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Some remarks on Gleason measures

by

P. De Nápoli (Buenos Aires) and M. C. Mariani (Las Cruces, NM)

Abstract. This work is devoted to generalizing the Lebesgue decomposition and the
Radon–Nikodym theorem to Gleason measures. For that purpose we introduce a notion
of integral for operators with respect to a Gleason measure. Finally, we give an example
showing that the Gleason theorem does not hold in non-separable Hilbert spaces.

1. Introduction. Let H be a Hilbert space and P the family of orthog-
onal projections in L(H). A Gleason measure is a function µ : P → C which
is σ-additive on orthogonal families of projections in P, i.e. if (Sn)n∈N is
a countable orthogonal family of subspaces of H with closed linear span S
then

µ(S) =
∑

n∈N

µ(Sn).

Gleason measures have a natural quantum mechanical interpretation. In
fact, in quantum mechanics the space of possible (pure) states of a physical
system corresponds to a Hilbert space H. Then Gleason probability mea-
sures on H (i.e. 0 ≤ µ(S) ≤ 1 and µ(I) = 1) correspond to mixed states, i.e.
ones where the precise state of the system is not known, but a probability
distribution µ of the “observable events” is given (a closed subspace of H
corresponds to observable events).

A. M. Gleason [7] proved that if H is a separable Hilbert space of di-
mension greater than or equal to three, then every positive measure µ can
be represented as

µ(S) = Tr(̺PS)

with ̺ ∈ L(H) a positive self-adjoint trace class operator (see Remark 2.6
below). In the quantum mechanical interpretation, ̺ is called a density op-
erator (see [11], [12]).

Gleason’s theorem and its generalizations have been deeply studied by
many authors (see for example [1]–[4], [8], [13]) and applied to the problem
of hidden variables in quantum mechanics [9].
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This work is devoted to generalizing the Lebesgue decomposition and the
Radon–Nikodym theorem to Gleason measures. It is organized as follows. In
Section 2, we give some definitions and known results that will be useful for
us. In Section 3, we introduce a notion of integral for operators with respect
to a Gleason measure.

In Section 4, we obtain a Lebesgue decomposition for Gleason measures
on commutative C∗ algebras (Theorem 4.2). The proof is based on a repre-
sentation theorem which is of independent interest (Theorem 4.1).

In Section 5, we give a Lebesgue decomposition for representable mea-
sures.

Using the integral previously introduced, we give in Section 6 a version
of the Radon–Nikodym theorem for representable Gleason measures (The-
orem 6.3).

In Section 7, we discuss a quantum-mechanical interpretation of the in-
tegral as the expected value of an observable in a mixed state, and the
relationship between the Radon–Nikodym theorem and the conditional ex-
pectation of an observable with respect to another.

Finally, in Section 8, we present an example showing that Gleason’s
theorem does not hold for non-separable Hilbert spaces.

2. Definitions and previous results

Definition 2.1. Following F. Riesz and Sz.-Nagy ([14, Section 116]),
we shall say that an unbounded operator T and a bounded operator B are
permutable (or commute) if

BT ⊂ TB.

Let H be a Hilbert space, A ⊂ L(H) a C∗ algebra of bounded normal
operators in H, and P the set of orthogonal projectors in H.

Definition 2.2 ([5, Chapter VII, Definition 2.E.1]). Let (X,M) be a
measurable space (i.e. M is a σ-algebra of subsets of X). A spectral measure

is a mapping E : M → P such that

1. E(U) is an orthogonal projector for every U ∈ M.
2. E(X) = I, E(∅) = 0.
3. If U =

⋃
n∈N

Un and the sets Un are disjoint, then E(U)=
∑

n∈N
E(Un)

(where the series is convergent in the strong operator topology).
4. If U1 ⊃ U2 ⊃ · · · and

⋂
n∈N

Un = ∅, then E(Un) → 0 in the strong
operator topology, i.e. E(Un)x → 0 for all x ∈ H.

5. If U = U1 ∩ U2, then E(U) = E(U1) · E(U2). In particular if U1 and
U2 are disjoint, then E(U1) and E(U2) are orthogonal.
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Definition 2.3. Let µ : P → R be a Gleason measure. Then µ is said
to be concentrated on a subspace S0 if S ⊂ S⊥

0 implies that µ(S) = 0.
In terms of projections, we can express the same idea by saying that µ is
concentrated on a projector P0 if for any projector S ∈ P(H), P0P = 0
implies that µ(P ) = 0. We then write µ ⊂ S0 or µ ⊂ P0. Furthermore, if
the set {P ∈ P : µ(P ) = 0} has a greatest element, P0, then I −P0 is called
the strong support of µ. Evidently, µ(P ) = 0 if and only if P (I − P0) = 0
(see [10]).

