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IP-Dirichlet measures and IP-rigid dynamical systems:
an approach via generalized Riesz products

by

SopHIE GRIVAUX (Lille)

Abstract. If (ng)r>1 is a strictly increasing sequence of integers, a continuous prob-
ability measure o on the unit circle T is said to be IP-Dirichlet with respect to (ng)r>1 if
(3 kep nk) — 1 as F runs over all non-empty finite subsets ' of N and the minimum of
F tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical
systems have recently been investigated by Aaronson, Hosseini and Lemanczyk. We sim-
plify and generalize some of their results, using an approach involving generalized Riesz
products.

1. Introduction. We will be interested in IP-Dirichlet probability mea-
sures on the unit circle T = {A € C; |\| = 1} with respect to a strictly
increasing sequence (ny)r>1 of positive integers. Recall that a probability
measure y on T is said to be a Dirichlet measure when there exists a strictly
increasing sequence (pg)r>1 of integers such that the monomials 2P+ tend
to 1 on T as k — oo with respect to the norm of LP(u), where 1 < p < oo.
This is equivalent to requiring that the Fourier coefficients ji(py) of the mea-
sure p tend to 1 as k — oo. If (ng)r>1 is a (fixed) strictly increasing sequence
of integers, we say that p is a Dirichlet measure with respect to (ng)g>1 if
f(ng) — 1 as k — oco. Let F denote the set of all non-empty finite subsets
of N. The measure p is said to be IP-Dirichlet with respect to (ng)g>1 if

/fL(an) —1 as min(F) - oo, F € F.
keF

In other words: for all ¢ > 0 there exists a kg > 0 such that whenever F is
a finite subset of {ko, ko +1,...},

() ] <

keF
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Our starting point is the work [I] by Aaronson, Hosseini and Lemariczyk,
where IP-Dirichlet measures are studied in connection with rigidity phe-
nomena for dynamical systems. Let (X, B, m) denote a standard non-atomic
probability space and let T' be a measure-preserving transformation of
(X,B,m). Let again (nj)r>1 be a strictly increasing sequence of integers.

DEFINITION 1.1. The transformation T is said to be rigid with respect to
(ng)k>1 E m(T~" AAA) — 0 as ny — oo for all sets A € B, or, equivalently,
if for all f € L?(X,B,m), ||foT™ — fllz2x,8m) — 0 as k — oo.

Denote by op the restricted spectral type of T, i.e. the spectral type
of the Koopman operator Ur of T restricted to the space L3(X,B,m) of
functions of L2(X, B, m) of mean zero (recall that Urf = f o T for every
f € L*(X,B,m)). Then it is not difficult to see that T is rigid with respect
to (ng)k>1 if and only if o7 is a Dirichlet measure with respect to (ng)k>1.

Rigidity phenomena for weakly mixing transformations have been in-
vestigated recently in [3] and [5], where in particular the following question
was considered: given a sequence (ny)x>1 of integers, when does there exist a
weakly mixing transformation T of some probability space (X, B, m) which
is rigid with respect to (ng)r>17 When this is the case, we say that (ng)g>1
is a rigidity sequence. It was proved in [3] and [5] that (ng)r>1 is a rigidity
sequence if and only if there exists a continuous probability measure o on
T which is Dirichlet with respect to (ng)g>1.

It is then natural to consider IP-rigidity for (weakly mixing) dynamical
systems. This study was initiated in [3] and continued in [IJ.

DEFINITION 1.2. The system (X,B,m;T) is said to be IP-rigid with
respect to the sequence (ny)i>1 if for every A € B,

m(T2=rer™ AN A) =0 as min(F) — oo, F € F.

Just as with the notion of rigidity, 7" is IP-rigid with respect to (ng)r>1
if and only if o7 is an IP-Dirichlet measure with respect to (ng)r>1. More-
over, if we define (ng)g>1 to be an IP-rigidity sequence when there exists a
weakly mixing dynamical system (X, B, m;T) which is IP-rigid with respect
to (nk)k>1, then IP-rigidity sequences can be characterized in a similar fash-
ion to rigidity sequences ([I, Prop. 1.2]): (ng)r>1 is an IP-rigidity sequence
if and only if there exists a continuous probability measure ¢ on T which is
IP-Dirichlet with respect to (ng)r>1-

IP-Dirichlet measures are studied in detail in [I], and one of the impor-
tant features highlighted there is the connection between the existence of
a measure which is IP-Dirichlet with respect to a certain sequence (ny)g>1
of integers, and the properties of the subgroups G,((ny)) of the unit circle
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associated to (ng)r>1: for 1 < p < oo,

Gypl(m) = (A €T DA — 1 < oo}

k>1
and for p = oo,
Goo((ng)) ={A e T; |\ — 1] - 0 as k — oo}.
The main result of [I] is as follows:

THEOREM 1.3 ([I, Th. 2]). Let (nk)r>1 be a strictly increasing sequence
of integers. If u is a probability measure on T which is IP-Dirichlet with
respect to (ng)g>1, then pu(Ga((ng))) = 1.

The converse of Theorem is false [I, Ex. 4.2], as one can construct
a sequence (ny)g>1 and a probability measure p on T which is continuous,
supported on Ga((ng)) (which is uncountable), but not IP-Dirichlet with re-
spect to (ng)r>1. On the other hand, if 41 is a continuous probability measure
such that p(G1((ng))) = 1, then p is IP-Dirichlet with respect to (ng)r>1
[1, Prop. 1]. Again, this is not a necessary and sufficient condition for be-
ing IP-Dirichlet with respect to (ng)r>1 [1: if n1 = 1 and ngyq = kng + 1
for each k£ > 1, then there exists a continuous probability measure ¢ on
T which is IP-Dirichlet with respect to (ng)r>1, although Gi((ng)) = {1}.
Numerous examples of sequences (ny)i>1 with respect to which there exist
IP-Dirichlet continuous probability measures are given in [I] as well. For in-
stance, such sequences are characterized among sequences (ny) k>1 such that
ny divides ng4; for each k, and among sequences which are denominators
of the best rational approximants py /g of an irrational number « € (0, 1),
obtained via the continued fraction expansion. It is also proved in [1] that
sequences (ny)x>1 such that the series ;< (ng/ng+1)? is convergent admit
a continuous IP-Dirichlet probability measure.

