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Joint subnormality of n-tuples and
C0-semigroups of omposition operators on L2-spaesbyPiotr Budzy«ski and Jan Stohel (Kraków)

Abstrat. Joint subnormality of a family of omposition operators on L2-spae isharaterized by means of positive de�niteness of appropriate Radon�Nikodym deriva-tives. Next, simpli�ed positive de�niteness onditions guaranteeing joint subnormality of a
C0-semigroup of omposition operators are supplied. Finally, the Radon�Nikodym deriva-tives assoiated to a jointly subnormal C0-semigroup of omposition operators are shownto be the Laplae transforms of probability measures (modulo a C0-group of salars)onstituting a measurable family.1. Introdution. The theory of subnormal operators is a vital part ofOperator Theory (f. [6℄). The notion of a subnormal operator was introduedby Halmos in [12℄. Roughly speaking, a subnormal operator is a restritionof a normal one to its invariant subspae. Halmos himself gave in [12℄ atwo-ondition riterion for subnormality of a single (bounded) operator. Itwas suessively simpli�ed by Bram (f. [4℄), Embry (f. [10℄) and Lambert(f. [16℄). In [15℄ It� solved the problem of extending a family of ommutingoperators ating in a Hilbert spae H to a family of ommuting normaloperators ating in a possibly larger Hilbert spae K. In partiular, It� provedthat any C0-semigroup of subnormal operators has an extension whih is a
C0-semigroup of normal operators. This in turn enabled Nussbaum (f. [23℄)to show that the in�nitesimal generator of a C0-semigroup of subnormaloperators is a subnormal operator (in general unbounded). A multioperatorounterpart of the Embry�Lambert haraterization of subnormality wasproved by Lubin in [20℄.The foundations of the theory of omposition operators in abstrat L2-spaes are well developed. In partiular, the questions of boundedness, nor-2000 Mathematis Subjet Classi�ation: Primary 47B20, 47B33; Seondary 47D03,20M20.Key words and phrases: omposition operator on L2-spae, C0-semigroup, subnormaloperator, joint subnormality.The work of the seond author was supported by the KBN grant 2 P03A 037 024.[167℄ © Instytut Matematyzny PAN, 2007



168 P. Budzy«ski and J. Stohelmality, quasinormality, subnormality, hyponormality et. of suh operatorsare entirely solved (f. [9, 22, 27, 14, 8, 18, 19, 5℄; see also [21, 25, 7℄ forspeial lasses of omposition operators). The present paper o�ers riteria,written in terms of Radon�Nikodym derivatives, for joint subnormality of
n-tuples as well as C0-semigroups of omposition operators on L2-spaes(see Theorem 3.4, Lemma 4.4 and Corollary 4.6). This generalizes in vari-ous ways Lambert's haraterization of subnormality of a single ompositionoperator (f. [18℄). For a partiular lass of omposition operators induedby square matries, joint subnormality is ompletely haraterized by alge-brai properties of symbols (f. Theorem 3.6). It is shown that for every real
t ≥ 0, the Radon�Nikodym derivative hφ

t attahed to a jointly subnormal
C0-semigroup of omposition operators {Cφu}u≥0 an be modi�ed so as tooinide (modulo a C0-group of salars) with the Laplae transforms alu-lated at t of a measurable family of probability Borel measures, the familybeing independent of t (f. Theorem 4.5). The paper onludes with an ex-ample of a C0-semigroup of omposition operators {Cφt}t≥0 whih is notjointly subnormal, though the operator Cφ1 is subnormal. This shows thatthe riteria for joint subnormality ontained in Lemma 4.4 are optimal in asense.A subsequent paper will be devoted to a general study of joint subnor-mality of C0-groups of omposition operators.2. Preliminaries. Denote by Z+ the set of all nonnegative integers, by
N the set of all positive integers and by R+ the set of all nonnegative realnumbers. If Q is a subset of C ontaining 0, then Q(Zn+) stands for the set ofall funtions λ : Z

n
+ → Q for whih the set λ−1(Q \ {0}) is �nite.We say that an n-sequene {tα}α∈Z

n
+
of real numbers is a Stieltjes moment

n-sequene if there exists a positive Borel measure µ on R
n
+ suh that

tα =
\

Rn+

sα dµ(s), α ∈ Z
n
+;(2.1)

suh a µ is alled a representing measure for {tα}α∈Z
n
+
. If (2.1) holds andthe losed support of µ is ontained in a losed subset F of R

n
+, then we saythat {tα}α∈Z

n
+
is a Stieltjes moment n-sequene on F . Let us reall a use-ful haraterization of Stieltjes moment n-sequenes on ompat sets. Below

ej = (δj,1, . . . , δj,n) for j = 1, . . . , n, where δk,l stands for the Kroneker sym-bol (for simpliity, we suppress the dependene of ej on n in the notation).Theorem 2.1 ([26, Theorem 3℄). Assume that an n-sequene {tα}α∈Z
n
+

⊆ R satis�es the following three onditions:(i) ∑
α,β∈Zn+

tα+βλ(α)λ(β) ≥ 0 for all λ ∈ C
(Zn+),(ii) ∑

α,β∈Z
n
+
tα+β+ejλ(α)λ(β) ≥ 0 for all λ ∈ C

(Zn+) and j = 1, . . . , n,



Joint subnormality of omposition operators on L2-spaes 169(iii) there exists an n-tuple (r1, . . . , rn) of nonnegative real numbers suhthat
t2α+2ej ≤ r2j t2α, α ∈ Z

n
+, j = 1, . . . , n.Then {tα}α∈Z

n
+
is a Stieltjes moment n-sequene on a ompat subset of R

n
+.Moreover , a representing measure µ for {tα}α∈Z

n
+

is unique and its losedsupport is ontained in the retangle [0, r1] × · · · × [0, rn]. If [0, R1] × · · · ×
[0, Rn] is the least retangle ontaining the losed support of µ, then

