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On w-hyponormal operators

by

Eungil Ko (Seoul)

Abstract. We study some properties of w-hyponormal operators. In particular we
show that some w-hyponormal operators are subscalar. Also we state some theorems on
invariant subspaces of w-hyponormal operators.

1. Introduction. Let H be a complex Hilbert space, and denote by
L(H) the algebra of all bounded linear operators on H. If T ∈ L(H), we write
σ(T ), σap(T ), and σp(T ) for the spectrum, approximate point spectrum, and
point spectrum of T , respectively.

An operator T ∈ L(H) is said to be p-hyponormal, 0 < p ≤ 1, if (T ∗T )p ≥
(TT ∗)p where T ∗ is the adjoint of T . If p = 1, T is called hyponormal , and
if p = 1/2, T is called semi-hyponormal. Semi-hyponormal operators were
introduced by Xia (see [Xi]), and p-hyponormal operators for a general p,
0 < p < 1, have been studied by Aluthge. Any p-hyponormal operator is q-
hyponormal if q ≤ p by Löwner’s theorem (see [Lo]). But there are examples
to show that the converse of the above statement is not true (see [Al]).

An arbitrary operator T ∈ L(H) has a unique polar decomposition
T = U |T |, where |T | = (T ∗T )1/2 and U is the appropriate partial isom-
etry satisfying kerU = ker |T | = kerT and kerU ∗ = kerT ∗. Associated with
T is a related operator |T |1/2U |T |1/2, called the Aluthge transform of T , and
denoted by T̃ throughout this paper.

An operator T = U |T | (polar decomposition) in L(H) is w-hyponormal
if |T̃ | ≥ |T | ≥ |T̃ ∗| where |T̃ | = (T̃ ∗T̃ )1/2. This class of operators was
introduced by Aluthge and Wang (see [AW 1] and [AW 2]).

An operator T ∈ L(H) is said to satisfy the single-valued extension
property if for any open subset U in C, the function

z − T : O(U,H)→ O(U,H)
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defined by the obvious pointwise multiplication is one-to-one, whereO(U,H)
denotes the Fréchet space of H-valued analytic functions on U with respect
to uniform topology. If T has the single-valued extension property, then for
any x ∈ H there exists a unique maximal open set %T (x) (⊃ %(T ), the
resolvent set) and a unique H-valued analytic function f defined in %T (x)
such that

(T − λ)f(λ) = x, λ ∈ %T (x).

An operator T ∈ L(H) is said to have the property (β) if for every open
subset G of C and every sequence fn : G→ H of H-valued analytic functions
such that (T−λ)fn(λ) converges uniformly to 0 in norm on compact subsets
of G, fn(λ) converges uniformly to 0 in norm on compact subsets of G.

A bounded linear operator S on H is called scalar of order m if it has a
spectral distribution of order m, i.e., if there is a continuous unital morphism
of topological algebras

Φ : Cm0 (C)→ L(H)

such that Φ(z) = S, where as usual z stands for the identity function on
C and Cm0 (C) stands for the space of compactly supported functions on C,
continuously differentiable of order m, 0 ≤ m ≤ ∞. An operator is subscalar
if it is similar to the restriction of a scalar operator.

In this paper we study some properties of w-hyponormal operators. In
particular we show that some w-hyponormal operators are subscalar. Also
we study invariant subspaces of w-hyponormal operators.

2. Preliminaries. Let dµ(z) denote the planar Lebesgue measure. Fix
a complex (separable) Hilbert space H and a bounded open disk D of C.
We shall denote by L2(D,H) the Hilbert space of measurable functions
f : D → H such that

‖f‖2,D =
{ �

D

‖f(z)‖2 dµ(z)
}1/2

<∞.

The space of functions f ∈L2(D,H) which are analytic on D (i.e. ∂f=0) is
denoted by

A2(D,H) = L2(D,H) ∩ O(D,H).

