
STUDIA MATHEMATICA 179 (2) (2007)

Boundedness for a bilinear

model sum operator on Rn

by

Erin Terwilleger (Storrs, CT)

Abstract. The purpose of this article is to obtain a multidimensional extension of
Lacey and Thiele’s result on the boundedness of a model sum which plays a crucial role
in the boundedness of the bilinear Hilbert transform in one dimension. This proof is a
simplification of the original proof of Lacey and Thiele modeled after the presentation of
Bilyk and Grafakos.

1. Introduction. In the past decade much progress has been made
in the theory of multilinear singular integral operators. Lacey and Thiele
[10, 11] revived this area with their proof of boundedness for the bilinear
Hilbert transforms. In one dimension, the bilinear Hilbert transforms in the
direction (α, β) are given by

Hα,β(f1, f2)(x) = p.v.
\
R

f1(x− αt)f2(x− βt)
dt

t
, x ∈ R,

where f1 and f2 are Schwartz functions. In their work, Lacey and Thiele
reduced the boundedness of Hα,β to that of model sums of the form

(1.1)
∑

(s1,s2,s3)∈S

|Is|
−1/2〈f1, φs1

〉〈f2, φs2
〉φs3

,

where S is a set of triples of tiles with the same time component and φsj

is a smooth bump adapted to a tile sj in an appropriate way. Then Lacey
and Thiele employed a relatively straightforward, but technical, argument
to obtain the Lp boundedness of Hα,β for p > 2/3 as a consequence of that
for the operators in (1.1).

We became interested in how the theory evolves in higher dimensions. In
particular, we are interested in understanding the boundedness properties
of the bilinear Hilbert transform on Rn,
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(1.2) Hv1,v2
(f, g)(x) = p.v.

\
R

f(x− tv1)g(x− tv2)
dt

t
, x ∈ Rn,

where v1 and v2 are nonzero vectors in Rn such that v1 6= v2. If one of v1
and v2 is zero, then the operator Hv1,v2

reduces to a product of a directional
Hilbert transform and another function.

The above question is still elusive. The problem at present seems to be
the passage from the model sum to the operator. In fact, it is not clear if this
is even possible. The problem is there are too many free frequency parame-
ters. However, motivated by the boundedness of the one-dimensional model
sum, we are able to obtain restricted weak type bounds for the model sums
in higher dimensions. Using bilinear interpolation between adjoint operators,
(see Grafakos and Tao [6]), one is then able to obtain the Lp1 × Lp2 → Lp

boundedness of the aforementioned model sum when 1/p1 + 1/p2 = 1/p,
1 < p1, p2 <∞, and p > 2/3.

Of course in [10, 11], the assumptions on the sums are dictated by the
decomposition of the operators into averages of the model sums. In higher
dimensions, it is not clear how this decomposition will work. In this sense
the assumptions we make on our model sums are somewhat forced, although
they are similar to those in [10, 11]. However, the model sums are believed
to play an important role in obtaining bounds for the operators in (1.2).

A feature of our proof is that, even in dimension n = 1, it provides a
simplification of the original proof given by Lacey and Thiele in [11]. Bilyk
and Grafakos [1, 2] use a similar simplification to obtain distributional esti-
mates for the bilinear Hilbert transform in an extended range of exponents.
We use the same idea as in the aforementioned two papers of estimating the
operator on and off an “exceptional” set. The simplification comes in the
form of an improved energy estimate similar to one used by Grafakos, Tao,
and Terwilleger [7] to prove Lp bounds for a higher dimensional maximal
dyadic operator, which in one dimension is related to the Carleson operator.
This idea can also be found in the paper of Muscalu, Tao, and Thiele [13] on
multilinear operators. In addition, the proof uses a selection process inspired
by the one given by Lacey [9] in the case L2 × L2 → L1,∞.

2. Multidimensional extension of the model sum. We begin by
setting up the notation and assumptions used in our model. A dyadic cube

I ⊂ Rn is of the form

I =
n∏

i=1

I(i) =
n∏

i=1

[mi2
k, (mi + 1)2k),

where k and mi are integers for all i = 1, . . . , n. The n-dimensional volume
is given by |I| = 2nk. Let c(I) = (c(I(1)), . . . , c(I(n))) denote the center
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of I, and for a > 0, aI will denote the cube with the same center as I
and whose volume is an|I|. We will be considering functions of time in n-
dimensional space whose Fourier transforms are functions of frequency in
n-dimensional space. These functions will be adapted to a “rectangle” in
the 2n-dimensional time-frequency plane. A dyadic rectangle s is the tensor
product of a dyadic cube, Is, from the time plane and a dyadic cube, ωs,
from the frequency plane. A dyadic rectangle s = Is × ωs of volume one is
called a tile. We will denote the set of generic rectangles in 2n-dimensional
space by R.

