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Second derivatives of norms and

contractive complementation in vector-valued spaces

by

Bas Lemmens (Coventry), Beata Randrianantoanina (Oxford, OH)
and Onno van Gaans (Leiden)

Abstract. We consider 1-complemented subspaces (ranges of contractive projec-
tions) of vector-valued spaces ℓp(X), where X is a Banach space with a 1-unconditional
basis and p ∈ (1, 2) ∪ (2,∞). If the norm of X is twice continuously differentiable and
satisfies certain conditions connecting the norm and the notion of disjointness with respect
to the basis, then we prove that every 1-complemented subspace of ℓp(X) admits a basis
of mutually disjoint elements. Moreover, we show that every contractive projection is then
an averaging operator. We apply our results to the space ℓp(ℓq) with p, q ∈ (1, 2)∪ (2,∞)
and obtain a complete characterization of its 1-complemented subspaces.

1. Introduction. It is well known that every orthogonal projection on
a Hilbert space H is contractive and that for every closed subspace Y of H
there exists an orthogonal projection whose range is Y . In fact, if the dimen-
sion of H is at least 3, then it has been shown by Kakutani [12] that this
property characterizes the Hilbert spaces among the Banach spaces. Hence
contractive projections on Banach spaces are a natural generalization of
orthogonal projections on Hilbert spaces; but, as the result of Kakutani in-
dicates, they are more rare. It is therefore not surprising that contractive
projections have been studied extensively, starting with work by Bohnen-
blust [3] in the nineteen forties. A detailed overview of the vast literature
on contractive projections and their applications can be found in the survey
papers [5, 20].

Identifying contractive projections and their ranges for a given Banach
space has often proved to be difficult. For Lebesgue Lp spaces, with p 6= 2,
there exists a well known characterization of the contractive projections and
their ranges (see [1, 2, 9, 18, 26]). However, for many other classical Banach
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spaces, such as Orlicz spaces and Lorentz sequence spaces, there are only
partial results; see the survey [20]. The best results to date for Musielak–
Orlicz spaces were obtained by Jamison, Kamińska, and Lewicki [11], who
characterized the 1-complemented subspaces of finite co-dimension in case
the Orlicz functions are sufficiently smooth.

The problem of characterizing contractive projections and their ranges in
vector-valued spaces is known to be particularly hard, even for spaces of the
type Lp(X) where X is finite-dimensional. We refer the reader to a survey
by Doust [10] for a nice overview of the various partial results that were
known in the mid-nineties. As Doust points out, most of the results require
special additional assumptions on the form of projections and leave open the
cases of Lp(X) and ℓp(X), even when X is a two-dimensional ℓq space. The
most general result for vector-valued spaces was obtained by Raynaud [23],
who gave a complete description of the contractive projections in Lp(H) for
H a Hilbert space. Raynaud’s result is valid in full generality without any
assumptions about σ-finiteness of the measure on Lp or separability of the
Hilbert space H.

In the present paper we study contractive projections in vector-valued
ℓp(X) spaces, in particular ℓp(ℓq) spaces. Our main result characterizes the
1-complemented subspaces of real ℓp(ℓq) spaces for p, q ∈ (1, 2)∪(2,∞). The
complex case was obtained in [19], in which 1-complemented subspaces of
general complex spaces with 1-unconditional bases are characterized, using
a technique based on Hermitian operators. This technique, however, does
not work in real spaces. This is due to the following fundamental result of
Kalton and Wood [13] for complex spaces, which has no real analogue (see
[17]): every 1-complemented subspace of a complex Banach space with a
1-unconditional basis has a 1-unconditional basis. In fact, it is not known
whether each 1-complemented subspace in a real space admits an uncondi-
tional basis with any constant (cf. [20, Section 7.e]). The characterization
presented here shows in particular that every 1-complemented subspace of
a real ℓp(ℓq) space has an unconditional basis.

To obtain the characterization, we introduce a condition on the second
derivative of the norm of a real Banach space with a 1-unconditional basis
that guarantees that every contractive projection is an averaging operator
and its range admits a block basis. We subsequently apply it to analyse
contractive projections on vector-valued ℓp(X) spaces. As a consequence we
find that 1-complemented subspaces of ℓp(ℓq) admit a block basis, in case p
and q are both in (2,∞) or both in (1, 2). In the mixed case, where p ∈ (1, 2)
and q ∈ (2,∞) or the other way around, we cannot apply the condition and
we shall use a different argument.

The idea to exploit the second derivative of the norm to analyse contrac-
tive projections is not new. In fact, it already appears implicitly in work of
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Bernau and Lacey [2] and Lindenstrauss and Tzafriri [18], who considered
the derivative of the norming functionals (or duality map). The derivative of
the norming functionals has also been used by Bru, Heinich, and Lootgieter
[4] to identify contractive projections on Orlicz spaces that have a second
order smooth norm and satisfy some additional constraints. More recently,
Lemmens and van Gaans [15] have used the second derivative of the norm to
show for a fairly general class of finite-dimensional Banach spaces that the
range of every contractive projection has a block basis. In particular, one
could apply their technique to prove that the range of each contractive pro-
jection on ℓmp (ℓnq ), where m,n ∈ N, has a block basis, if p > 2 and q > 2, or p
and q are both in (1, 2). It is interesting to note that differential techniques
are not only useful for analysing contractive projections, but also appear in
the study of isometries; see, for instance, work by Koldobskĭı [14].

2. Preliminaries. In this section we collect several definitions and no-
tations that will be used throughout the exposition. In addition, we recall
some preliminary results. Before we get started, however, we emphasize that
in this paper all Banach spaces are over the field of real numbers.

