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Characterization of associate spaces of
weighted Lorentz spaces with applications

by

Amiran Gogatishvili, Luboš Pick, and Filip Soudský (Praha)

Abstract. We characterize associate spaces of weighted Lorentz spaces GΓ (p,m,w)
and present some applications of this result including necessary and sufficient conditions
for a Sobolev-type embedding into L∞.

1. Introduction and main results. Let (R, µ) be a σ-finite non-
atomic measure space with b = µ(R) ∈ (0,∞]. We denote by M(R) the
set of all µ-measurable functions on R whose values belong to [−∞,∞]. We
also define M+(R) = {g ∈ M(R) : g ≥ 0}, and M0(R) = {g ∈ M(R) :
g is finite a.e. in R}.

The function space GΓ (p,m,w)(R) (denoted simply by GΓ (p,m,w)
when no confusion can arise), introduced and studied in [FR2] and [FRZ], is
defined as the collection of all functions g ∈M(R, µ) such that

‖g‖GΓ (p,m,w) =
(b�
0

w(t)
(t�
0

g∗(s)p ds
)m/p

dt
)1/m

<∞,

where m, p ∈ (0,∞), w is a weight (that is, a positive measurable function)
on (0, b), and g∗ is the non-increasing rearrangement of g, given by

g∗(t) = sup{λ ∈ R : µ({x ∈ R : |g(x)| > λ}) > t} for t ∈ (0, b).

We also define the maximal non-increasing rearrangement of g by

g∗∗(t) =
1

t

t�

0

g∗(s) ds for t ∈ (0, b),

and we note that the estimate
(1.1) g∗(t) ≤ g∗∗(t)
holds universally for every g ∈M(R) and every t ∈ (0, b).
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Our main goal is to give a precise and easily-computable characterization
of the norm in the associate space (sometimes also called the Köthe dual) of
the space GΓ (p,m,w). The associate space GΓ (p,m,w)′ of GΓ (p,m,w) is
defined as the collection of all functions g ∈M(R) such that

(1.2) ‖g‖GΓ (p,m,w)′ = sup
‖f‖GΓ (p,m,w)≤1

b�

0

f∗(t)g∗(t) dt <∞.

Such a result is of interest for a number of reasons. In general, an as-
sociate space is a key thing to know about any Banach function space (see
definitions below). Moreover, the spaces GΓ (p,m,w) cover several types of
important function spaces and have plenty of applications. For example,
if b = ∞, p = 1, m > 1 and w(t) = t−mv(t), t ∈ (0,∞), where v is another
weight on (0, b), then GΓ (p,m,w) reduces to the space Γm(v), whose norm
is

‖g‖Γm(v) =
(∞�

0

g∗∗(t)mv(t) dt
)1/m

.

This space was introduced by Sawyer [Sa] who used it to describe the be-
havior of classical operators on Lorentz spaces and observed, among other
results, that, under certain restrictions on the parameters involved, this space
is the associate space of the space Λm′(ṽ), introduced by Lorentz [L], where
m′ = m/(m− 1), ṽ is an appropriate weight, and the norm in Λm

′
(ṽ) is

given by

‖g‖Λm′ (ṽ) =
(∞�

0

g∗(t)m
′
ṽ(t) dt

)1/m′
.

The spaces of type Λ and Γ have been extensively investigated during the last
25 years under the common label classical Lorentz spaces, and an avalanche
of papers by many authors devoted to their detailed study is available nowa-
days.

Another important example is obtained when b=1,m=1, p∈ (1,∞) and
w(t) = t−1

(
log 2

t

)−1/p, t ∈ (0, 1). In this case GΓ (p,m,w) coincides with
the so-called small Lebesgue space, first studied by Fiorenza [F]. He proved
that this space is the associate space of the so-called grand Lebesgue space,
introduced in [IS] in connection with integrability properties of Jacobians. It
was shown later by Fiorenza and Karadzhov [FK] that the norm in the small
Lebesgue space can be equivalently written in the form of the norm in the
GΓ (p,m,w) space with the above-mentioned parameters and weight. For
further results in this direction, see also [FR1, FR2]. Our characterization of
the associate space of GΓ (p,m,w) thus gives a new description of the grand
Lebesgue space.

In [FR2] and [FRZ] the authors studied the associate spaces of the spaces
GΓ (p,m,w), but obtained only an upper bound for ‖g‖GΓ (p,m,w)′ , moreover
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under the restriction that µ(R) <∞ and either p 6= 1 [FR2, Theorem 6] or
m ≤ p [FRZ, Theorem 3.2].

We are going to give a complete general characterization of the associate
space of GΓ (p,m,w) without any restrictions on the parameters involved.
However, it is reasonable to adopt a general assumption that p, m and w are
such that

(1.3)
t�

0

w(s)sm/p ds+

b�

t

w(s) ds <∞ for every t ∈ (0, b),

because if this requirement is not satisfied, then the “space” GΓ (p,m,w)
contains only the zero function. Under the assumption (1.3), we denote

(1.4) u(t) =

t�

0

w(s)sm/p ds+ tm/p
b�

t

w(s) ds, t ∈ (0, b).

The principal background tool in the proofs will be the duality results
of [GP] and [Si]. It will be useful, in accordance with the terminology used in
the first-mentioned paper, to call a weight w non-degenerate (with respect
to the power function tm/p) if (1.3) is satisfied and moreover

(1.5)
t�

0

w(s) ds =

b�

t

w(s)sm/p ds =∞ for every t ∈ (0, b).

We do not restrict our results here to non-degenerate weights, but we shall
see that the characterizing conditions for degenerate weights are different
from those concerning non-degenerate ones.

We shall now formulate our main theorem. Here and throughout, the
symbol ≈ means that the two sides are bounded by each other up to mul-
tiplicative constants independent of appropriate quantities. As usual, for
p ∈ (1,∞), we write p′ = p/(p− 1). Throughout the paper, we use the
convention 0 · ∞ = 0. Another convention we use is that b/2 = ∞ when
b =∞.