Since we will be working with three functions we need to define the
notion of a tri-tile. A tri-tile is a rectangle s = Is × ωs together with three
tiles s1, s2, s3 with the following properties:

(a) Is = Isj for j = 1, 2, 3.
(b) J =

⋃
s∈R(ωs ∪ ωs1

∪ ωs2
∪ ωs3

) is a grid.
(c) ωs is the convex hull of ωs1

, ωs2
, and ωs3

.

(d) For each i = 1, . . . , n, ξ
(i)
1 < ξ

(i)
2 < ξ

(i)
3 for all ξj ∈ ωsj and j = 1, 2, 3,

and dist(ω
(i)
sj , ω

(i)
sj′

) = cj,j′ |Is|
−1/n for j 6= j′ and a fixed constant cj,j′ .

Property (d) is a separation condition motivated by the one-dimensional
case in which it can be shown that the model sums for the bilinear Hilbert
transform satisfy such a condition [10]. For our analysis, we also need the
following property which essentially follows from a separation of scales:

(2.1) For two fixed tri-tiles s and s′, if there exists an i ∈ {1, 2, 3} such
that ωsi ( ωs′j

for some fixed j = 1, 2, 3, then ωs ⊂ ωs′j
.

We will denote the set of tri-tiles with property (2.1) by D.

We fix a Schwartz function φ such that φ̂ is real, nonnegative, supported
in the cube [−1/10, 1/10]n and equal to 1 on the cube [−9/100, 9/100]n. For
a tri-tile s ∈ D and x ∈ Rn we define

(2.2) φsj (x) = |Is|
−1/2φ

(
x− c(Is)

|Is|1/n

)
e2πic(ωsj )·x, j = 1, 2, 3.

Using the following definition of the Fourier transform:

f̂(η) =
\

Rn

f(x)e−2πix·η dx,

one can easily see that

(2.3) φ̂sj (η) = |ωsj |
−1/2φ̂

(
η − c(ωsj )

|ωsj |
1/n

)
e2πic(Is)·(c(ωsj )−η), j = 1, 2, 3.

Definition (2.2) tells us that for each sj the function φsj is well localized in

space with most of its mass in Is while (2.3) tells us that φ̂sj is supported
in ωsj . Note also that the φsj have the same L2(Rn) norm.
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Let

〈f, g〉 =
\

Rn

f(x)g(x)dx

be the usual complex inner product. For a finite set S of tri-tiles, we define

the higher dimensional bilinear sum

HS(f1, f2) :=
∑

s∈S

|Is|
−1/2〈f1, φs1

〉〈f2, φs2
〉φs3

,

where f1 and f2 are initially taken to be Schwartz functions. Our main result

is the following theorem.

Theorem 1. Let S be a finite collection of tri-tiles in D and f1 and f2

be Schwartz functions. Then for 1/p1 + 1/p2 = 1/p, 1 < p1, p2 < ∞, and

p > 2/3,

‖HS(f1, f2)‖Lp(Rn) ≤ C‖f1‖Lp1(Rn)‖f2‖Lp2(Rn)

where C is independent of the collection S and the functions f1 and f2.

Theorem 1 will follow from a restricted weak type estimate using inter-

polation and duality. In particular we will prove the following theorem.

Theorem 2. Let r1 and r2 be such that r1, r2 > 1 and 1/r1 +1/r2 = 3/2.

Let 1/p1 = 1/r1 − ε, 1/p2 = 1/r2− ε, and 1/p = 3/2−2ε where ε is a small

positive number. Given n-dimensional sets F1, F2, and E of finite measure,

there exists a set E′ ⊂ E with |E′| ≥ 1
2 |E| such that

(2.4)
\

E′

HS(χF1
, χF2

)(x) dx .
|F1|

1/p1|F2|
1/p2

|E|1/p−1
.