LetX be a Banach space with a 1-unconditional basis {ei}
∞
i=1. We denote

by SX = {x ∈ X : ‖x‖ = 1} the unit sphere of X. The dual space of X
is denoted by X∗ and the conjugate norm is indicated by ‖ · ‖∗. For each
x =

∑∞
i=1 αiei in X we let s(x) = {i ∈ N : αi 6= 0} be the support of x.

If s(x) is finite, we call x simple. Since X has a 1-unconditional basis, the
partial ordering induced by the basis makes X a Banach lattice. Hence there
exists a natural notion of disjointness in X. Elements x and y in X are called
disjoint if |x| ∧ |y| = 0. As X has a 1-unconditional basis, this is equivalent
to s(x) ∩ s(y) = ∅. We note that the dual of a Banach lattice is again a
Banach lattice and therefore there exists a natural notion of disjointness
in X∗. If Y is a subspace of X and Y has a basis {yi}

dim Y
i=1 such that yi and

yj are disjoint for all i 6= j, then {yi}
dim Y
i=1 is called a block basis for Y .

In this paper we are particularly interested in the vector-valued spaces
ℓp(X). If X is a Banach space with norm σ, then for p ∈ [1,∞) the vector-
valued space ℓp(X) consists of those x : N → X for which

(

∞
∑

k=1

σ(x(k))p
)1/p

<∞.

By equipping the space ℓp(X) with the norm

‖x‖ℓp(X) =
(

∞
∑

k=1

σ(x(k))p
)1/p

for all x ∈ ℓp(X),

it becomes a Banach space. It is not difficult to verify that if X has a
1-unconditional basis {ei}

∞
i=1, then for any ordering on the elements (i, j) ∈
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N×N the functions eij : N → X given by eij(k) = ei if k = j and eij(k) = 0
otherwise form a 1-unconditional basis for ℓp(X). For elements in ℓp(X)
with basis {eij}(i,j), it is useful to introduce the notion of vector support.
For x ∈ ℓp(X) we define vs(x) = {k ∈ N : x(k) 6= 0} to be the vector

support of x. We note that the dual space of ℓp(X) is equal to ℓp∗(X
∗),

where 1/p+ 1/p∗ = 1, if X is reflexive (see e.g. [7, Chapter IV]).

If X is a Banach space with a 1-unconditional basis and T : X → X is
a linear operator for which there exist mutually disjoint elements {ui}i∈I

in X and mutually disjoint elements {v∗i }i∈I in X∗ such that v∗i (uj) = 0 for
all i 6= j and

Tx =
∑

i∈I

v∗i (x)ui for all x ∈ X,

then T is called an averaging operator. Obviously, the range of an averaging
operator has a block basis.

We also need to recall some definitions concerning higher order deriva-
tives of norms. Let X and Y be Banach spaces and let L(X,Y ) be the
Banach space of continuous linear operators from X into Y equipped with
the usual operator norm. We denote by Bk(X,Y ) the Banach space of con-
tinuous k-linear operators T : X × · · · × X → Y with the norm ‖T‖ =
sup{‖T (x1, . . . , xk)‖ : ‖x1‖ = · · · = ‖xk‖ = 1}. A mapping ϕ : U → Y ,
where U ⊂ X is open, is called differentiable at x ∈ U if there exists a linear
operator Dϕ(x) in L(X,Y ) such that

lim
h→0

‖ϕ(x+ h) − ϕ(x) −Dϕ(x)h‖

‖h‖
= 0.

The linear operator Dϕ(x) is unique and is called the derivative of ϕ at x.
Higher order derivatives Dkϕ(x) ∈ Bk(X,Y ) are defined in the usual induc-
tive manner (see Dieudonné [8]). The mapping ϕ : U → Y is said to be Ck on
U if it is k times differentiable at every point x ∈ U andDkϕ : U → Bk(X,Y )
is continuous. We note that if ϕ : U → Y is k times differentiable at x, then
the multi-linear map Dkϕ(x) is symmetric.

If ϕ : U → Y is Ck on U and the line segment [x, x + h] ⊂ U , then the
usual Taylor expansion

ϕ(x+ h) = ϕ(x) +

k
∑

j=1

1

j!
Djϕ(x)(h, . . . , h) + ϑx(h),

where

lim
‖h‖→0

‖ϑx(h)‖

‖h‖k
= 0,

is valid. We shall also use a weaker notion of differentiability. A map ϕ : U →
Y is said to be k times directionally differentiable at x ∈ U if for 1 ≤ j ≤ k
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there exists a continuous symmetric j-linear operator Djϕ(x) ∈ Bj(X,Y )
such that for every h ∈ X and t ∈ R with [x, x+ th] ⊂ U we have

ϕ(x+ th) = ϕ(x) +
k

∑

j=1

tj

j!
Djϕ(x)(h, . . . , h) + ϑx(th),

where

lim
t→0

‖ϑx(th)‖

|t|k
= 0.

One can verify that the operators Djϕ(x) are unique. Equipped with these
notions of differentiability we now recall the following definition from [25].

Definition 2.1. A Banach space X is called Ck-smooth if the norm
‖ · ‖ is Ck on X \ {0}. It is said to be Dk-smooth if the norm is k times
directionally differentiable at each x ∈ X \ {0}.

In the analysis of the vector-valued spaces ℓp(X) we shall use the follow-
ing smoothness result of Leonard and Sundaresan.

Theorem 2.2 ([16, Theorem 3.3]). If X is a Banach space and p > k,
then ℓp(X) is Ck-smooth if and only if X is Ck-smooth and the kth derivative

of the norm of X is uniformly bounded on the unit sphere in X.