Rj = lim
n→∞

t
1/2n
2nej

, j = 1, . . . , n.It follows from Theorem 2.1 that a Stieltjes moment n-sequene whihhas a representing measure with ompat support is determinate, i.e. therepresenting measure is unique (within the lass of all Borel measures notneessarily ompatly supported, f. [11℄).A bounded (linear) operator S on a (omplex) Hilbert spae H is alledsubnormal if there exists a Hilbert spae K ⊇ H (isometri embedding)and a bounded normal operator N on K suh that S ⊆ N , i.e. Sh = Nhfor all h ∈ H. We say that a family {Sω : ω ∈ Ω} of bounded operatorson H is jointly subnormal if there exists a Hilbert spae K ⊇ H and afamily {Nω : ω ∈ Ω} of ommuting bounded normal operators on K suhthat Sω ⊆ Nω for all ω ∈ Ω. It is lear that a jointly subnormal family
{Sω : ω ∈ Ω} is ommutative.Theorem 2.2 ([15℄). A family {Sω : ω ∈ Ω} of bounded operators on aHilbert spae H is jointly subnormal if and only if for every �nite subset Ω′of Ω the family {Sω : ω ∈ Ω′} is jointly subnormal.Let us reall the Embry�Lambert�Lubin riterion for joint subnormality(f. [20℄): an n-tuple S = (S1, . . . , Sn) of ommuting bounded operators ona Hilbert spae H is jointly subnormal if and only if(2.2) ∑

α,β∈Zn+

‖Sα+βf‖2λ(α)λ(β) ≥ 0, λ ∈ C
(Zn+), f ∈ H,

where Sα = Sα1
1 · · ·Sαnn for α = (α1, . . . , αn) ∈ Z

n
+.3. Families of omposition operators. Let (X,Σ, µ) be a σ-�nitemeasure spae. Consider a Σ-measurable transformation φ : X → X suhthat the measure µ ◦ φ−1 is absolutely ontinuous with respet to µ. Thenthe operator Cφ : L2(µ) ⊇ D(Cφ) → L2(µ) given by

D(Cφ) = {f ∈ L2(µ) : f ◦ φ ∈ L2(µ)}, Cφf = f ◦ φ for f ∈ D(Cφ),



170 P. Budzy«ski and J. Stohelis well-de�ned and linear. We all it the omposition operator indued by φ.We also say that φ is the symbol of Cφ. For every n ∈ Z+, we set(3.1) hφn =
dµ ◦ (φn)−1

dµ
.Notie that hφ0 = 1 a.e. [µ]. Reall that Cφ is a bounded operator on L2(µ)if and only if hφ1 ∈ L∞(µ). If ψ : X → X is a Σ-measurable transformationsuh that the mapping L2(µ) ∋ f 7→ f ◦ ψ ∈ L2(µ) is well-de�ned, then themeasure µ ◦ ψ−1 is absolutely ontinuous with respet to µ and

‖Cψ‖ = ‖hψ1 ‖
1/2
∞ ,(3.2)where ‖hψ1 ‖∞ stands for the L∞(µ)-norm of hψ1 . The interested reader isreferred to [9℄ and [22℄ for further information on omposition operators.Consider now an n-tuple φ = (φ1, . . . , φn) of Σ-measurable transforma-tions of X. For α = (α1, . . . , αn) ∈ Z

n
+, we de�ne the measure µφ

α on Xby
µφ
α(σ) = µ((φα)−1(σ)), σ ∈ Σ,where φα := φα1

1 ◦ · · · ◦ φαnn . It is a matter of routine to show that if themeasures µ ◦ φ−1
j , 1 ≤ j ≤ n, are absolutely ontinuous with respet to µ,then so is µφ

α for every α ∈ Z
n
+. As a onsequene, we may write the Radon�Nikodyn derivatives

hφ
α =

dµφ
α

dµ
, α ∈ Z

n
+,and onsider the omposition operators Cφj in L2(µ) for j = 1, . . . , n. If noonfusion an arise, we write µα and hα instead of µφ

α and hφ
α , respetively.We now investigate under what onditions the equality Cφ = Cψ holds.Lemma 3.1. Assume that φ and ψ are Σ-measurable transformations of

X induing bounded omposition operators Cφ and Cψ on L2(µ).(i) If φ = ψ a.e. [µ] (1), then Cφ = Cψ.(ii) If Cφ = Cψ, then µ ◦ (φn)−1 = µ ◦ (ψn)−1 and hφn = hψn a.e. [µ] forevery n ∈ Z+.(iii) Cφ 6= Cψ if and only if there exist sets Y, Z ∈ Σ suh that Y ∩Z = ∅and µ(φ−1(Y ) ∩ ψ−1(Z)) > 0.Proof. (i) is obvious.(ii) If σ ∈ Σ and µ(σ) < ∞, then the harateristi funtion χσ of σ isin L2(µ) and, by the measure transport theorem ([13, Theorem C, p. 163℄),
(1) Note that in general the set {x ∈ X : φ(x) 6= ψ(x)} may not belong to Σ (seeExample 3.2). Hene φ = ψ a.e. [µ] is understood to mean that there exists a set Y ∈ Σof full µ-measure suh that φ(x) = ψ(x) for all x ∈ Y .



Joint subnormality of omposition operators on L2-spaes 171we have\
σ

hφn dµ = ‖Cφnχσ‖
2 = ‖Cnφχσ‖

2 = ‖Cnψχσ‖
2 = ‖Cψnχσ‖

2 =
\
σ

hψn dµ.Sine µ is σ-�nite, we get hφn = hψn a.e. [µ], whih implies µ ◦ (φn)−1 =
µ ◦ (ψn)−1.(iii) To prove the �if� part of (iii), set E = φ−1(Y ) ∩ ψ−1(Z). Sine themeasure µ is σ-�nite, there exists a Σ-measurable funtion f : X → R+suh that f(x) > 0 for every x ∈ Y , f(x) = 0 for every x ∈ X \ Y andT
X |f(x)|2 dµ(x) < ∞. Combining this with the inlusions φ(E) ⊆ Y and
ψ(E) ⊆ Z ⊆ X \ Y , we see that f(φ(x)) > 0 and f(ψ(x)) = 0 for every
x ∈ E. Sine µ(E) > 0, we get Cφf 6= Cψf .Suppose now that Cφf 6= Cψf for some f ∈ L2(µ). Sine simple funtionsbelonging to L2(µ) are dense in L2(µ) and the operators Cφ and Cψ areontinuous, we dedue that there exists a simple funtion h ∈ L2(µ) suhthat Cφh 6= Cψh. Then the set F := {x ∈ X : h(φ(x)) 6= h(ψ(x))} is in Σand µ(F ) > 0. Sine h is a simple funtion, it is of the form h =

∑n
k=1 αkχYk ,where n ∈ N, {αk}nk=1 is a sequene of distint omplex numbers and {Yk}

n
k=1is a Σ-measurable partition of X. Clearly, {φ−1(Yk) ∩ ψ

−1(Yl)}
n
k,l=1 is a Σ-measurable partition of X and (2)

F =
n⋃

k,l=1
k 6=l

φ−1(Yk) ∩ ψ
−1(Yl).