Assuming Theorem 2 holds, HS is bounded for |1/p1 − 1/p2| < 1/2 and

2/3 < p < 2 by interpolation. See, for example, the general interpolation

theorem for multilinear operators of Grafakos and Tao [6]. Then one is able

to recover Theorem 1 for the full range of exponents from duality.

To prove Theorem 2, we first determine the set E′. Given n-dimensional

sets F1, F2, and E of finite measure, define

Ω = {x : M(χF1
) > 12n min(1, |F1|/|E|)}

∪ {x : M(χF2
) > 12n min(1, |F2|/|E|)},

where M is the usual Hardy–Littlewood maximal function. Set E′ :=E \Ω.

Since M is of weak type (1, 1) with constant at most 3n, we see that |Ω| <
1
2 |E|, and hence |E′| ≥ 1

2 |E|. Note that since M(χFi) ≤ 1, Ω = ∅ if |E| ≤

min(|F1|, |F2|). We will need the following estimates.
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Proposition 1. Let S be a finite collection of tri-tiles in D. Then\
E′

H{s∈S :Is⊆Ω}(χF1
, χF2

)(x) dx ≤ Cmin(|F1|
1/2, |F2|

1/2)
|F1|

1/2|F2|
1/2

|E|1/2
,

where C is independent of the collection S.

Proposition 2. Let S be a finite collection of tri-tiles in D. Then\
E′

H{s∈S :Is 6⊆Ω}(χF1
, χF2

)(x) dx

≤ Cmin(|F1|
1/2, |F2|

1/2) min

(
|F1|

1/2|F2|
1/2

|E|1/2
, |E|1/2

)

×

(
1 +

∣∣∣∣log
|F1|

|E|

∣∣∣∣ +

∣∣∣∣ log
|F2|

|E|

∣∣∣∣
)
,

where C is independent of the collection S.

We now prove Theorem 2, and hence Theorem 1, assuming that Proposi-
tions 1 and 2 hold. In the next section we prove Proposition 1, which is the
more straightforward estimate. Then in Section 4 we prove Proposition 2
which requires a proper organization of the tiles that contribute to the sum.

Proof of Theorem 2. First notice that Propositions 1 and 2 together
imply that

(2.5)
\

E′

HS(χF1
, χF2

)(x) dx

. min(|F1|
1/2, |F2|

1/2)
|F1|

1/2|F2|
1/2

|E|1/2

(
1 +

∣∣∣∣ log
|F1|

|E|

∣∣∣∣
)(

1 +

∣∣∣∣ log
|F2|

|E|

∣∣∣∣
)
.

We begin with the case |E| ≥ |F1|, |F2|. Notice that by the choice of r1
and r2, (2.5) implies that\

E′

HS(χF1
, χF2

)(x) dx .
|F1|

1/r1|F2|
1/r2

|E|1/2

(
1 + log

|E|

|F1|

)(
1 + log

|E|

|F2|

)
.

Thus (2.4) follows as 1 + log a . aε for a ≥ 1.
If |E| ≤ |F1|, |F2|, then as noted above, Ω is the empty set, and so we

need only Proposition 2. In this case the inequality becomes\
E′

HS(χF1
, χF2

)(x) dx

. min(|F1|
1/2, |F2|

1/2)|E|1/2

(
1 + log

|F1|

|E|

)(
1 + log

|F2|

|E|

)

. |F1|
1/r1−1/2|F2|

1/r2−1/2|E|1/2

(
|F1|

|E|

)1/2−ε( |F2|

|E|

)1/2−ε

,

which is just (2.4).
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Finally, we consider the case |F1| ≤ |E| ≤ |F2|. Here we need to be more
clever in our exponents. Fix δ small enough so that α := 1/r1 − ε + δ ≤ 1
and β := 1/r2 − δ + ε ≤ 1. Note that α+ β = 3/2. Now in (2.5) we replace
the exponent for |F1| with α + β − 1 and use the fact that |F1| ≤ |F2| to
obtain\

E′

HS(χF1
, χF2

)(x) dx .
|F1|

α|F2|
β

|E|1/2

(
1 + log

|E|

|F1|

)(
1 + log

|F2|

|E|

)

.
|F1|

α|F2|
β

|E|1/2

(
|E|

|F1|

)δ( |F2|

|E|

)δ−2ε

,

which is again just (2.4).

