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On positive embeddings of C(K) spaces

by

Grzegorz Plebanek (Wrocław)

Abstract. We investigate isomorphic embeddings T : C(K)→ C(L) between Banach
spaces of continuous functions. We show that if such an embedding T is a positive operator
then K is the image of L under an upper semicontinuous set-function having finite values.
Moreover we show that K has a π-base of sets whose closures are continuous images of
compact subspaces of L. Our results imply in particular that if C(K) can be positively
embedded into C(L) then some topological properties of L, such as countable tightness
or Fréchetness, are inherited by K.

We show that some isomorphic embeddings C(K)→ C(L) can be, in a sense, reduced
to positive embeddings.

1. Introduction. For a compact space K we denote by C(K) the Ba-
nach space of real–valued continuous functions with the usual supremum
norm. In what follows, K and L always denote compact Hausdorff spaces.

Let T : C(K) → C(L) be an isomorphism of Banach spaces. By the
classical Kaplansky theorem, if T is an order-isomorphism, i.e. g ≥ 0 if and
only if Tg ≥ 0 for every g ∈ C(K), then K and L are homeomorphic; see 7.8
in Semadeni’s book [18] for further references. On the other hand, if C(K)
and C(L) are isomorphic as Banach spaces then K may be topologically
different from L. For example, by Milyutin’s theorem, C[0, 1] is isomorphic
to C(2ω) as well as to any C(K), where K is uncountable metric space (see
[18, 21.5.10] or [15]).

In the present paper we consider isomorphic embeddings T : C(K) →
C(L) which are not necessarily onto but are positive operators, i.e.

if g ∈ C(K) and g ≥ 0 then Tg ≥ 0.

Elementary examples show that even if such an operator T is onto then K
may not be homeomorphic to L (see e.g. Example 5.3 below).

Our main objective is to determine how K is related to L whenever
C(K) admits a positive embedding into C(L). We show that in that case
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for some natural number p there is a function ϕ : L → [K]≤p which is
upper semicontinuous and onto (that is, K is the union of values of ϕ). This
implies that some topological properties of L, such as countable tightness
or Fréchetness, are inherited by K. We moreover prove that K has a π-base
of sets with closures being continuous images of subspaces of L. Our results
offer partial generalizations of a theorem due to Jarosz [7], who proved that
if T : C(K) → C(L) is an isomorphic embedding which is not necessarily
positive but satisfies ‖T‖ · ‖T−1‖ < 2 then K is a continuous image of a
compact subspace of L.

Let us recall the following open problem related to isomorphic embed-
dings of C(K) spaces and the class of Corson compacta (see the next section
for the terminology):

Problem 1.1. Suppose that T : C(K)→ C(L) is an isomorphic embed-
ding and L is Corson compact. Is L necessarily Corson compact?

The answer to 1.1 is positive under Martin’s axiom and the negation of
continuum hypothesis (see Argyros et al. [2]). However, the problem remains
open in ZFC even if the operator T in question is onto (see Negrepontis [12,
6.45] or Koszmider [10, Question 1]). In [11] we proved that the answer to 1.1
is positive under a certain additional measure-theoretic assumption on K.

We have not been able to fully resolve Problem 1.1 even for positive
embeddings but we show in Section 4 that the answer is affirmative whenever
K is homogeneous.

Our approach to analysing embeddings T : C(K)→ C(L) follows Cam-
bern [3] and Pełczyński [15]: we consider the conjugate operator T ∗ : C(L)∗
→ C(K)∗ and a mapping L 3 y 7→ T ∗δy which sends points of L to mea-
sures on K and is weak∗ continuous. The main advantage of dealing with
positive T here is that measures of the form T ∗δy are nonnegative. In fact,
as explained in the final section, what is crucial here is the continuity of the
mapping L 3 y 7→ ‖T ∗δy‖. In a recent preprint [17] we were able to extend
some of the results presented here to the case of arbitrary isomorphisms
between spaces of continuous functions.

The paper is organized as follows. In the next section we collect some
standard facts on operators and the weak∗ topology of C(K)∗, and we recall
some concepts from general topology. In Section 3, we consider several prop-
erties of compact spaces that are preserved by taking images under upper
semicontinuous finite-valued maps.