In particular, it follows from this theorem that the space ℓp(ℓq) is C2-
smooth if p and q are in (2,∞).

3. Second derivatives of norms and contractive projections. We
begin this section by introducing a property of the second derivative of the
norm. Subsequently we explain how it can be used to analyse contractive
projections and their ranges.

Definition 3.1. Suppose X is a Banach space with a basis and for any
x, y ∈ X the function N = Nxy : R → R is given by N(α) = ‖x + αy‖
for all α ∈ R. We say that X reflects disjointness if for any x, y ∈ X with
x 6∈ span{y} the following conditions hold:

(i) the function N is continuously differentiable (and then N ′′(α) exists
almost everywhere by convexity);

(ii) if x and y are not disjoint and N ′(0) = 0, then N ′′(α) does not
converge to 0 as α→ 0 along any subset of [0, 1] of full measure;

(iii) if x and y are disjoint and y is simple, then N ′(0) = 0 and N ′′(α)
converges to 0 as α→ 0 along a subset of [0, 1] of full measure.

The idea of this definition is that if X reflects disjointness, then one
can test disjointness of elements in X by analysing the second derivative of
the norm. Similar ways to test disjointness have been applied by Koldob-
skĭı [14] to identify isometries. The connection with contractive projections
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was found by Randrianantoanina [21], who used the condition to identify
contractive projections on certain Orlicz sequence spaces equipped with the
Luxemburg norm.

Let us now explain the connection of Definition 3.1 with contractive
projections. To do this it is useful to recall the following definition from [22].

Definition 3.2. Let X be a Banach space with a basis and let T : X →
X be a linear operator. We call T semi-band preserving if for any x, y ∈ X
the elements Tx and Ty are disjoint whenever Tx and y are disjoint.

Semi-band preserving operators on a Banach space with a 1-uncondi-
tional basis have a special form as the following theorem indicates.

Theorem 3.3 ([22, Theorem 4.7]). If X is a Banach space and X has

a 1-unconditional basis, then a linear operator T : X → X is semi-band

preserving if and only if T is an averaging operator.

Thus, to show that a contractive projection is an averaging operator
and its range has a block basis, it suffices to prove that the projection is
semi-band preserving. Doing that involves testing disjointness and this is
where the property in Definition 3.1 comes into play. As a matter of fact,
we have the following result, which generalizes [21, Theorem 3.2].

Theorem 3.4. If X is a D2-smooth Banach space with a 1-uncondi-

tional basis, and X reflects disjointness, then every contractive projection

on X is an averaging operator and its range admits a block basis.

The proof of Theorem 3.4 is very similar to that of [21, Theorem 3.2]
and uses the following lemma, which is a slight modification of [21, Lemma
3.1].

Lemma 3.5 ([21, Lemma 3.1]). Let ϕ : R → [0,∞) and ψ : R → [0,∞)
be convex functions that are continuously differentiable and assume that ϕ′

and ψ′ are absolutely continuous on [0, 1]. If ϕ(0) = ψ(0) and ϕ(α) ≤ ψ(α)
for all α ∈ R, then

(a) ϕ′(0) = ψ′(0);
(b) the set E = {α : ϕ′′(α) and ψ′′(α) exist and ϕ′′(α) ≤ ψ′′(α)} has

positive Lebesgue measure in each interval (0, δ), δ > 0;
(c) for every C > 0 the Lebesgue measure of

{α ∈ [0, 1] : ψ′′(α) exists and ψ′′(α) ≤ C}

is strictly smaller than 1 whenever ϕ′′(α) → ∞ as α → 0 along a

subset of full measure.

Proof. Parts (a) and (c) are as in [21, Lemma 3.1]. Part (b) is a modifi-
cation of that lemma. Let A := {α > 0 : ϕ′(α) = ψ′(α)}. If inf A > 0, then
there is an ε ∈ (0, inf A) such that ϕ′(α) 6= ψ′(α) for all α ∈ (0, ε). Define
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h := ψ−ϕ. Then h ≥ 0 and h′(α) 6= 0 for all α ∈ (0, ε). As h′ is continuous,
h′ is either strictly positive or strictly negative on (0, ε). As h(0) = 0 and
h ≥ 0, we have h′(α) > 0 for all α ∈ (0, ε). Since h′ is absolutely continuous,
h′′ exists almost everywhere and

h′(α) =

α\
0

h′′(β) dβ for all α ∈ (0, ε),

as h′(0) = 0. It follows that the set E = {α ∈ (0, ε) : h′′(α) ≥ 0} has positive
measure in each interval (0, δ), δ ∈ (0, ε).

If inf A = 0, then ϕ′(αn) = ψ′(αn) for some αn ↓ 0. Then

0 = h′(αn) =

αn\
0

h′′(β) dβ

and the conclusion follows.

Proof of Theorem 3.4. By Theorem 3.3 it suffices to show that every
contractive projection P : X → X is semi-band preserving. Let x, y ∈ X
with y simple, and suppose that Px and y are disjoint and Px 6= 0. Define
functions ϕ : R → [0,∞) and ψ : R → [0,∞) by

ϕ(α) = ‖Px+ αPy‖, ψ(α) = ‖Px+ αy‖ for all α ∈ R.