Definition 2.4. Let λ, α : P → R be two Gleason measures. The mea-
sure λ is said to be absolutely continuous with respect to α, written λ ≪ α,
if α(P ) = 0 implies λ(P ) = 0. Two Gleason measures λ and α are said
to be mutually singular , written λ ⊥ α, if there exists an orthogonal de-
composition I = P0 + Q0 with P0, Q0 orthogonal projections such that
P0Q0 = Q0P0 = 0 and λ ⊂ P0, µ ⊂ Q0.

Definition 2.5. For 1 ≤ p < ∞, we denote by Lp the class of bounded
operators T ∈ L(H) which satisfy the following condition: for each orthonor-
mal system {ϕk : k ∈ K} in H,

∑
k∈K |〈Tϕk, ϕk〉|

p < ∞. As Lp is a two-sided
ideal in L(H), it is contained in the ideal of compact operators [15].

Remark 2.6. In order to define the trace of an operator T , we need the
series

Tr(T ) =
∑

k∈K

〈Tϕk, ϕk〉

to be absolutely convergent. So it is natural to define the trace for operators
in L1. We call the operators in L1 operators of trace class. If A is a trace
class operator and B is bounded, then AB is also of trace class. Moreover,

|Tr(AB)| ≤ ‖B‖Tr(|A|).

3. Integral with respect to a Gleason measure. It is natural to
ask if it is possible to associate some sort of integral to a Gleason mea-
sure µ. Consider a self-adjoint operator that is a finite linear combination
of projections,

A =
n∑

i=1

λiPi,

where Pi ∈ P and PiPj = 0 if i 6= j. In analogy with standard measure
theory, we shall call such operators simple. Then it is natural to define the
integral of a simple operator with respect to µ by\

Adµ =

n∑

i=1

λiµ(Pi).
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We shall extend this notion of integral to the class of self-adjoint bounded
operators. To do that we shall make use of the spectral theorem, in the
following formulation:

Theorem 3.1 ([5, Chapter VII, 2.F.2]). To each (possibly unbounded)
self-adjoint operator A in a Hilbert space H corresponds a spectral measure

E = EA (defined on the Borel sets of R) such that :

1. A =
T∞
−∞ λdE in the sense that

Ax = lim
n→∞

n\
−n

λE(dλ)x

and

D(A) =
{
x ∈ H :

∞\
−∞

λ2 〈E(dλ)x, x〉 < ∞
}
.

2. For each Borel set U ⊂ R, E(U) commutes with any bounded operator

that commutes with A, and

E(U)A =
\
U

λdE.

3. For any real Borel measurable function f(λ) we have

f(A) =

∞\
−∞

f(λ) dE

with

D(f(A)) =
{
x ∈ H :

∞\
−∞

|f(λ)|2 〈E(dλ)x, x〉 < ∞
}
.

4. The spectral measure E is supported in the spectrum σ(A) of A, i.e.

for every Borel set U ⊂ R, E(U) = E(U ∩ σ(A)).

In the case of a simple operator, the spectral measure EA is given by

EA(U) =
∑

i: λi∈U

Pi.

Consider the measure µ◦EA on the Borel subsets of R. Then if A is a simple
operator,

(1)
\
Adµ =

∞\
−∞

λd(µ ◦ EA).

So for any self-adjoint operator A we may define
T
Adµ using equation (1).

In a similar way, using more general versions of the spectral theorem, it is
possible to define the integral

T
A dµ when A is a normal operator.
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Remark 3.2. Following F. Riesz and Sz.-Nagy ([14, Section 130]), if
A and B are two self-adjoint operators, we shall say that A and B are
permutable if EA(U) and EB(V ) are permutable for any measurable sets
U, V ⊂ R, with EA, EB the spectral measures associated to A, B. In that
case there exists a spectral measure EA,B defined on the Borel subsets of R

2

such that
EA,B(U × V ) = EA(U)EB(V )

for all “measurable rectangles”. It follows that

A =
\\
R2

λ1 dEA,B(λ1, λ2), B =
\\
R2

λ2 dEA,B(λ1, λ2).

