
STUDIA MATHEMATICA 218 (2) (2013)

Embeddings of Besov–Morrey spaces on bounded domains

by

Dorothee D. Haroske (Jena) and Leszek Skrzypczak (Poznań)

Abstract. We study embeddings of spaces of Besov–Morrey type, idΩ : N s1
p1,u1,q1(Ω)

↪→ N s2
p2,u2,q2(Ω), where Ω ⊂ Rd is a bounded domain, and obtain necessary and sufficient

conditions for the continuity and compactness of idΩ . This continues our earlier studies
relating to the case of Rd. Moreover, we also characterise embeddings into the scale of Lp
spaces or into the space of bounded continuous functions.

1. Introduction. In recent years smoothness spaces related to Morrey
spaces, in particular Besov–Morrey and Triebel–Lizorkin–Morrey spaces, at-
tracted some attention. The classical Morrey spaces Mp,u(Rd), 0 < u ≤
p < ∞, were introduced by Ch. B. Morrey [Mo] and are part of the wider
class of Morrey–Campanato spaces (cf. [Pe]). They can be considered as a
complement to Lp spaces, since Mp,p(Rd) = Lp(Rd). However, on the one
hand the Morrey spaces with u < p consist of locally u-integrable functions,
but on the other hand the spaces scale with d/p instead of d/u, that is,

‖f(λ ·) |Mp,u(Rd)‖ = λ−d/p‖f |Mp,u(Rd)‖, λ > 0.

This property is very useful for some partial differential equations.
Built upon this basic familyMp,u(Rd), different spaces of Besov–Triebel–

Lizorkin type were defined in the last years. H. Kozono and M. Yamazaki
[KY] and A. Mazzucato [Ma] introduced the Besov–Morrey N s

p,u,q spaces
and used them in the theory of Navier–Stokes equations. As before, if u = p,
then these spaces coincide with the classical ones, i.e.,N s

p,p,q(Rd) = Bs
p,q(Rd).

Some of their properties including wavelet characterisations were proved by
Y. Sawano [S1, S4, S3], Y. Sawano and H. Tanaka [ST2, ST1] and L. Tang
and J. Xu [TX]. The most systematic and general approach to spaces of
this type can be found in the recent book [YSY] of W. Yuan, W. Sickel
and D. Yang or in the very recent survey papers by W. Sickel [Si1, Si2]. We
recommend the monograph and the survey for further up-to-date references
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on this subject. In contrast to this approach Triebel [T3] followed the original
Morrey–Campanato ideas to develop local spaces.

Embeddings of classical Besov–Triebel–Lizorkin spaces of Sobolev type
are well understood nowadays. In particular a lot is known about the com-
pactness of these embeddings. This includes the behaviour of analytic and
geometric quantities describing their compactness, for example, the relevant
approximation and entropy numbers. As an application D. E. Edmunds and
H. Triebel [ET] proposed a program of investigating the spectral properties
of certain pseudo-differential operators based on the asymptotic behaviour of
entropy and approximation numbers, together with Carl’s inequality and the
Birman–Schwinger principle. In contrast to the classical Besov and Triebel–
Lizorkin spaces, little is known about the properties of embeddings as well
as about applications of smoothness spaces related to Morrey spaces.

Y. Sawano, S. Sugano, and H. Tanaka found sufficient conditions for the
continuity of embeddings in the case of a homogeneous Besov–Morrey space
Ṅ s
p,u,q(Rd) (cf. [SST]). The analogue for similar embeddings of nonhomo-

geneous Triebel–Lizorkin–Morrey spaces can be found in [YSY]. Quite re-
cently we proved sufficient and necessary conditions for the continuity of
embeddings of nonhomogeneous Besov–Morrey spaces N s

p,u,q(Rd) (cf. [HS]).
Embeddings of some weighted spaces are also considered there.

Almost nothing is known about Sobolev embeddings of Besov–Morrey
spaces defined on bounded domains. The first approach to the problem is
due to G. T. Dzhumakaeva [D1–D3] and Yu. Netrusov [Ne]. They considered
spaces of Besov–Morrey type on domains defined in terms of differences
as well as Sobolev–Morrey spaces and proved some embedding theorems.
Besov–Morrey spaces N s

p,u,q(Ω) on bounded smooth domains Ω in Rd were
considered by Y. Sawano [S2]. These spaces are defined by restrictions of
elements from N s

p,u,q(Rd) to Ω. He proved inter alia the extension property
for these spaces.

In this paper we investigate the continuity and compactness of embed-
dings of N s

p,u,q(Ω) spaces. Our first goal is to find necessary and sufficient
conditions for the boundedness and compactness of the embeddings

idΩ : N s1
p1,u1,q1(Ω) ↪→ N s2

p2,u2,q2(Ω)

(cf. Theorems 3.1 and 4.1). In particular, we show that idΩ is compact if,
and only if,

s1 − s2
d

> max

{
0,

1

p1
− 1

p2
,
u1
p1

(
1

u1
− 1

u2

)}
,

where si ∈ R, 0 < qi ≤ ∞, 0 < ui ≤ pi < ∞, i = 1, 2. Special atten-
tion is paid to the cases when the source or the target space is a classical
Besov space. Moreover we investigate embeddings where the target space is
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a Lebesgue space or the space of bounded continuous functions, that is,

N s
p,u,q(Ω) ↪→ Lr(Ω) and N s

p,u,q(Ω) ↪→ C(Ω).

For the last two embeddings we consider both the situation when Ω is a
smooth bounded domain in Rd, and when Ω = Rd. In particular, we show
that the distinction between bounded domains and Rd is relevant for embed-
dings into Lebesgue spaces only, unlike the case of the space of continuous
functions. We refer the reader to [T3, Sect. 2.1] for embeddings of smooth-
ness spaces built on Morrey–Campanato spaces.

The paper is organised as follows. In Section 2 we collect basic facts about
Morrey and Besov–Morrey spaces needed later on. We also recall the wavelet
characterisation of Besov–Morrey spaces via compactly supported wavelets
and Sawano’s extension theorem. Section 3 is devoted to the continuity of the
above-described embeddings of Besov–Morrey spaces on bounded domains.
Afterwards we prove sufficient and necessary conditions for the compactness
of these embeddings. In the last section we deal with embeddings into Lp(Ω)
and C(Ω).

2. Morrey and Besov–Morrey spaces. First we fix some notation.
By N we denote the set of natural numbers, by N0 the set N∪{0}, and by Zd
the set of all lattice points in Rd having integer components. The positive
part of a real function f is given by f+(x) = max(f(x), 0), the integer part of
a ∈ R is bac = max{k ∈ Z : k ≤ a}. For two positive real sequences {αk}k∈N
and {βk}k∈N we write αk ∼ βk when there exist constants c1, c2 > 0 such
that c1αk ≤ βk ≤ c2αk for all k ∈ N; similarly for positive functions. We
denote by B(x, r) = {y ∈ Rd : |x− y| < r} the ball centred at x ∈ Rd with
radius r > 0.

Given two (quasi-) Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y
and the natural embedding of X in Y is continuous.

All unimportant positive constants will be denoted by c, occasionally
with subscripts.

2.1. Function spaces on Rd. We start by recalling the definition of
Morrey spaces.

Definition 2.1. Let 0 < u ≤ p < ∞. The Morrey space Mp,u(Rd) is
the set of all locally u-integrable functions f ∈ Lloc

u (Rd) such that

‖f |Mp,u(Rd)‖ = sup
x∈Rd, R>0

Rd/p−d/u
( �

B(x,R)

|f(y)|u dy
)1/u

<∞.

Remark 2.2. The spaces Mp,u(Rd) are quasi-Banach spaces (Banach
spaces for u ≥ 1). They were introduced by Ch. B. Morrey [Mo] and are
part of the wider class of Morrey–Campanato spaces (cf. [Pe]). They can be
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considered as a complement to Lp spaces. As a matter of fact, Mp,p(Rd) =
Lp(Rd), 0 < p <∞. To extend this relation we put M∞,∞(Rd) = L∞(Rd).
One can easily see that for 0 < u2 ≤ u1 ≤ p <∞,

Lp(Rd) =Mp,p(Rd) ↪→Mp,u1(Rd) ↪→Mp,u2(Rd).