Sine µ(F ) > 0, we onlude that there exist k, l ∈ {1, . . . , n} suh that
k 6= l and µ(φ−1(Yk) ∩ ψ

−1(Yl)) > 0. This ompletes the proof.Note that if the sets Y and Z are as in (iii) of Lemma 3.1, then µ(Y ) > 0and µ(Z) > 0 (use the fat that µ ◦ φ−1 ≪ µ and µ ◦ ψ−1 ≪ µ).Example 3.2. It is not true in general that the equality Cφ = Cψ implies
φ = ψ a.e. [µ]. This an be illustrated by various examples built on σ-algebrasgenerated by �nite (or in�nite) partitions of a nonempty set X. Here is asample of what is possible in this matter. Consider the set X = {1, 2, 3, 4, 5},the σ-algebra (= algebra) Σ generated by the partition {1, 2}, {3}, {4, 5}of X, and a �nite positive measure µ on Σ suh that µ({1, 2}) > 0, µ({3})
> 0 and µ({4, 5}) > 0. Let φ and ψ be the transformations of X given by
φ(1) = 4, φ(2) = 5, φ(3) = 5, ψ(1) = 5, ψ(2) = 5, ψ(3) = 4 and φ(k) =
ψ(k) = k for k = 4, 5. Then φ and ψ are Σ-measurable transformations of
X suh that Cφ and Cψ are well-de�ned on L2(µ) and Cφ = Cψ, thoughthe equality φ = ψ a.e. [µ] does not hold; in this partiular ase the set
{x ∈ X : φ(x) 6= ψ(x)} does not belong to Σ.

(2) Note that Cφh 6= Cψh implies n ≥ 2.



172 P. Budzy«ski and J. StohelCorollary 3.3. Let X be a topologial Hausdor� spae, Σ be a σ-algebra of all Borel subsets of X and µ be a σ-�nite positive Borel measureon X whih is inner regular (3) with respet to ompat sets. Assume that
φ and ψ are ontinuous transformations of X induing bounded omposi-tion operators Cφ and Cψ on L2(µ). Then Cφ = Cψ if and only if φ = ψa.e. [µ]. Moreover , if µ(U) > 0 for every nonempty open subset U of X, then
Cφ = Cψ if and only if φ = ψ.Proof. We only have to show that Cφ = Cψ implies φ = ψ a.e. [µ](the �moreover� part is a diret onsequene of this impliation). Suppose,ontrary to our laim, that µ(X0) > 0, where X0 = {x ∈ X : φ(x) 6= ψ(x)}(as X is Hausdor�, the set X \ X0 is losed). Take x ∈ X0. Sine X isHausdor�, there exist open neighbourhoods Yx and Zx of φ(x) and ψ(x)respetively suh that Yx ∩ Zx = ∅. Then Ex := φ−1(Yx) ∩ ψ

−1(Zx) is anopen neighbourhood of x and Ex ⊆ X0. This implies that X0 =
⋃
x∈X0

Ex.In view of Lemma 3.1(iii), it is enough to show that there exists x0 ∈ X0suh that µ(Ex0) > 0. Suppose, ontrary to our laim, that µ(Ex) = 0 forevery x ∈ X0. If K is a ompat subset of X0, then there exists a �nite subset
{x1, . . . , xn} of X0 suh that K ⊆

⋃n
k=1Exk . This implies that µ(K) = 0. Itfollows from the inner regularity of µ that µ(X0) = 0, a ontradition. Thisompletes the proof.Jointly subnormal n-tuples of omposition operators an be haraterizedas follows (see [18℄ for a single operator ase).Theorem 3.4. An n-tuple (Cφ1 , . . . , Cφn) of ommuting bounded om-position operators on L2(µ) is jointly subnormal if and only if one of thefollowing three equivalent onditions holds:(i) for µ-almost every x ∈ X,

∑

α,β∈Z
n
+

hα+β(x)λ(α)λ(β) ≥ 0 for all λ ∈ C
(Zn+),

(ii) for µ-almost every x ∈ X, {hα(x)}α∈Z
n
+

is a Stieltjes moment n-sequene,(iii) for µ-almost every x ∈ X, {hα(x)}α∈Z
n
+

is a Stieltjes moment n-sequene on the ompat set [0, ‖Cφ1‖
2] × · · · × [0, ‖Cφn‖

2].Proof. Set φ = (φ1, . . . , φn) and Cφ = (Cφ1 , . . . , Cφn). Applying theommutativity of Cφ and the measure transport theorem, we get(3.3) ‖Cαφf‖
2 = ‖Cφαf‖

2 =
\
|f |2hα dµ, f ∈ L2(µ), α ∈ Z

n
+.

(3) We do not assume that µ is �nite on ompat subsets of X.



Joint subnormality of omposition operators on L2-spaes 173Suppose that Cφ is jointly subnormal. By (2.2) and (3.3), we have(3.4) 0 ≤
∑

α,β∈Z
n
+

‖Cα+β
φ f‖2λ(α)λ(β) =

\
|f |2gλdµ, λ ∈ C

(Zn+), f ∈ L2(µ),

where gλ =
∑

α,β∈Z
n
+
hα+βλ(α)λ(β). Sine f is an arbitrary member of L2(µ)and µ is σ-�nite, we dedue that gλ ≥ 0 a.e. [µ] for all λ ∈ C

(Zn+). Hene(3.5) µ(X \ g−1
λ (R+)) = 0, λ ∈ C

(Zn+).Let Q be any ountable dense subset of C ontaining 0. Set
τ =

⋂

λ∈Q
(Zn+)

g−1
λ (R+).

It follows from (3.5) that
µ(X \ τ) = 0.(3.6)Sine Q is dense in C and gλ(x) ≥ 0 for all x ∈ τ and λ ∈ Q(Zn+), we see that(3.7) ∑

α,β∈Z
n
+

hα+β(x)λ(α)λ(β) ≥ 0, x ∈ τ, λ ∈ C
(Zn+).