In Section 4 we show that a positive embedding T : C(K)→ C(L) gives
rise to a natural map L → [K]<ω and deduce from this our main results.
Section 5 contains a few comments on the results; in Section 6 we consider
arbitrary embeddings C(K)→ C(L) for which the above mentioned function
y 7→ ‖T ∗δy‖ is continuous.
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2. Preliminaries. Throughout this paper we tacitly assume thatK and
L denote compact Hausdorff spaces. The dual space C(K)∗ of the Banach
space C(K) is identified withM(K), the space of all signed Radon measures
of finite variation; we useM1(K) to denote the unit ball ofM(K), and P (K)
for the space of Radon probability measures on K; every µ ∈ P (K) is an
inner regular probability measure defined on the Borel σ-algebra Bor(K)
of K. The spaces M1(K) and P (K) are always equipped with the weak∗

topology inherited from C(K)∗, i.e. the topology making all the functionals
µ 7→

	
g dµ continuous for g ∈ C(K). We usually write µ(g) rather than	

K g dµ.
We shall frequently use the following simple remark: for every closed set

F ⊆ K, the set
{µ ∈ P (K) : µ(F ) < r}

is weak∗ open in P (K).
For any x ∈ K we write δx ∈ P (K) for the corresponding Dirac mea-

sure; recall that ∆(K) = {δx : x ∈ K} is a subspace of P (K) which is
homeomorphic to K.

A linear operator T : C(K)→ C(L) is an isomorphic embedding if there
are positive constants m1,m2 such that

m1‖g‖ ≤ ‖Tg‖ ≤ m2‖g‖ for every g ∈ C(K)

(so that ‖T‖ ≤ m2 and ‖T−1‖ ≤ 1/m1). By ‘embedding’ we always mean
an isomorphic embedding which is not necessarily surjective.

To every bounded operator T : C(K)→ C(L) we can associate a conju-
gate operator T ∗, where

T ∗ :M(L)→M(K), T ∗(ν)(f) = ν(Tf);

T ∗ is surjective whenever T is an isomorphic embedding.
A set M ⊆ M(K) is said to be m-norming, where m > 0, if for every

g ∈ C(K) there is µ ∈M such that |µ(g)| ≥ m‖g‖.

Lemma 2.1. If T : C(K)→ C(L) is an embedding then L 3 y 7→ T ∗δy ∈
M(K) is a continuous mapping, and the set

T ∗[∆L] = {T ∗δy : y ∈ L}

is a weak∗ compact and m-norming subset of M(K), where m = 1/‖T−1‖.

Proof. If (yt)t is a net in L converging to y then the measures δyt converge
to δy in the weak∗ topology of M(L), and T ∗δyt → T ∗δy since the conjugate
operator is weak∗-weak∗ continuous.

If g ∈ C(K) and ‖g‖ = 1, then m ≤ ‖Tg‖, so there is y ∈ L such that
|Tg(y)| ≥ m, so |Tg(y)| = |T ∗δy(g)|; this shows that T ∗[∆L] is m-norming.
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Every signed measure µ ∈M(K) can be written as µ = µ+ − µ−, where
µ+, µ− are nonnegative mutually singular measures. We write |µ| = µ++µ−

for the total variation |µ| of µ; the natural norm of µ ∈ M(K) = C(K)∗ is
defined as ‖µ‖ = |µ|(K). The mapping µ 7→ |µ| is not weak∗ continuous, but
the following holds.

Lemma 2.2. Let (µi)i∈I be a net in M1(K) converging to µ ∈ M1(K).
Then

|µ|(g) ≤ lim inf
i
|µi|(g)

for g ∈ C(K), g ≥ 0 (that is, the maping µ 7→ |µ| is lower semicontinuous).
Moreover

|µ|(g) ≥ |µ|(K) + lim sup
i
|µi|(g)− 1,

whenever g ∈ C(K), 0 ≤ g ≤ 1.
In particular, the mapping

S = {ν ∈M(K) : ‖ν‖ = 1} 3 ν 7→ |ν| ∈ P (K)

is weak∗ continuous.