Proposition 3.1. If A and B are permutable self-adjoint operators, then

(2)
\
(A + B) dµ =

\
Adµ +

\
B dµ.

Proof. Let EA,B be the spectral measure on R
2 associated to the pair

(A, B). Then\
(A + B) dµ =

\\
(λ1 + λ2) d(µ ◦ EA,B)(λ1, λ2)

=
\\

λ1 d(µ ◦ EA,B)(λ1, λ2) +
\\

λ2 d(µ ◦ EA,B)(λ1, λ2)

=
\
λ1 d(µ ◦ EA)(λ1) +

\
λ2 d(µ ◦ EB)(λ2) =

\
Adµ +

\
B dµ.

Remark 3.3. This property does not hold if A and B are not per-
mutable, as can be seen from the following example: We consider the Hilbert
space H = R

2, and denote by Sθ the 1-dimensional subspace generated by
the vector (cos θ, sin θ). Given a function f : [0, π/2) → [0, 1] we can define
a Gleason measure µ in H by

µ(Sθ) =

{
f(θ) if 0 ≤ θ < π/2,

1 − f(θ − π/2) if π/2 ≤ θ < π,

and µ(0) = 0, µ(H) = 1. If we take A to be the projection onto S0 and B
to be the projection onto Sπ/4, it can be easily seen that (2) does not hold
for general f .

Remark 3.4. Let (X,M) be a measurable space. If E : M → P (H) is
a spectral measure and A =

T
X λdE then

(3) 〈Ax, y〉 =
\
λdE[x, y]

where E[x, y](U) = 〈E(U)x, y〉.

Proposition 3.2. Let S(H) be the set of subspaces of H, let µ : S(H)→R

be a Gleason measure, and assume that µ is represented by a trace class

operator ̺, i.e.

µ(S) = Tr(̺PS) ∀S ∈ S(H).
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Then for any (not necessarily bounded) µ-integrable self-adjoint operator A
in H we have \

Adµ = Tr(̺A).

Proof. Let (ei)i∈I be an orthonormal basis of H such that ei ∈ D(A) for
all i ∈ I (this can be done since D(A) is dense in H). Then

Tr(̺A) =
∑

i∈I

〈̺Aei, ei〉 =
∑

i∈I

〈Aei, ̺ei〉.

From (3), we have

〈Aei, ̺ei〉 =
\
λdEA[ei, ̺ei]

where EA is the spectral measure associated with A. Hence,

Tr(̺A) =
\
λd

( ∑

i∈I

EA[ei, ̺ei]
)
.

On the other hand,
( ∑

i∈I

EA[ei, ̺ei]
)
(U) =

∑

i∈I

EA[ei, ̺ei](U) =
∑

i∈I

〈EA(U)ei, ̺ei〉

=
∑

i∈I

〈̺EA(U)ei, ei〉 = Tr(̺EA(U)) = µ(EA(U)).

It follows that

Tr(̺A) =
\
λd(µ ◦ EA) =

\
Adµ.

In order to justify these formal computations, we may assume first that A is
a positive operator, and then for the general case, we use the decomposition
A = A+ − A−.

Remark 3.5. It follows that when the Gleason measure µ is represented
by a trace class operator, the linearity property (2) holds for any operators
A, B (even if they are not permutable).

Lemma 3.6. Let µ be a finite non-negative Gleason measure and A a

bounded self-adjoint operator. Then if

m = m(A) = inf
‖x‖=1

〈Ax, x〉 , M = M(A) = sup
‖x‖=1

〈Ax, x〉 .

are the lower and upper bounds of A, we have

m(A)µ(I) ≤
\
Adµ ≤ M(A)µ(I)

In particular , ∣∣∣
\
Adµ

∣∣∣ ≤ ‖A‖µ(I).
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Proof. Let EA be the spectral measure associated with A. Then EA is
concentrated in the interval [m, M ]. It follows that\

Adµ =

M\
m

λd(µ ◦ EA)

and hence

µ(EA([m, M ]))m ≤
M\
m

λd(µ ◦ EA) ≤ µ(EA([m, M ]))M

since µ ◦EA is a non-negative Lebesgue–Stieltjes measure. We observe that
µ(EA([m, M ])) = µ(I) and the result follows.

Definition 3.7. Let µ be a (non-negative) Gleason measure and A a self-
adjoint operator. We say that A=0 a.e. with respect to µ if µ(Ker(A)⊥)=0.

Lemma 3.8. If A = 0 a.e. with respect to µ, then
T
Adµ = 0.