Theorem 1.1. Assume that 0 < m, p < ∞. Let w be a weight on (0, b)
such that (1.3) is satisfied. Let u be defined by (1.4).

(i) Let 0 < m ≤ 1 and 0 < p ≤ 1. Then

‖g‖GΓ (p,m,w)′ ≈ sup
t∈(0,b/2)

g∗∗(t)
t

u(t)1/m
.

(ii) Let 0 < m ≤ 1 and 1 < p <∞. Then

‖g‖GΓ (p,m,w)′ ≈ sup
t∈(0,b/2)

(b�
t

g∗∗(s)p
′
ds
)1/p′ t1/p

u(t)1/m
.
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(iii) Let 1 < m <∞, 0 < p ≤ 1 and let (1.5) be satisfied. Then

‖g‖GΓ (p,m,w)′ ≈
(b/2�

0

g∗∗(t)m
′ tm

′+m/p−1 	t
0w(s)s

m/p ds
	b
t w(s) ds

u(t)m′+1
dt

)1/m′

.

(iv) Let 1 < m < ∞, 0 < p ≤ 1 and let either
	b
0w(s) ds < ∞ or	b

0w(s)s
m/p ds <∞ or both. Then

‖g‖GΓ (p,m,w)′ ≈
(b/2�

0

g∗∗(t)m
′ tm

′+m/p−1 	t
0w(s)s

m/p ds
	b
t w(s) ds

u(t)m′+1
dt

)1/m′

+
lim supt→0+ g

∗∗(t)(	b
0w(s) ds

)1/m +

	b
0 g
∗(s) ds(	b

0w(s)s
m/p ds

)1/m .
(v) Let 1 < m <∞, 1 < p <∞ and let (1.5) be satisfied. Then

‖g‖GΓ (p,m,w)′

≈
(b/2�

0

(b�
t

g∗∗(s)p
′
ds
)m′/p′ tm′/p+m/p−1 	t0w(s)sm/p ds 	bt w(s) ds

u(t)m′+1
dt

)1/m′

.

(vi) Let 1 < m < ∞, 1 < p < ∞ and let either
	b
0w(s) ds < ∞ or	b

0w(s)s
m/p ds <∞ or both. Then

‖g‖GΓ (p,m,w)′

≈
(b/2�

0

(b�
t

g∗∗(s)p
′
ds
)m′/p′ tm′/p+m/p−1 	t0w(s)sm/p ds 	bt w(s) ds

u(t)m′+1
dt

)1/m′

+

(	b
0 g
∗∗(s)p

′
ds
)1/p′(	b

0w(s) ds
)1/m +

	b
0 g
∗(s) ds(	b

0w(s)s
m/p ds

)1/m .
For the proof of Theorem 1.1 we will develop a simple but powerful argu-

ment based on combination of results from [GP] and [Si] with an elementary
inequality involving rearrangements, contained in the next result.

Theorem 1.2. Assume that 1 < p <∞. Let g ∈ L1
loc(R, µ). Then

(1.6) g∗∗(t) +

(
1

t

b�

t

g∗∗(s)p
′−1g∗(s) ds

)1/p′

≈
(
1

t

b�

t

g∗∗(s)p
′
ds

)1/p′

for every t ∈ (0, b/2).

We shall now turn our attention to an application of Theorem 1.1 to
Sobolev-type embeddings which was first pointed out in [FRZ].
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A (quasi-)normed linear space X is said to be (continuously) embedded
into another such space Y , and denoted by X ↪→ Y , if X ⊂ Y and the
identity operator is bounded from X to Y .

Let Ω be a bounded open connected set (a domain) in Rn, where n ∈ N,
n ≥ 2. We say that Ω is a John domain if there exist a constant c ∈ (0, 1)
and a point x0 ∈ Ω such that for every x ∈ Ω there exists a rectifiable curve
$ : [0, l]→ Ω, parameterized by arclength, such that $(0) = x, $(l) = x0,
and

dist($(r), ∂Ω) ≥ cr for r ∈ [0, l],

where ∂Ω is the boundary of Ω. The class of John domains is known to
include some other families of domains that are considered classical, such as
domains having Lipschitz boundary or domains having the cone property.
John domains arise in connection with the study of holomorphic dynami-
cal systems and quasiconformal mappings, and they are known to support
Sobolev inequalities with the same exponents as the standard Sobolev ones
(see [Bo, HK, KM, CPS1]). Being a John domain is a necessary condition
for a Sobolev inequality to hold on simply connected open sets in R2 and on
more general higher-dimensional domains (see [BK]).

For k ∈ N, the Sobolev space W kGΓ (p,m,w)(Ω) is defined as the
collection of all weakly-differentiable functions u defined on Ω such that
|∇ju| ∈ GΓ (p,m,w)(Ω) for every j ∈ N ∪ {0}, j ≤ k, where ∇ju is the
jth gradient of u, ∇0u = u and | · | is the Euclidean norm. The space
W kGΓ (p,m,w)(Ω), endowed with the functional

‖u‖WkGΓ (p,m,w)(Ω) =

k∑
j=0

∥∥|∇ju|∥∥
GΓ (p,m,w)(Ω)

,

is a Banach space.
It was proved in [FRZ, Lemma 1.4] that the condition

(1.7) t−1/n
′ ∈ GΓ (p,m,w)′(0, b)

is sufficient for the Sobolev embedding

(1.8) W 1GΓ (p,m,w)(Ω) ↪→ L∞(Ω),

where b = |Ω|. Embeddings of type (1.8) are known to have a number of
applications, for example they are intimately connected with the question
whether the Sobolev space is a Banach algebra (cf. e.g. [A, C, CPS2]). Our
aim is to point out that, as can be deduced from our results, (1.7) is in fact
not only sufficient, but also necessary, for (1.8) to hold. Furthermore, we
shall include Sobolev embeddings of any order.