Our aim in this paper is to simplify and generalize some of the results and
examples of [I]. We first present an alternative proof of Theorem above,
which is completely elementary and much simpler than the proof of [I] which
involves Mackey ranges over the dyadic adding machine. We then present a
rather general way to construct IP-Dirichlet measures via generalized Riesz
products. The argument which we use is inspired by results from [10] and
[8, Section 4.2], where generalized Riesz products concentrated on some Hy-
subgroups of the unit circle are constructed. Proposition [3.1] gives a bound
from below on the Fourier coefficients of these Riesz products, and this
enables us to obtain in Proposition a sufficient condition on sets {ny} of
the form

(11) {’I’Lk} = U{pkaq1,kpk7'"aQT’k,k’pk}a
k>1
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where the g;, j = 1,..., 7}, are positive integers and the sequence (pi)r>1
is such that py41 > g, kpr for each k > 1, for the existence of an associated
continuous generalized Riesz product which is IP-Dirichlet with respect to
(ng)k>1. This condition is best possible (Proposition . As a consequence
of Proposition we retrieve and improve a result of [1] which states that
if (ng)k>1 is such that there exists an infinite subset S of N such that

n
Z F < and ng | ng41 for each k & S,
kes k1

then there exists a continuous probability measure ¢ on T which is IP-
Dirichlet with respect to (ng)r>1. This result is proved in [I] by construct-
ing a rank-one weakly mixing system which is IP-rigid with respect to
(ng)k>1. Here we get a “dynamical system-free” proof of this statement,
where the condition Zke gMk/Nig+1 < oo is replaced by the weaker condi-

tion Y pcq(ne/ni41)? < o0,

THEOREM 1.4. Let (ng)r>1 be a strictly increasing sequence of integers
for which there exists an infinite subset S of N such that

2
Z( 1k ) < oo and ng|ngyq for each k & S.

n
kes k+1

Then there exists a continuous generalized Riesz product o on T which is
IP-Dirichlet with respect to (ng)g>1-

Using again sets of the form (|1.1]), we then show that the converse of The-
orem [1.3]is false in the strongest possible sense, thus strengthening Example
4.2 of [1]:

THEOREM 1.5. There exists a strictly increasing sequence (ny)g>1 of
integers such that Ga((ng)) is uncountable, but no continuous probability
measure is IP-Dirichlet with respect to (ng)g>1-

The last section of the paper gathers some observations concerning the
Erdés—Taylor sequence (ng)i>1 defined by ny = 1 and ngy; = kng+1, which
is of interest in this context.

Notation. In the whole paper, we will denote by {x} the distance of
the real number z to the nearest integer, by |z] the integer which is closest
to x (if there are two such integers, we take the smallest one), and by (x)
the quantity x — |x|. Lastly, we denote by [z] the integer part of x.

2. An alternative proof of Theorem Let (ng)k>1 be a strictly
increasing sequence of integers. Suppose that the measure g on T is IP-
Dirichlet with respect to (ng)r>1. For every € > 0 there exists an integer ko
such that for all sets F' € F with min(F') > ko, [1(>_pcpnr) — 1| < €. For
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every integer N > kg, consider the quantities

N
[T 40+ am) —2-kos) 3™ S
k=ko FC{ko,...,N}

The sum on the right-hand side is taken over all (possibly empty) finite
subsets F' of {ko,..., N}. Integrating with respect to p yields

N
JIT 30+ 2™y du(y) = 27 kosh 57 (S,
T k=kg FClko,..,N}  keF

so that
(2.1) ‘g ﬂ %(1“%)@@)_1‘
T k=ko
< 9~ (N—kot1) Z }ﬁ(z nk) — 1‘ <e.

FC{ko,..N}  keF
Let now C' be the set of elements A € T such that the infinite product

o0

[T 300+ A

k=1
converges to a non-zero limit. Observe that the set C' does not depend on
e or ko. For every A € T\ C, the quantity HkN:ko 21+ A™| tends to 0 as
N — 00, and so by the dominated convergence theorem we get

N
VI 3@+ x™)du(x) -0 as N = oco.
T\C k=ko

It then follows from ([2.1) that

N
hmsup“ H F(1+A™) dp(X) — 1‘ <e
N—oo C k=ko

so that

N
. . 1 n
l}vm_goréf S H 51+ ’“)du()\)‘ >1—ec.
C k=ko

But
N
1§ TT 30+ dun)| < w(c),
C k=ko

hence ;(C) > 1 — e. This being true for any choice of ¢ in (0,1), we have
p(C) = 1, and so the product [, 2|1+ A" | converges to a non-zero limit
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almost everywhere with respect to the measure . If we now write elements
AECas A=e?% §c0,1), we have

I3+ x| =[] lcos(nbny)|.

k>1 k>1

Since 0 < [cos(mfng)] < 1 for all & > 1, this means that the series
> p>1(1—|cos(mOny)|) is convergent. In particular {#n;} — 0 as k — co. As
the quantities 1 — |cos(mfny)| and (72/2){6n;}? are equivalent as k — oo,
we infer that the series >, ~,{0ns}? is convergent. But

’1 o /\nk.’2 _ ’1 o €2i7r6nk’2 < 47r2{9nk}2,

and it follows that the series 2@1‘1 — )\”k|2 is convergent as soon as A
belongs to C'. This proves our claim.