3. Proof of Proposition 1. This proof is modeled after similar ones in
Bilyk and Grafakos [1] and Grafakos, Tao, and Terwilleger [7] whose original
inspiration came from Lacey and Thiele [11]. We will prove this in the case
|F1| ≤ |F2|, as the operator is symmetric in F1 and F2.

For a dyadic cube J ⊆ Ω and γ a large integer to be chosen later, we set

SJ := {s ∈ S : Is = J}

and

ψJ(x) :=

(
1 +

|x− c(J)|

|J |1/n

)−γn

.

Notice that since φ is a Schwartz function,

(3.1) |φsi(x)| . |J |−1/2ψJ (x)

for i = 1, 2, 3 and s ∈ SJ .

We also need the following variants of Bessel’s inequality. For i = 1, 2, 3,
and functions αs : SJ → R,

∥∥∥
∑

s∈SJ

αsφsiψ
−1
J

∥∥∥
2

. ‖(αs)‖ℓ2(SJ ),(3.2)

‖(〈f, φsi〉)‖ℓ2(SJ ) . ‖fψJ‖2.(3.3)

Since (3.3) is the dual statement to (3.2), we just show (3.2). First note that
we have the almost orthogonality condition

|〈φsiψ
−1
J , φs′i

ψ−1
J 〉| = |(|φ(x)|2(1 + |x|)γn)∧([c(ωsi) − c(ωs′i

)]|J |1/n)|

. (1 + |c(ωsi) − c(ωs′i
)| |J |1/n)−γn.

In light of the properties of the tri-tiles and since Is = J is fixed for each s,
c(ωsi)|J |

1/n is a vector in Zn. Therefore we can index the elements s ∈ SJ
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by Zn. Taking the above facts into account, we have
∥∥∥

∑

s∈SJ

αsφsiψ
−1
J

∥∥∥
2
≤

∑

s,s′∈SJ

|αs| |αs′ | |〈φsiψ
−1
J , φs′i

ψ−1
J 〉|

.
∑

k,m∈Zn

|αsk
| |αsm |(1 + |k −m|)−γn

.
∑

k∈Zn

|αsk
|2

∑

m∈Zn

(1 + |k −m|)−γn . ‖(αs)‖ℓ2(SJ ).

We set M2 := M(f2)1/2.

Lemma 1. For any A > 1, we have

‖HSJ
(χF1

, χF2
)‖L1((AJ)c) . A−γ |J | inf

x∈J
M(χF1

)(x) inf
x∈J

M2(χF2
)(x).

Proof. Multiplying and dividing by ψJ we get

‖HSJ
(χF1

, χF2
)‖L1((AJ)c) ≤ ‖ψJ‖L2((AJ)c)‖HSJ

(χF1
, χF2

)ψ−1
J ‖L2

. A−γ |J |1/2
∥∥∥

∑

s∈SJ

|J |−1/2〈χF1
, φs1

〉〈χF2
, φs2

〉φs3
ψ−1

J

∥∥∥
L2

. A−γ‖〈χF1
, φs1

〉〈χF2
, φs2

〉‖ℓ2(SJ ) by (3.2)

. A−γ‖〈χF1
, φs1

〉‖ℓ∞(SJ )‖〈χF2
, φs2

〉‖ℓ2(SJ )

. A−γ |J |−1/2‖χF1
ψJ‖L1‖χF2

ψJ‖L2 by (3.1) and (3.3)

. A−γ |J | inf
x∈J

M(χF1
)(x) inf

x∈J
M2(χF2

)(x).

To utilize Lemma 1, we must organize the dyadic cubes J ⊆ Ω according
to how they are imbedded in Ω. Set

Fk := {J : 2kJ ⊆ Ω, 2k+1 6⊆ Ω}.

Letting F∗
k denote the dyadic cubes in Fk maximal with respect to inclusion,

a critical observation is that

(3.4)
∑

J∈Fk

|J | =
∑

J∈F∗
k

∑

J ′∈Fk
J ′⊆J

|J ′| ≤ 2n
∑

J∈F∗
k

|J | ≤ 2n|Ω| ≤ 2n−1|E|.