However, before we can state this result, we first need to know for
which parameters p,m,w the space GΓ (p,m,w) satisfies the axioms of
rearrangement-invariant Banach function space. We say that X is a Banach
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function space over a σ-finite measure space (R, µ) if for all non-negative
µ-measurable real functions f , g and {fj}j∈N on R and every λ ≥ 0, the
following properties hold:

(P1) ‖f‖X = 0 if and only if f = 0 a.e.; ‖λf‖X = λ‖f‖X ; ‖f + g‖X ≤
‖f‖X + ‖g‖X ;

(P2) f ≤ g a.e. implies ‖f‖X ≤ ‖g‖X ;
(P3) fj ↗ f a.e. implies ‖fj‖X ↗ ‖f‖X ;
(P4) for every E ⊂ R with µ(E) <∞ one has ‖χE‖X <∞;
(P5) for every E ⊂ R with µ(E) <∞ one has

	
E f(x) dµ ≤ CE‖f‖X for

some constant CE independent of f .

We say that X is a rearrangement-invariant Banach function space if
(P1)–(P5) are satisfied and moreover ‖f‖X= ‖g‖X whenever f∗= g∗ on (0, b).
Here and throughout, χE denotes the characteristic function of E.

We shall now state a necessary and sufficient condition for the space
GΓ (p,m,w) to be a rearrangement-invariant Banach function space. In view
of applications, we restrict ourselves to the case 1 ≤ p,m <∞. We note that
the result is known for certain particular cases. We omit the details but we
refer the reader to [FR2, Theorem 5].

Theorem 1.3. Suppose that 1 ≤ p,m < ∞ and let w be a weight on
(0, b). Then the space GΓ (p,m,w) is a Banach function space if and only if

(1.9)
b�

0

w(t)min{1, tm/p} dt <∞.

Now we are in a position to characterize a higher-order Sobolev embed-
ding. The results are collected in the following theorem. It will be useful to
recall that Ω is a bounded domain, therefore b <∞.

Theorem 1.4. Let n ∈ N, n ≥ 2. Let Ω ⊂ Rn be a John domain and let
b = |Ω|. Let 1 ≤ m, p <∞ and let w be a weight on (0, b) such that

(1.10)
b�

0

w(t)tm/p dt <∞.

Let k ∈ N. Then the Sobolev embedding

(1.11) W kGΓ (p,m,w)(Ω) ↪→ L∞(Ω)

holds if and only if either k ≥ n, or k ≤ n − 1 and one of the following
conditions is satisfied:

(i) m = 1, 1 ≤ p < n/k and

sup
t∈(0,b/2)

tk/n	t
0w(s)s

1/p ds+ t1/p
	b
t w(s) ds

<∞;
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(ii) m = 1, p = n/k and

sup
t∈(0,b/2)

tk/n
(
log b

t

)1−k/n
	t
0w(s)s

1/p ds+ t1/p
	b
t w(s) ds

<∞;

(iii) m = 1, n/k < p <∞ and

sup
t∈(0,b/2)

t1/p	t
0w(s)s

1/p ds+ t1/p
	b
t w(s) ds

<∞;

(iv) 1 < m <∞, 1 ≤ p < n/k,
	b
0w(t) dt =∞ and

b/2�

0

tm
′k/n+m/p−1 	t

0w(s)s
m/p ds

	b
t w(s) ds(	t

0w(s)s
m/p ds+ tm/p

	b
t w(s) ds

)m′+1
dt <∞;

(v) 1 < m <∞, p = n/k,
	b
0w(t) dt =∞ and

b/2�

0

tm
′k/n+mk/n−1(log b

t

)m′(1−k/n) 	t
0w(s)s

mk/n ds
	b
t w(s) ds(	t

0w(s)s
mk/n ds+ tmk/n

	b
t w(s) ds

)m′+1
dt <∞;

(vi) 1 < m <∞, n/k < p <∞ and

b/2�

0

tm
′/p+m/p−1 	t

0w(s)s
m/p ds

	b
t w(s) ds(	t

0w(s)s
m/p ds+ tm/p

	b
t w(s) ds

)m′+1
dt <∞.

Using the results of [CPS1] one can obtain sufficient conditions for the
Sobolev embedding (1.11) also for domains with worse boundary than just
John domains, as long as a lower bound for their isoperimetric function is
known. In many customary cases, such conditions will also be necessary in
a certain broader sense. We recall that the perimeter of a measurable set E
in Ω is given by

P (E,Ω) = Hn−1(Ω ∩ ∂ME),

where ∂ME denotes the essential boundary of E, in the sense of geometric
measure theory [M, Z]. The isoperimetric function IΩ : [0, 1] → [0,∞] of Ω
is then given by

IΩ(s) = inf{P (E,Ω) : E ⊂ Ω, s ≤ |E| ≤ 1/2} if s ∈ [0, 1/2],

and IΩ(s) = IΩ(1− s) if s ∈ (1/2, 1]. We omit the details.
In our last application of Theorem 1.1 we intend to characterize those

parameters p,m and w for which the space GΓ (p,m,w) is reflexive. This
question was studied in [FRZ], where a number of results were deduced from
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the assumption that GΓ (p,m,w) is reflexive, and also a sufficient condition
for reflexivity was given.

To pave the way to a characterization we shall first single out those spaces
GΓ (p,m,w) which have absolutely continuous norms. We restrict here to the
case when 1 < p,m < ∞. Such a result is of independent interest since it
might be handy when compactness of operators and embeddings between
function spaces is studied (see e.g. [LZ, FMP, KP, PP, Sl1, Sl2]). A Banach
function space X on (R, µ) is said to have absolutely continuous norm if for
each sequence {En} of µ-measurable subsets of R satisfying En ↓ ∅ one has
‖χEnf‖X → 0 for every f ∈ X.

Theorem 1.5. Let 1 < p,m <∞ and let w be a weight on (0, b). Then
the space GΓ (p,m,w) has absolutely continuous norm if and only if at least
one of the following conditions holds:

b <∞,(1.12)
b�

0

tm/pw(t) dt =∞.(1.13)

Our next theorem shows that for the associate space of GΓ (p,m,w), the
absolute continuity of norm is granted unconditionally.