3. IP-Dirichlet generalized Riesz products. Our aim is now to
give conditions on the sequence (ny)r>; which imply the existence of a
generalized Riesz product which is continuous and IP-Dirichlet with respect
to (ng)k>1. For information about classical and generalized Riesz products,
we refer the reader for instance to the papers [10] and [§] and to the books
[7] and [12].

PROPOSITION 3.1. Let (ng)r>1 be a strictly increasing sequence of inte-
gers. Suppose that there exists a sequence (my)r>1 of integers with m; > 3
such that

k
(3.1) Nkt1 — 2ijnj >1 for each k > 1,
j=1
k
(3.2) Ngt1 — Qijnj — 00 as k — oo.
j=1

For each k > 1, let i, > 1 be an integer such that gpmv/2 < my, + 2. There
exists a continuous generalized Riesz product o on T such that for every
finite subset F' € F and any integers ji in {1,...,qx}, k € F, one has

(3.3) &(Z jknk) > ] (1 — 2 <m;:pj|— 2)2>’

keF keF
(3.4) . = < T >
O'(kezF nk> kl;}[TCOS — T B

Proof. For any integer k > 1, consider the polynomial P defined on T
by
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2

2
, telo,1].

: 2imjt
S S —
mk—f—g‘; m<mk+2>e

Fach Pj is a non-negative trigonometric polynomial. Its spectrum is the set
{—my,...,my} and a straightforward computation shows that Py(0) = 1.
Condition , which is a dissociation condition, implies that the prob-
ability measures H{Ll Py, (e?™kt)d\(t) (where A denotes the normalized
Lebesgue measure on T) converge in the w*-topology as N — oo to a
probability measure o on T, and that for each F' € F and any integers
jk € {_mka-"amk}7 k€F7

U(Z jknk) = 1 PGin)

keF keF

Pk (62iﬂ't) —

while 6(n) = 0 when n is not of this form. In particular
&(Z nk> =TI 2.
kEF kEF

Before turning to precise computation of these Fourier coefficients, let us
prove that o is a continuous measure. This follows from condition (3.2)). If

k k
E min; <n < nNgy1 — E m;n;,
Jj=1 Jj=1

then 6(n) = 0. So the Fourier transform of o vanishes on successive intervals
Ij, of length Iy = ngq — 2 Z?zl mj;n; — 1. Since [, tends to infinity with &
by (3.2)), it follows from the Wiener theorem that o is continuous.

Let us now go back to the computation of the Fourier coefficients

&(keszknk)

For each q € {1,...,my}, we have

; 2 "\~ (Gton i
3.5 P = sin| ~——— | sin .
( ) k(Q) my + 2 ; (mk+2> (mk—l-Q)

Standard computations yield

(3.6) Belg) = — (<mk+z—q>cos( o )

mg + 2 my + 2

o) )
mg + 2 sin( s )

mk+2
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1 qm
= 9 _
mk+2<(mk+ q)cos(mk+2>
-1
+cos<(q)7T> -cos( il
my + 2 my + 2
2 T
—|—Sin<(q - 1)7T> . cos (mk+2)

my + 2 sin( : )

Observe now that cosz > 1 — 2% > 0 for every z € [0,1]. For each k > 1,
qr > 1 is an integer such that qumv/2 < mg +2, and ¢ € {1,...,qx}. So
(g —j)m < my +2 for every j € {0,...,q — 1}. Thus

2
ar 2 q
>1-m—21
COS(mk+2> =TT e+ 2)
_ . _ . 2
COS((q J)W>21_7T2 (¢—7)

my + 2 (mg +2)%

Moreover, cos’ z > (1 — 2%)7 > 1 — jz? for all z € [0,1] and j > 1, so that

cosj< il >21—7T2‘72.
my + 2 (my + 2)

Putting things together, we obtain the estimate

Pila) = — <(mk +2- q)<1 - quQ>

my, + 2 (my +2)2
*;(1‘ orzr) ()

Now, for every j € {1,...,q — 1},

(= ) ()

_q_ 2=+ ! (g —5)?
(my +2)? (my +2)*4

_5\2 : 2
2(q—J) LSRRI |

>1- T
=TT g + 22 (mp + 2)2
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Summing over j and collecting terms, we eventually obtain
3

1 ¢ q
s-pf1-m2—L S S S
mk+2<(mk+ q)< m (mk+2)2>+q T (mk+2)2>

1 a \ a \°
>1- 2 —q)r? | —— ) —2r?
2l g me 2 am <mk+2> 4 (mk+2> ’
i.e.

2 3
5 q 2 q
Pu(q) > 1— 72 —
k(9) = T (mk+2> T (mk+2>

2 3
217r2<q’€> 7r2( (s > for each g € {1,...,qx}

Pr(q) >

my + 2

2
>1_2wz(%) >0
> )

since qpmV2 < my, + 2. Assertion follows directly from the fact that
(> wer Jknk) =1 lier P..(ji). Assertion is straightforward: the expres-
sion in the first line of applied to ¢ = 1 yields Py (1) = cos(m/(my+2)).
This finishes the proof of Proposition .

