Joint subnormality of *n*-tuples and C_0 -semigroups of composition operators on L^2 -spaces

by

PIOTR BUDZYŃSKI and JAN STOCHEL (Kraków)

Abstract. Joint subnormality of a family of composition operators on L^2 -space is characterized by means of positive definiteness of appropriate Radon–Nikodym derivatives. Next, simplified positive definiteness conditions guaranteeing joint subnormality of a C_0 -semigroup of composition operators are supplied. Finally, the Radon–Nikodym derivatives associated to a jointly subnormal C_0 -semigroup of composition operators are shown to be the Laplace transforms of probability measures (modulo a C_0 -group of scalars) constituting a measurable family.

1. Introduction. The theory of subnormal operators is a vital part of Operator Theory (cf. [6]). The notion of a subnormal operator was introduced by Halmos in [12]. Roughly speaking, a subnormal operator is a restriction of a normal one to its invariant subspace. Halmos himself gave in [12] a two-condition criterion for subnormality of a single (bounded) operator. It was successively simplified by Bram (cf. [4]), Embry (cf. [10]) and Lambert (cf. [16]). In [15] Itô solved the problem of extending a family of commuting operators acting in a Hilbert space \mathcal{H} to a family of commuting normal operators acting in a possibly larger Hilbert space \mathcal{K} . In particular, Itô proved that any C_0 -semigroup of subnormal operators has an extension which is a C_0 -semigroup of normal operators. This in turn enabled Nussbaum (cf. [23]) to show that the infinitesimal generator of a C_0 -semigroup of subnormal operators is a subnormal operator (in general unbounded). A multioperator counterpart of the Embry-Lambert characterization of subnormality was proved by Lubin in [20].

The foundations of the theory of composition operators in abstract L^2 spaces are well developed. In particular, the questions of boundedness, nor-

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B20, 47B33; Secondary 47D03, 20M20.

Key words and phrases: composition operator on L^2 -space, C_0 -semigroup, subnormal operator, joint subnormality.

The work of the second author was supported by the KBN grant 2 P03A 037 024.

mality, quasinormality, subnormality, hyponormality etc. of such operators are entirely solved (cf. [9, 22, 27, 14, 8, 18, 19, 5]; see also [21, 25, 7] for special classes of composition operators). The present paper offers criteria, written in terms of Radon-Nikodym derivatives, for joint subnormality of *n*-tuples as well as C_0 -semigroups of composition operators on L^2 -spaces (see Theorem 3.4, Lemma 4.4 and Corollary 4.6). This generalizes in various ways Lambert's characterization of subnormality of a single composition operator (cf. [18]). For a particular class of composition operators induced by square matrices, joint subnormality is completely characterized by algebraic properties of symbols (cf. Theorem 3.6). It is shown that for every real $t \geq 0$, the Radon-Nikodym derivative h_t^{ϕ} attached to a jointly subnormal C_0 -semigroup of composition operators $\{C_{\phi_u}\}_{u\geq 0}$ can be modified so as to coincide (modulo a C_0 -group of scalars) with the Laplace transforms calculated at t of a measurable family of probability Borel measures, the family being independent of t (cf. Theorem 4.5). The paper concludes with an example of a C_0 -semigroup of composition operators $\{C_{\phi_t}\}_{t>0}$ which is not jointly subnormal, though the operator C_{ϕ_1} is subnormal. This shows that the criteria for joint subnormality contained in Lemma 4.4 are optimal in a sense.

A subsequent paper will be devoted to a general study of joint subnormality of C_0 -groups of composition operators.

2. Preliminaries. Denote by \mathbb{Z}_+ the set of all nonnegative integers, by \mathbb{N} the set of all positive integers and by \mathbb{R}_+ the set of all nonnegative real numbers. If Q is a subset of \mathbb{C} containing 0, then $Q^{(\mathbb{Z}_+^n)}$ stands for the set of all functions $\lambda \colon \mathbb{Z}_+^n \to Q$ for which the set $\lambda^{-1}(Q \setminus \{0\})$ is finite.

We say that an *n*-sequence $\{t_{\alpha}\}_{\alpha \in \mathbb{Z}^{n}_{+}}$ of real numbers is a *Stieltjes moment* n-sequence if there exists a positive Borel measure μ on \mathbb{R}^{n}_{+} such that

(2.1)
$$t_{\alpha} = \int_{\mathbb{R}^n_{\perp}} s^{\alpha} d\mu(s), \quad \alpha \in \mathbb{Z}^n_+;$$

such a μ is called a *representing measure* for $\{t_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{n}}$. If (2.1) holds and the closed support of μ is contained in a closed subset F of \mathbb{R}_{+}^{n} , then we say that $\{t_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{n}}$ is a *Stieltjes moment n-sequence on* F. Let us recall a useful characterization of Stieltjes moment *n*-sequences on compact sets. Below $e_{j} = (\delta_{j,1}, \ldots, \delta_{j,n})$ for $j = 1, \ldots, n$, where $\delta_{k,l}$ stands for the Kronecker symbol (for simplicity, we suppress the dependence of e_{j} on n in the notation).

THEOREM 2.1 ([26, Theorem 3]). Assume that an n-sequence $\{t_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{n}} \subseteq \mathbb{R}$ satisfies the following three conditions:

- (i) $\sum_{\alpha,\beta\in\mathbb{Z}_+^n} t_{\alpha+\beta}\lambda(\alpha)\overline{\lambda(\beta)} \ge 0$ for all $\lambda\in\mathbb{C}^{(\mathbb{Z}_+^n)}$,
- (ii) $\sum_{\alpha,\beta\in\mathbb{Z}_{+}^{n}} t_{\alpha+\beta+e_{j}}\lambda(\alpha)\overline{\lambda(\beta)} \geq 0$ for all $\lambda\in\mathbb{C}^{(\mathbb{Z}_{+}^{n})}$ and $j=1,\ldots,n$,

(iii) there exists an n-tuple (r_1, \ldots, r_n) of nonnegative real numbers such that

$$t_{2\alpha+2e_j} \leq r_j^2 t_{2\alpha}, \quad \alpha \in \mathbb{Z}_+^n, \ j = 1, \dots, n.$$

Then $\{t_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{n}}$ is a Stieltjes moment n-sequence on a compact subset of \mathbb{R}_{+}^{n} . Moreover, a representing measure μ for $\{t_{\alpha}\}_{\alpha \in \mathbb{Z}_{+}^{n}}$ is unique and its closed support is contained in the rectangle $[0, r_{1}] \times \cdots \times [0, r_{n}]$. If $[0, R_{1}] \times \cdots \times [0, R_{n}]$ is the least rectangle containing the closed support of μ , then

$$R_j = \lim_{n \to \infty} t_{2ne_j}^{1/2n}, \quad j = 1, \dots, n$$

It follows from Theorem 2.1 that a Stieltjes moment *n*-sequence which has a representing measure with compact support is *determinate*, i.e. the representing measure is unique (within the class of all Borel measures not necessarily compactly supported, cf. [11]).

A bounded (linear) operator S on a (complex) Hilbert space \mathcal{H} is called subnormal if there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ (isometric embedding) and a bounded normal operator N on \mathcal{K} such that $S \subseteq N$, i.e. Sh = Nhfor all $h \in \mathcal{H}$. We say that a family $\{S_{\omega} : \omega \in \Omega\}$ of bounded operators on \mathcal{H} is jointly subnormal if there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and a family $\{N_{\omega} : \omega \in \Omega\}$ of commuting bounded normal operators on \mathcal{K} such that $S_{\omega} \subseteq N_{\omega}$ for all $\omega \in \Omega$. It is clear that a jointly subnormal family $\{S_{\omega} : \omega \in \Omega\}$ is commutative.

THEOREM 2.2 ([15]). A family $\{S_{\omega} : \omega \in \Omega\}$ of bounded operators on a Hilbert space \mathcal{H} is jointly subnormal if and only if for every finite subset Ω' of Ω the family $\{S_{\omega} : \omega \in \Omega'\}$ is jointly subnormal.

Let us recall the Embry-Lambert-Lubin criterion for joint subnormality (cf. [20]): an *n*-tuple $\mathbf{S} = (S_1, \ldots, S_n)$ of commuting bounded operators on a Hilbert space \mathcal{H} is jointly subnormal if and only if

(2.2)
$$\sum_{\alpha,\beta\in\mathbb{Z}_{+}^{n}} \|\boldsymbol{S}^{\alpha+\beta}f\|^{2}\lambda(\alpha)\overline{\lambda(\beta)} \geq 0, \quad \lambda\in\mathbb{C}^{(\mathbb{Z}_{+}^{n})}, f\in\mathcal{H},$$

where $\mathbf{S}^{\alpha} = S_1^{\alpha_1} \cdots S_n^{\alpha_n}$ for $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_+^n$.