Proof. Let us fix a nonnegative function g ∈ C(K). For every measure
µ ∈M(K) it follows from the definition of |µ| that

(∗) |µ|(g) = sup{|µ(f)| : f ∈ C(K) and |f | ≤ g},

and hence |µ(f)| ≤ |µ|(|f |) for every f ∈ C(K).
Given a net (µi)i∈I in M1(K) converging to µ ∈ M1(K), if f ∈ C(K)

and |f | ≤ g then

|µ(f)| = lim
i
|µi(f)| ≤ lim inf

i
|µi|(|f |) ≤ lim inf

i
|µi|(g).

Hence |µ|(g) ≤ lim infi |µi|(g) by (∗).
The second statement follows from the first one applied to 1− g.
If |µ|(K) = 1 we get |µ|(g) ≥ lim supi |µi|(g), so |µi|(g) → |µ|(g), and

thus the final statement follows.

Let us recall that a compact space K is Corson compact if, for some
cardinal number κ, K is homeomorphic to a subset of the Σ-product of real
lines,

Σ(Rκ) = {x ∈ Rκ : |{α : xα 6= 0}| ≤ ω}.

Concerning Corson compacta and their role in functional analysis we refer
the reader to a paper [2] by Argyros, Mercourakis and Negrepontis, and to
the extensive surveys of Negrepontis [12] and Kalenda [8].

We now recall several countability-like concepts for arbitrary topological
spaces. A topological space K is said to be
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(i) Fréchet if for every A ⊆ K and x ∈ A there is a sequence (an)n in
A converging to x;

(ii) sequential if for every nonclosed set A ⊆ K there is a sequence (an)n
in A converging to a point x ∈ K \A;

(iii) sequentially compact if every sequence in K has a converging subse-
quence.

The tightness of a topological space K, denoted here by τ(X), is the least
cardinal number such that for every A ⊆ K and x ∈ A there is a set I ⊆ A
with |I| ≤ τ(K) such that x ∈ I.

Every Corson compactum is a Fréchet space and every Fréchet space is
clearly sequential; the reader may consult [5, e.g. p. 78 and 3.12.7–3.12.11]
for further information.

3. Finite-valued maps. In the following we consider, for a given pair
of compact spaces K, L and a fixed natural number p, set-valued mappings
ϕ : L→ [K]≤p. Such a mapping ϕ is said to be

(a) onto if
⋃
y∈L ϕ(y) = K;

(b) upper semicontinuous if the set {y ∈ L : ϕ(y) ⊆ U} is open for every
open U ⊆ K.

Clearly upper semicontinuity is equivalent to saying that the set

ϕ−1[F ] := {y ∈ L : ϕ(y) ∩ F 6= ∅}

is closed whenever F ⊆ K is closed. We shall need later a result on preserving
compactness by multifunctions. The following proposition is well-known (see
e.g. [13, p. 336]); we enclose its proof for completeness.

Proposition 3.1. If ϕ is an upper semicontinuous multifunction from
a compact space L into the family of compact subsets of a topological space
X then G =

⋃
{ϕ(y) : y ∈ L} is compact.

Proof. Let U be a family of open subsets of X such that
⋃
U ⊇ G.

Assuming that U is closed under taking finite unions we shall check that
G ⊆ U for some U ∈ U .

Given y ∈ L, ϕ(y) is covered by a finite subfamily of U so ϕ(y) ⊆ Uy for
some Uy ∈ U . By upper semicontinuity, ϕ(z) ⊆ Uy for all z from some open
set Vy containing y. Take a finite set Y0 ⊆ Y such that

⋃
y∈Y0 Vy = L. Then

U =
⋃
y∈Y0 Uy contains G.

Semicontinuous mappings with finite values have been considered by
Okunev [13] in connection with some problems in Cp(X) theory. The first as-
sertion of the following auxiliary result is a particular case of [13, Proposition
1.2]; we give here a different self-contained argument.



184 G. Plebanek

Lemma 3.2. Let K and L be compact spaces and suppose that for some
natural number p there is an upper semicontinuous onto mapping ϕ : L →
[K]≤p. Then

(i) τ(K) ≤ τ(L);
(ii) if L is a Fréchet space then K is Fréchet;
(iii) if L is a sequential space then so is K;
(iv) if L is sequentially compact then so is K.