Proof. Let EA be the spectral measure associated with A. Then

Ker(A) = {x ∈ H : Ax = 0} = EA({0}).

Hence Ker(A)⊥ = EA({x ∈ R : x 6= 0}). It follows that\
Adµ =

∞\
−∞

λd(µ ◦ EA) =
\

{x6=0}

λd(µ ◦ EA) = 0

since µ ◦ EA({x 6= 0}) = 0.

4. Lebesgue decomposition for measures on commutative von

Neumann algebras. The following result says that Gleason measures on
commutative von Neumann algebras can be represented by ordinary measure
spaces. We recall that a von Neumann algebra A ⊂ L(H) is a C∗ algebra
that is closed in the strong operator topology.

Theorem 4.1. Let H be a Hilbert space, A ⊂ L(H) a commutative von

Neumann algebra with identity of normal operators in H, and P(A) the set

of orthogonal projectors in A. If µ : P(A) → R is a Gleason measure, then

there exists a measure space (X,M, µ) and a mapping Φ : P → M such

that

1. Φ(P1P2) = Φ(P1) ∩ Φ(P2).
2. If P1 and P2 are orthogonal (i.e. P1P2 = 0), then Φ(P1 + P2) =

Φ(P1) ∪ Φ(P2).
3. Φ(I − P ) = X − Φ(P ).
4. µ(P ) = µ(Φ(P )) ∀P ∈ P(A).
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Proof. We follow the lines of the proof of the Bochner–Weil–Raikov the-
orem in [5, Chapter VII, 2.D.11].

The algebra A is isomorphic to the algebra C(M), where M is the spec-
tral space of A, i.e. the set of real positive linear and multiplicative func-
tionals over A (see [5, Chapter VII, 2.D.6]). Then M is a compact Hausdorff
space with the weak-∗ topology (it is a subset of the dual space of A). The

isomorphism is given by the correspondence A ∋ A 7→ Ã ∈ C(M) where

Ã(t) = t(A) ∀t ∈ M.

We take X = M , define M to be the σ-algebra of Borel subsets of M , and
Φ : P → M by

Φ(P ) = {t ∈ M : P̃ (t) = 1}.

Since P 2 = P , it follows that P̃ (t) = 0 or P̃ (t) = 1 for all t ∈ M .

Moreover, since P̃ is continuous, the set Φ(P ) is closed and hence Borel.
We note that the integral

(4) ϕ(A) =
\
Adµ

defines a continuous linear functional on the algebra A (as seen using Propo-
sition 3.1). Since A is by assumption a von Neumann algebra, it contains
the projectors EA(U) for every U ∈ M, where EA is the spectral measure
associated with A. It follows that the integral (4) is well defined. Using the

isomorphism with C(M), we see that for any Ã ∈ C(M) we can define

ϕ̃(Ã) = ϕ(A)

and ϕ̃ is a continuous bounded functional on C(M). By the Riesz represen-
tation theorem, there exists a Borel measure µ on M such that

ϕ̃(Ã) = ϕ(A) =
\̃
A(t) dµ

for any A ∈ A. Choosing A = P , an orthogonal projector, we see that

µ(P ) = µ(Φ(P )).

We remark that if µ is positive, so is µ.

The following results give a Lebesgue decomposition for the case of a
commutative von Neumann algebra:

Theorem 4.2. Let H be a Hilbert space, A ⊂ L(H) a commutative von

Neumann algebra with identity of normal operators in H, and P the set of

orthogonal projectors in A. If µ, λ : P → R are two Gleason measures, and

µ is positive, then there exist two Gleason measures λa and λs such that

λ = λa + λs

with λa ≪ µ and λs ⊥ µ.
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Proof. We apply the previous result to the measures µ and λ. We obtain
a measure space (X,M) and a mapping Φ : P → M, which depends only
on the algebra A, and two measures µ, λ : M → R. Using the Lebesgue
decomposition for ordinary measures we get

λ = λs + λa

with λa ≪ µ and λs ⊥ µ. Then we define

λs(P ) = λs(Φ(P )), λa(P ) = λa(Φ(P )),

and we get the desired decomposition.

5. Lebesgue decomposition with respect to a representable

measure. In this section, we present a different approach to obtaining a
Lebesgue decomposition from Gleason measures, which applies when µ is a
representable measure.

Theorem 5.1. Let µ, λ be two Gleason measures defined on a Hilbert

space S and assume that µ is represented by a positive trace class operator ̺1.

