Thm. 12.33],
|T|'/2 is invertible. Since |T'|'/? is positive, o(|T|/?) = ., (|T|'/?). Hence
0 & 0ap(|T]'/?). By Theorem 4.5, T is a subscalar operator of order 2. m

COROLLARY 4.7. If T = U|T| (polar decomposition) is a w-hyponormal
operator with 0 ¢ oap(|T|*/?), then T has Bishop’s property (3).

COROLLARY 4.8. Let T=U|T| (polar decomposition) be a w-hyponormal
operator with 0 ¢ oap,(|T|Y/?). If A € L(H) is any quasi-affine transform
of T, then o(T) C o(A).

Proof. This follows from Corollary 4.7 and [Ko 1, Theorem 3.2]. m

COROLLARY 4.9. Let T=U|T| (polar decomposition) be a w-hyponormal
operator with 0 & o.,(|T|Y/?) and let f be a function analytic in a neigh-
borhood of o(T). With the notation of the proof of Theorem 4.5, V f(T') =
f(S)V, where f — f(T) is the functional calculus morphism.

Proof. This follows from a general property of the analytic functional
calculus. m

5. Theorems on invariant subspaces. In this section we study in-
variant subspaces of w-hyponormal operators. Recall that if U is a nonempty
open set in C and if {2 C U has the property that

sup | f(A)] = sup [£ ()]
A€ BseU

for every function f in H*>*(U) (i.e. for all f bounded and holomorphic
on U), then {2 is said to be dominating for U.
The next theorem is a generalization of Scott Brown’s theorem.
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THEOREM 5.1. Suppose that T is an arbitrary w-hyponormal operator
and there exists a nonempty open set U in C such that o(T)NU is domi-
nating for U. Then T has a nontrivial invariant subspace.

Proof. If T' is not a quasi-affinity, then 0 € o, (T)Uo, (7). So it is trivial
that T has a nontrivial invariant subspace. Let T be a quasi-affinity. Since T
is semi-hyponormal from the definition of a w-hyponormal operator, [JKP,
Theorem 1.24] implies that T has a nontrivial invariant subspace. By [JKP,
Theorem 1.15], T' has a nontrivial invariant subspace. m

The following theorem is a generalization of Berger’s theorem.

THEOREM 5.2. Let T be an arbitrary w-hyponormal operator. Then there
exists a positive integer K such that for all positive integers k > K, T* has
a nontrivial tnvariant subspace.

Proof. If T is not a quasi-affinity, then the result is trivial. Suppose that
T is a quasi-affinity. Since T is semi-hyponormal from the definition of a w-
hyponormal operator, by [JKP, Theorem 1.25] there exists a positive integer
K such that for all positive integers k > K, (T')* has a nontrivial invariant
subspace My. Since U|T|/?(T)7 = T'U|T|'/? and M, € Lat((T)*) for
k> K,

TFU T2 My, = U|T|V*(T)F My, ¢ UIT)V? My, k> K.
By [JKP, Theorem 1.15],
{0} # (UIT|V2 M)~ # K.

Therefore, (U|T|/?M},)~ is the desired invariant subspace for T*. =

Recall that a closed subspace of H is said to be hyperinvariant for T if
it is invariant under every operator in the commutant {T'}’ of T

THEOREM 5.3. Suppose that T is an arbitrary w-hyponormal operator
and

lim || 7"h||"/™ < |T|
for some nonzero h € H. Then T has a nontrivial hyperinvariant subspace.
Proof. If T is an arbitrary w-hyponormal operator, then by [AW 2],
ITh|1* < | T2R] - [|A]
for all h € H. Hence [Bo, Remark] implies that 7" has a nontrivial hyperin-
variant subspace. m

Recall that an operator T' € L(H) is decomposable provided that, for
each open cover {U,V} of C, there exist closed T-invariant subspaces
Y, Z of Hsuch that H=Y + Z, o(T|y) C U, and o(T|z) C V. Here,
T|y denotes the restriction of T to Y.



174 E. Ko

LEMMA 5.4 ([LW, Lemma 3.6.1]). If T is subscalar, then for all closed
F in C, Hy(F) is the linear span of all manifolds Z in H satisfying (A\—T)Z
= Z for all N\ ¢ F, where Hp(F) ={x e H: 2 = (A=T)f(\) for some
analytic f : C\ F — H}.

THEOREM 5.5. Let T be a w-hyponormal operator with 0 & o.,(|T|'/?)

and let T # A for all A € C. If S is a decomposable quasi-affine transform
of T, then T has a nontrivial hyperinvariant subspace.

Proof. Assume that X is a quasi-affinity such that XS = T'X where §
is decomposable. If T has no nontrivial hyperinvariant subspace, we may
assume that o,(7) = 0 and Hp(F) = {0} for each closed F proper in o(T')
by Lemma 5.4. Let {U,V} be an open cover of C with o(T)\ U # () and
o(T)\V # 0. Then

XH=XHs(U)+XHs(V) C Hp(U) + Hp(V) = {0}.
So we have a contradiction. m
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