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A non-doubling Trudinger inequalityby
Amiran Gogatishvili (Praha) and Pekka Koskela (Jyväskylä)Abstrat. We establish a Trudinger inequality for funtions that satisfy a suitablePoinaré inequality in a Eulidean spae equipped with a Borel measure that need not bedoubling.1. Introdution. It is by now well understood that a Poinaré inequal-ity improves itself to a Sobolev-type inequality when we onsider a doublingmeasure. To be more preise, suppose that a pair u, g of measurable funtionswith g ≥ 0 satis�es the inequality(1) <

B

|u − uB| dµ ≤ C diam(B)
( <

B

gp dµ
)1/p

for all balls B in a metri spae X. Here and in what follows, 4A refers to
µ(A)−1

T
A, uA is the average of u over a set A, and we assume that u isintegrable on eah ball B. Assume then that µ is doubling:(2) µ(B(x, 2r)) ≤ Cdµ(B(x, r)),for eah x and all radii r > 0. By iterating this inequality one obtains a lowerestimate for the volume deay:(3) µ(B(x, r)) ≥ C(r/R)sµ(B(x, R))whenever B(x, r) ⊂ B(x, R). This exponent s plays the role of the dimension:when p < s and g is p-integrable, the funtion u is q-integrable for eah

q < ps/(s − p), and when p = s and g is s-integrable, u is exponentiallyintegrable. Here s an be replaed by any exponent as in (3), not neessarilyobtained by iterating the doubling ondition. These integrability results arein fat realized as inequalities. For example, for q < ps/(p − s), one obtains2000 Mathematis Subjet Classi�ation: Primary 46E35.The researh for this paper was performed when A.G. was visiting the University ofJyväskylä �naned by a researher exhange grant program of the Aademy of Sienesof the Czeh Republi and the Aademy of Finland and by the grant no. 201/01/0333 ofthe Grant Ageny of the Czeh Republi. He wishes to thank these organizations for thesupport. [113℄



114 A. Gogatishvili and P. Koskelathe inequality
( <
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≤ C ′ diam(B)
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,

where 2B is the ball with the same enter as B and of twie the radius of B.When the geometry of balls is su�iently nie, the onstant 2 an be omitted.Under the mild additional assumption that the spae X be onneted, oneeven has a Trudinger inequality in the borderline ase p = s. For these resultssee the papers [3℄, [4℄ by Hajªasz and Koskela.A version of the improved regularity is also known to hold for ertain non-doubling measures. The �rst result of this kind that we know of is from thepaper [6℄ by Mateu, Mattila, Niolau and Orobitg, where a John�Nirenbergtype estimate is proven for funtions in BMO. For motivations for relaxingthe doubling assumption see [6℄ and the referenes therein.Let us desribe the non-doubling setting. Let µ be a non-negative Radonmeasure on R
n, not neessarily doubling. We assume that µ(T ) = 0 for eahhyperplane T orthogonal to one of the oordinate axes. In [6℄, the authorsstudied BMO for ubes with respet to suh a measure and established anexponential integrability result. The point here is that ubes in R

n havespeial overing properties. An example was given in [6℄ to show that oneannot neessarily gain any improved integrability for funtions in BMO ifthe measure fails to be doubling and the de�nition is given in terms of balls.Subsequently, in [8℄, Orobitg and Pérez gave a version of the Sobolev-type inequalities for p < s. Here s refers to a deay order of the measure,analogous to (3). It is natural to impose this assumption on the measure. Asin the ase of BMO, the Poinaré inequality was assumed to hold for ubes.In this short note, we establish a version of the Trudinger inequality inthe setting onsidered in [8℄.Theorem 1.1. Let µ be a non-negative Radon measure on R
n so that

µ(T ) = 0 for eah hyperplane T orthogonal to one of the oordinate axes.Assume that(4) µ(Q) ≥ Cµ diam(Q)sfor eah ube Q, where s > 1. Suppose that u is a loally integrable funtionso that(5) <
Q

|u − uQ| dµ ≤ C diam(Q)
( <

Q

gp dµ
)1/p

for eah ube Q with edges parallel to oordinate axes, where g ∈ Ls
µ(Rn),and 1 < p < s. Then there exists a onstant C ′ independent of u, g suh that
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‖u − uQ‖exp Ls′ (Q,µ) ≤ C

( \
Q

gs dµ
)1/s

where
‖v‖expLs′ (Q,µ) = inf

{
λ :