Then there exist two Gleason measures λa and λs such that

(5) λ(P ) = λa(P ) + λs(P )

for any projector that commutes with the projector PR onto the range R(̺1)
of ̺1, λa ⊥ λs, λa ≪ µ and λs is singular with respect to µ. Moreover , if λ
is also a representable measure, this decomposition holds for any P ∈ P(H).

Proof. Let us define the required measures by

λa(P ) = λ(PRP ), λs(P ) = λ((I − PR)P ).

Since P commutes with PR, PRP is a projector. Moreover PRP and (I −
PR)P are orthogonal, so that (5) holds. If a subspace S can be written as
an orthogonal direct sum S =

∑
n∈N

Sn then if PS is the projector onto S,
and PSn

the projector onto Sn, we have the orthogonal decomposition

PRPS =
∑

n∈N

PRPSn
.

Hence,

λa(S) = λ(PRPS) =
∑

n∈N

λ(PRPSn
) =

∑

n∈N

λa(Sn).

It is clear from the definition of λa and λs that λa ⊂ PR, whereas λs ⊂
P⊥

R . It follows from Definition 2.4 that λa ⊥ λs.

We claim that if µ(P ) = 0, then PRP = 0, hence λa ≪ µ.

Indeed, if PRP 6= 0, then there exists x ∈ R(P ) such that PRx 6= 0, hence

̺1PRx = ̺1x 6= 0, since H = R(̺1) ⊕ Ker(̺1). From 〈̺1x, x〉 = ‖̺
1/2

1
x‖2,
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with ̺
1/2

1
the positive square root of ̺1, we deduce that 〈̺1x, x〉 6= 0. There-

fore, µ(P ) = Tr(̺1P ) 6= 0.
It remains to show that λs is singular with respect to µ. But it is clear

from the definitions that λs ⊂ I − PR, whereas µ ⊂ PR, and since PR and
I − PR give an orthogonal decomposition of the identity, this shows that
µ ⊥ λs.

If λ is also a representable measure, represented by a trace class opera-
tor ̺2, we can define

λa(P ) = Tr(̺2PRP ), λs(P ) = Tr(̺2(I − PR)P ),

and since the trace is a linear operator, in that case (5) holds for any pro-
jector P .

6. A version of the Radon–Nikodym theorem. Let A be a normal
operator, µ a positive Gleason measure, and define

λA(S) =
\
A|S dµ =

\
S

Adµ

where A|S is the operator APS . Then λa is a Gleason measure on the set of
A-invariant subspaces (with the identification of S with PS we may view it
as the set of projectors such that PSA ⊂ APS). In fact, if S =

⊕
n∈N

Sn,
then PS =

∑
n∈N

PSn
, and using Proposition 3.1 we see that\

S

Adµ =
∑

n∈N

\
Sn

Adµ

since APSi
and APSj

commute, because Si, Sj are A-invariant subspaces.
We remark that in the special case where µ is a Gleason measure rep-

resented by a trace class operator, we may consider λa to be defined for all
closed subspaces of H, since as observed before, in that case the linearity
property (2) holds without restrictions.

Lemma 6.1. λA is absolutely continuous with respect to µ.

Proof. Let S be a closed subspace such that µ(S) = 0. We will show that
APS = 0 a.e. with respect to µ. In fact, if x ∈ S⊥ then APSx = 0, that is,

S⊥ ⊂ Ker(APS),

and so
Ker(APS)⊥ ⊂ S.

Since µ(S) = 0, it follows that µ(Ker(APS)⊥) = 0. This means that APS = 0
a.e. with respect to µ, and hence

T
S Adµ = 0.

Now suppose that we are given two Gleason measures λ, µ such that λ
is absolutely continuous with respect to µ. It is natural to ask if λ = λA for
some self-adjoint operator A.
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Consider the special case where λ and µ are positive representable mea-
sures (for example if H is a separable space of dimension ≥ 3). Then we
have

Lemma 6.2. Assume that λ and µ are Gleason measures represented by

the trace class operators ̺1 and ̺2. Then λ ≪ µ if and only if Ker(̺2) ⊂
Ker(̺1).

Proof. Assume first that λ ≪ µ, and let x ∈ Ker(̺2). Then if S = 〈x〉 is
the one-dimensional subspace generated by x, we have

µ(S) = Tr(̺2PS) =
〈̺2x, x〉

‖x‖2
= 0.