Theorem 1.6. Let 1 < p,m <∞ and let w be a weight on (0, b). Then
the associate space to GΓ (p,m,w) has an absolutely continuous norm.

Now we can state our last result. Again, some particular cases are known
[FR2, Theorem 5].

Theorem 1.7. Let 1 < p,m <∞ and let w be a weight on (0, b). Then
the space GΓ (p,m,w) is reflexive if and only if at least one of the condi-
tions (1.12) and (1.13) holds.

Examples 1.8. (a) If b < ∞, 0 < m < ∞, 1 ≤ p < ∞ and
	b
0w(s) ds

<∞, then it is not difficult to verify that the space GΓ (p,m,w) degenerates
to the Lebesgue space Lp (regardless of m). Indeed, on the one hand, we
have

‖g‖GΓ (p,m,w) =
(b�
0

w(t)
(t�
0

g∗(s)p ds
)m/p

dt
)1/m

≤
(b�
0

g∗(s)p ds
)1/p(b�

0

w(t) dt
)1/m

= C‖g‖Lp

with C =
(	b

0w(t) dt
)1/m

< ∞, while, on the other hand, due to the mono-
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tonicity of g∗ and positivity of w, one has

‖g‖GΓ (p,m,w) =
(b�
0

w(t)
(t�
0

g∗(s)p ds
)m/p

dt
)1/m

≥
(b/2�

0

g∗(s)p ds
)1/p( b�

b/2

w(t) dt
)1/m

≥ c‖g‖Lp

with c = 2−p(
	b
b/2w(t) dt)

1/m > 0. A simple argument shows that, for this
choice of parameters, we have u(t) ≈ tm/p, and it is easy to check that
the appropriate choice of part (i), (ii), (iv) or (vi) of Theorem 1.1 yields
‖g‖GΓ (p,m,w)′ ≈ ‖g‖Lp′ for every measurable function g. For example, if
p = 1 and 1 < m <∞, then by Theorem 1.1(iv) we obtain

‖g‖GΓ (p,m,w)′ ≈ ‖g‖Lp′ + ‖g‖L∞ + ‖g‖L1 ≈ ‖g‖L∞ ,
since b <∞. We note that cases (iii) and (v) of Theorem 1.1 are inapplicable
here since (1.5) is false.

(b) If 1 ≤ p <∞ and
	b
0w(s) ds <∞ but b =∞, then the upper bound

for ‖g‖GΓ (p,m,w) from (a) still applies, but the lower bound does not work,
since, in accord with our convention, b/2 = ∞, and therefore the integral	b
b/2w(t) dt is zero. Thus, the inclusion L

p ⊂ GΓ (p,m,w) still holds, but the
converse need not be satisfied.

(c) We shall now analyze the situation when

0 < p <∞, m > p, m ≥ 1, w(t) = t−m/p for every t ∈ (0, b).

Then

‖g‖GΓ (p,m,w) =
(b�

0

(
1

t

t�

0

g∗(s)p ds

)m/p
dt

)1/m

.

Therefore, by the classical Hardy inequality (see e.g. [BS, Chapter 3, Lem-
ma 3.9]) together with (1.1) we get

‖g‖GΓ (p,m,w) ≈
(b�
0

g∗(t)m dt
)1/m

,

whence, for this choice of parameters, the space GΓ (p,m,w) always degener-
ates to the Lebesgue space Lm. We shall now check that the results deduced
from Theorem 1.1 are consistent with the classical duality relations between
Lebesgue spaces. It will be useful to note that u(t) ≈ t for every t ∈ (0, b).

First, let m = 1 and 0 < p < 1. Then Theorem 1.1(i) implies that

‖g‖GΓ (p,m,w)′ ≈ sup
t∈(0,b/2)

g∗∗(t) = ‖g‖L∞ ,

as required.
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Next, assume that p = 1, 1 < m <∞ and b =∞. Then, obviously, (1.5)
is satisfied. Hence Theorem 1.1(iii) applies, and we get

‖g‖GΓ (p,m,w)′ ≈
(∞�

0

g∗∗(t)m
′ tm

′+m−1 · t · t1−m

tm′+1
dt

)1/m′

≈ ‖g‖Lm′ ,

by the Hardy inequality and (1.1), again.
If p = 1, 1 < m <∞ and b <∞, then

t�

0

w(s) ds =∞ for every t ∈ (0,∞)

but
b�

t

w(s)sm/p ds <∞ for every t ∈ (0,∞),

hence (1.5) is not satisfied. Consequently, we have to use Theorem 1.1(iv)
this time. We get

‖g‖GΓ (p,m,w)′ ≈ ‖g‖Lm′ + b−1/m‖g‖L1 .

Because b <∞, we have, by Hölder’s inequality, ‖g‖L1 ≤ b1/m‖g‖Lm′ .
Thus, altogether, we again obtain

‖g‖GΓ (p,m,w)′ ≈ ‖g‖Lm′ ,
as desired.

Let 1 < p < m < ∞ and b = ∞. Then (1.5) holds and we can use
Theorem 1.1(v). We obtain

‖g‖GΓ (p,m,w)′ ≈
(∞�

0

(∞�
t

g∗∗(s)p
′
ds
)m′/p′ tm′/p+m/p−1 · t · t1−m/p

tm′+1
dt

)1/m′

≈
(∞�

0

(
1

t

∞�

t

g∗∗(s)p
′
ds

)m′/p′
dt

)1/m′

.

We claim that

(1.14)
(∞�

0

(
1

t

∞�

t

g∗∗(s)p
′
ds

)m′/p′
dt

)1/m′

≈ ‖g‖Lm′ .