<
Q

exp((g/λ)s′) dµ < 1
}

and s′ = s/(s − 1).The laim of Theorem 1.1 an be loalized: if we assume (4) and (5) foreah ube Q ⊂ Q0, all with edges parallel to oordinate axes, then the laimholds for eah analogous subube of Q0.Our proof also gives the same integrability estimate for loally integrablefuntions u that satisfy a.e. the pointwise estimate(6) |u(x) − u(y)| ≤ |x − y|(g(x) + g(y))with g loally s-integrable. We believe that even this ase is new. When
µ is doubling, this lass of funtions introdued by Hajªasz in [2℄ oinideswith the lass of funtions u studied in Theorem 1.1. In our setting, thegiven pointwise estimate implies the indiated Poinaré inequality but theonverse diretion is doubtful.Let us lose this introdution by pointing out that we do not know if it issu�ient to assume the Poinaré inequality of Theorem 1.1 with exponent s.Our method, based on ertain ideas from [6℄ and [8℄, breaks down if thisinequality is taken as the starting point.2. Proof of Theorem 1.1. We assume that µ is as in Theorem 1.1.Fix a ube Q0 and a point x ∈ Q0. Let 0 < r < diam(Q0). We de�ne
Q̃(x, r) as the unique ube with edges parallel to the oordinate axes andof diameter r, ontaining x, ontained in Q0, and with enter as lose to xas possible. Clearly, for a �xed x, the funtion µ(Q̃(x, r)) is a ontinuousfuntion of r when 0 < r < diam(Q0). Consequently, there exists a sequene
(ri(x)) so that(7) µ(Q̃(x, ri(x))) = 2−iµ(Q0).Let us de�ne Qi(x) = Q̃(x, ri(x)). Beause Q̃(x, r) ⊂ Q̃(x, R) when r < R,we have(8) Qi+1(x) ⊂ Qi(x)for all i. Assoiate a sequene (Qi(x)) to eah x ∈ Q0 by the above proedure.



116 A. Gogatishvili and P. KoskelaWe now de�ne a maximal operator assoiated to our family of ubes bysetting
M̃pg(x) = sup

i≥0

(
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µ(Qi(x))

\
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)1/p

.

Lemma 2.1. We have
µ({x ∈ Q0 : M̃pg(x) > λ}) ≤ b(n)λ−p

\
Q0

gp dµ,

where b(n) only depends on n. Moreover , for eah 0 < q < p,
(
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\
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Estimates like the one in Lemma 2.1 are well known when either the mea-sure is doubling or when the ubes in the de�nition of M̃pg are entered at thepoint x. In the �rst ase, the doubling allows one to e�etively use the Vitaliovering theorem and in the seond ase one relies on the Besiovith over-ing theorem. Thus the seond ase is heavily Eulidean whereas the doublingassumption on the measure su�es in general metri measure spaes. In oursetting, we annot diretly apply the Besiovith overing theorem. The keyidea in our argument omes from [6℄. For the sake of ompleteness we give arather detailed proof.Proof of Lemma 2.1. For eah x ∈ Eλ := {x ∈ Q0 : M̃pg(x) > λ} thereis a ube Qi(x)(x) so that(9) (
1

µ(Qi(x)(x))

\
Qi(x)(x)

|g(y)|p dµ

)1/p

> λ.

We de�ne Ri(x)(x) as the unique retangle in R
n entered at x so that

Ri(x)(x) ∩ Q0 = Qi(x)(x). Denote by R the olletion of retangles obtainedby this proedure. It follows from the de�nition that the ratio of any twoside lengths of a retangle in R is at most 2. So, by the Besiovith ov-ering theorem (see [1℄), we obtain a ountable subolletion of retangles
Ri ∈ R overing Eλ so that eah point in R

n belongs to at most b(n) ofthese retangles, where b(n) only depends on n. Therefore,
µ(Eλ) ≤

∞∑

i=1

µ(Rj ∩ Q0) ≤ λ−p
∞∑
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µ(Qi)
1

µ(Qi)

\
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|g|p dµ(10)
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A non-doubling Trudinger inequality 117The seond statement follows from the Kolmogorov inequality whih statesthat every weak-type estimate as in the �rst part of the laim yields a strong-type inequality when the exponent p is relaxed to 0 < q < p; this an beeasily heked by hand by using the Cavalieri formula for Lebesgue integrals(f. Theorem 14.11 in [4℄).We now give the proof of Theorem 1.1.Proof of Theorem 1.1. Fix a point x ∈ Q0 and the assoiated sequene
(Qi(x)) of ubes. To simplify our notation we will mostly suppress the de-pendene of Qi on x in what follows.By the Lebesgue di�erentiation theorem (f. [7℄) we may assume that

lim
i→∞

uQi(x) = u(x)

µ-a.e. and hene we may assume that our �xed point x has this property.Let N = N(x) be a positive integer whose value will be determined later.Now
1
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|u − uQi(x)| dµ =: I1 + I2.Furthermore, by (5), (4), (8), hanging the order of summation, using (7)and the assumption p < s, and �nally employing the Hölder inequality wesee that
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where C ′ = C ′(p, s). To estimate I2 we �rst apply the lower deay order (4)of µ and the equality (7) to see that
diam(Qi) ≤ C−1/s

µ µ(Qi)
1/s ≤ C2−i/sµ(Q0)

1/s.Taking this and the Poinaré inequality (5) into aount results in the esti-mate
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1/sM̃sg(x).We now hoose N(x) to be the integer part of
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|u(x) − uQ0 |
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,where C ′′ = C(p, s, Cµ, C). Consequently, for λ > 0,\
Q0

exp

(
log 2

(
|u(x) − uQ0 |

λC ′′(
T
Q0

gs dµ)1/s

)s′)
dµ ≤ 21/λ

\
Q0

(M̃sg(x))s/λ dµ
(

1
µ(Q0)

T
Q0

gs dµ
)1/λ

.The laim of Theorem 1.1 follows by employing the boundedness of themaximal operator given by Lemma 2.1, whih an be applied when λ > 1.Remark 2.2. The proof of Theorem 1.1 above shows that we atuallyproved the Trudinger-type estimate for the potential
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