Repeating the above reasoning with f ◦ φj in plae of f , we get
(3.8) µ(X \ τj) = 0, j = 1, . . . , n,

∑

α,β∈Z
n
+

hα+β+ej (x)λ(α)λ(β) ≥ 0, x ∈ τj , λ ∈ C
(Zn+), j = 1, . . . , n,

where τj =
⋂
λ∈Q

(Zn+) g
−1
j,λ(R+) with gj,λ =

∑
α,β∈Zn+

hα+β+ejλ(α)λ(β). More-over, by (3.3), the following inequality holds for all f ∈ L2(µ), α ∈ Z
n
+ and

j = 1, . . . , n:\
|f |2h2α+2ej dµ = ‖C

2α+2ej
φ f‖2 ≤ ‖Cφj‖

4‖C2α
φ f‖2 = ‖Cφj‖

4
\
|f |2h2α dµ.By σ-�niteness of µ this implies that for µ-almost every x ∈ X,

h2α+2ej(x) ≤ ‖Cφj‖
4h2α(x), α ∈ Z

n
+, j = 1, . . . , n.(3.9)Combining (3.6)�(3.9), we onlude that for µ-almost every x ∈ X, the

n-sequene {hα(x)}α∈Z
n
+
satis�es the assumptions of Theorem 2.1. Heneondition (iii) holds.Impliations (iii)⇒(ii) and (ii)⇒(i) are lear.If (i) holds, then we an go bak from (3.6) and (3.7) to (3.4). Applyingthe Embry�Lambert�Lubin riterion ompletes the proof.Consider now a positive Borel measure µ on R

κ of the form dµ = ̺dνκ,where ̺ : R
κ → [0,∞) is a Borel funtion and νκ is the κ-dimensionalLebesgue measure. It is left to the reader to hek that µ is σ-�nite and



174 P. Budzy«ski and J. Stohelinner regular with respet to ompat sets. Assume that νκ(̺−1({0})) = 0.Suppose that φ = (φ1, . . . , φn) is an n-tuple of invertible linear transforma-tions of R
κ suh that the omposition operators Cφ1 , . . . , Cφn are boundedon L2(̺dνκ). Write φα = φα1

1 · · ·φαnn for α = (α1, . . . , αn) ∈ Z
n.Corollary 3.5. Let ̺ and φ be as above. The n-tuple (Cφ1 , . . . , Cφn)is jointly subnormal if and only if one of the following three equivalent on-ditions holds:

1o the transformations φ1, . . . , φn ommute and for νκ-almost every xin R
κ,

∑

α,β∈Zn+

̺(φ−(α+β)(x))λ(α)λ(β) ≥ 0 for all λ ∈ C
(Zn+),

2o the transformations φ1, . . . , φn ommute and for νκ-almost every xin R
κ, {̺(φ−α(x))}α∈Z

n
+
is a Stieltjes moment n-sequene,

3o the transformations φ1, . . . , φn ommute and for νκ-almost every xin R
κ, {̺(φ−α(x))}α∈Z

n
+
is a Stieltjes moment n-sequene on the om-pat set [0, ‖Cφ1‖

2] × · · · × [0, ‖Cφn‖
2].Moreover , if (Cφ1 , . . . , Cφn) is jointly subnormal and σ 6= ∅ is an open subsetof R

κ suh that ̺ is positive and ontinuous on (4) σ and φj(σ) = σ for all
j = 1, . . . , n, then 1o�3o hold with �for νκ-almost every x ∈ Rκ� replaed by�for every x ∈ σ�.Proof. By the assumption on ̺, the measures µ and νκ are mutuallyabsolutely ontinuous. Clearly, νκ does not vanish on nonempty open subsetsof Rκ and so neither does µ. Sine µ is inner regular with respet to ompatsets, we dedue from Corollary 3.3 that the operators Cφ1 , . . . , Cφn ommuteif and only if the transformations φ1, . . . , φn ommute.It is a matter of routine to verify that(3.10) hα =

̺ ◦ φ−α

̺|detφ|α
a.e. [µ], α ∈ Z

n
+,where |detφ| = (|detφ1|, . . . , |detφn|). This enables us to show that ondi-tions 1o�3o orrespond to onditions (i)�(iii) of Theorem 3.4 respetively.For the proof of the �moreover� part, notie that in view of (3.10) allthe Radon�Nikodym derivatives hα, α ∈ Z

n
+, are ontinuous on σ. This, themutual absolute ontinuity of µ and νκ, and the fat that νκ does not vanishon nonempty open subsets of R

κ imply that the inequalities in (3.7)�(3.9)are valid for all x ∈ σ. Hene the same argument as in the proof of Theorem3.4 yields the onlusion.
(4) This part of the onlusion of Corollary 3.5 is patterned upon Proposition 2.4of [25℄. We take this opportunity to mention that the density funtion r appearing inProposition 2.4 of [25℄ has to be assumed to be positive on the set σ.



Joint subnormality of omposition operators on L2-spaes 175We onlude this setion with a generalization of [25, Theorem 2.5℄ to thease of families of omposition operators. Let ‖ · ‖ be a norm on R
κ induedby an inner produt. Denote byR‖·‖ the lass of all funtions ̺ : R

κ → [0,∞)of the form
̺(x) =

∞∑

m=0

am‖x‖
2m, x ∈ R

κ,where am are nonnegative real numbers and ak > 0 for some k ≥ 1. A densityfuntion ̺ ∈ R‖·‖ is said to be of polynomial type if there exists k ≥ 2 suhthat am = 0 for all m ≥ k. We refer the reader to [25, Proposition 2.2℄ fora riterion whih guarantees the boundedness of the omposition operator
Cφ on L2(̺dνκ) (resp. on L2((1/̺)dνκ)), where φ is an invertible lineartransformation of R

κ.Theorem 3.6. Let ‖ · ‖ be a norm on Rκ indued by an inner prod-ut , ̺ be a member of R‖·‖ and A be a nonempty family of invertible lineartransformations of R
κ induing bounded omposition operators {Cφ : φ ∈ A}on L2(̺dνκ) (resp. on L2((1/̺)dνκ)). Then the family {Cφ : φ ∈ A} (resp.

{C∗
φ : φ ∈ A}) is jointly subnormal if and only if A onsists of ommutingnormal operators in (Rκ, ‖ · ‖).Proof. If {Cφ : φ ∈ A} is jointly subnormal, then by Corollary 3.5, A isommutative, and by Theorem 2.5 of [25℄ eah φ ∈ A is normal in (Rκ, ‖ · ‖).In view of Theorem 2.2, the proof of the onverse redues to the aseof A �nite, say A = {φ1, . . . , φn}. Set φ = (φ1, . . . , φn). Sine φ1, . . . , φnare normal and ommuting, so are their inverses. This in turn implies that

φ−1
1 , . . . , φ−1

n , (φ−1
1 )∗, . . . , (φ−1

n )∗ ommute. Hene for all x ∈ R
κ and all

λ ∈ C
(Zn+),
∑

α,β∈Zn+

‖φ−(α+β)(x)‖2λ(α)λ(β) =
∥∥∥

∑

α∈Z
n
+

λ(α)(φ−α)∗φ−α(x)
∥∥∥

2
≥ 0.