In an analogous way one can define the spaces M∞,u(Rd), 0 < u < ∞,
but using the Lebesgue differentiation theorem one can easily prove that
M∞,u(Rd) = L∞(Rd).

Now we define Besov spaces modelled on Mp,u(Rd).
The Schwartz space S(Rd) and its dual space S ′(Rd) of all complex-

valued tempered distributions have their usual meaning here. Let ϕ0 = ϕ ∈
S(Rd) be such that

suppϕ ⊂ {y ∈ Rd : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1,

and for each j ∈ N let ϕj(x) = ϕ(2−jx)−ϕ(2−j+1x). Then {ϕj}∞j=0 forms a

smooth dyadic resolution of unity. Given any f ∈ S ′(Rd), we denote by Ff
and F−1f its Fourier transform and its inverse Fourier transform, respec-
tively. Let f ∈ S ′(Rd). Then the Paley–Wiener–Schwartz theorem implies
that F−1(ϕjFf) is an entire analytic function on Rd.

Definition 2.3. Let 0 < u ≤ p < ∞ or p = u = ∞. Let 0 < q ≤ ∞,
s ∈ R and {ϕj}j a smooth dyadic resolution of unity. The Besov–Morrey
space N s

p,u,q(Rd) is the set of all distributions f ∈ S ′(Rd) such that

‖f | N s
p,u,q(Rd)‖ =

( ∞∑
j=0

2jsq‖F−1(ϕjFf) |Mp,u(Rd)‖q
)1/q

(2.1)

is finite. In the limiting case q =∞ the usual modification is required.

Remark 2.4. The spaces N s
p,u,q(Rd) are independent of the particular

choice of the smooth dyadic resolution of unity {ϕj}j appearing in their
definitions. They are quasi-Banach spaces (Banach spaces for u, q ≥ 1), and
S(Rd) ↪→ N s

p,u,q(Rd) ↪→ S ′(Rd). Moreover, for u = p we recover the usual
Besov spaces,

N s
p,p,q(Rd) = Bs

p,q(Rd).(2.2)

Besov–Morrey spaces were introduced by H. Kozono and M. Yamazaki [KY].
They studied semilinear heat equations and Navier–Stokes equations with
initial data belonging to such spaces. The investigations were continued by
A. Mazzucato [Ma], who found the atomic decomposition of some spaces.
We follow the ideas of L. Tang and J. Xu [TX], where a somewhat differ-
ent definition is proposed. These ideas were developed by Y. Sawano and
H. Tanaka [ST2, ST1, S1, S4].



Embeddings of Besov–Morrey spaces 123

It has turned out that many of the results from the classical situation
have their counterparts, e.g., N s+ε

p,u,q(Rd) ↪→ N s
p,u,q(Rd) if ε > 0, N s

p,u,q1(Rd)
↪→ N s

p,u,q2(Rd) if q1 ≤ q2, and N s
p,u,q(Rd) ↪→ L∞(Rd) if s > d/p. We recall

two properties that will be needed later on.

First, Besov–Morrey spaces have lifting properties similar to the classical
Besov spaces. Let σ ∈ R. Then Iσ is the operator defined by

(2.3) Iσf = F−1(1 + |ξ|2)σ/2Ff, f ∈ S ′(Rd).

It is well-known that Iσ is an isomorphic mapping of S ′(Rd), as well as an
isomorphic mapping of S(Rd) onto itself.

Theorem 2.5 (cf. [TX]). Let s, σ ∈ R, 0 < q ≤ ∞, 0 < u ≤ p < ∞.
Then Iσ is an isomorphic mapping from N s

p,u,q(Rd) onto N s+σ
p,u,q(Rd).

Let C(Rd) be the space of all complex-valued bounded uniformly con-
tinuous functions on Rd, equipped with the sup-norm as usual. If m ∈ N,
then Cm(Rd) = {f : Dαf ∈ C(Rd) for all |α| ≤ m}.

Theorem 2.6 (cf. [S2]). If m ∈ N is sufficiently large and h ∈ Cm(Rd),
then the natural pointwise multiplication mapping

Mh : f 3 S(Rd) 7→ h · f

extends to a continuous mapping from N s
p,u,q(Rd) to N s

p,u,q(Rd). Further-
more, there exists a constant C > 0 such that

(2.4) ‖Mhf | N s
p,u,q(Rd)‖ ≤ C‖h |Cm(Rd)‖ ‖f | N s

p,u,q(Rd)‖.

2.2. Function spaces on bounded domains. Let Ω be a bounded
C∞ domain in Rd. We define the Besov–Morrey spaces on Ω by restrictions.
Namely, since we are able to define an extension operator ext : C∞0 (Ω) →
S(Rd), the restriction operator re : S ′(Rd)→ D′(Ω) can be defined naturally
as the adjoint operator. We will write f |Ω = re(f) for f ∈ S ′(Rd).

Definition 2.7. Let 0 < u ≤ p <∞ or u = p =∞. Let 0 < q ≤ ∞ and
s ∈ R. Then the Besov–Morrey space N s

p,u,q(Ω) is defined by

(2.5) N s
p,u,q(Ω) := {f ∈ D′(Ω) : f = g|Ω for some g ∈ N s

p,u,q(Rd)}

and

(2.6) ‖f | N s
p,u,q(Ω)‖ = inf{‖g | N s

p,u,q(Rd)‖ : f = g|Ω, g ∈ N s
p,u,q(Rd)}.

Remark 2.8. The spaces N s
p,u,q(Ω) are quasi-Banach spaces (Banach

spaces for q, u ≥ 1). Moreover, for u = p we recover the usual Besov spaces
defined on bounded smooth domains. The properties of the above spaces, in
particular, the extension property, were investigated in [S2].
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Theorem 2.9 (cf. [S2]). Let N ∈ N and either N−1 ≤ u ≤ p < ∞ or
u = p = ∞. Let |s| < N and N−1 < q ≤ ∞. Then for any N there is a
common extension operator

(2.7) extN : N s
p,u,q(Ω)→ N s

p,u,q(Rd)
such that

(2.8) re ◦ extN = id (identity in N s
p,u,q(Ω)),

that is, extN f |Ω = f for f ∈ N s
p,u,q(Ω).

2.3.Wavelet characterisation. Finally, we briefly describe the wavelet
characterisation of Besov–Morrey spaces proved in [S4]. For m ∈ Zd and
ν ∈ Z we define a d-dimensional dyadic cube Qν,m with sides parallel to
coordinate axes by

Qν,m =
d∏
i=1

[
mi

2ν
,
mi + 1

2ν

)
, m = (m1, . . . ,md) ∈ Zd, ν ∈ Z.

For 0 < p < ∞, ν ∈ Z and m ∈ Zd we denote by χ
(p)
ν,m the p-normalised

characteristic function of the cube Qν,m,

χ(p)
ν,m(x) = 2νd/pχν,m(x) =

{
2νd/p for x ∈ Qν,m,

0 for x /∈ Qν,m,
(2.9)

hence ‖χ(p)
ν,m |Lp(Rd)‖ = 1 and ‖χ(p)

ν,m |Mp,u(Rd)‖ = 1.

Let φ̃ be a scaling function on R with compact support and of sufficiently
high regularity. Let ψ̃ be the associated wavelet. Then the tensor-product
ansatz yields a scaling function φ and associated wavelets ψ1, . . . , ψ2d−1, all

defined now on Rd. We suppose φ̃ ∈ CN1(R) and supp φ̃ ⊂ [−N2, N2] for
certain natural numbers N1 and N2. This implies

(2.10) φ, ψi ∈ CN1(Rd) and suppφ, suppψi ⊂ [−N3, N3]
d

for i = 1, . . . , 2d − 1. We use the standard abbreviations

(2.11) φν,m(x) = 2νd/2φ(2νx−m) and ψi,ν,m(x) = 2νd/2ψi(2
νx−m).

