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Pisier’s inequality revisited

by

Tuomas Hytönen (Helsinki) and Assaf Naor (New York)

Abstract. Given a Banach space X, for n ∈ N and p ∈ (1,∞) we investigate the
smallest constant P∈(0,∞) for which every n-tuple of functions f1, . . . , fn :{−1, 1}n→X
satisfies �

{−1,1}n

∥∥∥ n∑
j=1

∂jfj(ε)
∥∥∥p dµ(ε) ≤ Pp

�

{−1,1}n

�

{−1,1}n

∥∥∥ n∑
j=1

δj∆fj(ε)
∥∥∥p dµ(ε) dµ(δ),

where µ is the uniform probability measure on the discrete hypercube {−1, 1}n, and
{∂j}nj=1 and ∆ =

∑n
j=1 ∂j are the hypercube partial derivatives and the hypercube Lapla-

cian, respectively. Denoting this constant by Pn
p (X), we show that

Pn
p (X) ≤

n∑
k=1

1

k

for every Banach space (X, ‖ · ‖). This extends the classical Pisier inequality, which cor-
responds to the special case fj = ∆−1∂jf for some f : {−1, 1}n → X. We show that
supn∈N P

n
p (X) <∞ if either the dual X∗ is a UMD+ Banach space, or for some θ ∈ (0, 1)

we have X = [H,Y ]θ, where H is a Hilbert space and Y is an arbitrary Banach space. It
follows that supn∈N P

n
p (X) <∞ if X is a Banach lattice of nontrivial type.

1. Introduction. Fix a Banach space (X, ‖ · ‖) and n ∈ N. For every
f : {−1, 1}n → X and j ∈ {1, . . . , n} the hypercube jth partial derivative
of f , which is denoted ∂jf : {−1, 1}n → X, is defined as

(1.1) ∂jf(ε) :=
f(ε)− f(ε1, . . . , εj−1,−εj , εj+1, . . . , εn)

2
.

The hypercube Laplacian of f , denoted ∆f : {−1, 1}n → X, is

(1.2) ∆f(ε) :=
n∑
j=1

∂jf(ε).

It is immediate to check that ∆ is invertible on the space of all mean
zero functions f : {−1, 1}n → X. Below, ∆−1 is understood to be de-
fined for every f : {−1, 1}n → X by setting ∆−1f = ∆−1f . Here f =
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f −
	
{−1,1}n f(δ) dµ(δ), where µ denotes the uniform probability measure on

{−1, 1}n.

The following inequality is due to Pisier [28]. Throughout the present
paper the asymptotic notation .,& indicates the corresponding inequalities
up to universal constant factors. We will also denote by � equivalence up
to universal constant factors, i.e., A � B is the same as (A . B)∧ (A & B).

Theorem 1.1 (Pisier’s inequality). For every Banach space (X, ‖ · ‖),
every n ∈ N, every p ∈ [1,∞] and every f : {−1, 1}n → X, we have

(1.3)
( �

{−1,1}n

∥∥∥f(ε)−
�

{−1,1}n
f(δ) dµ(δ)

∥∥∥p dµ(ε)
)1/p

. log n
( �

{−1,1}n

�

{−1,1}n

∥∥∥ n∑
j=1

δj∂jf(ε)
∥∥∥p dµ(ε) dµ(δ)

)1/p
.

Due to the application of Pisier’s inequality to the theory of nonlinear
type (see [28, 25, 12, 23]), it is of great interest to understand when (1.3)
holds true with the log n term replaced by a constant that may depend on
the geometry of X but is independent of n. Talagrand proved [30] that the
log n term in (1.3) is asymptotically optimal for general Banach spaces X,
Wagner proved [31] that the log n term in (1.3) can be replaced by a universal
constant if p =∞ and X is a general Banach space, and in [25] it is shown
that the log n term in (1.3) can be replaced by a constant that is independent
of n if X is a UMD Banach space. It remains an intriguing open question
whether every Banach space of nontrivial type satisfies (1.3) with the log n
term replaced by a constant that is independent of n. If true, this would
resolve a 1976 question of Enflo [9] by establishing that Rademacher type p
and Enflo type p coincide (see [25, 23] and Section 6 below).

Here we obtain a new class of Banach spaces that satisfies a dimension-
independent Pisier inequality. Our starting point is the following extension
of Pisier’s inequality.