Using the Shur theorem [2, Theorem 3.1.12℄, we obtain
∑

α,β∈Z
n
+

‖φ−(α+β)(x)‖2mλ(α)λ(β) ≥ 0, x ∈ R
κ, λ ∈ C

(Zn+), m ∈ Z+,

whih yields
∑

α,β∈Z
n
+

̺(φ−(α+β)(x))λ(α)λ(β) ≥ 0, x ∈ R
κ, λ ∈ C

(Zn+).

Thus Corollary 3.5 implies that the n-tuple (Cφ1 , . . . , Cφn) is jointly subnor-mal. The ase of {C∗
φ : φ ∈ A} is similar.



176 P. Budzy«ski and J. Stohel4. C0-semigroups of omposition operators. The following har-aterization of joint subnormality of C0-semigroups is due to It� (see [15,Theorem 1 and the proof of Lemma 5℄).Theorem 4.1. Let a be a positive real number. A C0-semigroup {S(t)}t≥0of bounded linear operators on a Hilbert spae H is jointly subnormal if andonly if the operator S(a/n) is subnormal for every integer n ≥ 1.It is worth noting that Theorem 4.1 is no longer true if �every integer
n ≥ 1� is replaed by �some integer n ≥ 1�. A ounterexample in two-dimensional Hilbert spae has been given by R. Mathias (f. [1℄); see alsoExample 5.4 below for the ase of C0-semigroups of omposition operators.Suppose that(4.1) (X,Σ, µ) is a σ-�nite measure spae with µ 6= 0 (equivalently: L2(µ)

6= {0}) and φ = {φt}t≥0 is a family of Σ-measurable transformationsofX indexed by nonnegative real numbers suh that every φt induesa bounded omposition operator Cφt on L2(µ) and {Cφt}t≥0 is a
C0-semigroup.De�ne

hφ
t =

dµ ◦ φ−1
t

dµ
, t ∈ R+.(4.2)Sine Cφ0 = CI (I is the identity transformation of X) and Cφnt = Cnφt =

Cφnt , we infer from (3.1) and Lemma 3.1(ii) that hφ
0 = 1 a.e. [µ] and

hφtn = hφ
nt a.e. [µ] for all t ∈ R+ and n ∈ Z+.(4.3)Remark 4.2. Obviously, for eah t ≥ 0 the funtion hφ

t an be rede�nedon a set of measure zero (depending on t) without a�eting the validityof (4.2). This may improve the properties of the funtion t 7→ hφ
t (x) (f.Theorem 4.5).Lemma 4.3. If (4.1) holds, then the C0-semigroup {Cφt}t≥0 is jointlysubnormal if and only if one of the following three equivalent onditions holds:(i) for µ-almost every x ∈ X,

∑

m,n∈Z+

hφ

(m+n)/k(x)λ(m)λ(n) ≥ 0 for all λ ∈ C
(Z+) and k ∈ N,

(ii) for µ-almost every x ∈ X and every k ∈ N, {hφ

n/k(x)}n∈Z+ is aStieltjes moment sequene,(iii) for µ-almost every x ∈ X and every k ∈ N, {hφ

n/k(x)}n∈Z+ is aStieltjes moment sequene on [0, ‖Cφ1/k
‖2].



Joint subnormality of omposition operators on L2-spaes 177Proof. Apply Theorem 4.1, equality (4.3) and Lambert's riterion forsubnormality of omposition operators (f. [18℄; see also Theorem 3.4)to Cφ1/k
.By Lambert's riterion, the operator Cφt is subnormal if and only if for

µ-almost every x ∈ X, there exists a (unique) positive Borel measure ϑtx on
R+ with ompat support suh that

hφtn (x) =

∞\
0

sn dϑtx(s), n ∈ Z+.(4.4)Notie that for µ-almost every x ∈ X, the losed support of ϑtx is ontainedin [0, ‖Cφt‖
2]. Substituting n = 0 into (4.4), we dedue that for µ-almostevery x ∈ X, ϑtx is a probability measure. Moreover, sine for µ-almost every

x ∈ X and all n ∈ Z+, hφ0
n (x) = 1, we see that for suh x's the losedsupport of ϑ0

x equals {1}.For t ∈ R+, we de�ne the funtion ξt : R+ → R+ by
ξt(s) = st, s ∈ R+ (with 00 = 1).Lemma 4.4. If (4.1) holds, then the following onditions are equivalent :(i) {Cφt}t≥0 is jointly subnormal ,(ii) Cφ1 is subnormal and for µ-almost every x ∈ X,

hφ

n/k(x) =

∞\
0

sn/k dϑ1
x(s) for all n ∈ Z+ and k ∈ N,(4.5)

(iii) for µ-almost every x ∈ X there exists a positive Borel measure ϑ̃xon R+ suh that
hφ

n/k(x) =

∞\
0

sn/k dϑ̃x(s) for all n ∈ Z+ and k ∈ N.(4.6)Moreover , if {Cφt}t≥0 is jointly subnormal , then(iv) for µ-almost every x ∈ X, ϑ1
x = ϑ̃x,(v) for every t > 0 and µ-almost every x ∈ X, ϑtx({0}) = 0,(vi) for every t > 0 and µ-almost every x ∈ X, ϑtx = ϑ1

x ◦ ξ1/t,(vii) for every t ≥ 0 and µ-almost every x ∈ X, hφ
t (x) =

T∞
0 st dϑ1

x(s).Proof. (i)⇒(ii). It follows from (4.3), (4.4) and the measure transporttheorem that for µ-almost every x ∈ X and all n ∈ Z+ and k ∈ N,
∞\
0

sn dϑ1
x(s) = hφ1

n (x) = h
φ1/k

kn (x) =

∞\
0

skn dϑ1/k
x (s) =

∞\
0

sn dϑ1/k
x ◦ ξ1/k(s),



178 P. Budzy«ski and J. Stohelhene ϑ1
x = ϑ

1/k
x ◦ξ1/k, and onsequently ϑ1/k

x = ϑ1
x ◦ξk. By (4.3) this impliesthat for µ-almost every x ∈ X and all n ∈ Z+ and k ∈ N,

hφ

n/k(x) = h
φ1/k
n (x) =

∞\
0

sn dϑ1/k
x (s) =

∞\
0

sn dϑ1
x ◦ ξk(s) =

∞\
0

sn/k dϑ1
x(s).This means that for µ-almost every x ∈ X, the equality in (vii) is valid forall rational numbers t ≥ 0.Now we show that (vii) holds in full generality. Let t be a positive realnumber. Then there exists a sequene {tj}∞j=1 of positive rational numberssuh that tj → t as j → ∞. Sine for µ-almost every x ∈ X, the probabilitymeasure ϑ1

x is ompatly supported, we infer from Lebesgue's dominatedonvergene theorem that
∞\
0

stdϑ1
x(s) = lim

j→∞

∞\
0

stjdϑ1
x(s)(4.7)