To formulate the result we introduce some sequence spaces. For 0 < u ≤
p <∞, 0 < q ≤ ∞ and σ ∈ R, let

(2.12) nσp,u,q :=
{
λ = {λν,m}ν,m : λν,m ∈ C,

‖λ |nσp,u,q‖ =
∥∥∥{2ν(σ−d/p)

∥∥∥ ∑
m∈Zd

λν,m χ
(p)
ν,m

∣∣∣Mp,u(Rd)
∥∥∥}

ν∈N0

∣∣∣ `q∥∥∥ <∞}.
The following theorem was proved in [Ro, Thm. 4.5, Cor. 4.17] (see also
[S4]).
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Theorem 2.10. Let 0 < u ≤ p < ∞ or u = p = ∞, 0 < q ≤ ∞ and
s ∈ R. Let φ be a scaling function and let ψi, i = 1, . . . , 2d − 1, be the
corresponding wavelets satisfying (2.10). Assume that

max{(1 + bsc)+, bd(1/u− 1)+ − sc} ≤ N1.

Then a distribution f ∈ S ′(Rd) belongs to N s
p,u,q(Rd) if, and only if,

‖f | N s
p,u,q(Rd)‖? = ‖{〈f, φ0,m〉}m∈Zd | `p‖

+

2d−1∑
i=1

‖{〈f, ψi,ν,m〉}ν∈N0,m∈Zd |n
σ
p,u,q‖

is finite, where σ = s+ d/2. Furthermore, ‖f | N s
p,u,q(Rd)‖? may be used as

an equivalent (quasi-) norm in N s
p,u,q(Rd).

Remark 2.11. It follows from Theorem 2.10 that the mapping

(2.13) T : f 7→
(
{〈f, φ0,m〉}m∈Zd , {〈f, ψi,ν,m〉}ν∈N0,m∈Zd, i=1,...,2d−1

)
is an isomorphism of N s

p,u,q(Rd) onto `p⊕
⊕2d−1

i=1 nσp,u,q, σ = s+d/2 (cf. [Ro,
Thm. 4.5, Cor. 4.17] and [S4]).

The theorem covers the characterisation of Besov spaces Bs
p,q(Rd) by

Daubechies wavelets (cf. [T2, pp. 15–16] and the references given there).

We define an equivalent norm in the sequence spaces nsp,u,q that is more
convenient for our purposes. Let s ∈ R, 0 < q ≤ ∞, 0 < u ≤ p < ∞
or u = p = ∞. For a sequence {λj,m}j,m, j ∈ N0, m ∈ Zd, we define a
quasi-norm

(2.14)

‖λ |nsp,u,q‖∗ =
( ∞∑
j=0

2
qj(s− d

p
)

sup
ν: ν≤j
k∈Zd

2
qd(j−ν)( 1

p
− 1
u
)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u
) q
u
) 1
q
,

with the usual modification if q =∞ or u = p =∞.

Lemma 2.12 (cf. [HS]). Let s ∈ R, 0 < q ≤ ∞, 0 < u ≤ p <∞. Then

(2.15) nsp,u,q =
{
λ = {λj,m}j,m : j ∈ N0, m ∈ Zd and ‖λ |nsp,u,q‖∗ <∞

}
.

Remark 2.13. If 0 < u = p ≤ ∞, then

‖λ |nsp,p,q‖∗ =
( ∞∑
j=0

2
qj(s− d

p
)
( ∑
m∈Zd

|λj,m|p
) q
p
) 1
q
,(2.16)

with the usual modification if q =∞ or p =∞.
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3. Continuous embeddings. First we consider sufficient and neces-
sary conditions for boundedness of embeddings.

Theorem 3.1. Let s1, s2 ∈ R, 0 < q1, q2 ≤ ∞, 0 < u1 ≤ p1 < ∞,
0 < u2 ≤ p2 <∞. Then the embedding

(3.1) idΩ : N s1
p1,u1,q1(Ω) ↪→ N s2

p2,u2,q2(Ω)

holds if either

(3.2)
s1 − s2
d

> max

{
0,

1

p1
− 1

p2
,
u1
p1

(
1

u1
− 1

u2

)}
,

or

(3.3)
s1 − s2
d

= max

{
0,

1

p1
− 1

p2
,
u1
p1

(
1

u1
− 1

u2

)}
,

with

(3.4) q1 ≤ min

(
1,max

(
1,
p2
p1

)
u1
u2

)
q2.

Conversely, if there is a continuous embedding (3.1), then either the param-
eters satisfy (3.2), or (3.3) holds and q1 ≤ q2.

Remark 3.2. Note that the above theorem implies that in the case of

(3.5)
u1
u2
≥ min

(
1,
p1
p2

)
the embedding (3.1) is continuous if, and only if, either (3.2) is satisfied, or
(3.3) holds and q1 ≤ q2. In the classical case, i.e., when pi = ui, i = 1, 2,
condition (3.5) is obviously true and the well-known embedding result for
Besov spaces on bounded domains is recovered. In all other cases apart from
(3.5) there is clearly a gap between necessary and sufficient conditions in
the limiting case (3.3) in view of the fine indices qi.

Proof. Step 1 (Sufficiency)

Substep 1.1. Let Ωt = {x ∈ Rd : dist(x,Ω) < t} for some t > 0. We
choose a dyadic cube Q (applying some appropriate dilations or translations
first, if necessary) such that

suppψi,ν,m ⊂ Q if suppψi,ν,m ∩Ωt 6= ∅

and

suppφ0,m ⊂ Q if suppφ0,m ∩Ωt 6= ∅.
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We define a sequence space by

(3.6) ñσp,u,q(Q) :=
{
λ = {λj,m}j,m : λj,m ∈ C, j ∈ N0, Qj,m ⊂ Q,

‖λ |nσp,u,q‖

=
( ∞∑
j=0

2
jq(σ− d

p
)

sup
ν: ν≤j

k:Qν,k⊂Q

2
qd(j−ν)( 1

p
− 1
u
)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u
) q
u
) 1
q
<∞

}
.

Let h ∈ C∞0 (Rd) be a test function such that supph ⊂ Ωt and h(x) = 1
for any x ∈ Ωt/2. We choose N ∈ N such that N−1 ≤ ui ≤ pi, N

−1 <
qi and |si| < N , i = 1, 2. Then there exists an extension operator extN ,
common for both spaces N s1

p1,u1,q1(Ω) and N s2
p2,u2,q2(Ω) (cf. Theorem 2.9).

Note that re ◦Mh = re, that is, re ◦Mh ◦ extN = id on N si
pi,ui,qi(Ω) (cf. (2.8)

and Theorem 2.6). Now using the wavelet characterisation of N s
p,u,q(Rd)

by Daubechies wavelets (cf. Theorem 2.10), in particular the isomorphism
T defined by (2.13), one can factorise the embedding (3.1) through the
embedding of the above sequence spaces. Namely the following diagram is
commutative:

N s1
p1,u1,q1(Ω)

id−−−−→ N s2
p2,u2,q2(Ω)

T◦Mh ◦ extN
y xre ◦T−1

ñσ1
p1,u1,q1(Q)

id−−−−→ ñσ2
p2,u2,q2(Q)

with σi = si + d/2.
Thus it is enough to find sufficient conditions for the embedding

ñσ1
p1,u1,q1(Q) ↪→ ñσ2

p2,u2,q2(Q)

to hold. It should be clear that we can assume that Q = Qν0,0 for some
ν0 < 0.

Moreover, the diagonal operator (λj,m) 7→ (2−jtλj,m), t ∈ R, is an isom-
etry of ñσp,u,q(Q) onto ñσ+tp,u,q(Q). Thus we can assume that σ1 = d/p1.

Substep 1.2. If u2
p2
≤ u1

p1
and p1 ≤ p2 we can apply the method used in

the proof of [HS, Theorem 3.2]. This shows that the inequality

(3.7) ‖λ | ñσ2
p2,u2,q2‖ ≤ C‖λ | ñ

σ1
p1,u1,q1‖

holds if either
s1 − s2
d

>
1

p1
− 1

p2
, or

s1 − s2
d

=
1

p1
− 1

p2
and q1 ≤ q2,

which coincides with (3.4) in this case.