The lower bound is easy, we only have to observe that(∞�
0

(
1

t

∞�

t

g∗∗(s)p
′
ds

)m′/p′
dt

)1/m′

≥
(∞�

0

(
1

t

2t�

t

g∗∗(s)p
′
ds

)m′/p′
dt

)1/m′

≥
(∞�

0

g∗∗(2t)m
′
dt
)1/m′

≈ ‖g‖Lm′ ,
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where the last relation follows by a simple change of variables. As for the
upper bound, we first claim that there exists a positive constant C such that,
for every t ∈ (0,∞) and every g ∈M(R), one has

(1.15)
(∞�
t

g∗∗(s)p
′
ds
)1/p′

≤ C
(∞�
t

g∗∗(s)m
′
(s− t)m′/p′−1 ds

)1/m′
.

Clearly, (1.15) will follow once we show that

(1.16)
∞�

t

h∗(s) ds ≤ C
(∞�
t

h∗(s)m
′/p′(s− t)m′/p′−1 ds

)p′/m′
for some C > 0, every t ∈ (0,∞) and every h ∈ M(R), on applying the
last estimate to the particular choice h∗ = (g∗∗)p

′ . The proof of (1.16) is
similar to the classical proof of embeddings between Lorentz spaces (see e.g.
[BS, Chapter 4, Proposition 4.2]). Indeed,
∞�

t

h∗(s) ds =

∞�

t

h∗(s)m
′/p′h∗(s)1−m

′/p′(s− t)1−m′/p′(s− t)m′/p′−1 ds

≤
(

sup
y∈(t,∞)

h∗(y)(y − t)
)1−m′/p′ ∞�

t

h∗(s)m
′/p′(s− t)m′/p′−1 ds.

However, for every y ∈ (t,∞), we have

h∗(y)(y − t) ≈ h∗(y)
(y�
t

(s− t)m′/p′−1 ds
)p′/m′

≤
(y�
t

h∗(s)m
′/p′(s− t)m′/p′−1 ds

)p′/m′
≤
(∞�
t

h∗(s)m
′/p′(s− t)m′/p′−1 ds

)p′/m′
.

So, combining the last two estimates, we get (1.16), hence also (1.15). Now,
using (1.15) and the Fubini theorem, we arrive at

(1.17)
(∞�

0

(
1

t

∞�

t

g∗∗(s)p
′
ds

)m′/p′
dt

)1/m′

≤ C
(∞�

0

t−m
′/p′
∞�

t

g∗∗(s)m
′
(s− t)m′/p′−1 ds dt

)1/m′
= C

(∞�
0

g∗∗(s)m
′
s�

0

t−m
′/p′(s− t)m′/p′−1 dt ds

)1/m′
.
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Changing variables, we get, for every fixed s ∈ (0,∞),
s�

0

t−m
′/p′(s− t)m′/p′−1 dt =

1�

0

y−m
′/p′(1− y)m′/p′−1 dy.

Thus, denoting

K =

1�

0

y−m
′/p′(1− y)m′/p′−1 dy,

we obtain
s�

0

t−m
′/p′(s− t)m′/p′−1 dt ≤ K for every s ∈ (0,∞).

Plugging this into (1.17), we get the upper bound in (1.14). Altogether, also
in this case, we conclude that

‖g‖GΓ (p,m,w)′ ≈ ‖g‖Lm′ .
Finally, let 1 < p < m <∞ and b <∞. Then

b�

0

w(s)sm/p ds <∞,

hence the weight is degenerate, and we have to use Theorem 1.1(vi). The first
term on the right-hand side is equivalent to ‖g‖Lm′ just as in the preceding
case, and the last one is obviously equivalent to ‖g‖L1 . Furthermore, the
middle term disappears.

(d) If 1 < p < ∞, m = 1, b = 1 and w(t) = t−1
(
log 2

t

)−1/p, then
GΓ (p,m,w) coincides with the small Lebesgue space ([F], [FK]). Hence,
Theorem 1.1 provides a new characterization of the grand Lebesgue space.

(e) A similar functional to the one in Theorem 1.1(ii) appears in [CP2,
Theorem 1.2] in connection with a sharp Sobolev embedding into a Morrey
space. Spaces generated by similar functionals are also treated in [Kr].

2. Proofs

Proof of Theorem 1.2. Fix g ∈ L1
loc(R, µ) and t ∈ (0, b/2). Then

1

t

b�

t

g∗∗(s)p
′
ds ≥ 1

t

2t�

t

g∗∗(s)p
′
ds

=
1

t

2t�

t

s−p
′
(s�
0

g∗(y) dy
)p′

ds

≥ 1

t

(t�
0

g∗(s) ds
)p′ 2t�

t

ds

sp′

= cg∗∗(t)p
′
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with c = (p− 1)(1− 21−p
′
). Since the estimate

1

t

b�

t

g∗∗(s)p
′−1g∗(s) ds ≤ 1

t

b�

t

g∗∗(s)p
′
ds

follows immediately from (1.1), we obtain

g∗∗(t) +

(
1

t

b�

t

g∗∗(s)p
′−1g∗(s) ds

)1/p′

≤ C
(
1

t

b�

t

g∗∗(s)p
′
ds

)1/p′

with C depending only on p. Conversely, integrating by parts, we get

1

t

b�

t

g∗∗(s)p
′−1g∗(s) ds =

1

t

b�

t

1

sp′−1

(s�
0

g∗(y) dy
)p′−1

g∗(s) ds

=
1

p′t

(
lim
s→b−

1

sp′−1

(s�
0

g∗(y) dy
)p′
− 1

tp′−1

(t�
0

g∗(s) ds
)p′)

+
1

pt

b�

t

g∗∗(s)p
′
ds

≥ 1

pt

b�

t

g∗∗(s)p
′
ds− 1

p′
g∗∗(t)p

′
,

hence

g∗∗(t) +

(
1

t

b�

t

g∗∗(s)p
′−1g∗(s) ds

)1/p′

≥ c′
(
1

t

b�

t

g∗∗(s)p
′
ds

)1/p′

with a suitable c′ > 0. The assertion now follows from the combination of
both estimates.