= lim
j→∞

hφ
tj

(x) for µ-almost all x ∈ X.Employing (4.3), (3.2) and the ontinuity of {Cφs}s≥0, we see that thereexists a onstant M > 0 suh that for µ-almost every x ∈ X,
|hφ
tj

(x)| = |h
φtj
1 (x)| ≤ ‖Cφtj ‖

2 ≤M, j ≥ 1.Lebesgue's dominated onvergene theorem applied to (4.7) now yields\
τ

hφt1 (x) dµ(x) = ‖Cφt(χτ )‖
2 = lim

j→∞
‖Cφtj (χτ )‖

2(4.8)
= lim

j→∞

\
τ

h
φtj
1 (x) dµ(x)(4.3)

= lim
j→∞

\
τ

hφ
tj

(x) dµ(x)
(4.7)
=
\
τ

∞\
0

st dϑ1
x(s) dµ(x)for every measurable subset τ of X of �nite measure (χτ is the harateristifuntion of τ). Sine µ is σ-�nite, (4.8) implies that for µ-almost every x ∈ X,

hφ
t (x)

(4.3)
= hφt1 (x) =

∞\
0

st dϑ1
x(s),whih proves (vii). Hene for every real t > 0 and µ-almost every x ∈ X,

∞\
0

sn dϑtx(s)
(4.4)
= hφtn (x)

(4.3)
= hφ

nt(x)
(vii)
=

∞\
0

snt dϑ1
x(s)(4.9)

=

∞\
0

sn dϑ1
x ◦ ξ1/t(s), n ∈ Z+.



Joint subnormality of omposition operators on L2-spaes 179Sine for µ-almost every x ∈ X, the Stieltjes moment sequene de�ned bythe left hand side of (4.9) is determinate, we get (vi). Substituting k = 1into (4.5) and (4.6), and using determinay again, we obtain (iv).In view of (vi), to prove (v) it su�es to show that
ϑ1
x({0}) = 0 for µ-almost every x ∈ X.(4.10)As in the proof of (4.7) and (4.8), we see that for µ-almost every x ∈ X,

ϑ1
x((0,∞)) = lim

j→∞

∞\
0

s1/j dϑ1
x(s) = lim

j→∞
hφ

1/j(x),and hene for every measurable subset τ of X of �nite measure,
µ(τ) = lim

j→∞
‖Cφ1/j

(χτ )‖
2 = lim

j→∞

\
τ

hφ

1/j(x) dµ(x) =
\
τ

ϑ1
x((0,∞)) dµ(x).As a onsequene, ϑ1

x((0,∞)) = 1 for µ-almost every x ∈ X. Sine for
µ-almost every x ∈ X, ϑ1

x is a probability measure, we get (4.10).(ii)⇒(iii). Evident.(iii)⇒(i). Verify ondition (i) of Lemma 4.3.The Laplae transform L(ζ) : R+ → R+ of a �nite positive Borel measure
ζ on R+ is de�ned by

L(ζ)(t) =

∞\
0

e−ts dζ(s), t ≥ 0.The funtion L(ζ) is always ontinuous (see [28℄ for the foundations of thetheory of the Laplae transform). Below B(J) stands for the σ-algebra of allBorel subsets of a Borel set J ⊆ R. The ring of all omplex polynomials informal indeterminate Z is denoted by C[Z].We now show that if {Cφt}t≥0 is a jointly subnormal C0-semigroup ofomposition operators on L2(µ), then the funtions hφ
t an be modi�ed soas to satisfy the equality hφ

t (x) = eδtL(P (x, ·))(t) for all x ∈ X and t ∈ R+,where x 7→ P (x, ·) is a Σ-measurable family of probability Borel measureson R+ and δ is a real number.Theorem 4.5. If (4.1) holds and the C0-semigroup {Cφt}t≥0 is jointlysubnormal , then there exists a funtion P : X × B(R+) → [0, 1] suh that :
1o for every x ∈ X, P (x, ·) is a probability measure,
2o for every σ ∈ B(R+), P (·, σ) is Σ-measurable,
3o for every t ∈ R+, the funtion X ∋ x 7→ L(P (x, ·))(t) ∈ R+ is Σ-measurable,
4o for µ-almost every x ∈ X and all t ∈ R+, hφ

t (x) = eδtL(P (x, ·))(t),where (5) δ := 2 log ‖Cφ1‖.
(5) Sine L2(µ) 6={0}, Proposition 1 of [23℄ implies that δ∈R and eδt=‖Cφt

‖2 for t≥0.



180 P. Budzy«ski and J. StohelMoreover , for µ-almost every x ∈ X,
P (x, σ) = ϑ1

x(ω
−1(σ)), σ ∈ B(R+),(4.11)where ω is a funtion from (0, eδ] to [0,∞) de�ned by ω(s) = δ − log s for

s ∈ (0, eδ].Proof. Set J = [0, eδ]. It follows from Lemma 4.4(v),(vii) that there existsa set X0 ∈ Σ of full µ-measure suh that for every x ∈ X0, ϑ1
x is a probabilitymeasure, ϑ1

x({0}) = 0, the losed support of ϑ1
x is ontained in J and

hφ
j (x) =

\
J

sj dϑ1
x(s), j ∈ Z+, x ∈ X0.This implies that for every polynomial p =

∑k
j=0 cjZ

j ∈ C[Z],\
J

p(s) dϑ1
x(s) =

k∑

j=0

cjh
φ
j (x), x ∈ X0.(4.12)Take a ontinuous funtion f : J → C. By the Weierstrass theorem, thereexists a sequene {pn}∞n=1 ⊆ C[Z] whih onverges to f uniformly on J . Thisleads to \