Hence λ(S) = 0, and from

λ(S) = Tr(̺1PS) =
〈̺1x, x〉

‖x‖2

we see that 〈̺1x, x〉 = 0. Since ̺1 is a positive operator, it has a unique

positive square root ̺
1/2

1
. It follows that ‖̺

1/2

1
x‖ = 0, or ̺

1/2

1
x = 0. Hence

̺1x = 0. Thus, we have shown that Ker(̺2) ⊂ Ker(̺1).
Conversely, assume that Ker(̺2) ⊂ Ker(̺1) and let S ⊂ H be a closed

subspace such that µ(S) = 0. We want to show that λ(S) = 0. Consider an
orthonormal basis {eα}α∈I of S, and complete it to obtain an orthonormal
basis {eα}α∈J of H. Then

µ(S) = Tr(̺2PS) =
∑

α∈J

〈̺2PSeα, eα〉 =
∑

α∈I

〈̺2eα, eα〉 = 0.

Since ̺2 is a positive operator, it follows that

〈̺2eα, eα〉 = 0 ∀α ∈ I.

As before, we deduce that ̺2eα = 0 for all α ∈ I and then, by hypothesis,
̺1eα = 0 for all α ∈ I. It follows that

λ(S) = Tr(̺1PS) =
∑

α∈J

〈̺1PSeα, eα〉 =
∑

α∈I

〈̺1eα, eα〉 = 0.

Hence we conclude that λ ≪ µ.

Theorem 6.3. Let λ, µ be two positive representable Gleason measures,
and ̺1, ̺2 be their respective density operators, so that

λ(S) = Tr(̺1PS), µ(S) = Tr(̺2PS)

with ̺1, ̺2 positive operators. Assume that λ ≪ µ. Then there exists a (not

necessarily bounded) self-adjoint operator A such that

λ(T ) =
\
APT dµ

for any closed subspace T of H.
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Remark 6.4. Since µ is by hypothesis a Gleason measure represented
by a trace class operator, λa is defined for any closed subspace.

Remark 6.5. Under the assumptions of the lemma, λ and µ are positive
Gleason measures. A similar result holds if λ is assumed to be a complex
Gleason measure, represented by a normal operator ̺2. In that case, A
should be a normal operator (see [6, XII.9.10] for the notion of a normal
unbounded operator).

Proof of Theorem 6.3. Let S be the range of ̺2. We define a self-adjoint
operator A by

Ax =

{
0 if x ∈ Ker(̺2) = S⊥,

̺1(̺2|S)−1x if x ∈ S,

or
A = ̺1(̺2|S)−1PS .

Therefore, the domain of A is

D(A) = S + S⊥,

which is a dense subspace, and A is a (possibly) unbounded self-adjoint
operator. It follows from the definition of A that

A̺2x = ̺1x ∀x ∈ H.

Let T be a closed subspace of H. Then

λ(T ) = Tr(̺1PT ) = Tr(̺1PS⊥PT ) + Tr(̺1PSPT ).

Note that PS⊥PT x ∈ S⊥ = Ker(̺2) ⊂ Ker(̺1). Hence ̺1PS⊥PT = 0. There-
fore

λ(T ) = Tr(̺1PSPT ) = Tr(A̺2PSPT ) = Tr(PT A̺2PS) = Tr(PT APS̺2).

In order to check the last identity, we take an orthonormal basis (ei)i∈J of S,
and complete it to an orthonormal basis (ei)i∈I of H. Then

Tr(PT A̺2PS) =
∑

i∈I

〈PT A̺2PSei, ei〉 =
∑

i∈J

〈PT A̺2ei, ei〉

since PSei = 0 if i 6∈ J , and

Tr(PT APS̺2) =
∑

i∈I

〈PT APS̺2ei, ei〉 =
∑

i∈J

〈PT A̺2ei, ei〉

since PS̺2ei = ̺2ei and ̺2ei = 0 if i 6∈ J .
Using Proposition 3.2, we conclude that

λ(T ) = Tr(̺1PT ) = Tr(PT A̺2) = Tr(̺2APT ) =
\
APT dµ =

\
T

Adµ.

In order to prove that Tr(PT A̺2) = Tr(̺2APT ) we take a basis {ei}i∈J

of S such that ̺2(ei) = λiei, and we complete it to a basis {ei}i∈I of H with
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ei ∈ D(A). Then we have

I :=
∑

i∈I

〈̺2APT (ei), ei〉 =
∑

i∈I

〈APT (ei), ̺2(ei)〉

=
∑

i∈J

〈APT (ei), λiei〉 =
∑

i∈J

λi〈PT (ei), A(ei)〉.