3. Families of composition operators. Let (X, Σ, μ) be a σ -finite measure space. Consider a Σ -measurable transformation $\phi : X \to X$ such that the measure $\mu \circ \phi^{-1}$ is absolutely continuous with respect to μ . Then the operator $C_{\phi} \colon L^{2}(\mu) \supseteq \mathcal{D}(C_{\phi}) \to L^{2}(\mu)$ given by

$$\mathcal{D}(C_{\phi}) = \{ f \in L^2(\mu) \colon f \circ \phi \in L^2(\mu) \}, \quad C_{\phi}f = f \circ \phi \quad \text{for } f \in \mathcal{D}(C_{\phi}),$$

is well-defined and linear. We call it the *composition operator* induced by ϕ . We also say that ϕ is the *symbol* of C_{ϕ} . For every $n \in \mathbb{Z}_+$, we set

(3.1)
$$h_n^{\phi} = \frac{d\mu \circ (\phi^n)^{-1}}{d\mu}.$$

Notice that $h_0^{\phi} = 1$ a.e. $[\mu]$. Recall that C_{ϕ} is a bounded operator on $L^2(\mu)$ if and only if $h_1^{\phi} \in L^{\infty}(\mu)$. If $\psi \colon X \to X$ is a Σ -measurable transformation such that the mapping $L^2(\mu) \ni f \mapsto f \circ \psi \in L^2(\mu)$ is well-defined, then the measure $\mu \circ \psi^{-1}$ is absolutely continuous with respect to μ and

(3.2)
$$||C_{\psi}|| = ||h_1^{\psi}||_{\infty}^{1/2},$$

where $\|h_1^{\psi}\|_{\infty}$ stands for the $L^{\infty}(\mu)$ -norm of h_1^{ψ} . The interested reader is referred to [9] and [22] for further information on composition operators.

Consider now an *n*-tuple $\boldsymbol{\phi} = (\phi_1, \dots, \phi_n)$ of Σ -measurable transformations of X. For $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}_+^n$, we define the measure $\mu_{\alpha}^{\boldsymbol{\phi}}$ on X by

$$\mu_{\alpha}^{\phi}(\sigma) = \mu((\phi^{\alpha})^{-1}(\sigma)), \quad \sigma \in \Sigma,$$

where $\phi^{\alpha} := \phi_1^{\alpha_1} \circ \cdots \circ \phi_n^{\alpha_n}$. It is a matter of routine to show that if the measures $\mu \circ \phi_j^{-1}$, $1 \leq j \leq n$, are absolutely continuous with respect to μ , then so is μ_{α}^{ϕ} for every $\alpha \in \mathbb{Z}_+^n$. As a consequence, we may write the Radon–Nikodyn derivatives

$$h^{\boldsymbol{\phi}}_{\alpha} = \frac{d\mu^{\boldsymbol{\phi}}_{\alpha}}{d\mu}, \quad \alpha \in \mathbb{Z}^{n}_{+},$$

and consider the composition operators C_{ϕ_j} in $L^2(\mu)$ for $j = 1, \ldots, n$. If no confusion can arise, we write μ_{α} and h_{α} instead of μ_{α}^{ϕ} and h_{α}^{ϕ} , respectively.

We now investigate under what conditions the equality $C_{\phi} = C_{\psi}$ holds.

LEMMA 3.1. Assume that ϕ and ψ are Σ -measurable transformations of X inducing bounded composition operators C_{ϕ} and C_{ψ} on $L^{2}(\mu)$.

- (i) If $\phi = \psi$ a.e. $[\mu]$ (¹), then $C_{\phi} = C_{\psi}$.
- (ii) If $C_{\phi} = C_{\psi}$, then $\mu \circ (\phi^n)^{-1} = \mu \circ (\psi^n)^{-1}$ and $h_n^{\phi} = h_n^{\psi}$ a.e. $[\mu]$ for every $n \in \mathbb{Z}_+$.
- (iii) $C_{\phi} \neq C_{\psi}$ if and only if there exist sets $Y, Z \in \Sigma$ such that $Y \cap Z = \emptyset$ and $\mu(\phi^{-1}(Y) \cap \psi^{-1}(Z)) > 0.$

Proof. (i) is obvious.

(ii) If $\sigma \in \Sigma$ and $\mu(\sigma) < \infty$, then the characteristic function χ_{σ} of σ is in $L^2(\mu)$ and, by the measure transport theorem ([13, Theorem C, p. 163]),

⁽¹⁾ Note that in general the set $\{x \in X : \phi(x) \neq \psi(x)\}$ may not belong to Σ (see Example 3.2). Hence $\phi = \psi$ a.e. $[\mu]$ is understood to mean that there exists a set $Y \in \Sigma$ of full μ -measure such that $\phi(x) = \psi(x)$ for all $x \in Y$.

we have

$$\int_{\sigma} h_n^{\phi} d\mu = \|C_{\phi^n} \chi_{\sigma}\|^2 = \|C_{\phi}^n \chi_{\sigma}\|^2 = \|C_{\psi}^n \chi_{\sigma}\|^2 = \|C_{\psi^n} \chi_{\sigma}\|^2 = \int_{\sigma} h_n^{\psi} d\mu.$$

Since μ is σ -finite, we get $h_n^{\phi} = h_n^{\psi}$ a.e. $[\mu]$, which implies $\mu \circ (\phi^n)^{-1} = \mu \circ (\psi^n)^{-1}$.

(iii) To prove the "if" part of (iii), set $E = \phi^{-1}(Y) \cap \psi^{-1}(Z)$. Since the measure μ is σ -finite, there exists a Σ -measurable function $f: X \to \mathbb{R}_+$ such that f(x) > 0 for every $x \in Y$, f(x) = 0 for every $x \in X \setminus Y$ and $\int_X |f(x)|^2 d\mu(x) < \infty$. Combining this with the inclusions $\phi(E) \subseteq Y$ and $\psi(E) \subseteq Z \subseteq X \setminus Y$, we see that $f(\phi(x)) > 0$ and $f(\psi(x)) = 0$ for every $x \in E$. Since $\mu(E) > 0$, we get $C_{\phi}f \neq C_{\psi}f$.

Suppose now that $C_{\phi}f \neq C_{\psi}f$ for some $f \in L^2(\mu)$. Since simple functions belonging to $L^2(\mu)$ are dense in $L^2(\mu)$ and the operators C_{ϕ} and C_{ψ} are continuous, we deduce that there exists a simple function $h \in L^2(\mu)$ such that $C_{\phi}h \neq C_{\psi}h$. Then the set $F := \{x \in X : h(\phi(x)) \neq h(\psi(x))\}$ is in Σ and $\mu(F) > 0$. Since h is a simple function, it is of the form $h = \sum_{k=1}^{n} \alpha_k \chi_{Y_k}$, where $n \in \mathbb{N}, \{\alpha_k\}_{k=1}^n$ is a sequence of distinct complex numbers and $\{Y_k\}_{k=1}^n$ is a Σ -measurable partition of X. Clearly, $\{\phi^{-1}(Y_k) \cap \psi^{-1}(Y_l)\}_{k,l=1}^n$ is a Σ measurable partition of X and $(^2)$

$$F = \bigcup_{\substack{k,l=1\\k\neq l}}^{n} \phi^{-1}(Y_k) \cap \psi^{-1}(Y_l).$$

Since $\mu(F) > 0$, we conclude that there exist $k, l \in \{1, \ldots, n\}$ such that $k \neq l$ and $\mu(\phi^{-1}(Y_k) \cap \psi^{-1}(Y_l)) > 0$. This completes the proof.

Note that if the sets Y and Z are as in (iii) of Lemma 3.1, then $\mu(Y) > 0$ and $\mu(Z) > 0$ (use the fact that $\mu \circ \phi^{-1} \ll \mu$ and $\mu \circ \psi^{-1} \ll \mu$).