Proposition [3.1] may appear a bit technical at first sight, but it turns out
to be quite easy to apply. As a first example, we use it to obtain another
proof of a result of [I, Prop. 3.2]:

COROLLARY 3.2. Let (ng)k>1 be a strictly increasing sequence of integers
such that the series > .~ (nk/nk11)? is convergent. There exists a continu-
ous generalized Riesz product o on T which is IP-Dirichlet with respect to

(nk)kzl-

Proof. Without loss of generality we can assume that 3, - (nx/ npa1)? <
1/200. Let (ex)x>1 be a sequence of real numbers with 0 < €5, < 1/2 for each
k > 2, with e1 = 0, going to zero as k — oo, and such that

( 1 ny )2 1
y <t
Ek+1 Mk+1 50

k>1

Then epp1ngr1/ng > 7 > 6 + €k, so that if we define my = [(epr1nk4+1 —
exng)/2ni) for each k > 1, each integer my is greater than or equal to 3.
Moreover
k
N1 — 2 ijnj > Npy1 — (Epp1Mh41 — €111) = (1 — Epg1) Nt 1,
j=1
which tends to infinity as £ — oo, and is always greater than 1 because
er+1 < 1/2 and ngyq > 2 for each k > 1. Proposition applies with this
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choice of (my)>1 and yields a continuous generalized Riesz product o which

satisfies
6(2 nk> = H COS(m;:T—I— 2> for each F' € F.
keF keF

Now my, is equivalent to eg11n41/2n as k — oo, so that >, < 1/(my+2)?
is convergent. Hence the infinite product [ [, cos(m/(my+2)) is convergent.
For any e > 0, let ko be such that [[;~, cos(m/(my+2)) >1—e. If F e F
is such that min(F') > ko, then

&(Z nk) Zlgcos<m:+2> > H cos<m;+2> >1—¢,

kel k>ko

and this proves that o is IP-Dirichlet with respect to (ng)r>1. =

4. An application to a special class of sets {n;}. Proposition
applies especially well to a particular class of sequences (n)g>1, which we
now proceed to investigate.

PROPOSITION 4.1. Let (p;)i>1 be a strictly increasing sequence of inte-
gers. For each | > 1, let (¢;1)j=0,..r, be a strictly increasing finite sequence
of integers with qo; = 1, and set q@ = qo; + q10 + -+ + 0. Suppose that
Di+1 > Gr 1 p1 for each 1 > 1, and that the series

()

=1 Pi+1

is convergent. Let (ng)i>1 be the strictly increasing sequence defined by
{ni} = (o qipn - arami}-
I>1

There exists a continuous generalized Riesz product o on T which is IP-
Dirichlet with respect to the sequence (ng)g>1.

Proof. As in the proof of Corollary we can suppose that
Z ( Qp )2 < b
=1 \Pit1 400

and consider a sequence (¢;);>1 going to zero as [ — oo with &y = 0 and
0 < g < 1/2 for each [ > 2, such that

Z( 1 QZpl)2<1
151 \El+1 P41 100

The same argument as in the proof of Corollary shows that for [ > 1 the
integers m; = [(ei31pie1 — €ip1)/(2py)] are greater than or equal to 3, and
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that assumptions (3.1)) and (3.2)) of Proposition are satisfied. As m; is
equivalent to g;11p1+1/(2p1) as | — oo, we see that ¢;/(my + 2) is equivalent

to 2qip1/(g141pi1+1)- Our assumption implies that the series

(a.1) S (i)

>1

is convergent. Moreover,
1le
ql7r\/§ <oq < = l+17pl+1
2 m
But

€ € <
M_%gmﬂ-l, so that —HPHL < o(m, 4 9),

2p Dl

Hence qmv/2 < my + 2 for each [ > 2. Applying Proposition to the
sequence (p;);>1, we get a continuous generalized Riesz product o, and the

estimates (3.3]) yield

2

&(Z(Z Qj,z)pz) > H<1 - 2772<mlq:_ 2> )
leF jeq, leF

for each F' € F and any subsets G of {0,...,7}, l € F. In order to show

that the measure o is IP-Dirichlet with respect to (ng)g>1, it remains to

observe that the product on the right-hand side is convergent by . We

then conclude as in the proof of Corollary [3.2] =

The proof of Theorem [1.4]is now a straightforward corollary of Proposi-
tion Recall that we wish to prove that if (ny)x>1 is a sequence of integers
for which there exists an infinite subset S of N such that

2
Z( 1ok ) < oo and ny|ngsq for each k & S,
kes Nkg+1

then there exists a continuous generalized Riesz product ¢ on T which is
IP-Dirichlet with respect to (ng)k>1.

Proof of Theorem[1.]} Let @ : N — N be a strictly increasing function
such that S = {®(l); | > 1}. Set p; = ng()41 for [ > 1 and write, for each
Ee{o(l)+1,...,2(1+ 1)},

Nk = 80,1811 -+ - Sk—(®(1)+1),l P,
with so; =1 and s;; > 2 for each j =1,...,9(l+1) — (?(I) + 1). With the
notation of Proposition [4.1 we have r; = &(1 + 1) — (@(I) + 1) and

Qi—(D(D)+1),0 = S0,1 81,0 -+ - Sk—((1)+1),1-
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Hence q; = qo; + -+ + ;0 = S0 + S04 510+ -+ 501510 ---5r,- We have

a 1 1 1 1
— =1+ -t +
SO,Z Sl,l st STl,l ST'l,l 87‘[—1,[ STl,l 8271 e ST‘[,Z Sl,l e ST‘l,l

1 1 1 . .
§1—|—§+Z+---—|—ﬁ since sj; > 2 for each j =1,...,17

<2.

This yields ¢ < 2s0y817...5,0 = 2¢p,; for each [ > 1. Our assump-

tion that the series Y, q(ni/ng+1)? is convergent means that the series

> i1 (@ p1/piy1)? is convergent. Hence dos1(@ p1/pis1)? is convergent and
the conclusion follows from Proposition .

Our next result shows the optimality of the assumption of Proposition [£.1]
that > ;o1 (qpi/pig1)? is convergent.