On the other hand,

II :=
∑

i∈I

〈PT A̺2(ei), ei〉 =
∑

i∈J

〈PT A(λiei), ei〉

=
∑

i∈J

λi〈A(ei), PT (ei)〉.

and we get the desired equality: I = II.

Remark 6.6. Gleason’s theorem can be seen as a version of the Radon–
Nikodym theorem. In fact, consider the Gleason measure ∆ given by

∆(S) = dim(S).

It is clear that ∆ is a non-negative Gleason measure (though it may take
the value +∞). Then if A =

∑
λiPSi

is a simple self-adjoint operator,\
Ad∆ =

∑
λi dim(Si) = Tr(A).

This identity also holds for any operator A of trace class (i.e. ∆-integrable).
If µ is another Gleason measure, it is clear that µ is absolutely continuous
with respect to ∆ since µ({0}) = 0. Gleason’s theorem says that there exists
a self-adjoint operator ̺ such that

µ(S) =
\̺

PS d∆

for any closed subspace S. The condition that H should be separable means
that ∆ should be a σ-finite Gleason measure (a hypothesis of the usual
Radon–Nikodym theorem).

7. A quantum-mechanical interpretation. In this section we present
some heuristic remarks on the quantum-mechanical interpretation of the in-
tegral of an operator with respect to a Gleason measure, and the application
of the Radon–Nikodym theorem (Theorem 6.3 from the previous section) to
define the conditional expectation of an observable with respect to another
one.

Gleason measures have a natural quantum-mechanical interpretation. In
fact, in quantum mechanics the space of possible (pure) states of a physical
system corresponds to a Hilbert space H. Then Gleason probability mea-
sures on H (i.e. 0 ≤ µ(S) ≤ 1 and µ(I) = 1) correspond to mixed states: the
precise state of the system is not known, but some probability distribution
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µ of the “observable events” is given (a closed subspace of H corresponds
to observable events).

Then a self-adjoint operator corresponds to an observable, and the in-
tegral

T
Adµ that we have introduced is the expected value Eµ(A) of the

observable A (a random variable) in the mixed state µ.

Let A, B two observables (self-adjoint operators). Then we can give a
meaning to Eµ(A |B) (the expected value of A in the B state µ).

We remark that the set FB of operators that are functions of B is the
set of observables that can be deduced from B. This set is a commutative
subalgebra of L(H). We call the elements of FB B-observables.

The conditional expectation Eµ(A |B) should be a B-observable (which
means that its value should be known if the value of B is known). Moreover,
if we compute

E(A|S) =
\
APS dµ

for a B-invariant subspace (a B-observable event), then we should have

E(A|S) =
\
Eµ(A |B)PS dµ.

If µ is a representable Gleason measure, the conditional expectation
Eµ(A |B) can be defined using our version of the Radon–Nikodym theorem
(Theorem 6.3). Indeed, if µ is a Gleason measure represented by a density
operator ̺, then λ : SB → R (where SB is the set of closed B-invariant
subspaces) given by

λ(S) =
\
APS dµ

is a Gleason measure on FB, represented by the density operator ̺A, and
the existence of Eµ(A |B) follows from the Radon–Nikodym theorem ([16]).

Pure states. Let x ∈ H a pure state. We can define the Gleason mea-
sure δx (that corresponds to the mixed state such that the system is in
state x with probability 1) by

δx(S) = 〈PSx, x〉

for any closed subspace S ⊂ H. Let us check that δx is a Gleason measure.
If S is the closed linear span of an orthogonal family (Si)i∈N of subspaces
then PS =

∑∞
i=1

PSi
. Therefore

δx(S) =

∞∑

i=1

〈PSi
x, x〉 =

∞∑

i=1

δx(Si).

Let us compute
T
Adδx. First we consider the case of a simple operator

A =
∑n

i=1
λiPSi

. Then
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Adδx =

n∑

i=1

λiδx(Si) =
n∑

i=1

λi〈PSi
x, x〉 =

〈 n∑

i=1

λiPSi
x, x

〉
= 〈Ax, x〉.

This can be extended to any self-adjoint operator A.

So for Gleason measures corresponding to pure states, our definition of
the expected value agrees with the usual one.

8. The non-separable case. In this section, we present an example
showing that if H is not separable, Gleason’s theorem does not hold.