Obviously, ϕ and ψ are convex and ϕ(0) = ψ(0). As P is a contractive
projection, ϕ(α) = ‖P 2x+ αPy‖ ≤ ψ(α) for all α ∈ R. Moreover, ϕ and ψ
are both twice continuously differentiable, because X is D2-smooth. We can
now use the fact that X reflects disjointness and y is simple, to deduce from
Definition 3.1(iii) that ψ′(0) = 0 and ψ′′(α) converges to 0 as α → 0 along
a subset of [0, 1] of full measure. Since ϕ′′ is continuous, Lemma 3.5 gives
ϕ′(0) = 0 and ϕ′′(0) = 0. By using Definition 3.1(ii) we find that Px and Py
are disjoint. An arbitrary element y ∈ X can be approximated by elements
yn in X such that the support of each yn is finite and contained in the
support of y. We conclude that P is semi-band preserving.

The condition on the second derivative of the norm in Definition 3.1
has a natural interpretation in terms of curvature properties of the unit
sphere, if the Banach space is finite-dimensional. More precisely, one can
show that if X is a C2-smooth finite-dimensional Banach space with norm
̺ and the standard basis is 1-unconditional, then X reflecting disjoint-
ness is equivalent to saying that for each x ∈ SX the normal curvature
at x in the direction of y is 0 if and only if x and y are disjoint. To
prove this one has to note that the normal curvature k(y) at x in the
direction y, where y is in the tangent space at x, is given by k(y) =
N ′′

xy(0)/‖∇̺(x)‖2.
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4. Contractive projections on ℓp(X). In this section we analyse con-
tractive projections on the vector-valued spaces ℓp(X) and, in particular, the
spaces ℓp(ℓq), where p and q are not equal to 2. As mentioned in the intro-
duction we distinguish two cases: the unmixed case, where p, q ∈ (2,∞) or
p, q ∈ (1, 2), and the mixed case, where p ∈ (1, 2) and q ∈ (2,∞) or the other
way around. We first prove a lemma and subsequently discuss the unmixed
case.

Lemma 4.1. Let X be a C2-smooth Banach space with norm σ such that

Dσ is uniformly bounded on SX . Let p ∈ (1, 2)∪(2,∞), and let x, y ∈ ℓp(X).
For α ∈ R define

Nk(α) :=σ(x(k) + αy(k)), k ∈ N,

τ(α) :=
∞

∑

k=1

Np
k (α),

N(α) := τ(α)1/p.

Then τ is C1, τ ′ is absolutely continuous, N ′ and N ′′ exist almost every-

where, and

τ ′(α) =
∑

k∈vs(x)∩ vs(y)

pNp−1
k (α)N ′

k(α) + pαp−1
∑

k∈vs(y)\vs(x)

σp(y(k)),(1)

τ ′′(α) =
∑

k∈vs(x)∩ vs(y)

(p(p− 1)Np−2
k (α)N ′

k(α)2 + pNp−1
k (α)N ′′

k (α))(2)

+ p(p− 1)αp−2
∑

k∈vs(y)\vs(x)

σp(y(k)),

τ ′(α) = pNp−1(α)N ′(α),(3)

τ ′′(α) = p(p− 1)Np−2(α)N ′(α)2 + pNp−1(α)N ′′(α)(4)

for Lebesgue-almost every α ∈ R.

Proof. Consider first k ∈ N such that x(k) + αy(k) 6= 0 for all α ∈ R.

Then Nk is a C2-function and hence (Np
k )′ = pNp−1

k N ′
k is C1. Twice indefi-

nite integration of (Np
k )′′ yields

(5) Np
k (α) = Np

k (β) + pNp−1
k (β)N ′

k(β)(α− β)

+

α\
β

s\
β

(p(p− 1)Np−2
k (r)N ′

k(r)
2 + pNk(r)

p−1(r)N ′′
k (r)) dr ds

for all α, β ∈ R with α ≥ β. On the other hand, if k ∈ N is such that x(k)+
γy(k) = 0 for some γ ∈ R then Nk is C2 on R \ {γ} and a straightforward
computation shows that (5) is true also in this case.
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Next we integrate the right hand side of (2) twice. As Nk is convex, we
have N ′′

k ≥ 0 almost everywhere, so the right hand side of (2) is a measurable
function with values in [0,∞]. Fubini’s theorem for positive functions and (5)
therefore yield

(6)

α\
β

s\
β

(

∑

k∈vs(x)∩vs(y)

(p(p− 1)Np−2
k (r)N ′

k(r)
2 + pNp−1

k (r)N ′′
k (r))

+ p(p− 1)rp−2
∑

k∈vs(y)\vs(x)

σp(y(k))
)

dr ds

= τ(α) − τ(β) −
(

∑

k∈vs(x)∩vs(y)

pNp−1
k (β)N ′

k(β)
)

(α− β)

− pβp−1
∑

k∈vs(y)\vs(x)

σp(y(k))(α− β)

for all α ≥ β. Since Dσ is uniformly bounded on SX and Dσ(x) = Dσ(λx)
for all λ 6= 0, there exists a constant C such that ‖Dσ(z)‖ ≤ C for all
z ∈ X \ {0}. Due to Young’s inequality we have

|pNp−1
k (α)N ′

k(α)| ≤ pCσ(x(k) + αy(k))p−1σ(y(k))(7)

≤ (p− 1)C(σ(x(k)) + |α|σ(y(k)))p +
1

p
Cσ(y(k))p,

and it therefore follows from (6) that the right hand side of (2) is an inte-
grable function of α on bounded intervals. From (6), it is clear that τ is C1

and that

τ ′(α) =
∑

k∈vs(x)∩vs(y)

pNp−1
k (β)N ′

k(β) + pβp−1
∑

k∈vs(y)\vs(x)

σp(y(k))

+

α\
β

(

∑

k∈vs(x)∩vs(y)

(p(p− 1)Np−2
k (r)N ′

k(r)
2 + pNp−1

k (r)N ′′
k (r))

+ p(p− 1)rp−2
∑

k∈vs(y)\vs(x)

σp(y(k))
)

dr

for α ≥ β. It follows that τ ′ is absolutely continuous and that (2) holds.
With the aid of Fubini’s theorem, it also follows that (1) holds.