Proof of Theorem 1.1. Assume first that b = ∞. Rewriting the norm
in (1.2) in a more convenient way and setting h∗ = (f∗)p, we get

‖g‖GΓ (p,m,w)′ = sup
f 6≡0

	b
0 f
∗(t)g∗(t) dt

‖f‖GΓ (p,m,w)

= sup
f 6≡0

	b
0 f
∗(t)g∗(t) dt(	b

0w(t)
(	t

0 f
∗(s)p ds

)m/p
dt
)1/m

= sup
h6≡0

	b
0 h
∗(t)1/pg∗(t) dt(	b

0w(t)
(	t

0 h
∗(s) ds

)m/p
dt
)1/m

= sup
h6≡0

	b
0 h
∗(t)1/pg∗(t) dt(	b

0 h
∗∗(t)m/ptm/pw(t) dt

)1/m .
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Raising this to the power p, we arrive at

‖g‖pGΓ (p,m,w)′ = sup
h6≡0

(	b
0 h
∗(t)1/pg∗(t) dt

)p(	b
0 h
∗∗(t)m/ptm/pw(t) dt

)p/m .
Let 0 < m ≤ 1. Then, by a slight modification of [GP, Theorem 4.2(i)] and
its proof, we obtain

‖g‖pGΓ (p,m,w)′ ≈ sup
t∈(0,b)

(	t
0 g
∗(s) ds

)p
u(t)p/m

.

Taking the pth root, we get

‖g‖GΓ (p,m,w)′ ≈ sup
t∈(0,b)

g∗∗(t)
t

u(t)1/m
.

Since b =∞, and therefore, by our convention, also b/2 =∞, this completes
the proof of (i).

If 1 < p <∞ and 0 < m ≤ 1, then [GP, Theorem 4.2(iii)] yields

‖g‖pGΓ (p,m,w)′ ≈ sup
t∈(0,b)

(	t
0 g
∗(s) ds

)p
+ t
(	b
t

(	s
0 g
∗(y) dy

)p′−1
g∗(s)s1−p

′
ds
)p−1

u(t)p/m

= sup
t∈(0,b)

tpg∗∗(t)p + t
(	b
t g
∗∗(s)p

′−1g∗(s) ds
)p−1

u(t)p/m
.

Thus,

‖g‖GΓ (p,m,w)′ ≈ sup
t∈(0,b)

(
g∗∗(t) +

(
1

t

b�

t

g∗∗(s)p
′−1g∗(s) ds

)1/p′) t

u(t)1/m
.

By Theorem 1.2, this yields

‖g‖GΓ (p,m,w)′ ≈ sup
t∈(0,b)

(b�
t

g∗∗(s)p
′
ds
)1/p′ t1/p

u(t)1/m
,

establishing (ii).
Now assume that 1 < m < ∞, 0 < p ≤ 1, and (1.5) is satisfied. Then,

using [GP, Theorem 4.2(ii)], we get

‖g‖pGΓ (p,m,w)′

≈
( b�

0

sup
y∈(t,b)

(y�
0

g∗(τ) dτ
)m′

y−m
′/p t

m′/p+m/p−1 	t
0w(s)s

m/p ds
	b
t w(s) ds

u(t)m′+1
dt

)p/m′

≈
( b�

0

sup
y∈(t,b)

g∗∗(y)m
′
ym
′(p−1)/p t

m′/p+m/p−1 	t
0w(s)s

m/p ds
	b
t w(s) ds

u(t)m′+1
dt

)p/m′
.
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Since p ≤ 1, the expression g∗∗(y)m
′
ym
′(p−1)/p is in fact non-increasing on

(t, b), hence it takes its largest value at t. With a little algebra, (iii) follows.
Next, let 1 < p,m < ∞ and let (1.5) hold. Then, by [GP, Theo-

rem 4.2(iv)], we have

‖g‖pGΓ (p,m,w)′

≈
(b�

0

((	t
0 g
∗(s) ds

)p′
+ tp

′−1 	b
t

(	s
0 g
∗(y) dy

)p′−1
g∗(s)s1−p

′
ds
)m′/p′

u(t)m′+1

× tm/p−1
t�

0

sm/pw(s) ds

b�

t

w(s) ds dt

)p/m′

≈
(b�

0

(
g∗∗(t) +

(
1

t

b�

t

g∗∗(s)p
′−1g∗(s) ds

)1/p′)m′

×
tm/p−1

	t
0 s

m/pw(s) ds
	b
t w(s) ds

u(t)m′+1
dt

)p/m′
.

By Theorem 1.2, this implies

‖g‖pGΓ (p,m,w)′

≈
(b�

0

(
1

t

b�

t

g∗∗(s)p
′
ds

)m′/p′ tm/p+m′−1 	t0 sm/pw(s) ds 	bt w(s) ds
u(t)m′+1

dt

)p/m′
,

and (v) follows on taking the pth root.
If 1 < m < ∞ and (1.5) is violated, then, in order to prove the state-

ments (iv) and (vi), the results of [GP] cannot be used directly, because
degenerate weights are not treated there. In this case we have either to use
the result of Sinnamon [Si] or modify the argument in [GP]. We omit the
technical details.

Now let b <∞. Then, in order to finish the proof of (i), we need to show
that

sup
t∈(0,b)

g∗∗(t)
t

u(t)1/m
≈ sup

t∈(0,b/2)
g∗∗(t)

t

u(t)1/m
.

To this end, denote

K =

(
u(b/3)	b/2

0 w(s)sm/p ds

)1/m

.

Then, for every t ∈ [b/2, b), one has

t

u(t)1/m
<

b(	b/2
0 w(s)sm/p ds

)1/m = 3K
b/3

u(b/3)1/m
.
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Thus, using also the fact that g∗∗ is non-increasing on (0, b), we get, for every
t ∈ [b/2, b),

g∗∗(t)
t

u(t)1/m
≤ 3Kg∗∗(b/3)

b/3

u(b/3)1/m
≤ 3K sup

t∈(0,b/2)
g∗∗(t)

t

u(t)1/m
.