Let H be a non-separable Hilbert space with an orthonormal basis
{eα}α∈R. We fix a function f ∈ L1(R) with 0 ≤ f(x) ≤ 1 a.e. and

T
R

f(x) dx
= 1 (a probability density on R).

For a closed subspace S ⊂ H, define a Gleason measure

µ(S) =
\
〈PSeα, eα〉f(α) dα.

There is, however, a difficulty here: the function 〈PSeα, eα〉 may not be
measurable. In fact, let V ⊂ R be the Vitali set and S the closed linear span
of {eα : α ∈ V }. Then 〈PSeα, eα〉 is the characteristic function of the Vitali
set, hence it is not Lebesgue measurable.

So we restrict our attention to the class Sm of closed subspaces of H such
that the function 〈PSeα, eα〉 is Lebesgue measurable (as a function of α); we
call them measurable subspaces. This class clearly depends on the choice of
the orthonormal basis {eα}.

We see that if S ∈ Sm, then µ(S) is well defined and is a Gleason measure
on Sm since if S is the orthogonal direct sum of a countable family (Sn)n∈N

of measurable subspaces, then S is measurable and PS =
∑

n∈N
PSn

(in the
strong operator topology). Hence

µ(PS) =
\
〈PSeα, eα〉f(α) dα =

\∑
n∈N

〈PSn
eα, eα〉f(α) dα

=
∑

n∈N

\
〈PSn

eα, eα〉f(α) dα =
∑

n∈N

µ(Sn).

We claim that it is not possible to find a trace class operator ̺ such that

(6) µ(S) = Tr(̺PS)

for every measurable subspace S ⊂ H. So Gleason’s theorem does not hold
in the non-separable case. To see this, note that if ̺ is a trace class operator
then

Tr(̺) =
∑

α

〈̺eα, eα〉 < ∞.

Hence 〈̺eα, eα〉 6= 0 for an at most countable set of values of α. Let S be
the closed linear span of {eα : 〈̺eα, eα〉 = 0}. Then S⊥ is the closed linear
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span of {eα : 〈̺eα, eα〉 6= 0}. We see that PS⊥eα = 0 if 〈̺eα, eα〉 = 0, and
this happens for almost all α ∈ R, hence

µ(S⊥) =
\
〈PS⊥eα, eα〉f(α) dα = 0.

We shall show that ̺PS = 0. In fact, if x ∈ S then x =
∑

α xαeα with xα = 0
if 〈̺eα, eα〉 6= 0, hence

〈̺x, x〉 =
∑

α

x2
α〈̺eα, eα〉 = 0.

Since ̺ ≥ 0, there exists a positive self-adjoint square root ̺1/2 and we have

〈̺x, x〉 = ‖̺1/2x‖2 = 0.

It follows that ̺1/2x = 0 and so ̺x = 0. Hence, we have shown that if x ∈ S
then ̺x = 0. Therefore ̺PS = 0 and thus µ(S) = Tr(̺PS) = 0. We conclude
that

µ(I) = µ(S) + µ(S⊥) = 0;

but µ(I) =
T
R

f(α) dα = 1. This contradiction shows that the Gleason
measure µ cannot be represented in the form (6).

A more general construction. In this subsection, we present a more gen-
eral construction of Gleason measures in the non-separable case and we
conjecture a more general version of Gleason’s theorem that may apply to
these examples.

Let H be a Hilbert space. We assume that we are given a finite measur-
able space (X,M, µ) and a function e : X → H such that e(α) = eα is an
orthonormal basis of H. We call an operator A : H → H measurable if the
function 〈Aeα, eα〉 is measurable (i.e. it belongs to the σ-algebra M). We
call a subspace S measurable if the projector PS is measurable.

Then for a measurable operator ̺ : H → H we may define the generalized

trace (or µ-trace) by

Trµ(̺) =
\
〈̺eα, eα〉 dµ.

We remark that if X = N, M is the σ-algebra of all subsets of N and µ is
the counting measure, we get the usual definition of trace. Note also that
this generalized trace depends on the choice of the orthonormal basis {eα}.

We can define a Gleason measure µ̃ on the measurable subspaces by

µ̃(S) = Trµ(̺PS) =
\
〈PSeα, eα〉 dµ.

We can ask if all Gleason measures arise this way for a suitable choice of
the measure µ. An affirmative answer would give a generalization of Glea-
son’s theorem to the non-separable case.
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