EXAMPLE 3.2. It is not true in general that the equality $C_{\phi} = C_{\psi}$ implies $\phi = \psi$ a.e. $[\mu]$. This can be illustrated by various examples built on σ -algebras generated by finite (or infinite) partitions of a nonempty set X. Here is a sample of what is possible in this matter. Consider the set $X = \{1, 2, 3, 4, 5\}$, the σ -algebra (= algebra) Σ generated by the partition $\{1, 2\}, \{3\}, \{4, 5\}$ of X, and a finite positive measure μ on Σ such that $\mu(\{1, 2\}) > 0, \mu(\{3\}) > 0$ and $\mu(\{4, 5\}) > 0$. Let ϕ and ψ be the transformations of X given by $\phi(1) = 4, \ \phi(2) = 5, \ \phi(3) = 5, \ \psi(1) = 5, \ \psi(2) = 5, \ \psi(3) = 4$ and $\phi(k) = \psi(k) = k$ for k = 4, 5. Then ϕ and ψ are Σ -measurable transformations of X such that C_{ϕ} and C_{ψ} are well-defined on $L^2(\mu)$ and $C_{\phi} = C_{\psi}$, though the equality $\phi = \psi$ a.e. $[\mu]$ does not hold; in this particular case the set $\{x \in X: \phi(x) \neq \psi(x)\}$ does not belong to Σ .

^{(&}lt;sup>2</sup>) Note that $C_{\phi}h \neq C_{\psi}h$ implies $n \geq 2$.

COROLLARY 3.3. Let X be a topological Hausdorff space, Σ be a σ algebra of all Borel subsets of X and μ be a σ -finite positive Borel measure on X which is inner regular (³) with respect to compact sets. Assume that ϕ and ψ are continuous transformations of X inducing bounded composition operators C_{ϕ} and C_{ψ} on $L^2(\mu)$. Then $C_{\phi} = C_{\psi}$ if and only if $\phi = \psi$ a.e. [μ]. Moreover, if $\mu(U) > 0$ for every nonempty open subset U of X, then $C_{\phi} = C_{\psi}$ if and only if $\phi = \psi$.

Proof. We only have to show that $C_{\phi} = C_{\psi}$ implies $\phi = \psi$ a.e. $[\mu]$ (the "moreover" part is a direct consequence of this implication). Suppose, contrary to our claim, that $\mu(X_0) > 0$, where $X_0 = \{x \in X : \phi(x) \neq \psi(x)\}$ (as X is Hausdorff, the set $X \setminus X_0$ is closed). Take $x \in X_0$. Since X is Hausdorff, there exist open neighbourhoods Y_x and Z_x of $\phi(x)$ and $\psi(x)$ respectively such that $Y_x \cap Z_x = \emptyset$. Then $E_x := \phi^{-1}(Y_x) \cap \psi^{-1}(Z_x)$ is an open neighbourhood of x and $E_x \subseteq X_0$. This implies that $X_0 = \bigcup_{x \in X_0} E_x$. In view of Lemma 3.1(iii), it is enough to show that there exists $x_0 \in X_0$ such that $\mu(E_{x_0}) > 0$. Suppose, contrary to our claim, that $\mu(E_x) = 0$ for every $x \in X_0$. If K is a compact subset of X_0 , then there exists a finite subset $\{x_1, \ldots, x_n\}$ of X_0 such that $K \subseteq \bigcup_{k=1}^n E_{x_k}$. This implies that $\mu(K) = 0$. It follows from the inner regularity of μ that $\mu(X_0) = 0$, a contradiction. This completes the proof.

Jointly subnormal n-tuples of composition operators can be characterized as follows (see [18] for a single operator case).

THEOREM 3.4. An n-tuple $(C_{\phi_1}, \ldots, C_{\phi_n})$ of commuting bounded composition operators on $L^2(\mu)$ is jointly subnormal if and only if one of the following three equivalent conditions holds:

(i) for μ -almost every $x \in X$,

(

$$\sum_{\alpha,\beta\in\mathbb{Z}^n_+}h_{\alpha+\beta}(x)\lambda(\alpha)\overline{\lambda(\beta)}\geq 0\quad \text{ for all } \lambda\in\mathbb{C}^{(\mathbb{Z}^n_+)}.$$

- (ii) for μ -almost every $x \in X$, $\{h_{\alpha}(x)\}_{\alpha \in \mathbb{Z}^n_+}$ is a Stieltjes moment n-sequence,
- (iii) for μ -almost every $x \in X$, $\{h_{\alpha}(x)\}_{\alpha \in \mathbb{Z}^n_+}$ is a Stieltjes moment nsequence on the compact set $[0, \|C_{\phi_1}\|^2] \times \cdots \times [0, \|C_{\phi_n}\|^2]$.

Proof. Set $\phi = (\phi_1, \ldots, \phi_n)$ and $C_{\phi} = (C_{\phi_1}, \ldots, C_{\phi_n})$. Applying the commutativity of C_{ϕ} and the measure transport theorem, we get

(3.3)
$$||C^{\alpha}_{\phi}f||^2 = ||C_{\phi^{\alpha}}f||^2 = \int |f|^2 h_{\alpha} d\mu, \quad f \in L^2(\mu), \, \alpha \in \mathbb{Z}^n_+.$$

 $^(^{3})$ We do not assume that μ is finite on compact subsets of X.

Suppose that C_{ϕ} is jointly subnormal. By (2.2) and (3.3), we have

$$(3.4) \quad 0 \le \sum_{\alpha,\beta \in \mathbb{Z}_{+}^{n}} \|C_{\phi}^{\alpha+\beta}f\|^{2}\lambda(\alpha)\overline{\lambda(\beta)} = \int |f|^{2}g_{\lambda}d\mu, \quad \lambda \in \mathbb{C}^{(\mathbb{Z}_{+}^{n})}, \, f \in L^{2}(\mu),$$

where $g_{\lambda} = \sum_{\alpha,\beta \in \mathbb{Z}_{+}^{n}} h_{\alpha+\beta}\lambda(\alpha)\overline{\lambda(\beta)}$. Since f is an arbitrary member of $L^{2}(\mu)$ and μ is σ -finite, we deduce that $g_{\lambda} \geq 0$ a.e. $[\mu]$ for all $\lambda \in \mathbb{C}^{(\mathbb{Z}_{+}^{n})}$. Hence

(3.5)
$$\mu(X \setminus g_{\lambda}^{-1}(\mathbb{R}_{+})) = 0, \quad \lambda \in \mathbb{C}^{(\mathbb{Z}_{+}^{+})}$$

Let Q be any countable dense subset of $\mathbb C$ containing 0. Set

$$\tau = \bigcap_{\lambda \in Q^{(\mathbb{Z}_+^n)}} g_{\lambda}^{-1}(\mathbb{R}_+).$$

It follows from (3.5) that

(3.6)
$$\mu(X \setminus \tau) = 0.$$

Since Q is dense in \mathbb{C} and $g_{\lambda}(x) \ge 0$ for all $x \in \tau$ and $\lambda \in Q^{(\mathbb{Z}^n_+)}$, we see that

(3.7)
$$\sum_{\alpha,\beta\in\mathbb{Z}^n_+} h_{\alpha+\beta}(x)\lambda(\alpha)\overline{\lambda(\beta)} \ge 0, \quad x \in \tau, \ \lambda \in \mathbb{C}^{(\mathbb{Z}^n_+)}$$

Repeating the above reasoning with $f \circ \phi_i$ in place of f, we get

(3.8)
$$\mu(X \setminus \tau_j) = 0, \quad j = 1, \dots, n,$$
$$\sum_{\alpha, \beta \in \mathbb{Z}^n_+} h_{\alpha + \beta + e_j}(x)\lambda(\alpha)\overline{\lambda(\beta)} \ge 0, \quad x \in \tau_j, \, \lambda \in \mathbb{C}^{(\mathbb{Z}^n_+)}, \, j = 1, \dots, n,$$

where $\tau_j = \bigcap_{\lambda \in Q^{(\mathbb{Z}_+^n)}} g_{j,\lambda}^{-1}(\mathbb{R}_+)$ with $g_{j,\lambda} = \sum_{\alpha,\beta \in \mathbb{Z}_+^n} h_{\alpha+\beta+e_j}\lambda(\alpha)\overline{\lambda(\beta)}$. Moreover, by (3.3), the following inequality holds for all $f \in L^2(\mu), \alpha \in \mathbb{Z}_+^n$ and $j = 1, \ldots, n$:

$$\int |f|^2 h_{2\alpha+2e_j} \, d\mu = \|C_{\phi}^{2\alpha+2e_j} f\|^2 \le \|C_{\phi_j}\|^4 \|C_{\phi}^{2\alpha} f\|^2 = \|C_{\phi_j}\|^4 \int |f|^2 h_{2\alpha} \, d\mu.$$

By σ -finiteness of μ this implies that for μ -almost every $x \in X$,

(3.9)
$$h_{2\alpha+2e_j}(x) \le \|C_{\phi_j}\|^4 h_{2\alpha}(x), \quad \alpha \in \mathbb{Z}^n_+, \ j = 1, \dots, n.$$

Combining (3.6)–(3.9), we conclude that for μ -almost every $x \in X$, the *n*-sequence $\{h_{\alpha}(x)\}_{\alpha \in \mathbb{Z}^n_+}$ satisfies the assumptions of Theorem 2.1. Hence condition (iii) holds.