A2(D,H) is called the Bergman space for D. Note that A2(D,H) is complete
(i.e. A2(D,H) is a Hilbert space). We denote by P the orthogonal projection
of L2(D,H) onto A2(D,H).

Let us now define a Sobolev type space called W 2(D,H) where D is
a bounded disk in C. W 2(D,H) will be the space of those functions f ∈
L2(D,H) whose derivatives ∂f , ∂2f in the sense of distributions still belong
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to L2(D,H). Endowed with the norm

‖f‖2W 2 =
2∑

i=0

‖∂if‖22,D,

W 2(D,H) becomes a Hilbert space contained continuously in L2(D,H).
Now for f ∈ C2

0 (C), let Mf denote the operator on W 2(D,H) given by
multiplication by f . It has a spectral distribution of order 2, defined by the
functional calculus

ΦM : C2
0 (C)→ L(W 2(D,H)), ΦM (f) = Mf .

Therefore, Mz is a scalar operator of order 2.

3. Single-valued extension property. In this section, we show that
some w-hyponormal operators have the single-valued extension property. We
also give an analogue of the single-valued extension property for W 2(D,H)
and some w-hyponormal operators T .

Recall that an operator T ∈ L(H) has finite ascent if for all λ ∈ C there
is an n ∈ N such that ker (T − λ)n = ker (T − λ)n+1.

Lemma 3.1. An operator |T |1/2 is one-to-one if and only if the operator
|T̃ |1/2 is one-to-one.

Proof. Assume that |T |1/2 is one-to-one. If x ∈ ker |T̃ |1/2, then T̃ x = 0.
Since T (U |T |1/2) = (U |T |1/2)T̃ , we have |T |(U |T |1/2x) = 0. Since |T |1/2 is
one-to-one, x = 0.

Conversely, assume that |T̃ |1/2 is one-to-one. If x ∈ ker |T |1/2, then
Ũ |T̃ |x = T̃ x = |T |1/2U |T |1/2x = 0. Since |T̃ |1/2 is one-to-one, x = 0.

Theorem 3.2. If T = U |T | (polar decomposition) is w-hyponormal with
0 6∈ σp(|T |1/2), then T has finite ascent.

Proof. Assume that T is w-hyponormal with 0 6∈ σp(|T |1/2). Then ˜̃T is
hyponormal from the definition of a w-hyponormal operator and [Al]. Since
˜̃T is hyponormal, ker( ˜̃T−λ) = ker ( ˜̃T−λ)2 for all λ ∈ C. So it suffices to show
that ker(T̃ − λ) ⊃ ker (T̃ − λ)2. Let T̃ = Ũ |T̃ | be the polar decomposition
of T̃ and let x ∈ ker (T̃ − λ)2. Since

( ˜̃T − λ)2|T̃ |1/2x = |T̃ |1/2(T̃ − λ)2x = 0,

it follows from the hypothesis that

|T̃ |1/2x ∈ ker ( ˜̃T − λ)2 = ker( ˜̃T − λ).

Hence
|T̃ |1/2(T̃ − λ)x = ( ˜̃T − λ)|T̃ |1/2x = 0.
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Since |T̃ |1/2 is one-to-one by Lemma 3.1, (T̃−λ)x = 0. Hence x ∈ ker(T̃−λ).
Thus T̃ has finite ascent. By a similar method we deduce that T has finite
ascent.

Corollary 3.3. If T = U |T | (polar decomposition) is a w-hyponormal
operator with 0 6∈ σp(|T |1/2), then T has the single-valued extension property.

Proof. This follows from Theorem 3.2 and [La].

Corollary 3.4. Let T =U |T | (polar decomposition) be a w-hyponormal
operator with 0 6∈ σp(|T |1/2). If f : G→ C is an analytic function noncon-
stant on every component of G where G is open and G ⊃ σ(T ), then f(T )
has the single-valued extension property.

Proof. Since T has the single-valued extension property by Corollary 3.3,
the assertion follows from [CF, Theorem 1.1.5].