Definition 1.2 (Pisier constant of X). The n-dimensional Pisier con-
stant of X (with exponent p), denoted Pn

p (X), is the infimum over those
P ∈ (0,∞) such that every f1, . . . , fn : {−1, 1}n → X satisfies

(1.4)
( �

{−1,1}n

∥∥∥ n∑
j=1

∂jfj(ε)
∥∥∥p dµ(ε)

)1/p
≤ P

( �

{−1,1}n

�

{−1,1}n

∥∥∥ n∑
j=1

δj∆fj(ε)
∥∥∥p dµ(ε) dµ(δ)

)1/p
.
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We also set
Pp(X) := sup

n∈N
Pn
p (X).

Inequality (1.4) reduces to Pisier’s inequality if we choose fj = ∆−1∂jf
for some f : {−1, 1}n → X. The generalized inequality (1.4) has the ad-
vantage of being well-behaved under duality, as explained in Section 2. The
following theorem yields a logarithmic bound on Pn

p (X), thus extending
Pisier’s inequality.

Theorem 1.3. For every Banach space X, every p ∈ [1,∞] and every
n ∈ N,

Pn
p (X) ≤

n∑
k=1

1

k
.

Our approach yields a quantitative improvement over Pisier’s inequality
only in lower order terms: an optimization of Pisier’s argument (as carried
out in [23]) shows that the O(log n) term in (1.3) can be taken to be at most
log n + O(log log n), while Theorem 1.3 shows that this term can be taken
to be log n+O(1).

In [25] it was shown that the logarithmic term in (1.3) can be replaced by
a constant that is independent of n if X is a UMD Banach space. Recall that
X is a UMD Banach space if for every p ∈ (1,∞) there exists a constant β ∈
(0,∞) such that if {Mj}nj=0 is a p-integrable X-valued martingale defined
on some probability space (Ω,P), then for every ε1, . . . , εn ∈ {−1, 1} we
have

(1.5)
�

Ω

∥∥∥M0 +
n∑
j=1

εj(Mj −Mj−1)
∥∥∥p dP ≤ βp �

Ω

‖Mn‖p dP.

The infimum over those β ∈ (0,∞) for which (1.5) holds true is denoted

βp(X). It can be shown (see [7]) that βp(X) . p2

p−1β2(X), so in order to

define the UMD property it suffices to require the validity of (1.5) for p = 2.
UMD Banach spaces are known to be superreflexive [20, 1], and one also
has βq(X

∗) = βp(X), where q = p/(p− 1) (see e.g. [7]).
In [10] Garling investigated the natural weakening of (1.5) in which the

desired inequality is required to hold true in expectation over ε1, . . . , εn ∈
{−1, 1} rather than for every ε1, . . . , εn ∈ {−1, 1}. Specifically, say that X
is a UMD+ Banach space if for every p ∈ (1,∞) there exists a constant β ∈
(0,∞) such that if {Mj}nj=0 is a p-integrable X-valued martingale defined
on some probability space (Ω,P) then

(1.6)
�

{−1,1}n

�

Ω

∥∥∥M0 +

n∑
j=1

εj(Mj −Mj−1)
∥∥∥p dP dµ(ε) ≤ βp

�

Ω

‖Mn‖p dP.

The infimum over those β for which (1.6) holds true is denoted β+p (X).
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Theorem 1.4. Let X be a Banach space such that X∗ is UMD+. Fix
p ∈ (1,∞) and n ∈ N. For every function F : {−1, 1}n×{−1, 1}n → X and
j ∈ {1, . . . , n} define

Fj(ε) :=
�

{−1,1}n
δjF (ε, δ) dµ(δ).

Then

(1.7)
( �

{−1,1}n

∥∥∥ n∑
j=1

∆−1∂jFj(ε)
∥∥∥p dµ(ε)

)1/p
≤ β+q (X∗)

( �

{−1,1}n

�

{−1,1}n
‖F (ε, δ)‖p dµ(ε) dµ(δ)

)1/p
,

where q = p/(p− 1).

For every f1, . . . , fn : {−1, 1}n → X, an application of Theorem 1.4 to
the function F (ε, δ) =

∑n
j=1 δjfj(ε) yields the following estimate on the

Pisier constant of a UMD+ Banach space.

Corollary 1.5. Pp(X) ≤ β+q (X∗).