Proof. To prove (i) fix A ⊆ K and x ∈ A. For every a ∈ A there is
ya ∈ L such that a ∈ ϕ(ya). Denote by V(x) some local neighbourhood base
at x ∈ K; the set

F =
⋂

V ∈V(x)

{ya : a ∈ V ∩A}

is nonempty and for any y ∈ F we have x ∈ ϕ(y). Indeed, if x /∈ ϕ(y) and
y ∈ F then ϕ(y) ⊆ K \ V for some V ∈ V(x). But then

U = {z ∈ L : ϕ(z) ⊆ K \ V }
is a neighbourhood of y disjoint from {ya : a ∈ V ∩A}, a contradiction.

Now fix y ∈ F and choose V ∈ V(x) such that ϕ(y) ∩ V = {x}. Then
y ∈ {ya : a ∈ A ∩ V },

so by the definition of tightness there is I ⊆ A∩V with |I| ≤ τ(L) such that
y ∈ {ya : a ∈ I}. Now it suffices to check that x ∈ I.

If we suppose that x /∈ I then ϕ(y) ⊆ K \ I (by our choice of V ), so
W = {z ∈ L : ϕ(z) ⊆ K \ I}

is an open neighbourhood of y not intersecting {ya : a ∈ I} = ∅, a contra-
diction.

Suppose now that L is a Fréchet space. Then we can argue as above
but this time we can choose a sequence a(n) ∈ A ∩ V such that ya(n) → y.
Then a(n)→ x. Indeed, otherwise there is a cluster point x′ 6= x of (a(n))n.
We have x′ ∈ V ; let V1 be a neighbourhood of x′ such that x /∈ V1. Then
x /∈ V ∩ V1 and

W1 = {z ∈ L : ϕ(z) ⊆ K \ V ∩ V1}
is an open neighbourhood of y such that W1 ∩ {ya(n) : a(n) ∈ V1} = ∅,
a contradiction since the subsequence (ya(n)) indexed by a(n) ∈ V1 should
converge to y.

(iii) can be checked in a similar way (cf. [13, Proposition 1.6]).
To prove (iv), for any sequence xn ∈ K choose yn ∈ L such that xn ∈

ϕ(yn). Since L is sequentially compact we can assume that yn converges
to some y ∈ L. Then every cluster point of the sequence (xn)n must lie in
ϕ(y) so (xn)n has only a finite number of cluster points and therefore must
contain a converging subsequence.
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Lemma 3.3. Let K and L be compact spaces and let ϕ : L → [K]≤p

be an upper semicontinuous mapping. If F ⊆ K is closed then the mapping
ψ : L→ [F ]≤p given by ψ(y) = ϕ(y) ∩ F is also semicontinuous.

Proof. If V ⊆ F is open in F then V = F ∩ U for some open U ⊆ K;
note that ψ(y) ⊆ V is equivalent to ϕ(y) ⊆ U ∪ (K \ F ).

4. Positive embeddings. In this section we investigate what can be
said about a pair of compact space K and L assuming there is a positive
embedding T : C(K)→ C(L). The positivity implies that T ∗δy is a nonneg-
ative measure on K for every y ∈ L, which is crucial for the proofs given
below. The first lemma will show that, after a suitable reduction, we can in
fact assume that every T ∗δy is a probability measure on K.

Lemma 4.1. Suppose that C(K) can be embedded into C(L) by a positive
operator T of norm one. Then there is a compact subspace L0 ⊆ L and a
positive embedding S : C(K) → C(L0) such that S1K = 1L0 and ‖S−1‖ ≤
‖T−1‖.

Proof. Since ‖T‖ = 1, there is a positive constant m > 0 such that
m ≤ ‖Tg‖ ≤ 1 whenever ‖g‖ = 1.

By a standard application of Zorn’s lemma there is a minimal element
L0 in the family of those compact subsets L′ ⊆ L such that

‖Tg‖ = ‖(Tg)�L′‖ for every g ∈ C(K).

Letting h = (T1K)�L0 we have h ≥ m; indeed, otherwise U = {y ∈ L0 :
h(y) < m} is a nonempty open subset of L0, so L1 = L0 \ U is a proper
closed subspace of L0. On the other hand, if g ∈ C(K) and ‖g‖ = 1, then
‖Tg‖ = |Tg(y1)| ≥ m for some y1 ∈ L0; since ±Tg ≤ T1K = h we get
y1 ∈ L1. This shows that L0 is not minimal, a contradiction.