Substep 1.3. Let u2 ≤ u1. The case p1 ≤ p2 is covered by Substep 1.2
since u2 ≤ u1 ≤ p2

p1
u1. So we can assume p2 < p1. By the Hölder inequality
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we get

(3.8)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u2

) 1
u2 ≤ C

( ∑
m:

Qj,m⊂Qν,k

|λj,m|u1

) 1
u1 2

d(j−ν)( 1
u2
− 1
u1

)
.

Consequently,

(3.9) sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)( 1

p2
− 1
u2

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u2

) 1
u2

≤ sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)( 1

p2
− 1
p1

)
2
d(j−ν)( 1

p1
− 1
u1

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u1

) 1
u1 .

But 1
p2
− 1

p1
> 0, so that

2
d(j−ν)( 1

p2
− 1
p1

) ≤ 2
d(j−ν0)(

1
p2
− 1
p1

) ≤ C2
jd( 1

p2
− 1
p1

)

and σ2 − d
p2

+ d
p2
− d

p1
= σ2 − d

p1
= s2 − s1. Thus

(3.10) 2
j(σ2− d

p2
)

sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)( 1

p2
− 1
u2

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u2

) 1
u2

≤ C2−j(s1−s2) sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)( 1

p1
− 1
u1

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u1

) 1
u1 .

If s1 − s2 > 0, or s1 − s2 = 0 and q1 ≤ q2 (according to (3.4) in this case),
then (3.7) holds.

Substep 1.4. We assume that u1 < u2. The case p1 ≤ p2 and u1 <
u2 ≤ p2

p1
u1 is covered by Substep 1.2. Thus—also in view of (3.4)—we are

left with two cases:

(i) p2 < p1, u1 < u2, and q1 ≤ u1
u2
q2 if (3.3) holds,

(ii) p1 ≤ p2, u1 ≤ p2

p1
u1 < u2, and q1 ≤ u1p2

u2p1
q2 if (3.3) holds.

In both cases we have

max

{
0,

1

p1
− 1

p2
,
u1
p1

(
1

u1
− 1

u2

)}
=
u1
p1

(
1

u1
− 1

u2

)
≥ max

{
0,

1

p1
− 1

p2

}
.

We take a sequence λ such that

(3.11) ‖λ | ñσ1
p1,u1,q1‖ = 1.

Then the terms λj,m of the sequence λ are at most 1 in absolute value, since
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σ1 = d/p1. So the inequality u1 < u2 implies

(3.12)
∑
m:

Qj,m⊂Qν,k

|λj,m|u2 ≤
∑
m:

Qj,m⊂Qν,k

|λj,m|u1 .

Thus by (3.11) we get

(3.13)

2d(j−ν)(γu2−1)
∑
m:

Qj,m⊂Qν,k

|λj,m|u2 ≤ 2
d(j−ν)(u1

p1
−1) ∑

m:
Qj,m⊂Qν,k

|λj,m|u1 ≤ 1

if γu2 ≤ u1
p1

and j − ν ≥ 0. First we deal with (3.2) and assume that

(3.14)
s1 − s2
d

=

d
p1
− σ2
d

>
u1
p1

(
1

u1
− 1

u2

)
.

It follows from (3.14) that there exists some ε > 0 such that

(3.15)
d

p2
− σ2 − ε >

d

u2

(
u2
p2
− u1
p1

)
> 0.

Then 2
−ν( d

p2
−σ2−ε) ≤ 2

−ν0(
d
p2
−σ2−ε) if Qν,k ⊂ Q. Hence

(3.16) 2
j(σ2− d

p2
)

sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)( 1

p2
− 1
u2

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u2

) 1
u2

≤ 2
ν0(σ2− d

p2
−ε)

2−jε sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)(σ2+ε

d
− 1
u2

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u2

) 1
u2 .

Since (3.15) implies that σ2+ε
d u2 <

u1
p1

we can take γ = σ2+ε
d in (3.13). Now

(3.13) and (3.16) yield

2
j(σ2− d

p2
)

sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)( 1

p2
− 1
u2

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u2

) 1
u2 ≤ C2−jε,

which leads to

(3.17) ‖λ | ñσ2
p2,u2,q2‖ ≤ C

for any 0 < q2 ≤ ∞.

Substep 1.5. Now we deal with (3.3), that is,

(3.18)
s1 − s2
d

=

d
p1
− σ2
d

=
u1
p1

(
1

u1
− 1

u2

)
> 0.

We shall first verify the continuity of (3.1) in both cases (i) and (ii) above
when q1 ≤ u1

u2
q2. Afterwards, in Substep 1.6, we finally prove the extension

to values u2p1

u1p2
q1 ≤ q2 ≤ u2

u1
q1 in case (ii).
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We put

(3.19) aj = sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)(u1

p1
−1) ∑

m:
Qj,m⊂Qν,k

|λj,m|u1 .

Then (3.11) implies

(3.20)
∞∑
j=0

a
q1/u1

j = 1

(recall σ1 = d/p1). As in the previous substep, we get

(3.21) 2
j(σ2− d

p2
)

sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)( 1

p2
− 1
u2

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u2

) 1
u2

≤ C sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)(σ2

d
− 1
u2

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u2

) 1
u2 .

We now choose γ = σ2/d in (3.13) to obtain

sup
ν: ν≤j

k:Qν,k⊂Q

2d(j−ν)(
σ2
d
u2−1)

∑
m:

Qj,m⊂Qν,k

|λj,m|u2

≤ sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)(u1

p1
−1) ∑

m:
Qj,m⊂Qν,k

|λj,m|u1 = aj .

Now by (3.20), (3.21) and the monotonicity of the `q scale we have

(3.22) ‖λ | ñσ2
p2,u2,q2‖ ≤ C

( ∞∑
j=0

a
q2/u2

j

)1/q2
≤ C

if q2/u2 ≥ q1/u1.
Substep 1.6. It remains to consider case (ii) above, that is, where (3.18)

is satisfied with p1 ≤ p2, u1 ≤ p2

p1
u1 < u2, and u2p1

u1p2
q1 ≤ q2 ≤ u2

u1
q1. Let

u = u1
p2
p1

and σ = s1 − d
u1
p1

(
1

u1
− 1

u

)
.

Then u1 < u < u2,
s1−σ
d = u1

p1

(
1
u1
− 1

u

)
= 1

p1
− 1

p2
≥ 0 and according to

Substep 1.2 we obtain

(3.23) N s1
p1,u1,q1(Ω) ↪→ N σ

p2,u,q1(Ω).

On the other hand,

σ − s2
d

=
s1 − s2
d

− u1
p1

(
1

u1
− 1

u

)
=
u1
p1

(
1

u
− 1

u2

)
,
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so that Substep 1.5 implies

(3.24) N σ
p2,u,q1(Ω) ↪→ N s2

p2,u2,q2(Ω)

if q1 ≤ u
u2
q2 = u1p2

u2p1
q2. Thus (3.23), (3.24) yield (3.1) as desired and complete

the proof of the sufficiency part.

Step 2 (Necessity). To prove necessity we construct some counterex-
amples. It is sufficient to consider the following cases:

• s1−s2
d = max

{
0, 1

p1
− 1

p2
, u1
p1

(
1
u1
− 1

u2

)}
= 1

p1
− 1

p2
> 0 and q1 > q2,

• s1−s2
d = max

{
0, 1

p1
− 1

p2
, u1
p1

(
1
u1
− 1

u2

)}
= 0 and q1 > q2,

• s1−s2
d = max

{
0, 1

p1
− 1
p2
, u1
p1

(
1
u1
− 1
u2

)}
= u1

p1

(
1
u1
− 1
u2

)
> max

{
0, 1

p1
− 1
p2

}
and q1 > q2.

The rest follows by monotonicity of the function spaces with respect to the
smoothness parameter s.

Substep 2.1. By the diffeomorphic properties of Besov–Morrey spaces,
using translations and dilations if necessary we can assume that the domain
Ω satisfies the following conditions:

Qν0,0 ⊂ Ω,(3.25)

if Qν,m ⊂ Qν0,0, ν ≥ 0, then suppψi,ν,m ⊂ Ω,(3.26)

if Q0,m ⊂ Qν0,0, then suppφ0,m ⊂ Ω(3.27)

(cf. [S2]).