Consequently,

sup
t∈(0,b)

g∗∗(t)
t

u(t)1/m
≤ max{1, 3K} sup

t∈(0,b/2)
g∗∗(t)

t

u(t)1/m
.

Since the converse inequality is trivial, this completes the proof of (i). The
proof of the remaining statements is analogous and therefore omitted.

Proof of Theorem 1.3. First, the ‘only if’ part of the assertion follows
simply on testing the norm in GΓ (p,m,w) on characteristic functions of
sets of finite measure.

Let us prove the ‘if’ part. All the assertions in (P1) except the triangle in-
equality are obvious. Fix t ∈ (0, b) and let f, g be µ-measurable real functions
on R. Denote

Et = {x ∈ R : f(x) + g(x) > (f + g)∗(t)}.
Then µ(Et) ≤ t [BS, Chapter 2, Proposition 1.7]. Combining this fact with
the Minkowski inequality for the norm in the space Lp(Et) and the Hardy–
Littlewood inequality [BS, Chapter 2, Theorem 2.2], we obtain(t�

0

(f + g)∗(s)p ds
)1/p

=
( �

Et

(f + g)(s)p dµ
)1/p

≤
( �

Et

f(s)p dµ
)1/p

+
( �

Et

g(s)p dµ
)1/p

≤
(µ(Et)�

0

f∗(s)p ds
)1/p

+
(µ(Et)�

0

g∗(s)p ds
)1/p

≤
(t�
0

f∗(s)p ds
)1/p

+
(t�
0

g∗(s)p ds
)1/p

.

Therefore,

‖f + g‖GΓ (p,m,w) =
(b�
0

(t�
0

(f + g)∗(s)p ds
)m/p

w(t) dt
)1/m

=
(b�
0

‖(f + g)∗‖mLp(0,t)w(t) dt
)1/m

≤
∥∥‖g∗‖Lp(0,t) + ‖f∗‖Lp(0,t)∥∥Lmw (0,b)
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≤
∥∥‖g∗‖Lp(0,t)∥∥Lmw (0,b)

+
∥∥‖f∗‖Lp(0,t)∥∥Lmw (0,b)

= ‖f‖GΓ (p,m,w) + ‖g‖GΓ (p,m,w),
as desired.

Next, (P2) follows immediately from the definition and (P3) from the
Monotone Convergence Theorem applied first to the inner integral and then
on the outer one.

As for (P4) and (P5), let E be a subset of R of finite measure. Then

‖χE‖GΓ (p,m,w) =
(b�
0

min(t, µ(E))m/pw(t) dt
)1/m

<∞,

which establishes (P4).
Finally, if b =∞ and f is a non-negative measurable function on R, then(b�
0

(t�
0

f∗(s)p ds
)m/p

w(t) dt
)1/m

≥
( b�

µ(E)

(µ(E)�

0

f∗(s)p ds
)m/p

w(t) dt
)1/m

≥
( b�

µ(E)

( �
E

f(s)p ds
)m/p

w(t) dt
)1/m

= ‖f‖Lp(E)

( b�

µ(E)

w(t) dt
)1/m

≥ CE‖f‖L1(E)

( b�

µ(E)

w(t) dt
)1/m

,

for an appropriate CE , while, when b <∞, we have(b�
0

(t�
0

f∗(s)p ds
)m/p

w(t) dt
)1/m

≥
( b�

b/2

(b/2�
0

f∗(s)p ds
)m/p

w(t) dt
)1/m

=
(b/2�

0

f∗(s)p ds
)1/p( b�

b/2

w(t) dt
)1/m

≥ 1

2

(b�
0

f∗(s)p ds
)1/p( b�

b/2

w(t) dt
)1/m

≥ CE‖f‖L1(E)

( b�

µ(E)

w(t) dt
)1/m

,

showing (P5) again.



18 A. Gogatishvili et al.

Proof of Theorem 1.4. The assumption (1.10) obviously implies (1.9).
Therefore, we know from Theorem 1.3 that GΓ (m, p,w)(0, b) is a rearrange-
ment-invariant Banach function space. We can thus apply [CPS1, Theo-
rem 6.1] (for the first-order case see also [CP1, Theorem 3.5]), which states
that the Sobolev embedding (1.11) is equivalent to the condition

(2.1) t−1+k/n ∈ GΓ (m, p,w)′(0, b).
So, we only have to analyze when (2.1) is satisfied.

First note that if k ≥ n, then in fact obviously

t−1+k/n ∈ L∞(0, b),

which immediately implies (2.1), since, by a classical fact, the space L∞
is embedded into any rearrangement-invariant space over a finite-measure
space (and we have b <∞ here).

Assume now that k ≤ n− 1. We then denote g(t) = t−1+k/n for t ∈ (0, b)
and note that g∗∗ ≈ g∗ = g on (0, b).

Let m = 1. Then it follows from Theorem 1.1(i)&(ii) that

‖g‖GΓ (p,m,w)′ ≈ sup
t∈(0,b/2)

tk/n

u(t)

if p = 1, and

‖g‖GΓ (p,m,w)′ ≈ sup
t∈(0,b/2)

(b�
t

g∗∗(s)p
′
ds
)1/p′ t1/p

u(t)

if p ∈ (1,∞). Now, a calculation shows that, for t ∈ (0, b/2), we have(b�
t

g∗∗(s)p
′
ds
)1/p′

≈
(b�
t

s(−1+k/n)p
′
ds
)1/p′

≈


tk/n−1/p if 1 < p < n/k,(
log b

t

)1−k/n if p = n/k,
1 if p ∈ (n/k,∞).

This establishes (i)–(iii). The remaining three statements can be proved in
an analogous way.