We can now define S : C(K) → C(L0) letting Sg be the function
(1/h)(Tg) restricted to L0. Then S1K = 1L0 ; as S is positive this implies
‖S‖ = 1. Moreover, ‖Sg‖ ≥ ‖Tg‖ by the choice of L0.

Proposition 4.2. Suppose that T : C(K) → C(L) is a positive em-
bedding such that T1K = 1L and ‖T−1‖ = 1/m. For r ∈ (0, 1] and y ∈ L
set

ϕr(y) = {x ∈ K : νy({x}) ≥ r},
where νy = T ∗δy. Then for every r ∈ (0, 1]:

(i) ϕr takes its values in [K]≤p, where p is the integer part of 1/r, and
ϕr is upper semicontinuous;

(ii)
⋃
y∈L ϕr(y) is closed in K;

(iii) ϕm is onto K.
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Proof. Note first that since νy(g) = Tg(y) ≥ 0 for every g ≥ 0, we have
νy ∈ M+(K). Moreover, νy(K) = νy(1K) = T1K(y) = 1, so every νy is in
fact a probability measure on K.

It is clear that ϕr has at most 1/r elements, so to verify (i) we shall check
upper semicontinuity.

Take an open set U ⊆ K and y ∈ L such that ϕr(y) ⊆ U . Writing
F = K \ U , for every x ∈ F we have νy({x}) < r so there is an open set
Ux 3 x such that νy(Ux) < r. This defines an open cover Ux of a closed set
F so we have F ⊆

⋃
x∈I Ux for some finite set I ⊆ F . Now

V = {z ∈ L : νz(Ux) < r for every x ∈ I}
is an open neighbourhood of y and ϕr(z) ⊆ U for all z ∈ V .

Part (ii) follows directly from (i) and Proposition 3.1.
To prove (iii), we will check that for every x ∈ K there is y ∈ L such

that νy({x}) ≥ m.
Take any open neighbourhood U of x, and a continuous function gU :

K → [0, 1] that vanishes outside U and gU (x) = 1. Then ‖gU‖ = 1, so
by Lemma 2.1 there is y(U) ∈ L such that νy(U)(gU ) ≥ m. Let y be a
cluster point of the net y(U), indexed by all open U 3 x (ordered by inverse
inclusion). Then νy({x}) ≥ m.

Indeed, suppose that νy({x}) < m. Then there is an open set U 3 x such
that νy(U) < m. Since νy is a cluster point of νy(V ), there must be V such
that x ∈ V ⊆ U and νy(V )(U) < m. But

νy(V )(U) ≥ νy(V )(U) ≥ νy(V )(V ) ≥ νy(V )(gV ) ≥ m,
a contradiction.

Theorem 4.3. If K and L are compact spaces such that there is a pos-
itive isomorphic embedding C(K) → C(L) then τ(K) ≤ τ(L). Moreover, if
L is a Fréchet (sequential, sequentially compact) space then so is K.

Proof. Note that if τ(L) ≤ κ and L0 ⊆ L is closed then τ(L0) ≤ κ;
likewise, the Fréchet property and sequentiality are inherited by subspaces.
Therefore by Lemma 4.1 we can assume that there is a positive embedding
T : C(K) → C(L) with T1K = 1L, and the theorem follows from Lemma
3.2 and Proposition 4.2(iii).

For the sake of the next result let us write ci(L) for the class of compact
spaces that are continuous images of closed subspaces of a given compact
space L.

Theorem 4.4. Let K and L be compact spaces such that there is a pos-
itive isomorphic embedding C(K) → C(L). Let p be the least integer such
that 2p > ‖T‖ · ‖T−1‖. Then there is a sequence

K1 = K ⊇ · · · ⊇ Kp
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of closed subspaces of K such that

(a) Kp ∈ ci(L);
(b) for every i ≤ p − 1 and every x ∈ Ki \Ki+1 there is an open set U

containing x such that U ∩Ki ∈ ci(L).

Proof. Take a positive embedding T : C(K) → C(L) of norm one and
write m = 1/‖T−1‖. As in the previous proof we can assume that T1K = 1L.
Following Proposition 4.2 we write νy = T ∗δy and ϕr(y) = {x ∈ K :
νy({x}) ≥ r} for y ∈ L and r > 0.