PROPOSITION 4.2. Let (v;)1>1 be any sequence of positive real numbers,
going to zero as | — oo, such that the series fle s divergent, with
0 <y <1 for each I > 2. Let (r7);>1 be a sequence of integers growing
to infinity so slowly that the series Y ;~, ’yl?/'rl is divergent, with r; > 2 for
each | > 1. Define p1 = 1 and piy1 = [r?/v|p + 1. For each | > 1, we
have pi41 > 11 p;. Define a strictly increasing sequence (ng)g>1 of integers
by setting

{ni} = w201, rimi}-
>1
Then no continuous measure o on the unit circle can be IP-Dirichlet with
respect to the sequence (ng)p>1.

Proof. We are going to show that Ga((ng)) = {1}; then Theorem
yields the conclusion. Suppose that A € T\ {1} is such that

(4.2) S oA -1 = Zi: AP - 1)? < .

k>1 1>1 j=1

Let C' be a positive constant such that for each 0 €R, (1/C){0} > le%im0 1]
> C{6}. Writing X as A = %™ 9 € [0,1), we have

(4.3) IMPL—1| > C{jpf} foreachl>1landj=1,...,7m.

Now {0p;} < 1/r; for sufficiently large . Else the set {{jfpi}; j =1,...,7m}
would form a {0p;}-dense net of [0, 1], and this would contradict the fact,
implied by and 1 , that the quantity > "L, {j0p;}? tends to zero as
[ — oco. Hence, for sufficiently large [, {j0p;} = j{0p;} for every j =1,... 1y,
and thus the series 7,5, >0 42|APt — 1]2 is convergent. As r; tends to
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infinity with [, this means that the series

(4.4) > e —1p?
1>1
is convergent.
Let now (&;);>1 be a sequence of real numbers going to zero so slowly that
the series Y5, (1/r)v26? is divergent. Suppose that [A\P! — 1| < (y;/r?)é; for
infinitely many [. Then

IAFT/ e 1) < 5, for all these I,

and by definition of p;y1, |AP+1 — A\| < §;. Letting [ tend to infinity along
this set of integers, and remembering that [AP+1 — 1| — 0 as | — oo, we
get A = 1, contrary to our assumption. Hence |AP! — 1| > (fyl/rlz)él for all
integers [ sufficiently large. Combining this with implies that the series

P
y 1
> i g0t =D i
I>1 ! >1 L

is convergent, which is again a contradiction. So Ga((ng)) = {1} and we are
done. m

Consider the sets {n;} given by Proposition With the notation
of Proposition q; is equivalent to 7“12 /2 as k — oo, and the series
S s (@pr/pis1)? is divergent because (gipy/pis1)? is equivalent to 42 /4. This
shows the optimality of the condition given in Proposition

Looking at the construction of Proposition from a different angle
yields an example of a sequence (ny)x>1 such that Ga((ng)) is uncountable,
but still no continuous probability measure on T can be IP-Dirichlet with
respect to (ng)k>1. This is Theorem |1.5

5. Proof of Theorem Recall that we aim to construct a strictly
increasing sequence (ny)r>1 of integers such that Ga((ny)) is uncountable,
but no continuous probability measure on T is IP-Dirichlet with respect to
(ng)k>1. This sequence (ny)x>1 will be of the kind considered in the previous
section. Consider first the sequence (p;);>1 defined by

(12 +1)

5 p; forall I > 1.

pr=1 and pq1=

We then define
{ng; k>1} = U{pl, 201, ..., 1°p ).
1>2
As I’p; < pigq for all I > 2, the sets {p;,2p;,...,I%p;} are consecutive
sets of integers. Let (M;);>1 be the unique sequence of integers such that
g +1,-->nan b = {p1,2p1, - .., 1?p} for each [ > 2. We now know (see
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for instance [2] or [5] for a proof) that there exists a perfect uncountable
subset K of T (which is actually a generalized Cantor set) such that

])\pl—1|§0£ for all A € K and [ > 2,
Pit1

where C' is a positive universal constant. Hence for A € K, [ > 2 and
je{l,...,I?} we have
. 1 2C
-1 < P <0 - = =
Pi+1 l l

Thus

l2
, 4C0%  4C?
2 2
S 1P e = S
j=1

Hence the series ) ;- Zle |AMPt —1]2 is convergent for all A € K, that is,

> k>1|A™ — 1]* is convergent for all A € K. We have thus proved the first
part of our statement, namely that Ga((ny)) is uncountable.

Let now o be a continuous probability measure on T. The proof that o
cannot be IP-Dirichlet with respect to (ny)r>1 relies on the following lemma:

LEMMA 5.1. For alll > 2 and all s > 1, sp; belongs to the set
{Z ng; F € F, min(F) > M;_1 + 1}.
keF
Proof. 1t is clear that for all n > 1,
(S i Pl np FA0}={1,... n(n+1)/2).
JEF
Hence
, P2 +1
{Z]ply F g {17 . 7l2}7 F 7& (Z)} = {pl72pl7’ . '7(2)pl}7
JEF
ie.
{anv FC {Ml—l + 17---7Ml}7 F 75 @} = {pl72pl7"'7pl+1}'
keF
This proves the assertion for s € {1,...,1?(I> + 1)/2}. Then since

{an; FC{M +1,..., My}, F;é(a}
keF

I+ D21+ 1)%+ 1)pl+1}7

= 2 ..
{pl+1, Pi+1 ) B
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we get

{an;FQ{M1—1+1,-.-,M1+1}aF7é@}

keF

= {pl72pl7' -y P41, Pi+1 +plvpl+1 + 2pla o 72pl+17 v

2 2 2 2
(+1) ((l; D +1)pz+1,..., (+1) ((l; D) +1)pz+1 +pz+1}
272 2 2
B {mpbm’z (I 2+ 1) <(l+1) ((12+ D? +1) +1>pl}.