Since τ(α) = 0 either for all α or for at most one α ∈ R, we deduce that
N ′ and N ′′ exist almost everywhere and hence (3) and (4) hold for almost
every α ∈ R.

4.1. The unmixed case. If X reflects disjointness and p ∈ (2,∞), then
the following assertion is true for ℓp(X).
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Proposition 4.2. If p ∈ (2,∞) and X is a C2-smooth Banach space

with a 1-unconditional basis such that X reflects disjointness and the first

and second derivatives of the norm on X are uniformly bounded on SX , then

ℓp(X) reflects disjointness.

Proof. Let σ denote the norm on X and let x, y ∈ ℓp(X) with x 6∈
span{y}. For each k ∈ N we define Nk(α) = σ(x(k) + αy(k)) and τ(α) =
Np(α) =

∑∞
k=1N

p
k (α). It follows from Theorem 2.2 that both N and τ

are continuously differentiable on R. As N is a convex function, the sec-
ond derivative N ′′(α) exists almost everywhere and the first condition in
Definition 3.1 is satisfied.

By Lemma 4.1, there exists a subset A of [0, 1] with Lebesgue measure 1
such that (1)–(4) hold for all α ∈ A. Now assume that N ′(0) = 0 and that
N ′′(α) converges to 0 as α → 0 along a subset of [0, 1] of full measure. As
N ′ is continuous near 0, it follows that τ ′(0) = 0 and τ ′′(α) converges to 0
as α → 0 along a subset of [0, 1] of full measure. Since each term in the
sums in (2) is nonnegative, we deduce for each k ∈ vs(x)∩vs(y) that N ′′

k (α)
converges to 0 as α → 0 along a subset of [0, 1] of full measure and the
continuity of N ′

k implies that N ′
k(0) = 0. As X reflects disjointness, we find

that x(k) and y(k) are disjoint in X for all k ∈ vs(x) ∩ vs(y). Thus, x and
y are disjoint in ℓp(X) and hence the second condition in Definition 3.1 is
satisfied.

To prove the third condition, we assume that x and y are disjoint and
y is simple. As y is simple, the sums in (1) and (2) consist of finitely many
terms. Since p > 2 and X reflects disjointness, we find that τ ′(0) = 0 and
τ ′′(α) converges to 0 as α → 0 along a subset of [0, 1] of full measure.
By subsequently using (3) and (4), we see that N ′(0) = 0 and N ′′(α) also
converges to 0 as α → 0 along a subset of [0, 1] of full measure, and we are
done.

A combination of Proposition 4.2 with Theorems 2.2 and 3.4 immediately
gives the following corollary.

Theorem 4.3. If p ∈ (2,∞) and X is a C2-smooth Banach space with

a 1-unconditional basis such that X reflects disjointness and the first and

second derivatives of the norm on X are uniformly bounded on SX , then

every contractive projection on ℓp(X) is an averaging operator and its range

admits a block basis.

It is well known that for each q > 2 the space ℓq is C2-smooth and the
first and second derivatives of the norm are uniformly bounded on SX (see
e.g. [6, Chapter V]). Furthermore, since R reflects disjointness it follows from
Proposition 4.2 that ℓq reflects disjointness if q > 2. Therefore we have the
following result.
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Corollary 4.4. If p, q ∈ (2,∞) or p, q ∈ (1, 2), then the range of every

contractive projection on ℓp(ℓq) has a block basis.

Proof. The case p, q ∈ (2,∞) is an immediate consequence of The-
orem 4.3. For p, q ∈ (1, 2) the assertion follows from the fact that the
dual of ℓp(ℓq) is equal to ℓp∗(ℓq∗), where 1/p + 1/p∗ = 1 and 1/q + 1/q∗

= 1.

4.2. The mixed case. In the mixed case the space ℓp(ℓq) is not C2-smooth
and it does not reflect disjointness. Therefore we cannot apply Theorem 3.4
to show that every contractive projection is an averaging operator. Instead
of using Theorem 3.4 we show that every contractive projection on ℓp(ℓq)
is semi-band preserving. The argument is quite involved and split up into
several steps. We begin by proving the following proposition.

Proposition 4.5. If p ∈ (1, 2) and X is a C2-smooth Banach space with

a 1-unconditional basis such that X reflects disjointness and the derivative

of the norm σ on X is uniformly bounded on SX , then for all x, y ∈ ℓp(X)
with x 6∈ span{y} we have:

(a) the function N(α) = ‖x + αy‖ is continuously differentiable and

N ′′(α) exists almost everywhere;
(b) if vs(y) ⊂ vs(x), N ′(0) = 0, and N ′′(α) converges to 0 as α → 0

along a subset of [0, 1] of full measure, then x and y are disjoint ;
(c) if x and y are disjoint , y is simple, and vs(y) ⊂ vs(x), then N ′(0) = 0

and N ′′(α) converges to 0 as α → 0 along a subset of [0, 1] of full

measure;
(d) if the second derivative of the norm of X is uniformly bounded on SX ,

vs(y) ⊂ vs(x), and 2σ(y(k)) < σ(x(k)) for all k ∈ vs(x), then there

exists A ⊂ [0, 1] of full measure and C > 0 such that N ′′(α) ≤ C for

all α ∈ A;
(e) if vs(y) 6⊂ vs(x), then N ′′(α) → ∞ as α → 0 along a subset of [0, 1]

of full measure.