This can be seen by noting that if J ′ ⊆ J , then J ′ must share a boundary
with J , otherwise 2J ′ ⊆ J , which puts J ′ in Fk+1. For J ′ of a fixed side
length 2m where 2m ≤ |J |1/n, the measure of all such cubes is at most
2m2n|J |(n−1)/n, which can be summed over m ≤ log2 |J |

1/n. Finally, we use
the fact that the elements of F∗

k are pairwise disjoint.
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Recalling that E′ ⊆ Ωc ⊆ (2kJ)c for each k and applying Lemma 1, we
have
∣∣∣
\

E′

H{s∈S : Is⊆Ω}(χF1
, χF2

)(x) dx
∣∣∣ ≤

∞∑

k=0

∑

J∈Fk

‖HSJ
(χF1

, χF2
)‖L1((2kJ)c)

.

∞∑

k=0

∑

J∈Fk

2−γk|J | inf
x∈J

M(χF1
)(x) inf

x∈J
M2(χF2

)(x)

.

∞∑

k=0

∑

J∈Fk

2−γkC2k+2|J | inf
x∈2k+1J

M(χF1
)(x) inf

x∈2k+1J
M2(χF2

)(x).

Since 2k+1J meets Ωc, by definition we can bound the above by a constant
multiple of

∞∑

k=0

2−γkC2k+2
∑

J∈Fk

|J |
|F1|

|E|

(
|F2|

|E|

)1/2

. |F1| |F2|
1/2|E|−1/2,

where the last inequality follows from (3.4) and by choosing the constant γ
large enough so that C22−γ < 1.

4. Proof of Proposition 2. We now set up some tools that will allow
us to organize the large sums over tri-tiles in the statement of Proposition 2.
Define a partial order < on the set of tri-tiles D by setting

s < s′ ⇔ Is ⊆ Is′ and ωs′ ⊆ ωs.

We have the property that if two tri-tiles s, s′ ∈ D intersect, then either
s < s′ or s′ < s. To see this, first observe that dyadic cubes have the
property that if two of them intersect, then one is contained in the other.
If s and s′ intersect, then they intersect in both the time and frequency
components, i.e. Is ∩ Is′ 6= ∅, ωs ∩ ωs′ 6= ∅. Without loss of generality, if
we assume |Is| ≤ |Is′ |, then Is ⊆ Is′ . Now, recall that ωs′ and ωs are not
dyadic cubes but rather the closed convex hull of three dyadic cubes which
are separated in each coordinate. By property (2.1) of the tri-tiles, if there
exists an i ∈ {1, 2, 3} such that ωs′i

 ωsj for some fixed j = 1, 2, 3, then
ωs′ ⊆ ωsj . On the other hand, if ωs′i

6⊆ ωsj for all i, j = 1, 2, 3, then ωs′ must
be contained in one of the spaces between the dyadic cubes ωsj . In either
case, we have ωs′ ⊆ ωs, which gives s < s′. A consequence of this property
is that for a finite set of tri-tiles, all maximal elements under < must be
disjoint sets.

A finite set T of tri-tiles is called a tree if there exists a tri-tile t ∈ D

such that s < t for all s ∈ T. We call t the top of the tree T and denote it
by t = IT × ωT. The tiles composing the top of the tree will be denoted by
tj = IT ×ωTj for j = 1, 2, 3. Note that the top is not necessarily an element
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of the tree. Another useful observation is that any finite set S of tri-tiles
can be written as a union of trees by considering all maximal elements of
S under <. Then a nonmaximal element s ∈ S must be less than, in the
partial order, some maximal element t ∈ S, which places s in the tree with
top t.

We say a tree T is of type j = 1, 2, 3, or a j-tree, if

ωT ∩ ωsj = ∅ for all s ∈ T.

By the facts noted above, if s < t, where t is the top of any tree T, then
either there is one i ∈ {1, 2, 3} such that ωT ⊆ ωsi , or ωT ∩ ωsi = ∅ for all
i = 1, 2, 3. If we set T0 := {s ∈ T : ωT ∩ ωsi = ∅ for all i = 1, 2, 3} and
Ti := {s ∈ T : ωT ∩ ωsi 6= ∅} for i = 1, 2, 3, then T =

⋃3
i=0 Ti. Also T0

is a tree of type 1, 2 and 3, while Ti is a tree of type j 6= i. By throwing
the tri-tiles in T0 into one of the other sets Ti, we see that any tree T can
be written as a union of at most three pairwise disjoint subtrees which are
j-trees for at least two choices of j.