Implications (iii) \Rightarrow (ii) and (ii) \Rightarrow (i) are clear.

If (i) holds, then we can go back from (3.6) and (3.7) to (3.4). Applying the Embry–Lambert–Lubin criterion completes the proof. \blacksquare

Consider now a positive Borel measure μ on \mathbb{R}^{\varkappa} of the form $d\mu = \varrho d\nu_{\varkappa}$, where $\varrho : \mathbb{R}^{\varkappa} \to [0, \infty)$ is a Borel function and ν_{\varkappa} is the \varkappa -dimensional Lebesgue measure. It is left to the reader to check that μ is σ -finite and inner regular with respect to compact sets. Assume that $\nu_{\varkappa}(\varrho^{-1}(\{0\})) = 0$. Suppose that $\phi = (\phi_1, \ldots, \phi_n)$ is an *n*-tuple of invertible linear transformations of \mathbb{R}^{\varkappa} such that the composition operators $C_{\phi_1}, \ldots, C_{\phi_n}$ are bounded on $L^2(\varrho d\nu_{\varkappa})$. Write $\phi^{\alpha} = \phi_1^{\alpha_1} \cdots \phi_n^{\alpha_n}$ for $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n$.

COROLLARY 3.5. Let ρ and ϕ be as above. The n-tuple $(C_{\phi_1}, \ldots, C_{\phi_n})$ is jointly subnormal if and only if one of the following three equivalent conditions holds:

1° the transformations ϕ_1, \ldots, ϕ_n commute and for ν_{\varkappa} -almost every x in \mathbb{R}^{\varkappa} ,

$$\sum_{\beta \in \mathbb{Z}_+^n} \varrho(\phi^{-(\alpha+\beta)}(x))\lambda(\alpha)\overline{\lambda(\beta)} \ge 0 \quad \text{ for all } \lambda \in \mathbb{C}^{(\mathbb{Z}_+^n)},$$

- 2° the transformations ϕ_1, \ldots, ϕ_n commute and for ν_{\varkappa} -almost every xin \mathbb{R}^{\varkappa} , $\{\varrho(\phi^{-\alpha}(x))\}_{\alpha \in \mathbb{Z}_{\perp}^n}$ is a Stieltjes moment n-sequence,
- 3° the transformations ϕ_1, \ldots, ϕ_n commute and for ν_{\varkappa} -almost every xin \mathbb{R}^{\varkappa} , $\{\varrho(\phi^{-\alpha}(x))\}_{\alpha \in \mathbb{Z}^n_+}$ is a Stieltjes moment n-sequence on the compact set $[0, \|C_{\phi_1}\|^2] \times \cdots \times [0, \|C_{\phi_n}\|^2]$.

Moreover, if $(C_{\phi_1}, \ldots, C_{\phi_n})$ is jointly subnormal and $\sigma \neq \emptyset$ is an open subset of \mathbb{R}^{\varkappa} such that ϱ is positive and continuous on $(^4)$ σ and $\phi_j(\sigma) = \sigma$ for all $j = 1, \ldots, n$, then $1^{\circ}-3^{\circ}$ hold with "for ν_{\varkappa} -almost every $x \in \mathbb{R}^{\varkappa}$ " replaced by "for every $x \in \sigma$ ".

Proof. By the assumption on ρ , the measures μ and ν_{\varkappa} are mutually absolutely continuous. Clearly, ν_{\varkappa} does not vanish on nonempty open subsets of \mathbb{R}^{\varkappa} and so neither does μ . Since μ is inner regular with respect to compact sets, we deduce from Corollary 3.3 that the operators $C_{\phi_1}, \ldots, C_{\phi_n}$ commute if and only if the transformations ϕ_1, \ldots, ϕ_n commute.

It is a matter of routine to verify that

α.

(3.10)
$$h_{\alpha} = \frac{\varrho \circ \phi^{-\alpha}}{\varrho |\det \phi|^{\alpha}} \quad \text{a.e. } [\mu], \, \alpha \in \mathbb{Z}_{+}^{n},$$

where $|\det \phi| = (|\det \phi_1|, \ldots, |\det \phi_n|)$. This enables us to show that conditions $1^{\circ}-3^{\circ}$ correspond to conditions (i)–(iii) of Theorem 3.4 respectively.

For the proof of the "moreover" part, notice that in view of (3.10) all the Radon–Nikodym derivatives h_{α} , $\alpha \in \mathbb{Z}_{+}^{n}$, are continuous on σ . This, the mutual absolute continuity of μ and ν_{\varkappa} , and the fact that ν_{\varkappa} does not vanish on nonempty open subsets of \mathbb{R}^{\varkappa} imply that the inequalities in (3.7)–(3.9) are valid for all $x \in \sigma$. Hence the same argument as in the proof of Theorem 3.4 yields the conclusion.

 $^(^4)$ This part of the conclusion of Corollary 3.5 is patterned upon Proposition 2.4 of [25]. We take this opportunity to mention that the density function r appearing in Proposition 2.4 of [25] has to be assumed to be positive on the set σ .

We conclude this section with a generalization of [25, Theorem 2.5] to the case of families of composition operators. Let $\|\cdot\|$ be a norm on \mathbb{R}^{\varkappa} induced by an inner product. Denote by $\mathcal{R}_{\|\cdot\|}$ the class of all functions $\varrho \colon \mathbb{R}^{\varkappa} \to [0, \infty)$ of the form

$$\varrho(x) = \sum_{m=0}^{\infty} a_m \|x\|^{2m}, \quad x \in \mathbb{R}^{\varkappa},$$

where a_m are nonnegative real numbers and $a_k > 0$ for some $k \ge 1$. A density function $\rho \in \mathcal{R}_{\|\cdot\|}$ is said to be of *polynomial type* if there exists $k \ge 2$ such that $a_m = 0$ for all $m \ge k$. We refer the reader to [25, Proposition 2.2] for a criterion which guarantees the boundedness of the composition operator C_{ϕ} on $L^2(\rho d\nu_{\varkappa})$ (resp. on $L^2((1/\rho)d\nu_{\varkappa}))$, where ϕ is an invertible linear transformation of \mathbb{R}^{\varkappa} .

THEOREM 3.6. Let $\|\cdot\|$ be a norm on \mathbb{R}^{\varkappa} induced by an inner product, ϱ be a member of $\mathcal{R}_{\|\cdot\|}$ and \mathfrak{A} be a nonempty family of invertible linear transformations of \mathbb{R}^{\varkappa} inducing bounded composition operators $\{C_{\phi}: \phi \in \mathfrak{A}\}$ on $L^{2}(\varrho d\nu_{\varkappa})$ (resp. on $L^{2}((1/\varrho)d\nu_{\varkappa}))$). Then the family $\{C_{\phi}: \phi \in \mathfrak{A}\}$ (resp. $\{C_{\phi}^{\ast}: \phi \in \mathfrak{A}\}$) is jointly subnormal if and only if \mathfrak{A} consists of commuting normal operators in $(\mathbb{R}^{\varkappa}, \|\cdot\|)$.

Proof. If $\{C_{\phi} : \phi \in \mathfrak{A}\}$ is jointly subnormal, then by Corollary 3.5, \mathfrak{A} is commutative, and by Theorem 2.5 of [25] each $\phi \in \mathfrak{A}$ is normal in $(\mathbb{R}^{\varkappa}, \|\cdot\|)$.