Proof. Let σ denote the norm on X. As in the proof of Proposition 4.2
we define Nk(α) = σ(x(k) + αy(k)) for all k ∈ N and τ(α) = Np(α) =
∑∞

k=1N
p
k (α). By Theorem 2.2 both τ and N are continuously differentiable

on R. Moreover, N ′′ exists almost everywhere, as N is a convex function,
and hence part (a) is satisfied.

Next, note that equations (1)–(4) hold for almost every α ∈ R. Suppose
that vs(y) ⊂ vs(x), N ′(0) = 0, and N ′′(α) converges to 0 as α → 0 along a
subset of [0, 1] of full measure. Clearly the second sums in (1) and (2) are
zero in that case. As each term in the first sums of (1) and (2) is nonnegative,
we conclude from (3) and (4) that N ′

k(0) = 0, and N ′′
k (α) converges to 0 as

α → 0 along a subset of [0, 1] of full measure for each k ∈ vs(x) ∩ vs(y).
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Since X reflects disjointness and vs(y) ⊂ vs(x), it follows that x and y are
disjoint, which proves part (b).

To prove (c), note that if x and y are disjoint, y is simple and vs(y) ⊂
vs(x), then for each k ∈ vs(y) we have N ′

k(0) = 0 and N ′′
k (α) converges to 0

as α → 0 along a subset of [0, 1] of full measure. As y is simple, the sums
in (1) and (2) consist of finitely many terms, so that τ ′(0) = 0 and τ ′′(α)
converges to 0 as α→ 0 along a subset of [0, 1] of full measure. The assertion
now follows from equations (3) and (4).

To prove (d) assume that vs(y) ⊂ vs(x). Then the second sum in (2)
vanishes. For each k ∈ vs(x) and α ∈ [0, 1] we have

Nk(α) ≥ σ(x(k)) − ασ(y(k)) > (1 − α/2)σ(x(k)) > σ(x(k))/2

and

N ′
k(α) = (x(k) + αy(k))∗y(k) ≤ σ(y(k)) ≤ σ(x(k))/2,

where (x(k)+αy(k))∗ denotes the norming functional of x(k)+αy(k). This
implies that τ ′ is bounded on the set A of those α ∈ [0, 1] for which (1)–(4)
hold.

Since Dσ and D2σ are uniformly bounded on SX = {x ∈ X : σ(x) = 1},
there exists a constant c ∈ R such that ‖Dσ(z)‖ ≤ c and ‖σ(z)D2σ(z)‖ ≤ c
for all z ∈ X \ {0}. Thus, there exists C > 0 such that

|p(p− 1)Np−2
k (α)N ′

k(α)2 + pNp−1
k (α)N ′′

k (α)|

≤ p(p− 1)(σ(x(k) + αy(k))p−2c2σ(y(k))2)

+ p(σ(x(k) + αy(k)))p−2cσ(y(k))2

≤
p(p− 1)

2
σ(x(k))p−2c2σ(x(k))2 +

p

2
σ(x(k))p−2cσ(x(k))2

≤ Cσ(x(k))p,

as p < 2. Therefore τ ′′ is also bounded on A. It is now straightforward to
deduce from (3) and (4) that N ′′ is bounded on A.

Finally, to prove (e) we assume that vs(y) 6⊂ vs(x). In that case the
second sum in (2) becomes unbounded as α→ 0. As every term in the first
sum of (2) is nonnegative, we conclude that τ ′′(α) → ∞ as α → 0 along a
subset of [0, 1] on which N ′′

k (α) exists for all k ∈ vs(y). This subset of [0, 1]
may be chosen such that it has full measure, as vs(y) is countable. By using
(4) we deduce (e).

To prove that a contractive projection on ℓp(X) with p ∈ (1, 2) is semi-
band preserving, we need to show that Px and Py are disjoint whenever Px
and y, with y simple, are disjoint. To establish this, it is convenient to write
y = y1 + y2 + y3 with each yi disjoint from Px and where vs(y1) ⊂ vs(Px),
vs(y2)∩vs(Pz) = ∅ for all z ∈ ℓp(X), and vs(y3)∩vs(Px) = ∅, but vs(y3) ⊂
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vs(Pz) for some z ∈ ℓp(X). The idea is to prove disjointness of Pyi and Px
for i = 1, 2 and 3 separately. Let us start by analysing y1.

Lemma 4.6. Let p ∈ (1, 2) and X be a C2-smooth Banach space with a

1-unconditional basis such that X reflects disjointness and the second deriva-

tive of the norm on X is uniformly bounded on SX . If P : ℓp(X) → ℓp(X) is

a contractive projection, then for all x, y ∈ ℓp(X) with vs(y) ⊂ vs(Px)
such that either y is simple or σ(y(k)) ≤ σ(Px(k)) for all k, we have

vs(Py) ⊂ vs(Px).

Proof. Let x, y ∈ ℓp(X) with Px 6= 0. For α ∈ R let ϕ(α) = ‖Px+αPy‖
and ψ(α) = ‖Px + αy‖. As P is a contractive projection, ϕ(α) ≤ ψ(α)
for all α ∈ R and ϕ(0) = ψ(0). In both cases we can rescale y so that
2σ(y(k)) < σ(Px(k)) for all k ∈ vs(Px). Since vs(y) ⊂ vs(Px), we know by
Proposition 4.5(d) that there exists C > 0 such that

{α ∈ [0, 1] : ψ′′(α) exists and ψ′′(α) ≤ C}

has full measure in [0, 1]. Hence it follows from Lemma 3.5(c) that ϕ′′(α)
does not go to infinity as α → 0 along any subset of [0, 1] of full measure.
By using Proposition 4.5(e) we conclude that vs(Py) ⊂ vs(Px).