J

f dϑ1
x = lim

n→∞

\
J

pn dϑ
1
x, x ∈ X0,whih, together with (4.12), guarantees that the funtion X0 ∋ x 7→

T
J f dϑ

1
x

∈ C is Σ-measurable. Denote by A the lass of all Borel sets σ ⊆ J suhthat the funtion X0 ∋ x 7→ ϑ1
x(σ) ∈ R+ is Σ-measurable. It is lear that

A is a monotone lass whih ontains ∅ and J . We laim that [0, a) ∈ Afor every a ∈ J suh that a > 0. Indeed, we an �nd a sequene {fn}
∞
n=1 ofontinuous funtions on J pointwise onverging to χ[0,a) as n→ ∞, and suhthat 0 ≤ fn ≤ 1 for all n ≥ 1. Then, by Lebesgue's dominated onvergenetheorem, we have

ϑ1
x([0, a)) = lim

n→∞

\
J

fn dϑ
1
x, x ∈ X0,whih proves our laim. Sine the lass A is losed under the operation oftaking set-theoreti proper di�erene and �nite disjoint unions, we see thatthe algebra A0 generated by the lass {[0, a) : a ∈ J, a > 0} is ontainedin A. Applying the monotone lass theorem (f. [3, Theorem 3.4℄), we on-lude that A = B(J). Sine the measure µ is nonzero, there is no loss ofgenerality in assuming that X0 = X. Hene ϑ1
x is a probability measure and

ϑ1
x(R+ \ (0, eδ]) = 0 for every x ∈ X; moreover, for every σ ∈ B(J), thefuntion X ∋ x 7→ ϑ1

x(σ) ∈ R is Σ-measurable. It is now easily seen thatthe funtion P : X × B(R+) → [0, 1] de�ned by (4.11) satis�es 1o and 2o.By a standard measure theory argument, it follows that for every Borel



Joint subnormality of omposition operators on L2-spaes 181funtion f : R+ → R+, the funtion X ∋ x 7→
T∞
0 f(s)P (x, ds) ∈ [0,∞] is

Σ-measurable. This implies 3o. Sine ϑ1
x(R+\(0, e

δ]) = 0 for all x ∈ X, we get
∞\
0

st dϑ1
x(s) =

\
(0,eδ]

et log s dϑ1
x(s) = eδt

\
[0,∞)

e−tu dϑ1
x ◦ ω

−1(u)(4.13) (4.11)
= eδtL(P (x, ·))(t), x ∈ X, t ∈ R+.Set h̃φ

t (x) = eδtL(P (x, ·))(t) for x ∈ X and t ∈ R+. By 3o, the funtion h̃φ
tis Σ-measurable for every t ∈ R+. It follows from (4.13) and Lemma 4.4(vii)that h̃φ

t = hφ
t a.e. [µ] for every t ∈ R+. Replaing hφ

t by h̃φ
t , we get 4o (f.Remark 4.2). This ompletes the proof.Corollary 4.6. If (4.1) holds and δ := 2 log ‖Cφ1‖, then the followingonditions are equivalent :(i) {Cφt}t≥0 is jointly subnormal ,(ii) for µ-almost every x ∈ X there exists a �nite positive Borel measure

ζx on R+ suh that for all t ∈ R+, hφ
t (x) = eδtL(ζx)(t).Moreover , if (ii) holds, then

ζx = ϑ1
x ◦ ω

−1 for µ-almost every x ∈ X,(4.14)where ω is as in Theorem 4.5.Proof. (i)⇒(ii). Apply Theorem 4.5.(ii)⇒(i). Verify ondition (i) of Lemma 4.3.Assume that (ii) holds. Then by Lemma 4.4(v) and equalities (4.3) and(4.4), we see that for µ-almost every x ∈ X,\
(0,eδ]

un dϑ1
x(u) = hφ

n (x)
(ii)
=

∞\
0

ω−1(s)n dζx(s)

=
\

(0,eδ]

un dζx ◦ ω(u), n ∈ Z+.Sine the above Stieltjes moment sequene is determinate, we get ϑ1
x = ζx◦ωfor µ-almost every x ∈ X, whih ompletes the proof.Note that if (ii) of Corollary 4.6 holds and P : X × B(R+) → [0, 1] is asin Theorem 4.5, then by (4.11) and (4.14), we have

ζx = P (x, ·) and L(ζx) = L(P (x, ·)) for µ-almost every x ∈ X.5. An example. We begin by disussing a partiular lass of C0-semi-groups of omposition operators indued by linear transformations of R
κ.Proposition 5.1. Let µ be a positive Borel measure on R

κ whih is�nite on eah ompat subset of R
κ \ {0} and µ({0}) = 0. Suppose that A



182 P. Budzy«ski and J. Stohelis a linear transformation of R
κ suh that for every t ∈ R+, the ompositionoperator CetA is bounded on L2(µ), and
sup

0≤t≤t0

‖CetA‖ <∞(5.1)for some t0 > 0. Then {CetA}t≥0 is a C0-semigroup.Proof. Take a sequene {tn}∞n=1 of positive real numbers onverging to 0.Fix real numbers 0 < m < M < ∞. Let f : R
κ → C be a ontinuousfuntion vanishing o� the set ∆m,M := {x ∈ R

κ : m ≤ ‖x‖ ≤ M} (‖ · ‖ isthe Eulidean norm on R
κ). Take ε > 0. Sine f is uniformly ontinuous,there exists δ > 0 suh that |f(x) − f(y)| ≤ ε for all x, y ∈ R

κ suh that
‖x− y‖ ≤ δ. As the group {etA}t∈R is uniformly ontinuous, there exists aninteger n0 ≥ 1 suh that ‖e±tnA‖ ≤ 2 and ‖etnA− I‖ ≤ δ/2M for all n ≥ n0.This implies that for all n ≥ n0,

‖etnAx‖ ≥ 1
2‖x‖ for all x ∈ R

κ,
‖etnAx‖ < m for all x ∈ R

κ suh that ‖x‖ < m/2,
‖etnAx− x‖ ≤ δ for all x ∈ R

κ suh that ‖x‖ ≤ 2M .Thus, we have
|f(etnAx) − f(x)| ≤

{
ε if x ∈ ∆m/2,2M ,
0 otherwise, n ≥ n0,and onsequently

‖CetnAf − f‖2 =
\

∆m/2,2M

|f(etnAx) − f(x)|2 dµ(x) ≤ ε2µ(∆m/2,2M)

for all n ≥ n0. Summarizing, we have proved that limt→0+CetAf = f forevery ontinuous funtion f : R
κ → C with ompat support ontained in