In particular {} ", cpni; F C{Mi_1+1,..., M1}, F # (0} contains the set

{pl’Qpl"”’ZQ(lz—i—l) _ (z+1)2((z+1)2+1)pl}'

2 2
Continuing in this fashion we deduce that for all ¢ > 1,

{ana Fg{MZ—l_Fl""?MH-q}vF#@}

keF

{pl,m,...,ﬂ (L+3)%((1+5)* + 1>pl}'

. 2
7=0

contains the set

The conclusion of Lemma [5.1] follows from this. =

Suppose now that o is IP-Dirichlet with respect to (ng)r>1. Let lp > 2 be
such that for every F' € F with min(F) > My,_1 + 1, |6(D,cpne)| > 1/2.
Then Lemma [5.1]implies that for all s > 1, |6(spy,)| > 1/2. This contradicts
the continuity of the measure o.

6. Additional results and comments

6.1. A remark about the Erdés—Taylor sequence. Let n; =1 and
ngp+1 = kng + 1 for every k > 1. This sequence is interesting in our context
because G1((ng)) = {1} while G2((ng)) is uncountable ([6], see also [I]): if
A € T\ {1}, there exists a positive constant € such that |\ — 1| > ¢/k for
all k > 1. Indeed, if for some k we have [\" — 1| < &/k with e = 3|\ — 1],
then [AFk — 1| <, so that [\™+1 — 1] > [\ — 1| —¢ > Z|A — 1| > 0. Hence
if X € T\ {1} the series > ,~, |[\"* — 1] is divergent. On the other hand,
since the series Y, (nk/ng+1)? is convergent, Ga((ny)) is uncountable. It
is proved in [I] that there exists a continuous probability measure o on T
which is IP-Dirichlet with respect to (nj)r>1. This statement can also be
seen as a consequence of Theorem 2.2 of [9]: it is shown there that there
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exists a continuous generalized Riesz product ¢ on T and a § > 0 such that
()| =
keF
for every F' € F such that min(F') > 4. It is not difficult to see that this
measure o is in fact IP-Dirichlet with respect to (ng)r>1. We briefly give

the argument below. It can be generalized to all sequences (ng)y>1 such
that the series Y, (ng/ng41)? is convergent, thus yielding another proof

of Corollary

The measure o of [9] is constructed in the following way. Let A be the
function defined for ¢t € R by A(t) = max(1 — 6|¢],0). If K is the function R
given by the expression

1 (sin(t/2)\>
K(t) = — Sn(t/2)\° cg,
27 t/2

and K, is defined for each a > 0 by K,(t) = aK(at), t € R, then A(z) =
K 6() for every x € R. The function Ax A is a C? function on R which is
supported on [—1/3,1/3], takes positive values on |—1/3,1/3[, and attains
its maximum at 0. Hence its derivative vanishes at 0. Let a > 0 be such that
the function ¢ = aA x A satisfies ¢(0) = 1. We also have ¢’(0) = 0, and so
there exists a constant ¢ > 0 and a v € (0,1/3) such that ¢(x) > 1 — cz?
for all  with || < . Lastly, recall that p(z) = aKf/G(m) for all x € R.

Consider now the sequence (P;);>1 of trigonometric polynomials defined
on T in the following way: for j > 1 and t € R,

Pilet) = 3 (s /f)e™.

SEZ

This is indeed a polynomial of degree at most |j/3], since ¢(s/j) = 0 as
soon as s/j > 1/3. We now claim that P; takes only non-negative values
on T. Indeed, consider for each j > 1 and ¢ € R the function &;; defined

by @j(x) = ij/G(j(x + 1)), € R. Its Fourier transform is &, (&) =

KT ((€))7) = €A % A(E/j). Thus Pj(e") = a} ez ju(s). Applying
the Poisson formula to ®;;, we get

Pi(e") =2may_ @;4(2ms) = 2ma Y jKi6(j(2ms +1)) > 0.
SEZ SEZL

Hence Pj(e™) is non-negative for all t € R, P;(0) = 1 and Pj(1) = ¢(1/5) >
1 —¢/j% as soon as j > jo, where jo = [1/7v] + 1.
Consider then for m > jy the non-negative polynomials ), defined by

Qm(e") = H Pj(e™), teR.

J=jo
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Since the degree of P; is less than [j/3] and njy1 > jn;/3, Qm(0) = 1
for each m > 1 and the polynomials @), converge in the w*-topology to
a generalized Riesz product ¢ on T which is continuous and such that for
every set F' € F with min(F') > jo,

. c
o(Xm) = 11 (1_162).
keF keF
It follows that o is an IP-Dirichlet measure with respect to (ng)g>1.

6.2. A sequence (ny)p>1 with respect to which there exists a
continuous Dirichlet measure, but G ((ny)) = {1}. The examples
of sequences (ng)r>1 given in [3] and [5] for which there exists a contin-
uous probability measure ¢ on T such that 6(ng) — 1 as k& — oo all
share the property that |A\" — 1| — 0 for some A € T \ {1}. One may
thus wonder whether there exists a sequence (nj)r>1 with respect to which
there exists a continuous Dirichlet probability measure o, but G ((ng)) =
{AeT; |\ —1] — 0} = {1}.

The answer is yes, and an ad hoc sequence (ny)i>1 can be constructed
from the Erdés—Taylor sequence above. Changing notations, define p; = 1
and pgy1 = kpg + 1 for each k£ > 1. For each integer ¢ > 1, consider the
finite set

Py = {Zpk; F#0, FC {2q+1,...,2q+1}}.
keF
The set {J,>; Py can be written as {ng; k > 1}, where (ny)j>1 is a strictly in-
creasing sequence of integers. Let now ¢ be a continuous probability measure
which is IP-Dirichlet with respect to the Erdés-Taylor sequence (pg)g>1:

&(Zpk)%l as min(F') — oo, F' € F.
keF

This implies that 6(ng) — 1 as k — oo. Indeed, let € > 0 and ko be such
that |6 (> peppr) — 1| < e for all F € F with min(F') > kg. Let go be such
that 29 + 1 > ko. Then [6(ng) — 1| < € for all k such that ny, € >, Py-
Since all the sets P, are finite, |6(ny) — 1| < ¢ for all but finitely many k.