Recall that an X ∈ L(H,K) is called a quasi-affinity if it has trivial
kernel and dense range. An operator A ∈ L(H) is said to be a quasi-affine
transform of an operator T ∈ L(K) if there is a quasi-affinity X ∈ L(H,K)
such that XA = TX.

Corollary 3.5. Let T =U |T | (polar decomposition) be a w-hyponormal
operator with 0 6∈ σp(|T |1/2). If A is any quasi-affine transform of T , then
A has the single-valued extension property.

Proof. From [La], it suffices to show that ker (A− λ)2 ⊂ ker(A− λ) for
all λ ∈ C. Let X be a quasi-affinity such that XA = TX. If x ∈ ker (A−λ)2,
then X(A−λ)2x = 0. Hence (T−λ)2Xx = 0. Since ker (T−λ)2 = ker(T−λ)
from Theorem 3.2, (T − λ)Xx = 0. Hence X(A − λ)x = 0. Since X is
one-to-one, x ∈ ker(A− λ).

The next result gives an analogue of the single-valued extension property
for W 2(D,H) and some w-hyponormal operators T .

Theorem 3.6. Let T = U |T | (polar decomposition) be a w-hyponormal
operator with 0 6∈ σp(|T |1/2) in L(H) and let D be an arbitrary bounded
disk in C. Then the operator

T − z : W 2(D,H)→W 2(D,H)

is one-to-one.

Proof. Let f ∈W 2(D,H) be such that (T − z)f = 0. Then

(1) (T̃ − z)|T |1/2f = 0.

Let T̃ = Ũ |T̃ | be the polar decomposition of T̃ . Then from (1) we get

(2) ( ˜̃T − z)|T̃ |1/2|T |1/2f = 0.
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Since ˜̃T is hyponormal from the definition of a w-hyponormal operator and
[Al], [Pu, Corollary 2.2] implies that

(3) |T̃ |1/2|T |1/2f = P (|T̃ |1/2|T |1/2f)

where P is the orthogonal projection of L2(D,H) onto A2(D,H). From (2)
and (3), we have

( ˜̃T − z)P (|T̃ |1/2|T |1/2f) = 0.

Since ˜̃T has the single-valued extension property,

|T̃ |1/2|T |1/2f = P (|T̃ |1/2|T |1/2f) = 0.

Since |T |1/2 is one-to-one, |T̃ |1/2 is also one-to-one from Lemma 3.1. Hence
f = 0.

Corollary 3.7. Let T = U |T | (polar decomposition) be any w-hyponor-
mal operator in L(H). If T has no nontrivial invariant subspace, then the
operator

T − z : W 2(D,H)→W 2(D,H)

is one-to-one.

Proof. Since T has no nontrivial invariant subspace for T , kerT = {0}.
Hence ker |T |1/2 = {0}. By Theorem 3.6, T − z is one-to-one.

Corollary 3.8. Let T1 and T3 be w-hyponormal operators with 0 6∈
σp(|T1|1/2) ∪ σp(|T3|1/2). Then

A− z =
(
T1 − z T2

0 T3 − z

)
:

W 2(D,H)⊕W 2(D,H)→W 2(D,H)⊕W 2(D,H)

is one-to-one.

Proof. Let f=f1⊕f2∈W 2(D,H)⊕W 2(D,H) be such that (A−z)f=0.
Then (

T1 − z T2

0 T3 − z

)(
f1

f2

)
=
(

(T1 − z)f1 + T2f2

(T3 − z)f2

)
=
(

0
0

)
.

So we have

(T1 − z)f1 + T2f2 = 0,(4)

(T3 − z)f2 = 0.(5)

By Theorem 3.6 and (5), f2 = 0. Hence from (4) we have (T1 − z)f1 = 0.
Again by Theorem 3.6, f1 = 0. Thus f = 0.

4. Subscalarity. In this section we show that some w-hyponormal op-
erators have scalar extensions.
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Lemma 4.1. An operator |T |1/2 is bounded below if and only if the op-
erator |T̃ |1/2 is bounded below.