Let T̃ denote the restriction of the isomorphism T−1 to the subspaces
nsp,u,q(Qν0,0) ⊂ nsp,u,q(Rd) (cf. (2.13)). Then

T̃ (λ) ∈ nsp,u,q(Rd), supp T̃ (λ) ⊂ Ω for any λ ∈ nsp,u,q(Qν0,0).(3.28)

Moreover there exists a positive ε > 0 such that for any λ ∈ nsp,u,q(Qν0,0),

dist(supp T̃ (λ),Rd \Ω) > ε. But then

(3.29) ‖T̃ (λ) | N s
p,u,q(Ω)‖ ∼ ‖T̃ (λ) | N s

p,u,q(Rd)‖ ∼ ‖λ |nsp,u,q(Qν0,0)‖
for any λ ∈ nsp,u,q(Qν0,0). We can take the same system of wavelets, and

hence the same operator T̃ , for N s1
p1,u1,q1(Rd) and N s2

p2,u2,q2(Rd). So, if we
find a counterexample showing that the inequality

(3.30) ‖λ | ñσ2
p2,u2,q2(Qν0,0)‖ ≤ C‖λ | ñσ1

p1,u1,q1(Qν0,0)‖, λ ∈ ñσ1
p1,u1,q1(Qν0,0),

does not hold for any C > 0 we immediately get a counterexample showing
that

(3.31) ‖f | N s2
p2,u2,q2(Ω)‖ ≤ C‖f | N s1

p1,u1,q1(Ω)‖, f ∈ N s1
p1,u1,q1(Ω),

does not hold for any C > 0.
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Thus we are left with necessary conditions for the bounded embeddings

(3.32) id : ñσ1
p1,u1,q1(Qν0,0)→ ñσ2

p2,u2,q2(Qν0,0)

with ν0 < 0. For convenience, let Q = Qν0,0 again.

We assume that

(3.33) ‖λ | ñσ2
p2,u2,q2(Q)‖ ≤ C‖λ | ñσ1

p1,u1,q1(Q)‖.

Since we have q1 > q2 in all cases, we can choose a sequence (γj)j of
positive numbers such that γ = (γj)j ∈ `q1(N0) \ `q2(N0).

Substep 2.2. If s1−s2
d = 1

p1
− 1

p2
> 0 and q1 > q2, then we define the

sequence λ = (λj,m)j,m by

(3.34) λj,m =

{
γj if m = 0,

0 otherwise.

Then (3.1) together with (3.33) implies( ∞∑
j=0

γq2j

) 1
q2 =‖λ | ñσ2

p2,u2,q2(Q)‖≤C‖λ | ñσ1
p1,u1,q1(Q)‖=C

( ∞∑
j=0

γq1j

) 1
q1 <∞,

which contradicts γ 6∈ `q2 .

Substep 2.3. If s1−s2
d = 0 and q1 > q2, then we take

(3.35) λj,m =

{
γj2
−jd/p1 if Qj,m ⊂ Q,

0 otherwise.

Then

sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)( 1

p2
− 1
u2

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u2

) 1
u2 = γj2

dj( 1
p2
− 1
p1

)
2
d|ν0| 1

p2

and

sup
ν: ν≤j

k:Qν,k⊂Q

2
d(j−ν)( 1

p1
− 1
u1

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u1

) 1
u1 = γj2

d|ν0| 1
p1 .

Therefore ( ∞∑
j=0

γq2j

) 1
q2 ≤ C‖λ | ñσ2

p2,u2,q2(Q)‖(3.36)

≤ C ′‖λ | ñσ1
p1,u1,q1(Q)‖ ≤ C

( ∞∑
j=0

γq1j

) 1
q1 <∞,

which again contradicts γ /∈ `q2 .
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Substep 2.4. Let

s1 − s2
d

= max

{
0,

1

p1
− 1

p2
,
u1
p1

(
1

u1
− 1

u2

)}
=
u1
p1

(
1

u1
− 1

u2

)
> max

(
0,

1

p1
− 1

p2

)
and q1 > q2.

It follows that u1/p1 < u2/p2, in particular, u1/p1 < 1. We adopt the
example constructed in Substep 2.4 of the proof of Theorem 3.2 in [HS].

For any 0 > ν ≥ ν0 we put

kν = b2d|ν|(1−u1/p1)c

(recall bxc = max{l ∈ Z : l ≤ x}). Then 1 ≤ kν < 2d|ν| and

(3.37) kν ≤ cp1u1 2d(µ−ν)kµ if ν ≤ µ < 0.

For convenience let us assume that cp1u1 = 1 (otherwise the argument below
has to be modified in an obvious way). For any ν we defined in [HS] a

sequence λ(ν) = {λ(ν)j,m}j,m in the following way: We assume that kν elements

of the sequence equal 1 and the others are 0. If j 6= 0 or Q0,m * Qν,0, then

we put λ
(ν)
j,m = 0. Moreover, because of the inequality (3.37), we can choose

the elements equal to 1 in such a way that:

if Qµ,` ⊆ Qν,0 and Qµ,` =
2−dµ⋃
i=1

Q0,mi ,

then at most kµ elements λ
(ν)
0,mi

equal 1.

Now we define a new sequence λ = (λj,k) ∈ ñσ1
p1,u1,q1 by

(3.38) λj,m = γjλ
(ν)
0,m if j = ν − ν0 and Q0,m ⊂ Qν,0.

If Qµ,l ⊂ Q, then for fixed j ≥ µ there are at most kµ−j nonzero elements
λj,m such that the corresponding cube Qj,m is a subset of Qµ,l. Thus we have∑

m:Qj,m⊂Qµ,`

|λj,m|u1 ≤ γu1
j kµ−j ≤ γ

u1
j 2

d(j−µ)(1−u1
p1

)
(3.39)

and the last sum is equal to kµ−jγ
u1
j if µ = ν0. Thus

(3.40) ‖λ | ñσ1
p1,u1,q1(Q)‖ ≤ c

( ∞∑
j=0

γq1j

) 1
q1 <∞

(recall σ1 = d/p1). In a similar way we get

(3.41) 2
d(j−µ)( 1

p2
− 1
u2

)
( ∑
m:Qj,m⊂Qµ,`

|λj,m|u2

) 1
u2 ≤ γj2

d(j−µ)( 1
p2
− u1
u2p1

)
.
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Moreover, if µ = ν0, then

2
d(j−ν0)(

1
p2
− 1
u2

)
( ∑
m:Qj,m⊂Qν0,0

|λj,m|u2

) 1
u2 ≥ cγj2

d(j−ν0)(
1
p2
− u1
u2p1

)
,(3.42)

for some constant c independent of γ. Recall that we are now dealing with
the case when δ = σ1 − σ2 − d

p1
+ d

p2
= d
(

1
p2
− u1

p1u2

)
> 0. So (3.42) implies

c2
−dν0(

1
p2
− u1
u2p1

)
γj = c2

−jd( 1
p2
− u1
u2p1

)
γj2

d(j−ν0)(
1
p2
− u1
u2p1

)

≤ 2
−jd( 1

p2
− u1
u2p1

)
2
d(j−ν0)(

1
p2
− 1
u2

)
( ∑
m:Qj,m⊂Qν0,0

|λj,m|u2

) 1
u2

≤ 2−jδ sup
µ:µ≤j

k:Qµ,k⊂Q

2
d(j−µ)( 1

p2
− 1
u2

)
( ∑
m:Qj,m⊂Qµ,k

|λj,m|u2

) 1
u2 .

This yields

‖γ | `q2‖ ≤ C‖λ | ñσ2
p2,u2,q2(Q)‖ ≤ C‖λ | ñσ1

p1,u1,q1(Q)‖ ≤ C‖γ | `q1‖ <∞,
which contradicts γ /∈ `q2 .

We list a number of immediate consequences of Theorem 3.1.