In view of Theorem 2.2, the proof of the converse reduces to the case of \mathfrak{A} finite, say $\mathfrak{A} = \{\phi_1, \ldots, \phi_n\}$. Set $\phi = (\phi_1, \ldots, \phi_n)$. Since ϕ_1, \ldots, ϕ_n are normal and commuting, so are their inverses. This in turn implies that $\phi_1^{-1}, \ldots, \phi_n^{-1}, \ (\phi_1^{-1})^*, \ldots, (\phi_n^{-1})^*$ commute. Hence for all $x \in \mathbb{R}^{\varkappa}$ and all $\lambda \in \mathbb{C}^{(\mathbb{Z}_+^n)}$,

$$\sum_{\alpha,\beta\in\mathbb{Z}_+^n} \|\phi^{-(\alpha+\beta)}(x)\|^2 \lambda(\alpha)\overline{\lambda(\beta)} = \left\|\sum_{\alpha\in\mathbb{Z}_+^n} \lambda(\alpha)(\phi^{-\alpha})^*\phi^{-\alpha}(x)\right\|^2 \ge 0.$$

Using the Schur theorem [2, Theorem 3.1.12], we obtain

$$\sum_{\alpha,\beta\in\mathbb{Z}_{+}^{n}} \|\phi^{-(\alpha+\beta)}(x)\|^{2m}\lambda(\alpha)\overline{\lambda(\beta)} \ge 0, \quad x\in\mathbb{R}^{\varkappa}, \, \lambda\in\mathbb{C}^{(\mathbb{Z}_{+}^{n})}, \, m\in\mathbb{Z}_{+},$$

which yields

$$\sum_{\alpha,\beta\in\mathbb{Z}^n_+} \varrho(\boldsymbol{\phi}^{-(\alpha+\beta)}(x))\lambda(\alpha)\overline{\lambda(\beta)} \ge 0, \quad x\in\mathbb{R}^{\varkappa}, \, \lambda\in\mathbb{C}^{(\mathbb{Z}^n_+)}.$$

Thus Corollary 3.5 implies that the *n*-tuple $(C_{\phi_1}, \ldots, C_{\phi_n})$ is jointly subnormal. The case of $\{C_{\phi}^*: \phi \in \mathfrak{A}\}$ is similar.

4. C_0 -semigroups of composition operators. The following characterization of joint subnormality of C_0 -semigroups is due to Itô (see [15, Theorem 1 and the proof of Lemma 5]).

THEOREM 4.1. Let a be a positive real number. A C_0 -semigroup $\{S(t)\}_{t\geq 0}$ of bounded linear operators on a Hilbert space \mathcal{H} is jointly subnormal if and only if the operator S(a/n) is subnormal for every integer $n \geq 1$.

It is worth noting that Theorem 4.1 is no longer true if "every integer $n \geq 1$ " is replaced by "some integer $n \geq 1$ ". A counterexample in twodimensional Hilbert space has been given by R. Mathias (cf. [1]); see also Example 5.4 below for the case of C_0 -semigroups of composition operators.

Suppose that

(4.1) (X, Σ, μ) is a σ -finite measure space with $\mu \neq 0$ (equivalently: $L^2(\mu) \neq \{0\}$) and $\phi = \{\phi_t\}_{t\geq 0}$ is a family of Σ -measurable transformations of X indexed by nonnegative real numbers such that every ϕ_t induces a bounded composition operator C_{ϕ_t} on $L^2(\mu)$ and $\{C_{\phi_t}\}_{t\geq 0}$ is a C_0 -semigroup.

Define

(4.2)
$$h_t^{\phi} = \frac{d\mu \circ \phi_t^{-1}}{d\mu}, \quad t \in \mathbb{R}_+.$$

Since $C_{\phi_0} = C_I$ (*I* is the identity transformation of *X*) and $C_{\phi_t^n} = C_{\phi_t}^n = C_{\phi_t}^n$, we infer from (3.1) and Lemma 3.1(ii) that $h_0^{\phi} = 1$ a.e. $[\mu]$ and

(4.3) $h_n^{\phi_t} = h_{nt}^{\phi}$ a.e. $[\mu]$ for all $t \in \mathbb{R}_+$ and $n \in \mathbb{Z}_+$.

REMARK 4.2. Obviously, for each $t \ge 0$ the function h_t^{ϕ} can be redefined on a set of measure zero (depending on t) without affecting the validity of (4.2). This may improve the properties of the function $t \mapsto h_t^{\phi}(x)$ (cf. Theorem 4.5).

LEMMA 4.3. If (4.1) holds, then the C_0 -semigroup $\{C_{\phi_t}\}_{t\geq 0}$ is jointly subnormal if and only if one of the following three equivalent conditions holds:

(i) for μ -almost every $x \in X$,

$$\sum_{m,n\in\mathbb{Z}_+} h^{\phi}_{(m+n)/k}(x)\lambda(m)\overline{\lambda(n)} \ge 0 \quad \text{ for all } \lambda\in\mathbb{C}^{(\mathbb{Z}_+)} \text{ and } k\in\mathbb{N},$$

- (ii) for μ -almost every $x \in X$ and every $k \in \mathbb{N}$, $\{h_{n/k}^{\phi}(x)\}_{n \in \mathbb{Z}_+}$ is a Stieltjes moment sequence,
- (iii) for μ -almost every $x \in X$ and every $k \in \mathbb{N}$, $\{h_{n/k}^{\phi}(x)\}_{n \in \mathbb{Z}_+}$ is a Stieltjes moment sequence on $[0, \|C_{\phi_{1/k}}\|^2]$.

Proof. Apply Theorem 4.1, equality (4.3) and Lambert's criterion for subnormality of composition operators (cf. [18]; see also Theorem 3.4) to $C_{\phi_{1/k}}$.

By Lambert's criterion, the operator C_{ϕ_t} is subnormal if and only if for μ -almost every $x \in X$, there exists a (unique) positive Borel measure ϑ_x^t on \mathbb{R}_+ with compact support such that

(4.4)
$$h_n^{\phi_t}(x) = \int_0^\infty s^n \, d\vartheta_x^t(s), \quad n \in \mathbb{Z}_+.$$

Notice that for μ -almost every $x \in X$, the closed support of ϑ_x^t is contained in $[0, \|C_{\phi_t}\|^2]$. Substituting n = 0 into (4.4), we deduce that for μ -almost every $x \in X$, ϑ_x^t is a probability measure. Moreover, since for μ -almost every $x \in X$ and all $n \in \mathbb{Z}_+$, $h_n^{\phi_0}(x) = 1$, we see that for such x's the closed support of ϑ_x^0 equals {1}.

For $t \in \mathbb{R}_+$, we define the function $\xi_t \colon \mathbb{R}_+ \to \mathbb{R}_+$ by

$$\xi_t(s) = s^t, \quad s \in \mathbb{R}_+ \quad (\text{with } 0^0 = 1).$$

LEMMA 4.4. If (4.1) holds, then the following conditions are equivalent:

- (i) $\{C_{\phi_t}\}_{t\geq 0}$ is jointly subnormal,
- (ii) C_{ϕ_1} is subnormal and for μ -almost every $x \in X$,

(4.5)
$$h_{n/k}^{\phi}(x) = \int_{0}^{\infty} s^{n/k} d\vartheta_x^1(s) \quad \text{for all } n \in \mathbb{Z}_+ \text{ and } k \in \mathbb{N},$$

(iii) for μ -almost every $x \in X$ there exists a positive Borel measure $\tilde{\vartheta}_x$ on \mathbb{R}_+ such that

(4.6)
$$h_{n/k}^{\phi}(x) = \int_{0}^{\infty} s^{n/k} d\widetilde{\vartheta}_{x}(s) \quad \text{for all } n \in \mathbb{Z}_{+} \text{ and } k \in \mathbb{N}.$$

Moreover, if $\{C_{\phi_t}\}_{t\geq 0}$ is jointly subnormal, then

- (iv) for μ -almost every $x \in X$, $\vartheta_x^1 = \widetilde{\vartheta}_x$,
- (v) for every t > 0 and μ -almost every $x \in X$, $\vartheta_x^t(\{0\}) = 0$,
- (vi) for every t > 0 and μ -almost every $x \in X$, $\vartheta_x^{\tilde{t}} = \vartheta_x^1 \circ \xi_{1/t}$,
- (vii) for every $t \ge 0$ and μ -almost every $x \in X$, $h_t^{\phi}(x) = \int_0^\infty s^t d\vartheta_x^1(s)$.