Proof of Theorem 1.5. Assume first that (1.12) holds. Let {En} be a se-
quence of µ-measurable subsets of R with En ↓ ∅, and let f ∈ GΓ (p,m,w).
Then

‖fχEn‖mGΓ (p,m,w) =
b�

0

(t�
0

(fχEn)
∗(s)p ds

)m/p
w(t) dt

=

b�

0

(min(t,µ(En))�

0

f∗(s)p ds
)m/p

w(t) dt.
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Since b <∞, En ↓ ∅ implies µ(En) ↓ 0. Therefore,

lim
n→∞

min(t,µ(En))�

0

f∗(s)p ds = 0

for all t ∈ (0, b). Consequently,

lim
n→∞

(t�
0

(fχEn)
∗(s)p ds

)m/p
w(t) = 0.

By the Dominated Convergence Theorem with (
	t
0 f
∗(s)p ds)m/pw(t) as an

integrable majorant, we obtain ‖fχEn‖GΓ (p,m,w) → 0, as desired.
Assume now that (1.13) is satisfied and b =∞. Then, by the assumption,

for every f ∈ GΓ (p,m,w) and k ∈ N, the set Fk = {x ∈ R : f(x) ≥ 1/k}
has finite measure. Let {En} be a sequence of µ-measurable subsets of R
satisfying En ↓ ∅. Set fn = fχEn , fn,k = fnχFk , and choose ε > 0. Then

‖fn‖GΓ (p,m,w) ≤ ‖fn − fn,k‖GΓ (p,m,w) + ‖fn,k‖GΓ (p,m,w).
Fix k ∈ N. Then, for every n ∈ N,

‖fn − fn,k‖mGΓ (p,m,w) =
∞�

0

(t�
0

(|f − fχFk |χEn)
∗(s)p ds

)m/p
w(t) dt

≥
∞�

0

(t�
0

(|f − fχFk |χEn+1)
∗(s)p ds

)m/p
w(t) dt

= ‖fn+1 − fn+1,k‖mGΓ (p,m,w).
Now, for a change, fix n ∈ N. Then, for every k ∈ N,

‖fn − fn,k‖mGΓ (p,m,w) ≤
∞�

0

(t�
0

(min(f(y), 1/k))∗(s)p ds
)m/p

w(t) dt.

For every t > 0 we clearly have

lim
k→∞

(t�
0

(min(f(s), 1/k))p ds
)m/p

w(t) = 0.

Therefore,
lim
k→∞

‖fn − fn,k‖GΓ (p,m,w) = 0,

by the Dominated Convergence Theorem. Observe that, for every k ∈ N,

lim
n→∞

‖fn,k‖GΓ (p,m,w) = 0,

which follows from the first part of the proof since the sets Fk have finite
measure.
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We first choose k ∈ N such that ‖f1 − f1,k‖GΓ (p,m,w) < ε. With this k
now fixed, we find n0 ∈ N such that ‖fn,k‖GΓ (p,m,w) < ε for all n > n0. Then

‖fn‖GΓ (p,m,w) ≤ ‖fn − fn,k‖GΓ (p,m,w) + ‖fn,k‖GΓ (p,m,w)
≤ ‖f1,k − f1‖GΓ (p,m,w) + ‖fn,k‖GΓ (p,m,w)
≤ 2ε,

establishing the ‘if’ part of the theorem.
To prove the ‘only if’ part, assume that b=∞ and

	∞
0 w(t)tm/p dt <∞.

Since R is σ-finite, there exists a sequence of finite-measure sets {Dn} sat-
isfying Dn ↑ R. For n ∈ N, define En = R \Dn, and set f ≡ 1 on R. Then
En ↓ ∅ and, for every n ∈ N, (fχEn)∗ ≡ 1 on (0,∞). Therefore, for every
n ∈ N, we have

‖f‖GΓ (p,m,w) = ‖fχEn‖GΓ (p,m,w) =
∞�

0

w(t)tm/p dt,

which means, due to the assumption, that f belongs to GΓ (p,m,w) but does
not have absolutely continuous norm.

Proof of Theorem 1.6. Let p,m ∈ (1,∞) and let w be a weight on (0, b).
Assume first that (1.5) holds. Then, by Theorem 1.1(v),

‖g‖(GΓ (p,m,w))′

≈
(b/2�

0

(b�
t

g∗∗(s)p
′
ds
)m′/p′ tm′/p+m/p−1 	t0w(s)sm/p ds 	bt w(s) ds

u(t)m′+1
dt

)1/m′

.

Let {En} be a sequence of sets such that En ↓ ∅. Denote fn = fχEn
and Fn(t) =

	t
0 f
∗
n(s) ds, t ∈ (0, b). For every f ∈ GΓ (p,m,w)′, the right

side of the last displayed formula is finite. Therefore, by the Dominated
Convergence Theorem, it only suffices to verify that

lim
n→∞

Fn(t) = 0 for every t ∈ (0,∞).

Fix t ∈ (0, b). Then the sequence Fn(t) is non-increasing. Therefore the limit
limn→∞ Fn(t) exists. Suppose that limn→∞ Fn(t) > ε for some ε > 0. Then
the sets

Pn =

{
s ∈ (0, t) : f∗n(s) >

ε

2t

}
have positive measure. Clearly, Pn ⊃ Pn+1 for every n ∈ N. Moreover,

�

(0,t)\Pn

f∗n(s) ds ≤
ε

2
,
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hence �

Pn

f∗n(s) ds ≥
ε

2
.

Furthermore, if |Pn| → 0 then
�

Pn

f∗(s) ds ≥
�

Pn

f∗n(s) ds ≥
ε

2
,

which is impossible due to the absolute continuity of the Lebesgue integral.
So, the only option left is |

⋂
Pn| > 0. That, however, leads to a contradiction

since ∣∣∣⋂Pn

∣∣∣ = µ{x ∈ R : fn(x) > ε for every n ∈ N}.

Therefore limn→∞ Fn(t) = 0.
If (1.5) is violated, then the above proof works just as well, the only

extra observation we have to make is that all functions in Lp′ and in L1 have
absolutely continuous norms.

Proof of Theorem 1.7. A Banach function space X is reflexive if and
only if both X and its associate space X ′ have absolutely continuous norm
[BS, Chapter 1, Corollary 4.4]. Thus, the assertion follows from Theorems 1.5
and 1.6.
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