Let mi = 2i−1m for i = 1, . . . , p and put

Ki =
⋃
y∈L

ϕmi(y).

Then every Ki is closed by Proposition 4.2(ii) and K1 = K by 4.2(iii).
To prove (a) note that mp > 1/2 by our choice of p, so every ϕmp(y) has

at most one element. Let ψ(y) = ϕmp ∩Kp for y ∈ L. Then ψ : L→ [Kp]
≤1

is upper semicontinuous by Lemma 3.3 and onto by the definition of Kp. If
L0 = {y ∈ L : ψ(y) 6= ∅} then L0 is closed and clearly ψ defines a continuous
surjection from L0 onto Kp.

Let i ≤ p− 1 and fix x ∈ Ki \Ki+1. Consider the mapping ψ defined as
ψ(y) = ϕmi(y) ∩Ki for y ∈ L; again ψ is onto and upper semicontinuous.

We claim that x has a neighbourhood H in Ki such that |ψ(y)∩H| ≤ 1
for y ∈ L.

Suppose otherwise; then for every set H which is open in Ki and contains
x there is yH ∈ L and distinct uH , wH ∈ H such that uH , wH ∈ ψ(yH).
Passing to a subnet we can assume that yH → y ∈ L. Then νy({x}) < mi+1

since x /∈ Ki+1, so there is an open U such that νy(U) < mi+1. Then
νyH (U) < mi+1 should hold eventually but

νyH (U) ≥ νyH ({uh, wh}) ≥ 2mi = mi+1,

a contradiction.
Take an open set U ⊆ K containing x such that U ∩Ki ⊆ H; it follows

that U ∩Ki is in ci(L), as required.

Let us recall that a family V of nonempty open subsets of a topological
space X is called a π-base if every nonempty open set U ⊆ X contains some
V ∈ V.

Corollary 4.5. If T : C(K)→ C(L) is a positive embedding then the
family of those open U ⊆ K such that U ∈ ci(L) is a π-base of K.

Proof. Let W ⊆ K be a nonempty open set. Taking Ki as in Theorem
4.4 we infer that there is i ≤ p such that W ∩ (Ki \Ki+1) (we set Kp+1 = ∅)
has nonempty interior; we conclude applying 4.4.
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Corollary 4.6. If T : C([0, 1]κ) → C(L) is a positive embedding then
L can be continuously mapped onto [0, 1]κ.

Proof. By the previous corollary there is a basic neighbourhood U in
[0, 1]κ of the form U = p−1I [(a1, b1)×· · ·×(an, bn)], where pI : [0, 1]κ → [0, 1]I

is a projection, such that U ∈ ci(L). Clearly, U is homeomorphic to [0, 1]κ

and we conclude that there is a continuous surjection h : L0 → [0, 1]κ from
a closed subspace L0 ⊆ L; we can then extend h to a continuous function
L→ [0, 1]κ (applying Tietze’s extension theorem coordinatewise).

Recall that a space K is called homogeneous if for each pair x1, x2 ∈ K
there is a homeomorphism θ : K → K such that θ(x1) = x2.

Corollary 4.7. If T : C(K)→ C(L) is a positive embedding and L is
Corson compact then K has a π-base of sets having Corson compact closures.

If, moreover, K is homogeneous then K is Corson compact itself.

Proof. The first part is a consequence of Corollary 4.5 and the fact that
Corson compacta are stable under taking continuous images.

If K is homogeneous then for every x ∈ K there is an open set x ∈ U
such that U is Corson compact. Hence K can be covered by a finite family
of Corson compacta and this easily implies that K is Corson compact too
(see e.g. [17, Corollary 6.4]).

5. Remarks and questions. In connection with Theorem 4.3 it is
worth recalling the following result due to Okunev [14]: There is a Fréchet
compactum L and a compact space K which is not Fréchet and such that
C(K) is isomorphic to C(L). In fact [13] gave the proof that there is a linear
isomorphism T : Cp(K) → Cp(L) between the underlying spaces equipped
with the topology of pointwise convergence. It is well-known, however, that
such a T is automatically an isomorphism of the Banach spaces C(K) and
C(L).

Note that Theorem 4.4 implies the following.

Corollary 5.1. Suppose that T : C(K)→ C(L) is a positive embedding
such that ‖T‖ · ‖T−1‖ < 2. Then there is a compact subspace L1 ⊆ L which
can be continuously mapped onto K.