This lemma has the following consequence.

Lemma 4.7. Let p ∈ (1, 2) and X be a C2-smooth Banach space with a

1-unconditional basis such that X reflects disjointness and the second deriva-

tive of the norm on X is uniformly bounded on SX . If P : ℓp(X) → ℓp(X) is

a contractive projection and x, y ∈ ℓp(X) with y simple are such that y and

Px are disjoint and vs(y) ⊂ vs(Px), then Py and Px are disjoint.

Proof. For α ∈ R define ϕ(α) = ‖Px+αPy‖ and ψ(α) = ‖Px+αy‖. As
P is a contractive projection, ϕ(α) ≤ ψ(α) for all α ∈ R and ϕ(0) = ψ(0).
We may assume that Px 6= 0. Due to Lemma 4.1 and (3), ϕ and ψ are C1

and ϕ′ and ψ′ are absolutely continuous functions on a neighborhood of 0.
As y and Px are disjoint, y is simple, and vs(y) ⊂ vs(Px), Proposition 4.5(c)
shows that ψ′(0) = 0 and ψ′′(α) → 0 as α→ 0 along a full subset A of [0, 1].
By Lemma 3.5, there exists a measurable set E ⊂ [0, 1] such that E ∩ (0, δ)
has positive measure for all δ > 0 and 0 ≤ ϕ′′(α) ≤ ψ′′(α) for all α ∈ E.
We may intersect E with the full set A and thus assume that E ⊂ A. Then
ϕ′′(α) → 0 as α→ 0 along E. Applying (2) to Px and Py instead of x and
y gives vs(Py) ⊂ vs(Px) and for each k ∈ vs(Px) ∩ vs(Py) we have

Np−1
k (α)N ′′

k (α) → 0 as α→ 0 along E.

Therefore, for k ∈ vs(Py), N ′′
k (α) → 0 along E and hence N ′′

k (α) → 0 as
α→ 0 along a full subset of [0, 1], since N ′′

k is continuous near 0. Lemma 3.5

further yields ϕ′(0) = 0. From (1) it follows that 0 ≤ Np−1
k (α)N ′

k(α) ≤ ϕ′(α)
for almost every α and each k ∈ vs(Py), so that the continuity of ϕ′ and
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N ′
k gives N ′

k(0) = 0. Since X reflects disjointness, we deduce that Px(k)
and Py(k) are disjoint for all k ∈ vs(Py), and hence Px and Py are dis-
joint.

Lemma 4.7 shows that Py1 and Px are disjoint. To prove disjointness
for y2, we shall use the following lemma.

Lemma 4.8. Let p ∈ (1, 2) and X be a Banach space with a 1-uncondi-

tional basis. If P : ℓp(X) → ℓp(X) is a contractive projection and y ∈ ℓp(X),
with vs(y) ∩ vs(Py) = ∅, then Py = 0.

Proof. Since vs(y) ∩ vs(Py) = ∅, we have ‖Py + αy‖p = ‖Py‖p +
αp‖y‖p and ‖Py + αPy‖p = (1 + α)p‖Py‖p for all α ∈ [0, 1]. As P is a
contractive projection, we deduce that (1+α)p‖Py‖p ≤ ‖Py‖p +αp‖y‖p, so
that

‖Py‖p

‖y‖p
≤

αp

(1 + α)p − 1
for all α ∈ [0, 1].

Now note that, as p > 1,

lim
α→0

αp

(1 + α)p − 1
= lim

α→0

pαp−1

p(1 + α)p−1
= 0

and hence ‖Py‖ = 0.

To prove disjointness for y3 we need the following result.

Lemma 4.9. Let p ∈ (1, 2) and X be a C2-smooth Banach space with

a 1-unconditional basis such that X reflects disjointness and the derivative

of the norm on X is uniformly bounded on SX . If P : ℓp(X) → ℓp(X) is

a contractive projection and x, y, z ∈ ℓp(X) with y simple are such that

vs(y) ⊂ vs(Pz) and vs(y) ∩ vs(Px) = ∅, then there exists z′ ∈ ℓp(X) such

that vs(y) ⊂ vs(Pz′) and vs(Pz′) ∩ vs(Px) = ∅.

Before proving this lemma we give an auxiliary result.

Lemma 4.10. Let p ∈ (1, 2) and X be a C2-smooth Banach space with a

1-unconditional basis such that X reflects disjointness and the derivative of

the norm on X is uniformly bounded on SX . Suppose that P : ℓp(X) → ℓp(X)
is a contractive projection and define

ΣP = {A ⊂ N : vs(Pu) = A for some u ∈ ℓp(X)}.

Then:

(a) If (Ai)i∈N ⊂ ΣP and A1 ⊃ A2 ⊃ · · · , then
⋂

i∈N
Ai ∈ ΣP .

(b) If A,B ∈ ΣP and a ∈ A \ B, then there exists Da ∈ ΣP such that

a ∈ Da and Da ⊂ A \B.
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Proof. Let (Ai)i∈N ⊂ ΣP be such that Ai ⊃ Ai+1 for all i ∈ N. By
definition there exist ui ∈ ℓp(X) such that vs(Pui) = Ai for each i ∈ N. Put
A =

⋂

i∈N
Ai and let w = (Pu1)χA, where χA is the indicator function of A.