Proof. If |T |1/2 is bounded below, then there exists c > 0 such that
‖|T |1/2x‖ ≥ c‖x‖ for all x ∈ H. An easy calculation shows that ‖T̃ x‖ =
‖|T |1/2U |T |1/2x‖ ≥ c2‖x‖ for all x ∈ H. Hence ‖|T̃ |x‖ ≥ c2‖x‖ for all
x ∈ H. Thus |T̃ |1/2 is bounded below.

Conversely, if |T̃ |1/2 is bounded below, then it is clear that T̃ is bounded
below. Since σap(T ) = σap(T̃ ) by [JKP], T is bounded below. Hence |T | is
bounded below. So we conclude that |T |1/2 is bounded below.

Corollary 4.2. An operator |T |1/2 has closed range if and only if the
operator |T̃ |1/2 has closed range.

Proof. This is clear from Lemma 4.1.

Lemma 4.3. Let T ∈ L(H) be a semi-hyponormal operator. If {fn} is a
sequence in L2(D,H) such that limn→∞ ‖(T − z)fn‖2,D = 0 for all z ∈ D,
then limn→∞ ‖(T − z)∗fn‖2,D = 0.

Proof. Assume that {fn} is as in the hypothesis. Let Q = |T | − |T ∗|,
z = %eiθ, 0 < %, and |eiθ| = 1 where |T ∗| = (TT ∗)1/2. Since T is semi-
hyponormal, [Xi, Lemma 2.1] implies





lim
n→∞

‖(|T | − %)fn‖2,D = 0,

lim
n→∞

%‖(|T |1/2(U − eiθ)∗fn‖2,D = 0,

lim
n→∞

%〈Qfn, fn〉 = 0.

Since

(T − z)∗fn = |T |1/2[|T |1/2(U − eiθ)∗fn] + e−iθ[(|T | − %)fn],

we have

‖(T − z)∗fn‖2,D ≤ ‖|T |1/2‖ · ‖(|T |1/2(U − eiθ)∗fn‖2,D + ‖(|T | − %)fn‖2,D.
This completes the proof.

Lemma 4.4. Let T = U |T | (polar decomposition) be a w-hyponormal
operator with 0 6∈ σap(|T |1/2), and let D be a bounded disk which contains
σ(T ). Then the map V : H→ H(D) defined by

V h = 1 ⊗̃ h(≡ 1⊗ h+ (T − z)W 2(D,H))

is one-to-one and has closed range, where 1⊗h denotes the constant function
sending any z ∈ D to h and H(D) := W 2(D,H)/(T − z)W 2(D,H).

Proof. Let hn ∈ H and fn ∈W 2(D,H) be sequences such that

(6) lim
n→∞

‖(T − z)fn + 1⊗ hn‖W 2 = 0.
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Then by the definition of the norm of Sobolev space, (6) implies

(7) lim
n→∞

‖(U |T | − z)∂ifn‖2,D = 0

for i = 1, 2. Since T̃ = |T |1/2U |T |1/2,

(8) lim
n→∞

‖(T̃ − z)∂i(|T |1/2fn)‖2,D = 0

for i = 1, 2. Let T̃ = Ũ |T̃ | be the polar decomposition of T̃ . Then from (8)
we have, for i = 1, 2,

(9) lim
n→∞

‖( ˜̃T − z)∂i(|T̃ |1/2|T |1/2fn)‖2,D = 0.

Since ˜̃T is hyponormal, by [Pu, Corollary 2.2],

(10) lim
n→∞

‖(I − P )(|T̃ |1/2|T |1/2fn)‖2,D = 0

where P denotes the orthogonal projection of L2(D,H) onto A2(D,H).
From (6) and (10) we get

(11) lim
n→∞

‖( ˜̃T − z)P (|T̃ |1/2|T |1/2fn) + 1⊗ |T̃ |1/2|T |1/2hn‖2,D = 0.