It is unknown if a UMD+ Banach space must also be a UMD Banach
space, though it seems reasonable to conjecture that there are UMD+ spaces
that are not UMD. Regardless of this, Theorem 1.4 and Corollary 1.5 are
conceptually different from the result of [25], which relies on the full force of
the UMD condition, i.e. it requires the validity of (1.5) for every choice of
signs ε1, . . . , εn, while our argument here needs such estimates to hold true
only for an average choice of signs. We also have a quantitative improvement:
in [25] it was shown that Pisier’s inequality holds true with the O(log n)
term in (1.3) replaced by βp(X) = βq(X

∗), while here we obtain the same
estimate with the O(log n) term in (1.3) replaced by β+q (X∗) ≤ βq(X

∗).
Geiss proved [11] that for every η ∈ (0, 1) there is Cη ∈ (0,∞) such that for
every M > 1 there is a Banach space X that satisfies

∞ > βq(X
∗) ≥ Cηβ+q (X∗)2−η ≥M.

Remark 1.1. Inequality (1.7) is an extension of the generalized Pisier
inequality (1.4), but for general Banach spaces it behaves very differently:
unlike the logarithmic behavior of Theorem 1.3, the best constant appearing
on the right hand side of (1.7) for a general Banach space X must be at least
a constant multiple of

√
n, as exhibited by the case X = L1(({−1, 1}n, µ),R)

and F : {−1, 1}n × {−1, 1}n → X given by F (ε, δ)(η) =
∏n
i=1(1 + εiδiηi).

Suppose that θ ∈ (0, 1) and X = [H,Y ]θ, where H is a Hilbert space
and Y is an arbitrary Banach space. Here [·, ·]θ denotes complex interpola-
tion (see [3]). Theorem 1.6 below shows that in this case Pp(X) < ∞, and
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therefore Pisier’s inequality holds true with the log n term in (1.3) replaced
by a constant that is independent of n. Pisier proved [27] that every Banach
lattice of nontrivial type (see [19]) is of the form [H,Y ]θ for some θ ∈ (0, 1),
so we thus obtain the desired dimension independence in Pisier’s inequality
for Banach lattices of nontrivial type. This result does not follow from pre-
viously known cases in which a dimension-independent Pisier inequality has
been proved, since, as shown by Bourgain [4, 5], there exist Banach lattices
of nontrivial type which are not UMD. Note, however, that we are still far
from proving the conjectured dimension-independent Pisier inequality for
Banach spaces with nontrivial type: any space of the form [H,Y ]θ admits
an equivalent norm whose modulus of smoothness has power type 2/(1 + θ)
(see [27, 8]), while there exist Banach spaces with nontrivial type that do
not admit such an equivalent norm (see [14, 16, 15, 29]).

Theorem 1.6. Let X,Y be Banach spaces and let H be a Hilbert space.
Suppose that for some θ ∈ (0, 1) we have X = [H,Y ]θ. Then for every
p ∈ (1,∞),

Pp(X) ≤ 2 max{p, p/(p− 1)}
1− θ

.

Remark 1.2. If r ∈ (2,∞) then the O(log n) term in Pisier’s inequal-
ity (1.3), when p = 2 and X = `r, can be replaced by O(r), due to the
fact that β+2 (`r) � r (which follows from Hitczenko’s work [13], as explained
to us by Mark Veraar). This bound also follows from Theorem 1.6. At the
same time, an inspection of Talagrand’s example in [30] shows that this term
must be at least a constant multiple of log r. Determining the correct order
of magnitude as r → ∞ of the constant in Pisier’s inequality when X = `r
remains an interesting open problem.

2. Duality. The dimension n ∈ N will be fixed from now on. For p ∈
[1,∞] and a Banach space X, let Lp(X) denote the vector-valued Lebesgue
space Lp(({−1, 1}n, µ), X). Thus Lp(Lp(X)) can be naturally identified with
the space Lp(({−1, 1}n × {−1, 1}n, µ× µ), X).

For f ∈ Lp(X) we denote its Fourier expansion by

f =
∑

A⊆{1,...,n}

f̂(A)WA,

where the Walsh function WA : {−1, 1}n → {−1, 1} corresponding to
A ⊆ {1, . . . , n} is given by WA(ε1, . . . , εn) =

∏
i∈A εi, and the Fourier coef-

ficient f̂(A) ∈ X is given by f̂(A) =
	
{−1,1}n f(x)WA(x) dµ(x). Using this

(standard) notation, we have
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∀i ∈ {1, . . . , n}, ∀f ∈ Lp(X), ∂if =
∑

A⊆{1,...,n}
i∈A

f̂(A)WA,

∀f ∈ Lp(X), ∆f =
∑

A⊆{1,...,n}

|A|f̂(A)WA,

∀f ∈ Lp(X), ∆−1f :=
∑

A⊆{1,...,n}
A 6=∅

1

|A|
f̂(A)WA.