Given any finite set S of tri-tiles, we want to find a suitable decomposition
into sets on which we can apply estimates and obtain geometric series. This
idea can be found in Lacey [9]. To this end, for a function f ∈ L2 we define
the k-energy of a finite set S of tri-tiles by

Ek(S, f) =
1

‖f‖2
sup
T⊆S

T of type k

(
|IT|

−1
∑

s∈T

|〈f, φsk
〉|2

)1/2
.

Notice that for the tri-tiles in a k-tree, the ωsk
must be pairwise disjoint,

and thus the Fourier supports of the functions φsk
are pairwise disjoint.

Lemma 2. Let S be a finite set of tri-tiles and f a function in L2. Then

there exists a constant C1 and a subset S1 of S such that S1 is a union of

trees Tl and

Ek(S \ S1, f) ≤
1

2
Ek(S),

∑

l

|ITl
| ≤ C1Ek(S, f)−2.

This lemma and its proof are well represented in the literature. For the
multidimensional version, see Pramanik and Terwilleger [14].

To begin the decomposition, choose m0 > 0 so that Ek(S, fk) ≤ 2m0n

for k = 1, 2, 3. Using Lemma 2, we can inductively construct a sequence of
pairwise disjoint sets Sm0

, Sm0−1, . . . such that

(4.1) S =

m0⋃

m=−∞

Sm,

(4.2) Ek(Sm, fk) ≤ 2(m−1)n for all m ≤ m0 and k = 1, 2, 3,
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(4.3) Sm is a union of trees Tlm such that∑

l

|ITlm
| ≤ C2−2mn for all m ≤ m0.

Here, C is a constant depending only on dimension and the constant C1 in
Lemma 2. Thus we suppress its explicit value throughout the proof. Proofs
of similar constructions can be found in Bilyk and Grafakos [1] or Pramanik
and Terwilleger [14].

In Proposition 2, given a finite set S of tri-tiles, we are interested in those
tri-tiles in the set

S̃ := {s ∈ S : Is 6⊆ Ω}.

Our restriction to S̃ is needed in the following lemma, which is a refined
energy estimate.

Lemma 3. For k = 1, 2 and fk = χFk
,

(4.4) Ek(S̃, fk) . min

(
|Fk|

1/2

|E|
, |Fk|

−1/2

)
.

This lemma is crucial for obtaining the full range of exponents in our
theorem. We are able to exploit the fact that we are working on a restricted
class of tiles to obtain an improved estimate over (4.2). The proof of this
lemma is quite technical and in the higher dimensional setting may be found
in Grafakos, Tao, and Terwilleger [7].

Finally, before we commence our proof of the proposition, we need to
estimate the operator over a single tree T ⊆ S. As noted earlier, any tree
T can be written as the union of three trees each of type j for at least two
choices of j. Thus if we fix a k = 1, 2, 3, we may assume T is a j-tree for
j 6= k. In addition {s} is a k-tree for all k, and so for all s ∈ S,

|Is|
−1/2|〈fk, φsk

〉| ≤ Ek(S, fk)‖fk‖2.

Applying the above estimate and Cauchy–Schwarz, we see that

|〈HT(f1, f2), f3〉| ≤
∑

s∈T

|Is|
−1/2|〈fk, φsk

〉|
∏

j 6=k

|〈fj , φsj 〉|(4.5)

≤ Ek(S, fk)‖fk‖2

∑

s∈T

∏

j 6=k

|〈fj, φsj 〉|

≤ Ek(S, fk)‖fk‖2|IT|
∏

j 6=k

(
|IT|

−1
∑

s∈T

|〈fj, φsj 〉|
2
)1/2

≤ |IT|
3∏

k=1

Ek(S, fk)‖fk‖2.
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Now we have all the ingredients to deduce Proposition 2. Let f1 = χF1
,

f2 = χF2
, and f3 = χE′ in the decomposition (4.1)–(4.3) of S̃ and in the

estimate (4.5). Then we readily have

(4.6) |〈H
S̃
(χF1

, χF2
), χE′〉| ≤

∞∑

m=−∞

∑

l

|〈HTlm
(χF1

, χF2
), χE′〉|

≤
∞∑

m=−∞

∑

l

|ITlm
| E1(Sm, χF1

)E2(Sm, χF2
)E3(Sm, χE′)|F1|

1/2|F2|
1/2|E|1/2

.