Let Γ be a curve in D surrounding σ(T ) (= σ(T̃ ) = σ( ˜̃T ) by [JKP]).
Then for z ∈ Γ ,

lim
n→∞

‖P (|T̃ |1/2|T |1/2fn)(z) + ( ˜̃T − z)−1(1⊗ |T̃ |1/2|T |1/2hn)‖ = 0

uniformly, from (11). Hence

lim
n→∞

∥∥∥∥
1

2πi

�

Γ

P (|T̃ |1/2|T |1/2fn)(z) dz + |T̃ |1/2|T |1/2hn
∥∥∥∥ = 0.

But by Cauchy’s theorem,
1

2πi

�

Γ

P (|T̃ |1/2|T |1/2fn)(z) dz = 0.

Hence limn→∞ |T̃ |1/2|T |1/2hn = 0. Since 0 6∈ σap(|T |1/2), by Lemma 4.1,
|T̃ |1/2|T |1/2 is bounded below. Hence limn→∞ hn = 0. Thus the map V is
one-to-one and has closed range.

Theorem 4.5. If T = U |T | (polar decomposition) is a w-hyponormal
operator with 0 6∈ σap(|T |1/2), then T is a subscalar operator of order 2.

Proof. Suppose that T = U |T | (polar decomposition) is a w-hyponormal
operator with 0 6∈ σap(|T |1/2). Consider an arbitrary bounded open disk D
in the complex plane C and the quotient space

H(D) = W 2(D,H)/(T − z)W 2(D,H)
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endowed with the Hilbert space norm. The class of a vector f or an operator
A on H(D) will be denoted by f̃ , respectively Ã. Let M be the operator of
multiplication by z on W 2(D,H). As noted at the end of Section 2, M is
a scalar operator of order 2 and has a spectral distribution Φ. Let S ≡ M̃ .
Since (T − z)W 2(D,H) is invariant under every operator Mf , f ∈ C2(D),
we infer that S is a scalar operator of order 2 with spectral distribution Φ̃.

Consider the natural map V : H → H(D) defined by V h = (1 ⊗ h)∼

for h ∈ H, where 1 ⊗ h denotes the constant function identically equal to
h. Note that V T = SV . In particular ranV is an invariant subspace for S.
Since V is one-to-one and has closed range by Lemma 4.4, T is a subscalar
operator of order 2.

Corollary 4.6. Invertible w-hyponormal operators are subscalar of or-
der 2.

Proof. Let T = U |T | (polar decomposition) be any invertible w-hyponor-
mal operator. Then |T | is invertible and U is unitary. By [Ru, Thm. 12.33],
|T |1/2 is invertible. Since |T |1/2 is positive, σ(|T |1/2) = σap(|T |1/2). Hence
0 6∈ σap(|T |1/2). By Theorem 4.5, T is a subscalar operator of order 2.

Corollary 4.7. If T = U |T | (polar decomposition) is a w-hyponormal
operator with 0 6∈ σap(|T |1/2), then T has Bishop’s property (β).

Corollary 4.8. Let T =U |T | (polar decomposition) be a w-hyponormal
operator with 0 6∈ σap(|T |1/2). If A ∈ L(H) is any quasi-affine transform
of T , then σ(T ) ⊆ σ(A).

Proof. This follows from Corollary 4.7 and [Ko 1, Theorem 3.2].

Corollary 4.9. Let T =U |T | (polar decomposition) be a w-hyponormal
operator with 0 6∈ σap(|T |1/2) and let f be a function analytic in a neigh-
borhood of σ(T ). With the notation of the proof of Theorem 4.5, V f(T ) =
f(S)V , where f 7→ f(T ) is the functional calculus morphism.

Proof. This follows from a general property of the analytic functional
calculus.

5. Theorems on invariant subspaces. In this section we study in-
variant subspaces of w-hyponormal operators. Recall that if U is a nonempty
open set in C and if Ω ⊂ U has the property that

sup
λ∈Ω
|f(λ)| = sup

β∈U
|f(β)|

for every function f in H∞(U) (i.e. for all f bounded and holomorphic
on U), then Ω is said to be dominating for U .