Clearly, vs(w) = A ⊂ vs(Pui) for all i ∈ N. Thus, Lemma 4.6 implies that
vs(Pw) ⊂ vs(Pui) for all i ∈ N and hence vs(Pw) ⊂ A. Put B = vs(Pw)
and remark that (Pw)χA1\B = 0. Moreover,

Pu1 = (Pu1)χA1\A + (Pu1)χA = (Pu1)χA1\A + w,

so that Pu1 = P 2u1 = P ((Pu1)χA1\A) + Pw. Therefore

(Pu1)χA1\B = P ((Pu1)χA1\A)χA1\B +(Pw)χA1\B = P ((Pu1)χA1\A)χA1\B.

As P is contractive, we find that

‖(Pu1)χA1\B‖ = ‖P ((Pu1)χA1\A)χA1\B‖ ≤ ‖P ((Pu1)χA1\A)‖

≤ ‖(Pu1)χA1\A‖.

Since vs(Pu1) = A1 and B ⊂ A, we conclude that A = B = vs(Pw) and
hence A ∈ ΣP .

To prove the second assertion let A,B ∈ ΣP and a ∈ A\B. If A∩B = ∅,
then we can take Da = A. So, suppose that A ∩ B = B0 is not empty. By
the first assertion, B0 ∈ Σ. Now let u ∈ ℓp(X) be in the range of P and
vs(u) = A. It follows from Lemma 4.6 that

vs(P (uχA\B0
)) ⊂ A and vs(P (uχB0

)) ⊂ B0.

But also P (uχA\B0
) + P (uχB0

) = Pu = u, so that

(8) P (uχA\B0
)χA\B0

= uχA\B0
.

As

P (uχA\B0
) = P (uχA\B0

)χA\B0
+ P (uχA\B0

)χB0

and ‖P (uχA\B0
)‖ ≤ ‖uχA\B0

‖, it follows from (8) that ‖P (uχA\B0
)χB0

‖=0.
Thus, P (uχA\B0

)χA\B0
= PuχA\B0

and we can take Da = A \B0.

Using this lemma it is now straightforward to prove Lemma 4.9.

Proof of Lemma 4.9. Let y be simple and for each k ∈ vs(y), let Dk be a
set in ΣP given in Lemma 4.10(b), where A = vs(Pz) and B = vs(Px). Put
D =

⋃

k∈vs(y)Dk and note that, as vs(y) is finite, there exists z′ ∈ ℓp(X)

such that vs(Pz′) = D, and this completes the proof.

A combination of the lemmas now yields the following theorem.

Theorem 4.11. If p ∈ (1, 2) and X is a C2-smooth Banach space with a

1-unconditional basis such that X reflects disjointness and the second deriva-

tive of the norm on X is uniformly bounded on SX , then every contractive
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projection on ℓp(X) is an averaging operator and its range admits a block

basis.

Proof. Let x, y ∈ ℓp(X) with y simple be such that Px and y are disjoint.
Write y = y1 + y2 + y3 with each yi simple and disjoint from Px. Moreover
assume that vs(y1) ⊂ vs(Px), vs(y2) ∩ vs(Pw) = ∅ for all w ∈ ℓp(X), and
vs(y3) ⊂ vs(Pz) for some z ∈ ℓp(X) with vs(Pz) ∩ vs(Px) = ∅. Then it
follows from Lemma 4.7 that Py1 and Px are disjoint. Moreover, Lemma
4.8 implies that Py2 = 0 and hence Py2 and Px are disjoint. For y3 we
find by Lemma 4.9 that there exists z′ ∈ ℓp(X) such that vs(y3) ⊂ vs(Pz′)
and vs(Pz′) ∩ vs(Px) = ∅. In addition, it follows from Lemma 4.6 that
vs(Py3) ⊂ vs(Pz′), so that Py3 and Px are disjoint.

Theorem 4.11 has the following consequence for ℓp(ℓq) spaces.

Corollary 4.12. If p ∈ (1, 2) and q ∈ (2,∞), or the other way around ,
then the range of every contractive projection on ℓp(ℓq) has a block basis.

Proof. The proof follows from Theorem 4.11, the fact that the dual of
ℓp(ℓq) is equal to ℓp∗(ℓq∗), where 1/p + 1/p∗ = 1 and 1/q + 1/q∗ = 1, and
the fact that ℓr reflects disjointness if r > 2.

5. Conclusions. Combining Corollaries 4.4 and 4.12 with the results
from [19, Section 5] yields the following characterization of 1-complemented
subspaces of ℓp(ℓq) spaces.

Theorem 5.1. If p, q ∈ (1,∞) with p, q 6= 2, and Y is a subspace of

ℓp(ℓq), then Y is the range of a contractive projection on ℓp(ℓq) if and only

if there exists a basis {yi}dim Y
i=1 for Y such that for each i 6= j either vs(yi)∩

vs(yj) = ∅ or vs(yi) = vs(yj) and in that case, yi(k) and yj(k) are disjoint

and ‖yi(k)‖q = ‖yj(k)‖q for all k ∈ vs(yi).

Of course, it would be interesting to see if this theorem can be extended
to general vector-valued Lp(Lq) spaces.

Concerning Theorem 3.4, we remark that if X is a Banach sequence
space with norm ‖x‖ = ‖x‖p + ‖x‖q and p, q > 2, then X reflects disjoint-
ness and hence every contractive projection on X is an averaging operator
and its range has a block basis. However, the theorem cannot be applied if
p = 2 and q > 2. Nevertheless we believe that the same assertion is true,
but, as yet, we cannot prove it. In connection with this problem a general
conjecture of Randrianantoanina [20, Conjecture 7.9] is worth mentioning,
which asserts that if X is a strictly monotone Banach sequence space with
a 1-unconditional basis, and X does not contain an isometric copy of the
Euclidean plane, then the range of every contractive projection on X admits
a block basis. It is known [19] that this conjecture is true in complex Banach
spaces.
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