Corollary 3.3. Let s1, s2 ∈ R, 0 < q1, q2 ≤ ∞, 0 < u1 ≤ p1 < ∞,
0 < u2 ≤ p2 <∞. The following conditions are equivalent:

(a) N s1
p1,u1,q1(Ω) = N s2

p2,u2,q2(Ω),
(b) (s1, p1, u1, q1) = (s2, p2, u2, q2).

Now we focus on some limiting cases; recall also Remark 3.2 above.

Corollary 3.4. Let s1, s2 ∈ R, 0 < q1, q2 ≤ ∞, 0 < u1 ≤ p1 < ∞,
0 < u2 ≤ p2 <∞.

(a) If s1 = s2, then the embedding (3.1) holds if, and only if, p1 ≥ p2,
u1 ≥ u2 and q1 ≤ q2.

(b) If u1 = u2, then the embedding (3.1) holds if, and only if, either

(3.43)
s1 − s2
d

> max

{
0,

1

p1
− 1

p2

}
or

(3.44)
s1 − s2
d

= max

{
0,

1

p1
− 1

p2

}
and q1 ≤ q2.

(c) If p1 = p2 = p, then the embedding (3.1) holds if one of the following
conditions is satisfied:

(i) s1 − s2 > d
p

(
1− u1

u2

)
+

,

(ii) s1 = s2, u1 ≥ u2 and q1 ≤ q2,
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(iii) s1 − s2 = d
p

(
1− u1

u2

)
, u1 < u2 and q1 ≤ u1

u2
q2.

Conversely, embedding (3.1) implies either (i) or s1−s2 = d
p

(
1−u1

u2

)
+

with q1 ≤ q2.

Finally we consider the special cases when the source or target space is
of Besov type, that is, when p1 = u1 or p2 = u2.

Corollary 3.5. Let s1, s2 ∈ R, 0 < q1, q2 ≤ ∞, 0 < u1 ≤ p1 < ∞,
0 < p2 <∞. Then the embedding

(3.45) N s1
p1,u1,q1(Ω) ↪→ Bs2

p2,q2(Ω)

holds if one of the following conditions holds:

(a) s1 − s2 > d
p1

(
1− u1

p2

)
+

,

(b) s1 − s2 = 0, p2 ≤ u1 and q1 ≤ q2,

(c) s1 − s2 = d
p1

(
1− u1

p2

)
> 0, p2 > u1 and q1 ≤ u1

min(p1,p2)
q2.

Conversely, embedding (3.45) implies either (a) or s1 − s2 = d
p1

(
1 − u1

p2

)
+

with q1 ≤ q2.

Remark 3.6. Note that the above result essentially depends on Ω being
bounded since in [HS, Rem. 3.8] we found for Ω = Rd that whenever u1 < p1,
then there is never an embedding of type (3.45) for any choice of parameters
s2, p2, q2.

Corollary 3.7. Let s1, s2 ∈ R, 0 < q1, q2 ≤ ∞, 0 < p1 <∞, 0 < u2 ≤
p2 <∞. Then the following conditions are equivalent:

(a) Bs1
p1,q1(Ω) ↪→ N s2

p2,u2,q2(Ω)

(b) Bs1
p1,q1(Ω) ↪→ Bs2

p2,q2(Ω)

(c) either s1 − s2 >
(
d
p1
− d

p2

)
+

, or s1 − s2 =
(
d
p1
− d

p2

)
+

and q1 ≤ q2.
Remark 3.8. In contrast to Remark 3.6 the above agrees with the par-

allel result for Ω = Rd (cf. [HS, Cor. 3.6]).

4. Compact embeddings. Now we prove sufficient and necessary con-
ditions for the compactness of such embeddings.

Theorem 4.1. Let s1, s2 ∈ R, 0 < q1, q2 ≤ ∞, 0 < u1 ≤ p1 < ∞,
0 < u2 ≤ p2 <∞. Then the embedding

(4.1) N s1
p1,u1,q1(Ω) ↪→ N s2

p2,u2,q2(Ω)

is compact if, and only if,

(4.2)
s1 − s2
d

> max

{
0,

1

p1
− 1

p2
,
u1
p1

(
1

u1
− 1

u2

)}
.
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Proof. Once more it is sufficient to consider the compactness of the em-
bedding

(4.3) id : ñσ1
p1,u1,q1(Qν0,0)→ ñσ2

p2,u2,q2(Qν0,0)

where σ1 = d/p1 and σ2 = s2 − s1 + d/p1.

Step 1 (Sufficiency). The proof is standard. Let G be a bounded set
in ñσ1

p1,u1,q1(Qν0,0). We show that for any ε > 0 there is an ε-net of G in
ñσ2
p2,u2,q2(Qν0,0). We take γ > 0 such that

(4.4)
s1 − s2 − γ

d
> max

{
0,

1

p1
− 1

p2
,
u1
p1

(
1

u1
− 1

u2

)}
,

and j0 ∈ N such that 2−j0γ < ε/2. Then it follows from Theorem 3.1 and

(4.2) that the set G̃ = {2jγλ : λ ∈ G} is bounded in ñσ2
p2,u2,q2(Qν0,0). Thus if

λ ∈ G, then

(4.5)
( ∞∑
j=j0

2
jq2(σ2− d

p2
)

sup
ν: ν≤j

k:Qν,k⊂Q

2
q2d(j−ν)( 1

p2
− 1
u2

)
( ∑

m:
Qj,m⊂Qν,k

|λj,m|u2

) q2
u2

) 1
q2

< C2−j0γ < Cε/2.

On the other hand {λ = (λj,m) ∈ G : λj,m = 0 if j ≥ j0 } is relatively
compact in ñσ2

p2,u2,q2(Qν0,0) since it is a bounded subset of a finite-dimensional
subspace. This and (4.5) imply that there exists an ε-net for G.

Step 2 (Necessity). We assume that

(4.6)
s1 − s2
d

= max

{
0,

1

p1
− 1

p2
,
u1
p1

(
1

u1
− 1

u2

)}
.

Substep 2.1. We assume that (s1 − s2)/d = 0. We define the sequence

λ(n) = (λ
(n)
j,m)j,m, n ∈ N0, by

(4.7) λ
(n)
j,m =

{
2
−n d

p1 if j = n and Qn,m ⊂ Q,

0 otherwise.

Then

‖λ(n)|ñσ1
p1,u1,q1(Q)‖ = sup

ν: ν≤n
k:Qν,k⊂Q

2
d(n−ν)( 1

p1
− 1
u1

)
( ∑

m:
Qn,m⊂Qν,k

|λ(n)n,m|u1

) 1
u1 = 2

d|ν0| 1
p1

and

sup
ν: ν≤n

k:Qν,k⊂Q

2
d(n−ν)( 1

p2
− 1
u2

)
( ∑

m:
Qn,m⊂Qν,k

|λ(n)n,m|u2

) 1
u2 = 2

dn( 1
p2
− 1
p1

)
2
d|ν0| 1

p2 .
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Therefore the sequence λ(n) is bounded in ñσ1
p1,u1,q1(Q), but

(4.8) ‖λ(n) − λ(`) | ñσ2
p2,u2,q2(Q)‖ ≥ 2

d|ν0| 1
p2

if n 6= ` so it does not contain a convergent subsequence.

Substep 2.2. We assume that s1 − s2 = d/p1 − d/p2 = σ1 − σ2 > 0.
Then σ1 = d/p1 implies σ2 = d/p2. If we take

(4.9) λ
(n)
j,m =

{
1 if j = n and m = 0,

0 otherwise,

then ‖λ(n) | ñσ1
p1,u1,q1(Q)‖ = 1 and ‖λ(n) − λ(`) | ñσ2

p2,u2,q2(Q)‖ ≥ 1 if n 6= `.

Substep 2.3. We assume that

s1 − s2
d

=
u1
p1

(
1

u1
− 1

u2

)
> max

{
0,

1

p1
− 1

p2

}
.

Let ν ≥ ν0 and let λ(ν) = {λ(ν)j,m}j,m be the sequence used in Substep 2.4 of

the proof of Theorem 3.1. Now we define a new sequence λ̃(ν) = (λ̃
(ν)
j,m) ∈

ñσ1
p1,u1,q1 by

(4.10) λ̃
(ν)
j,m =

{
λ
(ν)
0,m if j = ν − ν0 and Q0,m ⊂ Qν,0,

0 otherwise.