This is, however, a particular case of a result due to Jarosz [7], who
showed that one may drop the assumption of positivity. It is worth recalling
that Jarosz’s result was motivated by the following theorem due to Amir [1]
and Cambern [3].

Theorem 5.2. Suppose that there an isomorphism T from C(K) onto
C(L) such that ‖T‖ · ‖T−1‖ < 2. Then K is homeomorphic to L, and con-
sequently C(K) and C(L) are isometric.
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Our results from the previous sections do not require the condition
‖T‖ · ‖T−1‖ < 2 at the price of assuming that the operator in question
is positive. The following elementary example shows that in the setting of
Theorem 4.4 the whole space K need not be an image of a subspace of L.

Example 5.3. Let

K = {xn : n ≥ 1} ∪ {yn : n ≥ n} ∪ {x, y}
consist of two disjoint converging sequences xn → x, yn → y (where x 6= y);
let L = {zn : n ≥ 0} ∪ {z}, where zn → z. Define T : C(K)→ C(L) by

Tf(z0) = f(y),

T f(z2n−1) =
f(xn) + f(y)

2
, T f(z2n) =

f(x) + f(yn)

2
for n ≥ 1.

Then T is a positive operator with ‖T‖ = 1; moreover, T is an isomorphism
onto C(K). Indeed, the inverse S = T−1 : C(L)→ C(K) is given by

Sh(y) = h(z0), Sh(x) = 2h(z)− h(z0),
Sh(xn) = 2h(z2n−1)− h(z0), Sh(yn) = 2h(z2n)− 2h(z) + h(z0)

so ‖T−1‖ ≤ 5.
Note that, on the other hand,K is not a continuous image of any subspace

of L.

It should be stressed that we have not been able to find a complete
solution to Problem 1.1 even for positive embeddings.

One reason is that Corsonnes is not preserved by taking images under
finite-valued upper semicontinuous functions: for instance, if we let K be the
split interval (which is not Corson compact because every separable Corson
compact space is metrizable) then there is an upper semicontinuous onto
mapping ϕ : [0, 1]→ [K]≤2.

The second reason is that facts like Theorem 4.4 are not strong enough:
Suppose for instance that T : C(K) → C(L) is a positive embedding with
‖T‖ · ‖T−1‖ < 4 and L is Corson compact. Then we conclude from 4.4
that there is a Corson compact K2 ⊆ K such that every x ∈ K \ K2 has
a neighbourhood with a Corson compact closure. But a space K with this
property need not be Corson itself—take for instance K = [0, ω1] (the space
of ordinals α ≤ ω1 with the order topology) and let K2 = {ω1}.

6. Envelopes of operators between C(K) spaces. Let T : C(K)→
C(L) be a bounded operator; we can consider the following function eT :
L→ R associated to T :

eT (y) = sup{Tg(y) : g ∈ C(K), ‖g‖ ≤ 1}.
We shall call eT the envelope of T .
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Lemma 6.1. The envelope eT of a bounded operator T : C(K) → C(L)
is a lower semicontinuous function with values in [0, ‖T‖]. If T is an iso-
morphism onto C(L) then 1/‖T−1‖ ≤ eT (y) ≤ ‖T‖ for every y ∈ L.

Proof. If eT (y0) > r then there is norm-one function g ∈ C(K) such that
Tg(y0) > r and then Tg(z) > r for all z from some neighbourhood V of y0
so V ⊆ {eT > r}. This means that the set {eT > r} is open.

If T is onto then there is g ∈ C(K) such that Tg = 1L; writing m =
1/‖T−1‖ we have ‖mg‖ ≤ 1 so eT (y) ≥ m for every y ∈ L.

Lemma 6.2. For every bounded operator T : C(K) → C(L) we have
eT (y) = ‖T ∗δy‖ for every y ∈ L.

Proof. This follows from

‖T ∗δy‖ = sup
‖g‖≤1

T ∗δy(g) = sup
‖g‖≤1

Tg(y) = eT (y).

The idea of considering envelopes is based on the observation that the
assumption of positivity of an embedding T : C(K) → C(L) might be
dropped once we know that the mapping y 7→ ‖T ∗δy‖ is continuous. In fact
the following result explains that an embedding having a continuous envelope
can be, in a sense, reduced to a positive embedding.