The Rademacher projection of f ∈ Lp(X) is defined as usual by

Rad(f) :=

n∑
i=1

f̂({i})W{i}.

We write below RadX := Rad(Lp(X)) and Rad⊥X := (I −Rad)(Lp(X)).
The dual of (RadX , ‖ · ‖Lp(X)) is naturally identified with the quotient

Lq(X
∗)/Rad⊥X∗ , where q = p/(p− 1).

Define an operator S : Lp(Lp(X))→ Lp(X) by

(2.1) ∀F ∈ Lp(Lp(X)), S(F ) :=

n∑
j=1

∆−1∂jF̂ ({j}).

Using this notation, Theorem 1.4 is nothing more than the following operator
norm bound:

‖S‖Lp(Lp(X))→Lp(X) ≤ β+q (X∗).

The adjoint operator S∗ : Lq(X
∗)→ Lq(Lq(X

∗)) is given by

∀g ∈ Lq(X∗), ∀δ ∈ {−1, 1}n, S∗(g)(δ) =

n∑
j=1

δj∆
−1∂jg.

Therefore Theorem 1.4 has the following equivalent dual formulation.

Theorem 2.1 (Dual formulation of Theorem 1.4). Let Z be a UMD+

Banach space. Then for every q ∈ (1,∞) and every g ∈ Lq(Z) we have( �

{−1,1}n

∥∥∥ n∑
j=1

δj∆
−1∂jg

∥∥∥q
Lq(Z)

dµ(δ)
)1/q

≤ β+q (Z)‖g‖Lq(Z).

Theorem 2.1, and consequently also Theorem 1.4, will be proven in Sec-
tion 3.

Let T be the restriction of S to RadLp(X). Thus

Pn
p (X) = ‖T‖RadLp(X)→Lp(X) = ‖T ∗‖Lq(X∗)→Lq(Lq(X∗))/Rad⊥Lq(X∗)

.

The adjoint T ∗ : Lq(X
∗)→ Lq(Lq(X

∗))/Rad⊥Lq(X∗) is given by
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∀g ∈ Lq(X∗), ∀δ ∈ {−1, 1}n, T ∗(g) =

n∑
j=1

δj∆
−1∂jg + Rad⊥Lq(X∗).

Therefore Theorem 1.3 has the following equivalent dual formulation.

Theorem 2.2 (Dual formulation of Theorem 1.3). Let Z be a Banach
space and q ∈ [1,∞]. Then for every g ∈ Lq(Z) we have

inf
Φ∈Rad⊥Lq(Z)

( �

{−1,1}n

∥∥∥Φ(δ) +

n∑
j=1

δj∆
−1∂jg

∥∥∥q
Lq(Z)

dµ(δ)
)1/q

≤
( n∑
k=1

1

k

)
‖g‖Lq(Z).

Theorem 2.2, and consequently also Theorem 1.3, will be proven in Sec-
tion 4. Since [H,Y ]∗θ = [H,Y ∗]θ (see [3]), we also have the following equiva-
lent dual formulation of Theorem 1.6.

Theorem 2.3 (Dual formulation of Theorem 1.6). Let H be a Hilbert
space, W a Banach space, and θ ∈ (0, 1). Set Z = [H,W ]θ. Then for every
q ∈ (1,∞) and g ∈ Lq(Z),

inf
Ψ∈Rad⊥Lq(Z)

( �

{−1,1}n

∥∥∥Ψ(δ) +
n∑
j=1

δj∆
−1∂jg

∥∥∥q
Lq(Z)

dµ(δ)
)1/q

≤ 2 max{q, q/(q − 1)}
1− θ

‖g‖Lq(Z).

Theorem 2.3, and consequently also Theorem 1.6, will be proven in Sec-
tion 5.