If Qµ,` ⊂ Qν0,0, then for fixed j ≥ µ there are at most kµ−j nonzero

elements λ̃
(ν)
j,m such that the corresponding cube Qj,m is a subset of Qµ,`.

Hence, if j = ν − ν0, then∑
m:Qj,m⊂Qµ,`

|λ̃(ν)j,m|
u1 ≤ kµ−j ≤ 2

d(j−µ)(1−u1
p1

)
(4.11)

and the last sum is equal to kµ−j if µ = ν0. Moreover,∑
m:Qj,m⊂Qµ,`

|λ̃(ν)j,m|
u1 = 0 if j 6= ν − ν0.(4.12)

Thus

(4.13) ‖λ̃(ν) | ñσ1
p1,u1,q1‖ ≤ C <∞.

In a similar way we get, for µ = ν0,

2
d(ν−ν0)(

1
p2
− 1
u2

)
( ∑
m:Qν,m⊂Qν0,0

|λ̃(ν)ν−ν0,m|
u2

)1/u2

≥ c2d(ν−ν0)(
1
p2
− u1
u2p1

)
(4.14)

= c2
ν( d
p2
−σ2),

for some constant c independent of λ(ν).
Consequently, if ν 6= `, then

(4.15) ‖λ̃(ν) − λ̃(`) | ñσ2
p2,u2,q2(Qν0,0)‖ ≥ c.
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Thus we get a bounded sequence in ñσ1
p1,u1,q1 that has no convergent subse-

quence in ñσ2
p2,u2,q2 .

Corollary 4.2. Let s1, s2 ∈ R, 0 < q1, q2 ≤ ∞, 0 < u1 ≤ p1 < ∞,
0 < u2 ≤ p2 <∞.

(a) The embedding N s1
p1,u1,q1(Ω) ↪→ Bs2

p2,q2(Ω) is compact if, and only if,

s1 − s2 > d
p1

(
1− u1

p2

)
+

.

(b) The embedding Bs1
p1,q1(Ω) ↪→ N s2

p2,u2,q2(Ω) is compact if, and only

if, s1 − s2 >
d
p1

(
1 − p1

p2

)
+

= d( 1
p1
− 1

p2
)+, that is, if, and only if,

Bs1
p1,q1(Ω) ↪→ Bs2

p2,q2(Ω) is compact.

5. Embeddings into Lp and C. Here we collect a few results on em-
beddings of spaces of Besov–Morrey type on Rd, N s

p,u,q(Rd), into ‘classical’

spaces such as C(Rd), the space of all complex-valued bounded uniformly
continuous functions on Rd with the sup-norm, and Lp(Rd), 0 < p ≤ ∞.
The analogous question will be studied for spaces on bounded domains. We
start with a simple observation from our recent paper [HS].

Proposition 5.1. Let 0 < u < p < ∞, 0 < q ≤ ∞, s ∈ R. Then
N s
p,u,q(Rd) is never embedded in any Lr(Rd) for 1 ≤ r <∞.

Proof. Assume that N s
p,u,q(Rd) ↪→ Lr(Rd) for some 1 ≤ r <∞. Then in

view of the classical case,

(5.1) B0
r,1(Rd) ↪→ Lr(Rd) ↪→ B0

r,∞(Rd), 1 ≤ r ≤ ∞

(cf. [T1, Prop. 2.5.7]), this implies a continuous embedding N s
p,u,q(Rd) ↪→

B0
r,∞(Rd), which contradicts our result in [HS], in particular [HS, Rem. 3.8].

Remark 5.2. As is well-known, in the classical case p = u one has
(5.1) (with r replaced by p). According to Proposition 5.1, this feature is
essentially different for the Besov–Morrey spaces when u < p. Moreover, it
also depends on the situation of Rd, as the next observation shows; recall
also our Remark 3.6.

Proposition 5.3. Let 0 < u < p < ∞, 0 < q ≤ ∞, s ∈ R, 1 ≤ r < ∞.
Then there is a continuous embedding

(5.2) N s
p,u,q(Ω) ↪→ Lr(Ω)

if

s >
d

p

(
1− u

r

)
+

(5.3)

or

s =
d

p

(
1− u

r

)
+

and 0 < q ≤ min(max(u, r), 2).(5.4)
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Conversely, (5.2) implies

(5.5) s ≥ d

p

(
1− u

r

)
+

.

The embedding (5.2) is compact if, and only if, (5.3) holds.

Proof. We begin with the necessity part of the continuity and combine
(the Ω-counterpart of) (5.1) with (5.2). Thus we obtain

N s
p,u,q(Ω) ↪→ B0

r,∞(Ω)

and Corollary 3.5 gives (5.5). Conversely, we decompose (5.2) as

(5.6) N s
p,u,q(Ω) ↪→ B0

r,1(Ω) ↪→ Lr(Ω).

Assuming either (5.3) or

(5.7)


s =

d

p

(
1− u

r

)
+

= 0, u ≥ r, and 0 < q ≤ 1,

s =
d

p

(
1− u

r

)
+

> 0, u < r, and 0 < q ≤ u

min(p, r)
,

Corollary 3.5 implies the continuity of the first embedding in (5.6), whereas
the second is covered by (the Ω-counterpart of) (5.1). It remains to extend
(5.7) to (5.4).

We first consider the case r ≤ u, that is, s = 0. Obviously the case u = 1
is already covered (note that our assumption r ≥ 1 excludes 0 < u < 1 in
this case), so we may assume u > 1. Here we use some results of Sawano
[S2, Props. 1.9, 1.10], and deduce for 1 < u ≤ p < ∞, 0 < q ≤ min(u, 2)
that

(5.8) N 0
p,u,q(Rd) ↪→Mp,u(Rd),

so that for bounded domains we can further conclude that

(5.9) N 0
p,u,q(Ω) ↪→ Lu(Ω) ↪→ Lr(Ω) if u ≥ r and 0 < q ≤ min(u, 2).

Now we consider the case r > u, so that s = d
p

(
1 − u

r

)
+
> 0. We refine

our above argument and decompose (5.2) as

(5.10) N s
p,u,q(Ω) ↪→ N 0

rp/u,r,min(r,2)(Ω) ↪→ Lr(Ω).

The second embedding is covered by what we just proved since r pu > r. As

for the first one, we apply Theorem 3.1(b) with s
d = 1

p

(
1− u

r

)
and thus have

to assume by (3.4) that

q ≤ min

(
1,max

(
1,
r

u

)
u

r

)
min(r, 2) = min(r, 2).

This completes the sufficiency part for the embedding result (5.2).
As for the compactness, it is an immediate consequence of Corollary 4.2

and (the Ω-counterpart of) (5.1): the compactness of (5.2) implies the
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compactness of N s
p,u,q(Ω) ↪→ B0

r,∞(Ω), which leads to (5.3) in view of
Corollary 4.2. Conversely, the same argument implies the compactness of
N s
p,u,q(Ω) ↪→ B0

r,1(Ω) when (5.3) is satisfied, which together with (5.1) en-
sures the compactness of (5.2).

Remark 5.4. Obviously, there remains a gap between necessary and
sufficient conditions for (5.2) in the above statement concerning the limiting
case s = d

p

(
1 − u

r

)
+

. In the classical situation p = u the continuity of

N s
p,p,q(Ω) = Bs

p,q(Ω) ↪→ Lr(Ω) requires either (5.3) or, in the limiting case

s = d
(
1
p −

1
r

)
+

, 0 < q ≤ min(p, 2) if s = 0, i.e., p ≥ r, or 0 < q ≤ r if

s = d
(
1
p −

1
r

)
> 0, that is, when p < r. This indicates that (5.4) might be

not optimal, at least when u < r and thus s > 0. So, finally, it seems not so
clear at the moment what appropriate condition on q should be expected in
the limiting case when s = d

p

(
1− u

r

)
+

.

But unlike in the case of Ω = Rd, there is always a continuous embedding
(5.2) into the Lr scale for 1 ≤ r <∞, if s is chosen sufficiently large.