It remains to prove that Goo((nx)) = {1}, and the argument for this is
very close to one employed in [1]. Let € € (0,1/16) for instance, and suppose
that A € T is such that |[\"* — 1| < ¢ for all k larger than some ky. We claim
that if gg is such that 2% + 1 > kg, then for all ¢ larger than g,

2q+1
(6.1) DA — 1] < 2C%,
k=20+1

where C' > 0 is a constant such that {t}/C < |2 —1| < C{t} for all t € R.
Indeed, our assumption that |[\"* — 1| < ¢ for all k > ko implies that for all
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g > qo and all disjoint finite subsets F' and G of Py,
{ Zpke} < Ck, { Zpkﬁ} < Ce and { Z pkﬁ} < Ce
keF keG keFUG

where A = ¥ with § € [0,1) and U denotes disjoint union. Now the same
argument as in [I, Prop. 1.1] yields

(3 mo) = (X mo) + (X n)
ke FUG keF keG
Setting

Agr ={k e {2941,...,27}; (py0) > 0},
Ay ={ke{20+1,...,297}; (p0) < 0},
this implies that

Z {pr0} < Ce and Z {prf} < Ce.

k€Aq + kEAq,—
Hence
2a+1 9q+1
Z {prf} < 2Ce so that Z NPk — 1| < 2C%e  for all ¢ > qo.
k=24+1 k=241

Suppose now that A # 1, and set ¢ = |\ — 1|/(4C?). Then (6.1]) implies that
there exists an infinite subset E of N such that |\PF — 1| < (2C%¢)/k for all
k € E. Indeed, otherwise we would have [A\P* — 1| > (2C2%¢)/k for all k large
enough, so that
— . , X , 201 _9u )
k __ — -
(6.2) SO -1 >2C% Y L 2 20%——— >2C%
k=24+41 k=20+1
for all ¢ large enough, contrary to (6.1)). This proves the existence of the
set F. Now for all k € E,

AP 1| > A= 1] — AP — 1| > [ A=1| = k|NPF — 1] > 4C%e —20% = 20%.

But this again contradicts (6.1)), and we infer that X is necessarily equal to 1.
Thus G ((nr)) = {1}, and we are done.

6.3. IP-Dirichlet systems with disjoint spectral measures. We
have given in Proposition a condition on (ny)r>1 implying the existence
of a generalized Riesz product on T which is IP-Dirichlet with respect to
(ng)k>1. Actually, the flexibility of the construction allows us to show that
there are uncountably many disjoint such Riesz products. Recall that two
probability measures o and ¢’ on T are said to be disjoint if there exist
two disjoint Borel subsets A and B of T such that o(A) = ¢/(B) = 1 and
o(B) = 0/(A) = 0. When this is the case, we write o L o’.
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PROPOSITION 6.1. Let (ng)r>1 be a strictly increasing sequence of inte-
gers. Suppose that there exists a sequence (my)g>1 of integers with my > 3
such that

k
(6.3) Ngt1 — 4ijnj >1 for each k > 1,
j=1
k
(6.4) Nkt1 — 4ijnj — 00  as k — oco.
j=1

Let © be the set of all sequences (0k)r>1 of real numbers such that 6 €

{1,+/7} for each k > 1.
For each k > 1, let g, > 1 be an integer such that qkTr\/i < mg + 2. For
each sequence 0 € O, the continuous generalized Riesz product

[Oxme]+1

. Jm it
]Z - < (O] + 2) ‘

=1

2
(%)

2
=w*- i -
o0 =W Ngnoo];;l_{ [kak] + 2

is such that for every finite subset F' € F and any integers ji in {1,...,qx},
k € F, one has

(6.5) ‘79(2 j’“nk) > 11 <1 - < 9kmk] + 2>2>7

keF keF
(6.6) Go (%nk) = ]gcos<mz]_i_2>.

Moreover, if  and 0" are two elements of © such that 6y, # 0}, for inﬁm’tely
many mtegers k > 1, then for all integers n,p > 1 the two measures op"
and 09, are disjoint.

As a consequence of Proposition we obtain:

COROLLARY 6.2. If the sequence (ny)r>1 Satisfies the assumptions of
either Corollary[3.2], Proposition[d.1] or Theorem[L.4], there exist uncountably
many dynamical systems which are weakly mizing and IP-rigid with respect
to (ng)k>1, and which have reduced mazximal spectral types which are pairwise
disjoint.

Proof. Let gy, 0 € O, be one of the measures associated to the sequence
(ng)k>1 obtained in the proof of Proposition Observe that oy is a sym-
metric measure. Following the proof of [I, Prop. 1.2], let (Xg, By, mg; Tp)
be the Gauss dynamical system with spectral measure oy. This system is
IP-rigid with respect to (ng)g>1. It is well-known (see for instance [4, Ch.
14, Sec. 3, Th. 1]) that the reduced maximal spectral type of this system
(i.e. the maximal spectral type of the Koopman operator Ur, acting on the
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set L%(X@, By, mg) of functions in L?(Xy, By, mg) of mean 0) is equal to

*n

1 oy
D D

We claim that if § and 6 are two elements of © with infinitely many distinct
coordinates, then the two measures 7y and 7y are disjoint.