3. Proof of Theorem 2.1. Fix q ∈ (1,∞) and g ∈ Lq(Z). Let Sn
denote the symmetric group on {1, . . . , n}. For σ ∈ Sn and k ∈ {0, . . . , n}
define gσk ∈ Lq(Z) by

(3.1) gσk (ε) :=
∑

A⊆{σ−1(1),...,σ−1(k)}

ĝ(A)WA(ε)

=
1

2n−k

∑
δσ−1(k+1),...,δσ−1(n)∈{−1,1}

g
( k∑
i=1

εσ−1(i)eσ−1(i) +

n∑
i=k+1

δσ−1(i)eσ−1(i)

)
;

here, and in what follows, e1, . . . , en denotes the standard basis of Rn. Then
{gσk}nk=0 is a Z-valued martingale with gσn = g and gσ0 = ĝ(∅), implying that

(3.2)
( �

{−1,1}n

∥∥∥ n∑
k=1

δk(g
σ
k − gσk−1)

∥∥∥q
Lq(Z)

dµ(δ)
)1/q

≤ β+q (Z)‖g‖Lq(Z).
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In (3.2) we may replace {δk}nk=1 by {δσ−1(k)}nk=1, since these two se-
quences of signs have the same joint distribution. Then we make the change
of variable j = σ−1(k), so that k = σ(j). Averaging the resulting inequality
over σ ∈ Sn, and using the convexity of the norm, we see that

(3.3)

( �

{−1,1}n

∥∥∥∥ 1

n!

∑
σ∈Sn

n∑
j=1

δj(g
σ
σ(j) − g

σ
σ(j)−1)

∥∥∥∥q
Lq(Z)

dµ(δ)

)1/q

≤ β+q (Z)‖g‖Lq(Z).
It remains to note that for each δ ∈ {−1, 1}n we have

(3.4)
1

n!

∑
σ∈Sn

n∑
j=1

δj(g
σ
σ(j) − g

σ
σ(j)−1)

=
1

n!

∑
σ∈Sn

n∑
j=1

δj
∑

∅(A⊆{1,...,n}
maxσ(A)=σ(j)

ĝ(A)WA

=
∑

A⊆{1,...,n}
A 6=∅

∑
j∈A

δj
|{σ ∈ Sn : maxσ(A) = σ(j)}|

n!
ĝ(A)WA

=
∑

A⊆{1,...,n}
A 6=∅

∑
j∈A δj

|A|
ĝ(A)WA =

n∑
j=1

δj∆
−1∂jg.

Due to (3.3) and (3.4) the proof of Theorem 2.1 is complete.

4. Proof of Theorem 2.2. The following lemma introduces an auxil-
iary function which is a variant of a similar function that was used by Pisier
in [28].

Lemma 4.1. Let Z be a Banach space. Fix n ∈ N, q ∈ [1,∞] and t ∈
(0, 1). For g ∈ Lq(Z) define Gt ∈ Lq(Lq(Z)) by

(4.1) Gt(δ) :=
1

1− t
∑

A⊆{1,...,n}

ĝ(A)WA

∏
i∈A

(t+ (1− t)δi)−
tn

1− t
g.

Then

(4.2) Rad(Gt)(δ) =
∑

A⊆{1,...,n}
A 6=∅

t|A|−1
∑
j∈A

δj ĝ(A)WA

and

(4.3) ‖Gt‖Lq(Lq(Z)) ≤
1− tn

1− t
‖g‖Lq(Z).
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Proof. Identity (4.2) follows from (4.1) since, for every A ⊆ {1, . . . , n},

Rad
(∏
i∈A

(t+ (1− t)δi)
)

= t|A|−1(1− t)
∑
j∈A

δj .

To prove (4.3) observe that for every ε, δ ∈ {−1, 1}n,

(1− t)Gt(δ)(ε)

=
∑

A⊆{1,...,n}

ĝ(A)WA(ε)
n∏
i=1

(t+ (1− t)δ1A(i)i )− tng(ε)(4.4)

=
∑

A⊆{1,...,n}

ĝ(A)WA(ε)
∑

B⊆{1,...,n}

t|B|(1− t)n−|B|WArB(δ)− tng(ε)

=
∑

B({1,...,n}

t|B|(1− t)n−|B|
∑

A⊆{1,...,n}

ĝ(A)WA∩B(ε)WArB(εδ)

=
∑

B({1,...,n}

t|B|(1− t)n−|B|gB(ε, δ),(4.5)

where in (4.4) we use (4.1) and in (4.5) for every B ⊆ {1, . . . , n} we set

gB(ε, δ) := g
(∑
j∈B

εjej +
∑

j∈{1,...,n}rB

εjδjej

)
.

Since gB is equidistributed with g, it follows from (4.5) that

‖Gt‖Lq(Lq(Z))
‖g‖Lq(Z)

≤ 1

1− t
∑

B({1,...,n}

t|B|(1− t)n−|B| = 1− tn

1− t
.