Proof. (i) \Rightarrow (ii). It follows from (4.3), (4.4) and the measure transport theorem that for μ -almost every $x \in X$ and all $n \in \mathbb{Z}_+$ and $k \in \mathbb{N}$,

$$\int_{0}^{\infty} s^{n} d\vartheta_{x}^{1}(s) = h_{n}^{\phi_{1}}(x) = h_{kn}^{\phi_{1/k}}(x) = \int_{0}^{\infty} s^{kn} d\vartheta_{x}^{1/k}(s) = \int_{0}^{\infty} s^{n} d\vartheta_{x}^{1/k} \circ \xi_{1/k}(s),$$

hence $\vartheta_x^1 = \vartheta_x^{1/k} \circ \xi_{1/k}$, and consequently $\vartheta_x^{1/k} = \vartheta_x^1 \circ \xi_k$. By (4.3) this implies that for μ -almost every $x \in X$ and all $n \in \mathbb{Z}_+$ and $k \in \mathbb{N}$,

$$h_{n/k}^{\phi}(x) = h_n^{\phi_{1/k}}(x) = \int_0^\infty s^n \, d\vartheta_x^{1/k}(s) = \int_0^\infty s^n \, d\vartheta_x^1 \circ \xi_k(s) = \int_0^\infty s^{n/k} \, d\vartheta_x^1(s).$$

This means that for μ -almost every $x \in X$, the equality in (vii) is valid for all rational numbers $t \ge 0$.

Now we show that (vii) holds in full generality. Let t be a positive real number. Then there exists a sequence $\{t_j\}_{j=1}^{\infty}$ of positive rational numbers such that $t_j \to t$ as $j \to \infty$. Since for μ -almost every $x \in X$, the probability measure ϑ_x^1 is compactly supported, we infer from Lebesgue's dominated convergence theorem that

(4.7)
$$\int_{0}^{\infty} s^{t} d\vartheta_{x}^{1}(s) = \lim_{j \to \infty} \int_{0}^{\infty} s^{t_{j}} d\vartheta_{x}^{1}(s)$$
$$= \lim_{j \to \infty} h_{t_{j}}^{\phi}(x) \quad \text{for } \mu\text{-almost all } x \in X.$$

Employing (4.3), (3.2) and the continuity of $\{C_{\phi_s}\}_{s\geq 0}$, we see that there exists a constant M > 0 such that for μ -almost every $x \in X$,

$$|h_{t_j}^{\phi}(x)| = |h_1^{\phi_{t_j}}(x)| \le ||C_{\phi_{t_j}}||^2 \le M, \quad j \ge 1.$$

Lebesgue's dominated convergence theorem applied to (4.7) now yields

(4.8)
$$\int_{\tau} h_{1}^{\phi_{t}}(x) d\mu(x) = \|C_{\phi_{t}}(\chi_{\tau})\|^{2} = \lim_{j \to \infty} \|C_{\phi_{t_{j}}}(\chi_{\tau})\|^{2}$$
$$= \lim_{j \to \infty} \int_{\tau} h_{1}^{\phi_{t_{j}}}(x) d\mu(x)$$
$$\stackrel{(4.3)}{=} \lim_{j \to \infty} \int_{\tau} h_{t_{j}}^{\phi}(x) d\mu(x) \stackrel{(4.7)}{=} \int_{\tau} \int_{0}^{\infty} s^{t} d\vartheta_{x}^{1}(s) d\mu(x)$$

for every measurable subset τ of X of finite measure (χ_{τ} is the characteristic function of τ). Since μ is σ -finite, (4.8) implies that for μ -almost every $x \in X$,

$$h_t^{\boldsymbol{\phi}}(x) \stackrel{(4.3)}{=} h_1^{\phi_t}(x) = \int_0^\infty s^t \, d\vartheta_x^1(s),$$

which proves (vii). Hence for every real t > 0 and μ -almost every $x \in X$,

(4.9)
$$\int_{0}^{\infty} s^{n} d\vartheta_{x}^{t}(s) \stackrel{(4.4)}{=} h_{n}^{\phi_{t}}(x) \stackrel{(4.3)}{=} h_{nt}^{\phi}(x) \stackrel{(\text{vii})}{=} \int_{0}^{\infty} s^{nt} d\vartheta_{x}^{1}(s)$$
$$= \int_{0}^{\infty} s^{n} d\vartheta_{x}^{1} \circ \xi_{1/t}(s), \quad n \in \mathbb{Z}_{+}.$$

Since for μ -almost every $x \in X$, the Stieltjes moment sequence defined by the left hand side of (4.9) is determinate, we get (vi). Substituting k = 1 into (4.5) and (4.6), and using determinacy again, we obtain (iv).

In view of (vi), to prove (v) it suffices to show that

(4.10)
$$\vartheta_x^1(\{0\}) = 0$$
 for μ -almost every $x \in X$.

As in the proof of (4.7) and (4.8), we see that for μ -almost every $x \in X$,

$$\vartheta^1_x((0,\infty)) = \lim_{j \to \infty} \int_0^\infty s^{1/j} \, d\vartheta^1_x(s) = \lim_{j \to \infty} h^{\phi}_{1/j}(x),$$

and hence for every measurable subset τ of X of finite measure,

$$\mu(\tau) = \lim_{j \to \infty} \|C_{\phi_{1/j}}(\chi_{\tau})\|^2 = \lim_{j \to \infty} \int_{\tau} h_{1/j}^{\phi}(x) \, d\mu(x) = \int_{\tau} \vartheta_x^1((0,\infty)) \, d\mu(x).$$

As a consequence, $\vartheta_x^1((0,\infty)) = 1$ for μ -almost every $x \in X$. Since for μ -almost every $x \in X$, ϑ_x^1 is a probability measure, we get (4.10).

 $(ii) \Rightarrow (iii)$. Evident.

(iii)⇒(i). Verify condition (i) of Lemma 4.3. \blacksquare

The Laplace transform $\mathcal{L}(\zeta) \colon \mathbb{R}_+ \to \mathbb{R}_+$ of a finite positive Borel measure ζ on \mathbb{R}_+ is defined by

$$\mathcal{L}(\zeta)(t) = \int_{0}^{\infty} e^{-ts} d\zeta(s), \quad t \ge 0.$$

The function $\mathcal{L}(\zeta)$ is always continuous (see [28] for the foundations of the theory of the Laplace transform). Below $\mathfrak{B}(J)$ stands for the σ -algebra of all Borel subsets of a Borel set $J \subseteq \mathbb{R}$. The ring of all complex polynomials in formal indeterminate Z is denoted by $\mathbb{C}[Z]$.

We now show that if $\{C_{\phi_t}\}_{t\geq 0}$ is a jointly subnormal C_0 -semigroup of composition operators on $L^2(\mu)$, then the functions h_t^{ϕ} can be modified so as to satisfy the equality $h_t^{\phi}(x) = e^{\delta t} \mathcal{L}(P(x, \cdot))(t)$ for all $x \in X$ and $t \in \mathbb{R}_+$, where $x \mapsto P(x, \cdot)$ is a Σ -measurable family of probability Borel measures on \mathbb{R}_+ and δ is a real number.

THEOREM 4.5. If (4.1) holds and the C_0 -semigroup $\{C_{\phi_t}\}_{t\geq 0}$ is jointly subnormal, then there exists a function $P: X \times \mathfrak{B}(\mathbb{R}_+) \to [0,1]$ such that:

- 1° for every $x \in X$, $P(x, \cdot)$ is a probability measure,
- 2° for every $\sigma \in \mathfrak{B}(\mathbb{R}_+)$, $P(\cdot, \sigma)$ is Σ -measurable,
- 3° for every $t \in \mathbb{R}_+$, the function $X \ni x \mapsto \mathcal{L}(P(x, \cdot))(t) \in \mathbb{R}_+$ is Σ -measurable,
- 4° for μ -almost every $x \in X$ and all $t \in \mathbb{R}_+$, $h_t^{\phi}(x) = e^{\delta t} \mathcal{L}(P(x, \cdot))(t)$, where ${}^{(5)} \delta := 2 \log \|C_{\phi_1}\|$.

(⁵) Since $L^2(\mu) \neq \{0\}$, Proposition 1 of [23] implies that $\delta \in \mathbb{R}$ and $e^{\delta t} = ||C_{\phi_t}||^2$ for $t \ge 0$.

Moreover, for μ -almost every $x \in X$,

(4.11)
$$P(x,\sigma) = \vartheta_x^1(\omega^{-1}(\sigma)), \quad \sigma \in \mathfrak{B}(\mathbb{R}_+),$$

where ω is a function from $(0, e^{\delta}]$ to $[0, \infty)$ defined by $\omega(s) = \delta - \log s$ for $s \in (0, e^{\delta}]$.