∞∑

m=−∞

2−mn min

(
|F1|

1/2

|E|
, |F1|

−1/2, 2mn

)
min

(
|F2|

1/2

|E|
, |F2|

−1/2, 2mn

)

× |F1|
1/2|F2|

1/2|E|1/2,

where the last inequality follows by applying (4.3) and (4.2) in addition to
(4.4), which gives better estimates for the 1- and 2-energies when m is large.

It remains to see that the sum gives the claimed estimate of Proposi-
tion 2. We consider several cases, but they all give geometric series plus a
finite number of terms of logarithmic order.

Case 1: |E| ≥ |F2|, |F1|. If |F2| ≥ |F1|, then the sum on the right hand
side of (4.6) can be bounded by

( 1

n
log

|F1|
1/2

|E|∑

m=−∞

2mn+

1

n
log

|F2|
1/2

|E|∑

m= 1

n
log

|F1|
1/2

|E|

|F1|
1/2

|E|
+

∞∑

m= 1

n
log

|F2|
1/2

|E|

2−mn |F1|
1/2|F2|

1/2

|E|2

)

× |F1|
1/2|F2|

1/2|E|1/2

. |F1| |F2|
1/2|E|−1/2

(
1 + log

|F2|

|F1|

)
.

Reversing the roles of F1 and F2 gives a symmetric inequality, and so this
case yields the bound

min(|F1|
1/2, |F2|

1/2)|F1|
1/2|F2|

1/2|E|−1/2

(
1 +

∣∣∣∣log
|F2|

|F1|

∣∣∣∣
)
.

This implies the statement of Proposition 2 since in this case |F1| |F2| |E|−1

≤ |E|.

Case 2: |E| ≤ |F2|, |F1|. This time we have |F1| |F2| |E|−1 ≥ |E|. As-
suming |F2| ≥ |F1|, (4.6) can be bounded by
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(− 1

n
log |F2|1/2

∑

m=−∞

2mn+

− 1

n
log |F1|1/2

∑

m=− 1

n
log |F2|1/2

1

|F2|1/2
+

∞∑

m=− 1

n
log |F1|1/2

2−mn 1

|F1|1/2|F2|1/2

)

× |F1|
1/2|F2|

1/2|E|1/2

. |F1| |E|1/2

(
1 + log

|F1|

|F2|

)
,

and so by symmetry we have the bound

min(|F1|
1/2, |F2|

1/2)|E|1/2

(
1 +

∣∣∣∣log
|F2|

|F1|

∣∣∣∣
)
.

Case 3: |E| lies between |F1| and |F2| and |F1| |F2| |E|−1 ≤ |E|. As-
suming |F1| ≤ |E| ≤ |F2|, (4.6) is estimated by

( 1

n
log

|F1|
1/2

|E|∑

m=−∞

2mn +

− 1

n
log |F2|1/2

∑

m= 1

n
log

|F1|
1/2

|E|

|F1|
1/2

|E|
+

∞∑

m=− 1

n
log |F2|1/2

2−mn |F1|
1/2

|F2|1/2|E|

)

× |F1|
1/2|F2|

1/2|E|1/2

. |F1| |F2|
1/2|E|−1/2

(
1 + log

|E|2

|F1| |F2|

)
.

So when |E| lies between |F1| and |F2| and |F1| |F2| |E|−1 ≤ |E|, we obtain
the bound

min(|F1|
1/2, |F2|

1/2)|F1|
1/2|F2|

1/2|E|−1/2

(
1 + log

|E|2

|F1| |F2|

)
.

Case 4: |E| lies between |F1| and |F2| and |F1| |F2| |E|−1 ≥ |E|. Finally,
if |F1| ≤ |E| ≤ |F2| and |F1| |F2| |E|−1 ≥ |E|, we bound (4.6) by

(− 1

n
log |F2|1/2

∑

m=−∞

2mn +

1

n
log |F1|1/2/|E|∑

m=− 1

n
log |F2|1/2

|F2|
−1/2

+
∞∑

m= 1

n
log

|F1|
1/2

|E|

2−mn |F1|
1/2|F2|

−1/2|E|−1

)

× |F1|
1/2|F2|

1/2|E|1/2

. |F1|
1/2|E|1/2(1 + log |F1| |F2| |E|−2).

Thus symmetry in F1 and F2 yields the bound

min(|F1|
1/2, |F2|

1/2)|E|1/2

(
1 +

∣∣∣∣ log
|F1| |F2|

|E|2

∣∣∣∣
)
.

Our proof of Proposition 2 is now complete.
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