Proof of Theorem 2.2. Observe that for every δ ∈ {−1, 1}n we have

n∑
j=1

δj∆
−1∂jg =

∑
A⊆{1,...,n}

A 6=∅

1

|A|
∑
j∈A

δj ĝ(A)WA(4.6)

=
∑

A⊆{1,...,n}
A 6=∅

(1�
0

t|A|−1 dt
)∑
j∈A

δj ĝ(A)WA

(4.2)
= Rad

(1�
0

Gt(δ) dt
)
.

It follows that if we set

(4.7) Φ :=

1�

0

Gt dt−Rad
(1�
0

Gt dt
)
,
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then Φ ∈ Rad⊥Lq(Z) and

( �

{−1,1}n

∥∥∥Φ(δ) +

n∑
j=1

δj∆
−1∂jg

∥∥∥q
Lq(Z)

dµ(δ)
)1/q

(4.6)
=
∥∥∥ 1�

0

Gt dt
∥∥∥
Lq(Lq(Z))

(4.3)

≤
( 1�

0

1− tn

1− t
dt

)
‖g‖Lq(Z).

It remains to note that
1�

0

1− tn

1− t
dt =

n−1∑
k=0

1�

0

tkdt =

n∑
k=1

1

k
.

5. Proof of Theorem 2.3. For t ∈ (0, 1) define a linear operator Vt :
Lq(Z)→ Lq(Lq(Z)) by

Vt(g)(δ) := Gt(δ)− Ĝt(∅)(5.1)

(4.1)
=

1

1− t
∑

A⊆{1,...,n}

ĝ(A)WA

(∏
i∈A

(t+ (1− t)δi)− t|A|
)
.

Lemma 5.1. Let H be a Hilbert space. Then for every t ∈ (0, 1),

(5.2) ‖Vt‖L2(H)→L2(L2(H))≤
1√

1− t2
≤ 1√

1− t
.

Proof. Observe that for every A ⊆ {1, . . . , n} we have

(5.3)
�

{−1,1}n

(∏
i∈A

(t+ (1− t)δi)− t|A|
)2
dµ(δ)

=
∑
B(A

t2|B|(1− t)2(|A|−|B|) = (t2 + (1− t)2)|A| − t2|A|.

It follows from (5.1), (5.3), and the orthogonality of {WA}A⊆{1,...,n} that

(5.4) ‖Vt‖L2(H)→L2(L2(H)) = max
a∈{1,...,n}

√
(t2 + (1− t)2)a − t2a

1− t
.

Now, for every a ∈ {1, . . . , n} and t ∈ (0, 1) we have

(t2 + (1− t)2)a − t2a = (1− t)2
a−1∑
k=0

(t2 + (1− t)2)a−1−kt2k(5.5)

≤ (1− t)2
a−1∑
k=0

t2k = (1− t)2 1− t2a

1− t2
≤ 1− t

1 + t
,
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where in the first inequality we used the estimate t2 + (1 − t)2 ≤ 1, which
holds for every t ∈ [0, 1]. The desired estimate (5.2) now follows from a
substitution of (5.5) into (5.4).

Lemma 5.2. Let H be a Hilbert space and let W be a Banach space. Fix
θ ∈ (0, 1) and q ∈ (1,∞). Set Z = [H,W ]θ. Then for every t ∈ (0, 1) we
have

(5.6) ‖Vt‖Lq(Z)→Lq(Lq(Z)) ≤
2

(1− t)1−(1−θ)min{1/q,1−1/q} .

Proof. For every r ∈ [1,∞] we have

‖Vt(g)‖Lr(Lr(W ))
(5.1)
= ‖Gt − Ĝt(∅)‖Lr(Lr(W ))

≤ 2‖Gt‖Lr(Lr(W ))

(4.3)

≤
2‖g‖Lr(W )

1− t
.

Consequently,

(5.7) ∀r ∈ [1,∞], ‖Vt‖Lr(W )→Lr(Lr(W )) ≤
2

1− t
.

If q ∈ [2,∞) then we interpolate (see [3]) between (5.2) and (5.7) with
W = H and r =∞. If q ∈ (1, 2] then we interpolate between (5.2) and (5.7)
with W = H and r = 1. The norm bound thus obtained implies the estimate

(5.8) ∀q ∈ (1,∞), ‖Vt‖Lq(H)→Lq(Lq(H)) ≤
2

(1− t)max{1/q,1−1/q} .