Proof. Set $J = [0, e^{\delta}]$. It follows from Lemma 4.4(v),(vii) that there exists a set $X_0 \in \Sigma$ of full μ -measure such that for every $x \in X_0$, ϑ_x^1 is a probability measure, $\vartheta_x^1(\{0\}) = 0$, the closed support of ϑ_x^1 is contained in J and

$$h_j^{\phi}(x) = \int_J s^j \, d\vartheta_x^1(s), \quad j \in \mathbb{Z}_+, \, x \in X_0$$

This implies that for every polynomial $p = \sum_{j=0}^{k} c_j Z^j \in \mathbb{C}[Z],$

(4.12)
$$\int_{J} p(s) d\vartheta_x^1(s) = \sum_{j=0}^k c_j h_j^{\phi}(x), \quad x \in X_0.$$

Take a continuous function $f: J \to \mathbb{C}$. By the Weierstrass theorem, there exists a sequence $\{p_n\}_{n=1}^{\infty} \subseteq \mathbb{C}[Z]$ which converges to f uniformly on J. This leads to

$$\int_{J} f \, d\vartheta_x^1 = \lim_{n \to \infty} \int_{J} p_n \, d\vartheta_x^1, \quad x \in X_0,$$

which, together with (4.12), guarantees that the function $X_0 \ni x \mapsto \int_J f d\vartheta_x^1 \in \mathbb{C}$ is Σ -measurable. Denote by \mathfrak{A} the class of all Borel sets $\sigma \subseteq J$ such that the function $X_0 \ni x \mapsto \vartheta_x^1(\sigma) \in \mathbb{R}_+$ is Σ -measurable. It is clear that \mathfrak{A} is a monotone class which contains \emptyset and J. We claim that $[0, a) \in \mathfrak{A}$ for every $a \in J$ such that a > 0. Indeed, we can find a sequence $\{f_n\}_{n=1}^{\infty}$ of continuous functions on J pointwise converging to $\chi_{[0,a)}$ as $n \to \infty$, and such that $0 \leq f_n \leq 1$ for all $n \geq 1$. Then, by Lebesgue's dominated convergence theorem, we have

$$\vartheta^1_x([0,a)) = \lim_{n \to \infty} \int_J f_n \, d\vartheta^1_x, \quad x \in X_0,$$

which proves our claim. Since the class \mathfrak{A} is closed under the operation of taking set-theoretic proper difference and finite disjoint unions, we see that the algebra \mathfrak{A}_0 generated by the class $\{[0,a): a \in J, a > 0\}$ is contained in \mathfrak{A} . Applying the monotone class theorem (cf. [3, Theorem 3.4]), we conclude that $\mathfrak{A} = \mathfrak{B}(J)$. Since the measure μ is nonzero, there is no loss of generality in assuming that $X_0 = X$. Hence ϑ_x^1 is a probability measure and $\vartheta_x^1(\mathbb{R}_+ \setminus (0, e^{\delta}]) = 0$ for every $x \in X$; moreover, for every $\sigma \in \mathfrak{B}(J)$, the function $X \ni x \mapsto \vartheta_x^1(\sigma) \in \mathbb{R}$ is Σ -measurable. It is now easily seen that the function $P: X \times \mathfrak{B}(\mathbb{R}_+) \to [0, 1]$ defined by (4.11) satisfies 1° and 2°. By a standard measure theory argument, it follows that for every Borel

function $f: \mathbb{R}_+ \to \mathbb{R}_+$, the function $X \ni x \mapsto \int_0^\infty f(s) P(x, ds) \in [0, \infty]$ is Σ -measurable. This implies 3°. Since $\vartheta_x^1(\mathbb{R}_+ \setminus (0, e^{\delta}]) = 0$ for all $x \in X$, we get

$$(4.13) \qquad \int_{0} s^{t} d\vartheta_{x}^{1}(s) = \int_{(0,e^{\delta}]} e^{t \log s} d\vartheta_{x}^{1}(s) = e^{\delta t} \int_{[0,\infty)} e^{-tu} d\vartheta_{x}^{1} \circ \omega^{-1}(u)$$
$$\stackrel{(4.11)}{=} e^{\delta t} \mathcal{L}(P(x,\cdot))(t), \quad x \in X, t \in \mathbb{R}_{+}.$$

Set $\tilde{h}_t^{\boldsymbol{\phi}}(x) = e^{\delta t} \mathcal{L}(P(x,\cdot))(t)$ for $x \in X$ and $t \in \mathbb{R}_+$. By 3°, the function $\tilde{h}_t^{\boldsymbol{\phi}}$ is Σ -measurable for every $t \in \mathbb{R}_+$. It follows from (4.13) and Lemma 4.4(vii) that $\tilde{h}_t^{\boldsymbol{\phi}} = h_t^{\boldsymbol{\phi}}$ a.e. $[\mu]$ for every $t \in \mathbb{R}_+$. Replacing $h_t^{\boldsymbol{\phi}}$ by $\tilde{h}_t^{\boldsymbol{\phi}}$, we get 4° (cf. Remark 4.2). This completes the proof.

COROLLARY 4.6. If (4.1) holds and $\delta := 2 \log ||C_{\phi_1}||$, then the following conditions are equivalent:

- (i) $\{C_{\phi_t}\}_{t\geq 0}$ is jointly subnormal,
- (ii) for μ -almost every $x \in X$ there exists a finite positive Borel measure ζ_x on \mathbb{R}_+ such that for all $t \in \mathbb{R}_+$, $h_t^{\phi}(x) = e^{\delta t} \mathcal{L}(\zeta_x)(t)$.

Moreover, if (ii) holds, then

 ∞

(4.14)
$$\zeta_x = \vartheta_x^1 \circ \omega^{-1} \quad for \ \mu\text{-almost every } x \in X,$$

where ω is as in Theorem 4.5.

Proof. (i) \Rightarrow (ii). Apply Theorem 4.5.

(ii) \Rightarrow (i). Verify condition (i) of Lemma 4.3.

Assume that (ii) holds. Then by Lemma 4.4(v) and equalities (4.3) and (4.4), we see that for μ -almost every $x \in X$,

$$\int_{(0,e^{\delta}]} u^n d\vartheta_x^1(u) = h_n^{\phi}(x) \stackrel{\text{(ii)}}{=} \int_0^{\infty} \omega^{-1}(s)^n d\zeta_x(s)$$
$$= \int_{(0,e^{\delta}]} u^n d\zeta_x \circ \omega(u), \quad n \in \mathbb{Z}_+.$$

Since the above Stielt jes moment sequence is determinate, we get $\vartheta_x^1 = \zeta_x \circ \omega$ for μ -almost every $x \in X$, which completes the proof.

Note that if (ii) of Corollary 4.6 holds and $P: X \times \mathfrak{B}(\mathbb{R}_+) \to [0, 1]$ is as in Theorem 4.5, then by (4.11) and (4.14), we have

 $\zeta_x = P(x, \cdot)$ and $\mathcal{L}(\zeta_x) = \mathcal{L}(P(x, \cdot))$ for μ -almost every $x \in X$.

5. An example. We begin by discussing a particular class of C_0 -semigroups of composition operators induced by linear transformations of \mathbb{R}^{\varkappa} .

PROPOSITION 5.1. Let μ be a positive Borel measure on \mathbb{R}^{\varkappa} which is finite on each compact subset of $\mathbb{R}^{\varkappa} \setminus \{0\}$ and $\mu(\{0\}) = 0$. Suppose that A

is a linear transformation of \mathbb{R}^{\varkappa} such that for every $t \in \mathbb{R}_+$, the composition operator $C_{e^{tA}}$ is bounded on $L^2(\mu)$, and

$$(5.1)\qquad\qquad\qquad \sup_{0\leq t\leq t_0}\|C_{e^{tA}}\|<\infty$$

for some $t_0 > 0$. Then $\{C_{e^{tA}}\}_{t \ge 0}$ is a C_0 -semigroup.