For any n,p > 1, let Ag,, and Ag,n,p be two disjoint Borel subsets
of T such that 6;"(Agnyp) = 1, 0, (Aonyp) = 0, 0p/ (Agnp) = 1 and
03" (Ag np) = 0. For each n > 1, let By, = (451 Aons and By, =
(,>1 Ao’ nr- For any n,p > 1, the sets By, and By, are disjoint since
Ag}mp N Agl’n,p = (. Also U;?(Bg’n) = O';p(Bgl’n) = (0 while U;n(Bgvn) =
05" (Bern) = 1. Set Eg = U, Bo.n and Ep = Upzl By . The sets Eg and
Ey are disjoint. Also

1 o (Ey 1 o;"(By 1 1
mo(Ep) = — > i )26_12 o) _ 2oL

n! n! e—1 n!
n>1 n>1 n>1

Hence 79(Lp) = 1. Moreover, o5/ (Bg,) = 0 for all n,p > 1, so that
o, (Ep) = 0. Hence 19/ (Eg) = 0. In the same way we prove that 7y (Ey) = 1
while 79(Ep) = 0. We have thus proved that 7y and 7y are disjoint measures,
and this yields Corollary .

Proof of Proposition[6.1. The only part of Proposition [6.1] which needs
to be proved is the last statement. Denote for each 6 € © by Py the
polynomial on T defined by

[Ormp]+1

) Jm 2imjt
> sm<[ i 2>e

=1

2 2

Py r(e*™) = Bome] +2

Let 0 and 0" be two elements of © which have infinitely many distinct coor-
dinates. Without loss of generality we can suppose that there is an infinite
I of integers such that 0, = /7 and 0, = 1 for each k € I. Let n,p > 1 be
two integers. The following lemma, which essentially follows from the paper
[11] of Peyriere (see also [7]), gives a criterion for the two measures o™ and
a;,p to be disjoint:

LEMMA 6.3. Let 0,0" € ©. Suppose that there exists a sequence (ji)r>1
of integers with |ji| < my for each k > 1 such that

(6.7) Z | Py (jk)" — Po ()P |* = 0.
k>1
Then the measures op" and a;f’ are disjoint.

We postpone the proof of Lemma and show that the assumption of
the lemma is satisfied.
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Let (jx)r>1 be a sequence of integers such that ji = o(my) as k tends to
infinity. Then

5 i Ji
P@,k(]k) 1*?02 + 0 miz ELS]C*)OO7

- m° jﬁ Ji
Pyir(jp) =1— — = + O % as k — oo.
(k) 2 9k2m% <m,§> >

Indeed, from (3.6 we have
5 Jk JkT
P —(1—-—Jk _JRT
bus{k) ( [Orm] + 2> COS([kak] + 2>
(=
+———) cos| —— | cos! | ————
[kak] + 2 ; ([kak] +2 [kak] +2
=(1—‘”“ )(1—”2‘”3 ~o(2))

Fmral (5 e ()

TS S SRR - VNV i
TP 2 2 (B + 27 Zl((‘”“ —DTHI) O<nf§’;>

Now Z]_lj j (jx+1)(2jk+1) while Z]’“ (jr—13)% = %(]k—l)jk@jk—l).
It follows that

2 .9 -3 2 42 H
R . - 52 Jr ™ Ji Jk
O,k(]k‘) 92 ([kak] + 2)2 + <m2> 2 Qimk + <mi>

Hence

P 1. (k)" — Par 1 (jik)?] =

Recall now that for each k € I, 0 = \/m and 6, = 1, and that I is an
infinite set. Hence for every k € I,
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no_p
2
O OF

n
:’—p‘>0.
T

So

» - \n > - \p|2 ™| n 2 Jk 4
|Pok (k)" — Por i (3x)P|" ~ e et e as k — oo, k € 1.
T my

If the sequence (ji)k>1 is chosen in such a way that ji = o(my) as k — oo

and Zkg(jk/mk)4 = o0, condition (6.7) is satisfied for all n,p > 1. The
conclusion then follows from Lemma[6.3 =

Proof of Lemma . Denote by pg the measure o;", and by pe the
measure a;,p. For every k # [ we have fig(jxnr) = Por(jr)", fo(jim) =
Pyi(j1)" and

fio(Gknw — jin) = Po (k)" Poa(G)™ = fro(Gkn) o (Gima).
Also figr(jxknr) = Por k(r)?, fror (i) = Py 1(j1)P and
for (G = Gina) = Pa g () Por 1 ()" = fror (o) fror (Gora)-

Consider the functions fyj and fy j defined on T by fy r(e*™) = ™kt —
fig(Geng) and for (e2™) = 2™kt — fio/(jgny), t € [0,1). Then the func-
tions (fgx)k>1 form an orthogonal family in L?(pg), and ||f0’k”%2(u9) =
1 — |fig(jen)|? < 1. Tt follows that if (bg)g>1 is any square-summable se-
quence of complex numbers, the series ) ;- by fo r converges in L?(9). In
the same way, >~ bx for 1 converges in L2 (er).

Suppose that pg and pe are not disjoint. Then we can write pg = fig o +
Ho,s, Where g o is absolutely continuous with respect to pgr, and pg s and
pg are disjoint. Write dpg, = pdpg, where ¢ € L*(pgr). Let € > 0 and A
be a Borel subset of T such that ¢ > ¢ on A. Consider the measure v on

T defined by dv = 14dug:. Then v > pg and v > ug, and the two series
Zkzl bi. for, and Zkzl bi.for . converge in L?(v). Hence the series

> bi(for = forw) = D bk(Pok(e)™ — Por i (ii)")
k>1 k>1
is convergent. This being true for any square-summable sequence (by)x>1, it
follows that the series
> 1By k(i)™ — B s (Gir)P|
k>1
is convergent, which contradicts our assumption (6.7). The two measures pg
and pg are hence disjoint. =
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