Finally, interpolation between (5.8) and (5.7) with r = q gives the desired
norm bound (5.6).

Proof of Theorem 2.3. By (5.1) we have Rad(Vt(g)) = Rad(Gt). There-
fore, analogously to (4.7), if we set

Ψ :=

1�

0

Vt(g) dt−Rad
(1�
0

Gt dt
)

=

1�

0

Vt(g) dt−Rad
(1�
0

Vt(g) dt
)
,

then Ψ ∈ Rad⊥Lq(Z) and by (4.6) for every δ ∈ {−1, 1}n we have

(5.9) Ψ(δ) +

n∑
j=1

δj∆
−1∂jg =

1�

0

Vt(g)(δ) dt.

Hence,( �

{−1,1}n

∥∥∥Ψ(δ) +

n∑
j=1

δj∆
−1∂jg

∥∥∥q
Lq(Z)

dµ(δ)
)1/q

(5.9)∧(5.6)
≤

1�

0

2‖g‖Lq(Z)
(1− t)1−(1−θ)min{1/q,1−1/q} dt =

2‖g‖Lq(Z)
(1− θ) min{1/q, 1− 1/q}

.

This is precisely the assertion of Theorem 2.3.



232 T. Hytönen and A. Naor

6. Enflo type in uniformly smooth Banach spaces. A Banach
space X has Rademacher type p ∈ [1, 2] (see e.g. [21]) if there exists TR ∈
(0,∞) such that, for all n ∈ N and all x1, . . . , xn ∈ X,

(6.1)
�

{−1,1}n

∥∥∥ n∑
j=1

εjxj

∥∥∥p dµ(ε) ≤ T pR
n∑
j=1

‖xj‖p.

Furthermore X has Enflo type p (see [9, 6, 28, 25]) if there exists TE ∈ (0,∞)
such that, for all n ∈ N and all f : {−1, 1}n → X,

(6.2)
�

{−1,1}n

‖f(ε)− f(−ε)‖p

2p
dµ(ε) ≤ T pE

n∑
j=1

‖∂jf‖pLp(X).

By considering the function f(ε) =
∑n

j=1 εjxj one sees that (6.1) is a
special case of (6.2). It is a long-standing open problem [9] whether, con-
versely, (6.1) implies (6.2). A crucial feature of (6.2) is that it is a purely
metric condition (thus one can define when a metric space has Enflo type p),
while (6.1) is a linear condition. See [22] for a purely metric condition (which
is more complicated than, but inspired by, Enflo type) that is known to be
equivalent to Rademacher type.

Observe that if (6.1) holds then it follows from (1.4) that, for every
f1, . . . , fn : {−1, 1}n → X,

(6.3)
∥∥∥ n∑
j=1

∆−1∂jfj

∥∥∥
Lp(X)

≤ TRPn
p (X)

( n∑
j=1

‖fj‖pLp(X)

)1/p
.

The special case fj = ∂jf shows that (6.3) implies (6.2) with

TE ≤ TRPn
p (X).

For this reason it is worthwhile to investigate (6.3) in its own right.

Let Qn
p (X) be the infimum over those Q ∈ (0,∞) such that every

f1, . . . , fn : {−1, 1}n → X satisfies

(6.4)
∥∥∥ n∑
j=1

∆−1∂jfj

∥∥∥
Lp(X)

≤ Q
( n∑
j=1

‖fj‖pLp(X)

)1/p
.

We also set

Qp(X) := sup
n∈N

Qn
p (X).

By duality, Qn
p (X) equals the infimum over those Q ∈ (0,∞) for which every

g ∈ Lq(X∗) satisfies

(6.5)
( n∑
j=1

‖∆−1∂jg‖qLq(X∗)
)1/q

≤ Q‖g‖Lq(X∗).
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Letting SX = {x ∈ X : ‖x‖ = 1} denote the unit sphere of X, recall
that the modulus of uniform convexity of X is defined for ε ∈ [0, 2] as

δX(ε) := inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , ‖x− y‖ = ε

}
.

The modulus of uniform smoothness of X is defined for τ ∈ (0,∞) as

ρX(τ) := sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : x, y ∈ SX

}
.

These moduli relate to each other via the following classical duality formula
of Lindenstrauss [18]:

(6.6) δX∗(ε) = sup{τε/2− ρX(τ) : τ ∈ [0, 1]}.
Theorem 6.1. For every K, p ∈ (1,∞) there exists C(K, p) ∈ (0,∞)

such that if X is a Banach space that satisfies ρX(τ) ≤ Kτp for all τ ∈
(0,∞), then Qp(X) ≤ C(K, p).