R
κ\{0}. Sine µ is �nite on eah ompat subset of R

κ\{0} and µ({0}) = 0,the set of all suh funtions is dense in L2(µ) (use [24, Theorems 2.18 and3.14℄). This together with (5.1) implies that limt→0+ CetAf = f for every
f ∈ L2(µ), whih means that {CetA}t≥0 is a C0-semigroup.Corollary 5.2. Let ‖·‖ be a norm on R

κ indued by an inner produt ,
̺ be a member of R‖·‖ and µ be any of the measures ̺dνκ or (1/̺)dνκ.Suppose that A is a linear transformation of R

κ suh that for every t ∈ R+,the omposition operator CetA is bounded on L2(µ). Then {CetA}t≥0 is a
C0-semigroup.Proof. It follows from [25, Lemma 2.1 and Proposition 2.2℄ and the on-tinuity of the funtion R ∋ t 7→ det e−tA ∈ C \ {0} that (5.1) holds for every
t0 > 0. Applying Proposition 5.1 ompletes the proof.



Joint subnormality of omposition operators on L2-spaes 183Remark 5.3. It is a matter of routine to verify that Corollary 3.5, The-orem 3.6, Proposition 5.1 and Corollary 5.2 remain valid for C-linear trans-formations of C
κ (see also Setion 3 of [25℄).We now show that the impliation (ii)⇒(i) of Lemma 4.4 is no longertrue if the hypothesis (4.5) is dropped.Example 5.4. Denote by | · |2 the Eulidean norm on C

2, i.e. |x|22 =
|x1|

2 + |x2|
2 for x = (x1, x2) ∈ C

2. Let ̺ ∈ R|·|2 be a density funtion on
C

2 of polynomial type and let dµ = ̺ dν4. Following R. Mathias (f. [1℄),we de�ne the nonsingular 2 × 2 omplex matrix A = π
[
i 1
0 −i

]. Consider thesemigroup {φt}t≥0 of transformations of C
2 given by φt = etA. Aording toa omplex version of [25, Proposition 2.2℄, the omposition operator Cφt isbounded on L2(µ) for every t ∈ R+. Hene, by a omplex version of Corollary5.2, {Cφt}t≥0 is a C0-semigroup. Sine φ1 is normal in (C2, | · |2) and φt is notnormal in (C2, | · |2) for some t > 0, we infer from a omplex version of [25,Theorem 2.5℄ that Cφ1 is subnormal and {Cφt}t≥0 is not jointly subnormal.

Referenes[1℄ B. Aupetit and J. Zemánek, Erratum: �A haraterization of normal matries bytheir exponentials� (Linear Algebra Appl. 132 (1990), 119�121), Linear AlgebraAppl. 180 (1993), 1�2.[2℄ C. Berg, J. P. Christensen and P. Ressel, Harmoni Analysis on Semigroups, Grad.Texts in Math. 100, Springer, Berlin, 1984.[3℄ P. Billingsley, Probability and Measure, Wiley, New York, 1979.[4℄ J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75�94.[5℄ C. Burnap, I. Jung and A. Lambert, Separating partial normality lasses with om-position operators, J. Operator Theory 53 (2005), 381�397.[6℄ J. Conway, The Theory of Subnormal Operators, Math. Surveys Monogr. 36, Amer.Math. So., Providene, 1991.[7℄ A. Daniluk and J. Stohel, Seminormal omposition operators indued by a�netransformations, Hokkaido Math. J. 26 (1997), 377�404.[8℄ P. Dibrell and J. T. Campbell, Hyponormal powers of omposition operators, Pro.Amer. Math. So. 102 (1988), 914�918.[9℄ N. Dunford and J. T. Shwartz, Linear Operators, Part I, Intersiene, New York,1958.[10℄ M. R. Embry, A generalization of the Halmos�Bram riterion for subnormality ,Ata Si. Math. (Szeged) 35 (1973), 61�64.[11℄ B. Fuglede, The multidimensional moment problem, Expo. Math. 1 (1983), 47�65.[12℄ P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math.2 (1950), 125�134.[13℄ �, Measure Theory, van Nostrand, Prineton, 1956.[14℄ D. Harrington and R. Whitley, Seminormal omposition operators, J. Operator The-ory 11 (1984), 125�135.[15℄ T. It�, On the ommutative family of subnormal operators, J. Fa. Si. HokkaidoUniv. Ser. I 14 (1958), 1�15.



184 P. Budzy«ski and J. Stohel[16℄ A. Lambert, Subnormality and weighted shifts, J. London Math. So. 14 (1976),476�480.[17℄ �, Hyponormal omposition operators, Bull. London Math. So. 18 (1986), 395�400.[18℄ �, Subnormal omposition operators, Pro. Amer. Math. So. 103 (1988), 750�754.[19℄ �, Normal extensions of subnormal omposition operators, Mihigan Math. J. 35(1988), 443�450.[20℄ A. Lubin, Weighted shifts and ommuting normal extensions, J. Austral. Math. So.Ser. A 27 (1979), 17�26.[21℄ W. Mlak, Operators indued by transformations of Gaussian variables, Ann. Polon.Math. 46 (1985), 197�212.[22℄ E. Nordgren, Composition operators on Hilbert spaes, Leture Notes in Math. 693,Springer, Berlin, 1978, 37�63.[23℄ A. E. Nussbaum, Semi-groups of subnormal operators, J. London Math. So. 14(1976), 340�344.[24℄ W. Rudin, Real and Complex Analysis, MGraw-Hill, New York, 1974.[25℄ J. Stohel, Seminormal omposition operators on L2 spaes indued by matries,Hokkaido Math. J. 19 (1990), 307�324.[26℄ F. H. Szafranie, Boundedness of the shift operator related to positive de�nite forms:an appliation to moment problems, Ark. Mat. 19 (1981), 251�259.[27℄ R. Whitley, Normal and quasinormal omposition operators, Pro. Amer. Math.So. 70 (1978), 114�118.[28℄ D. V. Widder, The Laplae Transform, Prineton Univ. Press, Prineton, 1946.Zakªad Zastosowa« MatematykiAkademia RolnizaAl. Mikiewiza 24/2830-059 Kraków, PolandE-mail: piotr.budzynski�ar.krakow.pl
Instytut MatematykiUniwersytet Jagiello«skiReymonta 430-059 Kraków, PolandE-mail: stohel�im.uj.edu.plReeived April 23, 2006Revised version January 11, 2007 (5905)