The next theorem is a generalization of Scott Brown’s theorem.
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Theorem 5.1. Suppose that T is an arbitrary w-hyponormal operator
and there exists a nonempty open set U in C such that σ(T ) ∩ U is domi-
nating for U . Then T has a nontrivial invariant subspace.

Proof. If T is not a quasi-affinity, then 0 ∈ σp(T )∪σp(T ∗). So it is trivial
that T has a nontrivial invariant subspace. Let T be a quasi-affinity. Since T̃
is semi-hyponormal from the definition of a w-hyponormal operator, [JKP,
Theorem 1.24] implies that T̃ has a nontrivial invariant subspace. By [JKP,
Theorem 1.15], T has a nontrivial invariant subspace.

The following theorem is a generalization of Berger’s theorem.

Theorem 5.2. Let T be an arbitrary w-hyponormal operator. Then there
exists a positive integer K such that for all positive integers k ≥ K, T k has
a nontrivial invariant subspace.

Proof. If T is not a quasi-affinity, then the result is trivial. Suppose that
T is a quasi-affinity. Since T̃ is semi-hyponormal from the definition of a w-
hyponormal operator, by [JKP, Theorem 1.25] there exists a positive integer
K such that for all positive integers k ≥ K, (T̃ )k has a nontrivial invariant
subspace Mk. Since U |T |1/2(T̃ )j = T jU |T |1/2 and Mk ∈ Lat((T̃ )k) for
k ≥ K,

T kU |T |1/2Mk = U |T |1/2(T̃ )kMk ⊂ U |T |1/2Mk, k ≥ K.
By [JKP, Theorem 1.15],

{0} 6= (U |T |1/2Mk)− 6= H.

Therefore, (U |T |1/2Mk)− is the desired invariant subspace for T k.

Recall that a closed subspace of H is said to be hyperinvariant for T if
it is invariant under every operator in the commutant {T}′ of T .

Theorem 5.3. Suppose that T is an arbitrary w-hyponormal operator
and

lim
n→∞

‖Tnh‖1/n < ‖T‖
for some nonzero h ∈ H. Then T has a nontrivial hyperinvariant subspace.

Proof. If T is an arbitrary w-hyponormal operator, then by [AW 2],

‖Th‖2 ≤ ‖T 2h‖ · ‖h‖
for all h ∈ H. Hence [Bo, Remark] implies that T has a nontrivial hyperin-
variant subspace.

Recall that an operator T ∈ L(H) is decomposable provided that, for
each open cover {U, V } of C, there exist closed T -invariant subspaces
Y , Z of H such that H = Y + Z, σ(T |Y ) ⊂ U , and σ(T |Z) ⊂ V . Here,
T |Y denotes the restriction of T to Y .
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Lemma 5.4 ([LW, Lemma 3.6.1]). If T is subscalar , then for all closed
F in C, HT (F ) is the linear span of all manifolds Z in H satisfying (λ−T )Z
= Z for all λ 6∈ F , where HT (F ) = {x ∈ H : x = (λ − T )f(λ) for some
analytic f : C \ F → H}.

Theorem 5.5. Let T be a w-hyponormal operator with 0 6∈ σap(|T |1/2)
and let T 6= λI for all λ ∈ C. If S is a decomposable quasi-affine transform
of T , then T has a nontrivial hyperinvariant subspace.

Proof. Assume that X is a quasi-affinity such that XS = TX where S
is decomposable. If T has no nontrivial hyperinvariant subspace, we may
assume that σp(T ) = ∅ and HT (F ) = {0} for each closed F proper in σ(T )
by Lemma 5.4. Let {U, V } be an open cover of C with σ(T ) \ U 6= ∅ and
σ(T ) \ V 6= ∅. Then

XH = XHS(U) +XHS(V ) ⊆ HT (U) +HT (V ) = {0}.
So we have a contradiction.
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