Proof. We shall use here the notation introduced in the proof of The-
orem 2.1 (Section 3). It follows from (6.6) that δX∗(ε) &K,p ε

q for every
ε ∈ [0, 2] (here, and it what follows, the notation .K,p suppresses constant
factors that may depend only on K and p). Hence, for g ∈ Lq(X

∗) and
σ ∈ Sn, since {gσk}nk=0, as defined in (3.1), is an X∗-valued martingale, it
follows from Pisier’s martingale inequality [26] that

(6.7)
( n∑
k=1

‖gσk − gσk−1‖
q
Lq(X∗)

)1/q
.K,p ‖g‖Lq(X∗).

By reindexing (6.7) with k = σ(j), averaging over σ ∈ Sn, and using the
convexity of the norm, we obtain the estimate

(6.8)

( n∑
j=1

∥∥∥∥ 1

n!

∑
σ∈Sn

(gσσ(j) − g
σ
σ(j)−1)

∥∥∥∥q
Lq(X∗)

)1/q

.K,p ‖g‖Lq(X∗).

Arguing as in (3.4), for every j ∈ {1, . . . , n} we have the identity

(6.9)
1

n!

∑
σ∈Sn

(gσσ(j) − g
σ
σ(j)−1) =

1

n!

∑
σ∈Sn

∑
∅(A⊆{1,...,n}
maxσ(A)=σ(j)

ĝ(A)WA

=
∑

A⊆{1,...,n}
j∈A

|{σ ∈ Sn : maxσ(A) = σ(j)}|
n!

ĝ(A)WA = ∆−1∂jg.

Consequently, (6.8) combined with (6.9) implies that (6.5) holds true with
Q .K,p 1. This concludes the proof of Theorem 6.1.

Remark 6.1. It follows from [17, Sec. 6] that a Banach space X satis-
fying the assumption of Theorem 6.1 has Enflo type p. Theorem 6.1 can be
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viewed as a generalization of this fact to yield the inequality (6.4). In [24] it
was shown that any Banach space satisfying the assumption of Theorem 6.1
actually has K. Ball’s Markov type p property [2], a property which is a
useful strengthening of Enflo type p.
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MA, 1990, 101–119.

[11] S. Geiss, A counterexample concerning the relation between decoupling constants and
UMD-constants, Trans. Amer. Math. Soc. 351 (1999), 1355–1375.

[12] O. Giladi and A. Naor, Improved bounds in the scaled Enflo type inequality for
Banach spaces, Extracta Math. 25 (2010), 151–164.

[13] P. Hitczenko, Domination inequality for martingale transforms of a Rademacher
sequence, Israel J. Math. 84 (1993), 161–178.

[14] R. C. James, A nonreflexive Banach space that is uniformly nonoctahedral, Israel J.
Math. 18 (1974), 145–155.

[15] R. C. James, Nonreflexive spaces of type 2, Israel J. Math. 30 (1978), 1–13.

http://dx.doi.org/10.1017/S0305004100055559
http://dx.doi.org/10.1007/BF01896971
http://dx.doi.org/10.1007/BF02384306
http://dx.doi.org/10.1002/mana.19841190104
http://dx.doi.org/10.1090/S0002-9947-1986-0819949-8
http://dx.doi.org/10.1090/S0002-9939-1982-0643748-5
http://dx.doi.org/10.1090/S0002-9947-99-02093-0
http://dx.doi.org/10.1007/BF02761698
http://dx.doi.org/10.1007/BF02756869
http://dx.doi.org/10.1007/BF02760825


Pisier’s inequality revisited 235

[16] R. C. James and J. Lindenstrauss, The octahedral problem for Banach spaces, in:
Proc. Seminar on Random Series, Convex Sets and Geometry of Banach Spaces
(Aarhus, 1974; dedicated to the memory of E. Asplund), Various Publ. Ser. 24,
Mat. Inst., Aarhus Univ., Aarhus, 1975, 100–120.

[17] S. Khot and A. Naor, Nonembeddability theorems via Fourier analysis, Math. Ann.
334 (2006), 821–852.

[18] J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach
spaces, Michigan Math. J. 10 (1963), 241–252.

[19] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces,
Ergeb. Math. Grenzgeb. 97, Springer, Berlin, 1979.
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