Theorem 6.3. Suppose that T : C(K) → C(L) is an isomorphic em-
bedding such that eT is continuous and positive everywhere on L. Then there
exists a positive embedding of C(K) into C(L× 2).

Proof. W can assume that ‖T‖ = 1; we have eT ∈ C(L) and also h =
1/eT ∈ C(L). If we define T ′ : C(K) → C(L) by T ′g = hT (g) then T ′ is
also an isomorphic embedding. If g ∈ C(K) with ‖g‖ = 1 then |T ′g(y)| =
|h(y)Tg(y)| ≤ 1, so again ‖T ′‖ = 1. Moreover, it is easy to check that
eT

′ ≡ 1.
By the above remark we can assume that T : C(K) → C(L) is an

embedding such that ‖T‖ = 1 and eT is equal to 1 on L. As before, for every
y ∈ L write νy = T ∗δy ∈M(K). By Lemma 6.2, ‖νy‖ = 1 for every y ∈ L.

Every νy can be written as νy = ν+y − ν−y , where ν+y , ν−y ∈ M+(K).
Since the mapping L 3 y 7→ νy is continuous, it follows from the final
assertion of Lemma 2.2 that the mapping L 3 y 7→ |νy| is also continuous,
and consequently so are the mappings L 3 y 7→ ν+y and L 3 y 7→ ν−y .

We now define

θ : L× 2→M+(K), θ(y, 0) = ν+y , θ(y, 1) = ν−y ;

by the above remarks, θ is continuous and L′ = θ[L× 2] is a compact subset
of M+(K).
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Let us consider an operator S : C(K) → C(L′) where Sg(µ) = µ(g)
for µ ∈ L′. Clearly S is bounded, in fact ‖S‖ ≤ 1. Let m = 1/‖T−1‖, i.e.
‖Tg‖ ≥ m‖g‖ for g ∈ C(K). If g ∈ C(K) and ‖g‖ = 1 then |Tg(y)| ≥ m
for some y ∈ L, so |νy(g)| ≥ m, which gives that either |ν+y (g)| ≥ m/2 or
|ν−y (g)| ≥ m/2. It follows that ‖Sg‖ ≥ m/2, so S is a positive embedding.
Finally, C(L′) can be embedded into C(L×2) by a positive operator sending
g ∈ C(L′) to g ◦ θ ∈ C(L× 2); the proof is complete.

We can combine Theorem 6.3 with the result of the previous section. We
denote byK+1 the spaceK with one isolated point added. Clearly, C(K+1)
is isomorphic to C(K) × R; recall that except for some peculiar spaces K,
C(K + 1) is isomorphic to C(K) (see [18], Koszmider [9], Plebanek [16]).

Lemma 6.4. Let T : C(K) → C(L) be an isomorphic embedding and
suppose that eT (y0) = 0 for some y0 ∈ L. Then there is an isomorphic
embedding S : C(K + 1)→ C(L) with eS = eT + 1 ≥ 1.

Proof. Let T satisfy m‖g‖ ≤ ‖Tg‖ ≤ ‖g‖ for g ∈ C(K). Put K + 1 =
K ∪ {z} and define S : C(K + 1)→ C(L) by

Sf = T (f�K) + f(z)1L.

Clearly ‖T‖ ≤ 2; if f ∈ C(K+1) is a norm-one function then either |f(z)| ≥
m/2, which gives |Sf(y0)| ≥ m/2, or |f(z)| < m/2, which also implies
‖Sf‖ ≥ m/2. Therefore S is an embedding too. Clearly eS = eT + 1 ≥ 1.

Corollary 6.5. If K and L are compact spaces and there is an isomor-
phic embedding T : C(K) → C(L) with a continuous envelope then τ(K) ≤
τ(L). Moreover, the Fréchet property (sequentiality, sequential compactness)
of L implies that K is Fréchet (sequential, sequentially compact).

Proof. If eT is positive on L then by Theorem 6.3 and Proposition 4.2,
K is the image of L × 2 under a finite-valued upper semicontinuous set-
function; we conclude applying Lemma 3.2.

If eT is zero at some point then we first use Lemma 6.4 and continue
with K + 1 replacing K.
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