The situation changes completely when r =∞. Here the counterpart of
(5.1) reads as

(5.11) B0
∞,1(Rd) ↪→ C(Rd) ↪→ B0

∞,∞(Rd)

(cf. [T1, Prop. 2.5.7]), where C(Rd) can be replaced by L∞(Rd). Recall that
in the classical case we have, for 0 < p ≤ ∞,

Bs
p,q(Rd) ↪→ C(Rd) if, and only if,

{
0 < q ≤ ∞ if s > d/p,

0 < q ≤ 1 if s = d/p,

where again C(Rd) can be replaced by L∞(Rd). For a proof we refer the
reader to [ET, 2.3.3(iii)]. It turns out that the above embedding survives
Morreyfication without any change.

Proposition 5.5. Let 0 < u ≤ p < ∞, 0 < q ≤ ∞, s ∈ R. Then the
following three conditions are equivalent:

(i) N s
p,u,q(Rd) ↪→ C(Rd), (5.12)

(ii) Bs
p,q(Rd) ↪→ C(Rd), (5.13)

(iii)

{
0 < q ≤ ∞ if s > d/p,

0 < q ≤ 1 if s = d/p,
(5.14)

where C(Rd) can be replaced by L∞(Rd) in (5.12) and (5.13). The embed-
dings (5.12) and (5.13) are never compact.

Proof. As mentioned above, we take the equivalence of (ii) and (iii) for
granted, including the possible substitution of C(Rd) by L∞(Rd) in (5.13).
Moreover, since obviously Bs

p,q(Rd) ↪→ N s
p,u,q(Rd), we have the implication

from (i) to (ii) and are thus left to prove that (iii) implies (i).
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Let f ∈ N s
p,u,q(Rd). We may assume that s = d/p and q ≤ 1, since the

rest follows by elementary embeddings (see [HS, Thm. 3.3]). We have to
show that f ∈ C(Rd). Let

f =
∑
m∈Zd

λ0,mϕ0,m +
2d−1∑
i=1

∞∑
ν=0

∑
m∈Zd

λi,ν,mψi,ν,m,

with (λ0,m)m ∈ `p and (λi,ν,m)i,ν,m ∈
⊕2d−1

i=1 nσp,u,q be the wavelet decompo-
sition of f , σ = s + d/2 (cf. [S4] or [HS, Thm. 2.8]). For any fixed ν ∈ N0

and i = 1, . . . , 2d − 1, the functions

(5.15) η0(y) =
∑
m∈Zd

λ0,mϕ0,m(y), ηi,ν(y) =
∑
m∈Zd

λi,ν,mψi,ν,m(y)

are continuous since the sums are locally finite. Moreover they are bounded
since the wavelets ψi,ν,m are uniformly bounded by c2νd/2 and the sequence
(λi,ν,m)m is bounded by c2−νd/2 if (λi,ν,m)m ∈ nσp,u,q with s = d/p. Note that
the constant c is independent of i and ν.

Let y ∈ Rd and let Q
(y)
j0,k

, j0 < 0, be a dyadic cube such that suppψi,0,m ⊂
Q

(y)
j0,k

if y ∈ suppψi,0,m. It should be clear by the construction of Daubechies
wavelets that one can choose j0 independent of y. By scaling properties of

the multiresolution analysis one can find for any ν > 0 a dyadic cube Q
(y)
jν ,`

such that

jν = j0 + ν and suppψi,ν,m ⊂ Q(y)
jν ,`

if y ∈ suppψi,ν,m.(5.16)

Again we can choose the same jν for all y ∈ Rd. Hence the number of dyadic

unit cubes contained in Q
(y)
j0,k

is the same as the number of dyadic cubes of

size 2−ν contained in Q
(y)
jν ,`

and this number is independent of y ∈ Rd.

We put C0 = c2
dj0(

1
p
− 1
q
+(1− 1

q
)+)

. Then

|ηi,ν(y)| ≤ c2νd/2
∑

m:Qν,m⊂Q(y)
jν ,`

|λi,ν,m|(5.17)

≤ C02
νd/2 sup

j: j≤ν; `
2
d(j−ν)( 1

p
− 1
u
)
( ∑
m:Qj,m⊂Qν,`

|λi,ν,m|u
) 1
u
.

Thus for any n1, n2 ∈ N, n1 < n2 we have

∣∣∣ n2∑
ν=n1

ηi,ν(y)
∣∣∣ ≤ C0

n2∑
ν=n1

2νd/2 sup
j: j≤ν; `

2
d(j−ν)( 1

p
− 1
u
)
( ∑
m:Qj,m⊂Qν,`

|λi,ν,m|u
) 1
u
.

(5.18)
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But λ ∈ nσp,u,q with σ = d/p+ d/2 and q ≤ 1. Thus for any ε > 0 we get

n2∑
ν=n1

2νd/2 sup
j: j≤ν;`

2
d(j−ν)( 1

p
− 1
u
)
( ∑
m:Qj,m⊂Qν,`

|λi,ν,m|u
) 1
u ≤ ε(5.19)

for n1 and n2 sufficiently large. This implies the uniform convergence of the
series

∑∞
ν=0 ηi,ν since the estimates are uniform in y ∈ Rd. The starting

term η0 is treated analogously. This leads to the continuity of f , and the
inequality (5.17) implies

‖f |C(Rd)‖ ≤ c‖f | N s
p,u,q(Rd)‖.

So we arrive at (5.12), where the counterpart for L∞(Rd) is immediate.
As for the noncompactness, it is well-known in the case of (5.13) (recall

also (5.11)). In view of the elementary embedding Bs
p,q(Rd) ↪→ N s

p,u,q(Rd)
this immediately implies the noncompactness of (5.12).

Remark 5.6. A partial forerunner of Proposition 5.5 can be found in
[S2, Prop. 1.11] dealing with the super-limiting case: it is shown that the
first line in (5.14) implies (5.12). We can also refer to [KY, Thm. 2.5].

Corollary 5.7. Let 0 < u ≤ p < ∞, 0 < q ≤ ∞, s ∈ R. Then the
following three conditions are equivalent:

(i) N s
p,u,q(Ω) ↪→ C(Ω), (5.20)

(ii) Bs
p,q(Ω) ↪→ C(Ω), (5.21)

(iii)

{
0 < q ≤ ∞ if s > d/p,

0 < q ≤ 1 if s = d/p,

where C(Ω) can be replaced by L∞(Ω) in (5.20) and (5.21). The embeddings
(5.20) and (5.21) are compact if, and only if, s > d/p.

Proof. The result about the continuity of (5.20) and (5.21) is an imme-
diate consequence of the definition of the spaces by restriction together with
Proposition 5.5. Again, the equivalence of (ii) and (iii) was already known,
as was the compactness of (5.21) if, and only if, s > d/p (see [ET, Sects. 3.3,
3.4]). Moreover, in view of Bs

p,q(Ω) ↪→ N s
p,u,q(Ω) this implies the necessity

of that condition for the compactness of (5.20). It remains to deal with the
sufficiency of the compactness in the case of u < p. Let s > d/p and choose
consecutively parameters σ, % and r such that

0 <
d

%
< min

(
s− d/p
1− u/p

,
d

u

)
, σ = s− d

p

(
1− u

%

)
, r ≥ q

u
min(p, %).

Then by Corollary 3.5(c),

N s
p,u,q(Ω) ↪→ Bσ

%,r(Ω) ↪→ C(Ω),

and the latter embedding is compact since σ > d/%.
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Remark 5.8. Note that Corollaries 3.5 and 4.2 did not cover the above
result immediately since we deal with the case p2 = ∞ now. The only
related result known to us can be found in the papers [D2, D3] dealing with
Sobolev–Morrey spaces and some special set Ω. As in its counterpart for
(usual) Sobolev spaces on domains, there is no embedding of type (5.20) in
the limiting case of (5.14), that is, when s = d/p recall p > 1 now (unless
d = 1). According to [D2, D3] there is a continuous embedding in the sense
of (5.20) (with Besov spaces replaced by spaces of Sobolev–Morrey type) if,
and only if, s > d/p.
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