Proof. Take a sequence $\{t_n\}_{n=1}^{\infty}$ of positive real numbers converging to 0. Fix real numbers $0 < m < M < \infty$. Let $f \colon \mathbb{R}^{\varkappa} \to \mathbb{C}$ be a continuous function vanishing off the set $\Delta_{m,M} := \{x \in \mathbb{R}^{\varkappa} \colon m \leq \|x\| \leq M\}$ ($\|\cdot\|$ is the Euclidean norm on \mathbb{R}^{\varkappa}). Take $\varepsilon > 0$. Since f is uniformly continuous, there exists $\delta > 0$ such that $|f(x) - f(y)| \leq \varepsilon$ for all $x, y \in \mathbb{R}^{\varkappa}$ such that $||x - y|| \leq \delta$. As the group $\{e^{tA}\}_{t \in \mathbb{R}}$ is uniformly continuous, there exists an integer $n_0 \geq 1$ such that $||e^{\pm t_n A}|| \leq 2$ and $||e^{t_n A} - I|| \leq \delta/2M$ for all $n \geq n_0$. This implies that for all $n \geq n_0$,

$$\begin{aligned} \|e^{t_n A}x\| &\geq \frac{1}{2} \|x\| & \text{ for all } x \in \mathbb{R}^{\varkappa}, \\ \|e^{t_n A}x\| &< m & \text{ for all } x \in \mathbb{R}^{\varkappa} \text{ such that } \|x\| < m/2, \\ \|e^{t_n A}x - x\| &\leq \delta & \text{ for all } x \in \mathbb{R}^{\varkappa} \text{ such that } \|x\| \leq 2M. \end{aligned}$$

Thus, we have

$$|f(e^{t_n A}x) - f(x)| \le \begin{cases} \varepsilon & \text{if } x \in \Delta_{m/2,2M}, \\ 0 & \text{otherwise,} \end{cases} \quad n \ge n_0$$

and consequently

$$||C_{e^{t_nA}}f - f||^2 = \int_{\Delta_{m/2,2M}} |f(e^{t_nA}x) - f(x)|^2 d\mu(x) \le \varepsilon^2 \mu(\Delta_{m/2,2M})$$

for all $n \geq n_0$. Summarizing, we have proved that $\lim_{t\to 0+} C_{e^{tA}}f = f$ for every continuous function $f: \mathbb{R}^{\varkappa} \to \mathbb{C}$ with compact support contained in $\mathbb{R}^{\varkappa} \setminus \{0\}$. Since μ is finite on each compact subset of $\mathbb{R}^{\varkappa} \setminus \{0\}$ and $\mu(\{0\}) = 0$, the set of all such functions is dense in $L^2(\mu)$ (use [24, Theorems 2.18 and 3.14]). This together with (5.1) implies that $\lim_{t\to 0+} C_{e^{tA}}f = f$ for every $f \in L^2(\mu)$, which means that $\{C_{e^{tA}}\}_{t\geq 0}$ is a C_0 -semigroup.

COROLLARY 5.2. Let $\|\cdot\|$ be a norm on \mathbb{R}^{\varkappa} induced by an inner product, ϱ be a member of $\mathcal{R}_{\|\cdot\|}$ and μ be any of the measures $\varrho d\nu_{\varkappa}$ or $(1/\varrho)d\nu_{\varkappa}$. Suppose that A is a linear transformation of \mathbb{R}^{\varkappa} such that for every $t \in \mathbb{R}_+$, the composition operator $C_{e^{tA}}$ is bounded on $L^2(\mu)$. Then $\{C_{e^{tA}}\}_{t\geq 0}$ is a C_0 -semigroup.

Proof. It follows from [25, Lemma 2.1 and Proposition 2.2] and the continuity of the function $\mathbb{R} \ni t \mapsto \det e^{-tA} \in \mathbb{C} \setminus \{0\}$ that (5.1) holds for every $t_0 > 0$. Applying Proposition 5.1 completes the proof.

REMARK 5.3. It is a matter of routine to verify that Corollary 3.5, Theorem 3.6, Proposition 5.1 and Corollary 5.2 remain valid for \mathbb{C} -linear transformations of \mathbb{C}^{\varkappa} (see also Section 3 of [25]).

We now show that the implication $(ii) \Rightarrow (i)$ of Lemma 4.4 is no longer true if the hypothesis (4.5) is dropped.

EXAMPLE 5.4. Denote by $|\cdot|_2$ the Euclidean norm on \mathbb{C}^2 , i.e. $|x|_2^2 = |x_1|^2 + |x_2|^2$ for $x = (x_1, x_2) \in \mathbb{C}^2$. Let $\varrho \in \mathcal{R}_{|\cdot|_2}$ be a density function on \mathbb{C}^2 of polynomial type and let $d\mu = \varrho \, d\nu_4$. Following R. Mathias (cf. [1]), we define the nonsingular 2×2 complex matrix $A = \pi \begin{bmatrix} i & 1 \\ 0 & -i \end{bmatrix}$. Consider the semigroup $\{\phi_t\}_{t\geq 0}$ of transformations of \mathbb{C}^2 given by $\phi_t = e^{tA}$. According to a complex version of [25, Proposition 2.2], the composition operator C_{ϕ_t} is bounded on $L^2(\mu)$ for every $t \in \mathbb{R}_+$. Hence, by a complex version of Corollary 5.2, $\{C_{\phi_t}\}_{t\geq 0}$ is a C_0 -semigroup. Since ϕ_1 is normal in $(\mathbb{C}^2, |\cdot|_2)$ and ϕ_t is not normal in $(\mathbb{C}^2, |\cdot|_2)$ for some t > 0, we infer from a complex version of [25, Theorem 2.5] that C_{ϕ_1} is subnormal and $\{C_{\phi_t}\}_{t\geq 0}$ is not jointly subnormal.

References

- B. Aupetit and J. Zemánek, Erratum: "A characterization of normal matrices by their exponentials" (Linear Algebra Appl. 132 (1990), 119-121), Linear Algebra Appl. 180 (1993), 1-2.
- [2] C. Berg, J. P. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Grad. Texts in Math. 100, Springer, Berlin, 1984.
- [3] P. Billingsley, *Probability and Measure*, Wiley, New York, 1979.
- [4] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75–94.
- [5] C. Burnap, I. Jung and A. Lambert, Separating partial normality classes with composition operators, J. Operator Theory 53 (2005), 381–397.
- [6] J. Conway, The Theory of Subnormal Operators, Math. Surveys Monogr. 36, Amer. Math. Soc., Providence, 1991.
- [7] A. Daniluk and J. Stochel, Seminormal composition operators induced by affine transformations, Hokkaido Math. J. 26 (1997), 377-404.
- [8] P. Dibrell and J. T. Campbell, Hyponormal powers of composition operators, Proc. Amer. Math. Soc. 102 (1988), 914-918.
- [9] N. Dunford and J. T. Schwartz, *Linear Operators*, Part I, Interscience, New York, 1958.
- [10] M. R. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta Sci. Math. (Szeged) 35 (1973), 61-64.
- [11] B. Fuglede, The multidimensional moment problem, Expo. Math. 1 (1983), 47–65.
- [12] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 125–134.
- [13] —, Measure Theory, van Nostrand, Princeton, 1956.
- [14] D. Harrington and R. Whitley, Seminormal composition operators, J. Operator Theory 11 (1984), 125–135.
- [15] T. Itô, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. Ser. I 14 (1958), 1–15.

- [16] A. Lambert, Subnormality and weighted shifts, J. London Math. Soc. 14 (1976), 476-480.
- [17] —, Hyponormal composition operators, Bull. London Math. Soc. 18 (1986), 395–400.
- [18] —, Subnormal composition operators, Proc. Amer. Math. Soc. 103 (1988), 750-754.
- [19] —, Normal extensions of subnormal composition operators, Michigan Math. J. 35 (1988), 443–450.
- [20] A. Lubin, Weighted shifts and commuting normal extensions, J. Austral. Math. Soc. Ser. A 27 (1979), 17-26.
- W. Mlak, Operators induced by transformations of Gaussian variables, Ann. Polon. Math. 46 (1985), 197-212.
- [22] E. Nordgren, Composition operators on Hilbert spaces, Lecture Notes in Math. 693, Springer, Berlin, 1978, 37-63.
- [23] A. E. Nussbaum, Semi-groups of subnormal operators, J. London Math. Soc. 14 (1976), 340–344.
- [24] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974.
- [25] J. Stochel, Seminormal composition operators on L² spaces induced by matrices, Hokkaido Math. J. 19 (1990), 307–324.
- [26] F. H. Szafraniec, Boundedness of the shift operator related to positive definite forms: an application to moment problems, Ark. Mat. 19 (1981), 251–259.
- [27] R. Whitley, Normal and quasinormal composition operators, Proc. Amer. Math. Soc. 70 (1978), 114–118.
- [28] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, 1946.

Zakład Zastosowań Matematyki Instytut Matematyki Akademia Rolnicza Uniwersytet Jagielloński Al. Mickiewicza 24/28 Reymonta 4 30-059 Kraków, Poland 30-059 Kraków, Poland E-mail: piotr.budzynski@ar.krakow.pl E-mail: stochel@im.uj.edu.pl

> Received April 23, 2006 Revised version January 11, 2007 (5905)

184