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On bases in Banah spaesby
Tomek Bartoszyński (Arlington, VA), Mirna Džamonja (Norwih),

Lorenz Halbeisen (Bern), Eva Murtinová (Praha)and Anatolij Plichko (Kraków)Abstrat. We investigate various kinds of bases in in�nite-dimensional Banahspaes. In partiular, we onsider the omplexity of Hamel bases in separable and non-separable Banah spaes and show that in a separable Banah spae a Hamel basis annotbe analyti, whereas there are non-separable Hilbert spaes whih have a disrete andlosed Hamel basis. Further we investigate the existene of ertain omplete minimal sys-tems in ℓ∞ as well as in separable Banah spaes.Outline. The paper is onerned with bases in in�nite-dimensional Ba-nah spaes. The �rst setion ontains the de�nitions of the various kinds ofbases and biorthogonal systems and also summarizes some set-theoreti ter-minology and notation whih will be used throughout the paper. The seondsetion provides a survey of known or elementary results. The third setiondeals with Hamel bases and ontains some onsisteny results proved usingthe foring tehnique. The fourth setion is devoted to omplete minimal sys-tems (inluding Φ-bases and Auerbah bases) and the last setion ontainsopen problems.1. Basis about bases. In what follows, all Banah spaes are assumedto be in�nite-dimensional. Exept one, all Banah spaes we onsider areBanah spaes over the real �eld R, and the only exeption is the in�nite-dimensional Banah spae R over the �eld Q.
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148 T. Bartoszy«ski et al.Hamel bases. Let X be a Banah spae and let {xi : i ∈ I} ⊆ X bean arbitrary set of vetors of X. Let 〈xi : i ∈ I〉 denote the linear spanof {xi : i ∈ I}. A set {xi : i ∈ I} ⊆ X is alled a Hamel basis of X if
〈xi : i ∈ I〉 = X and for every j ∈ I we have xj /∈ 〈xi : i ∈ I \ {j}〉.Hamel bases were �rst introdued by Georg Hamel in [Ham05℄ to de�nea disontinuous linear funtional on the real line. In fat, he onstruted bytrans�nite indution an algebrai basis in the Banah spae R over Q.Complete minimal systems. Let X be a Banah spae and let {xi : i ∈ I}
⊆ X be an arbitrary set of vetors of X. Let [xi : i ∈ I] denote the losureof the linear span of {xi : i ∈ I}. A set {xi : i ∈ I} ⊆ X is alled a ompletesystem if [xi : i ∈ I] = X, and it is alled a minimal system if for every
j ∈ I, xj /∈ [xi : i ∈ I \ {j}]. A omplete minimal system, abbreviated .m.s.,is a omplete system whih is also minimal.Using funtionals we an haraterize minimal systems (and onsequentlyomplete minimal systems) in the following way (f. [LT77, 1.f℄):Let X be a Banah spae. A pair of sequenes {xi : i ∈ I} ⊆ X and
{fi : i ∈ I} ⊆ X∗ is alled a biorthogonal system if fj(xi) = δi

j . Now, asequene {xi : i ∈ I} ⊆ X is minimal if and only if there is a sequene
{fi : i ∈ I} ⊆ X∗ suh that the pair ({xi : i ∈ I}, {fi : i ∈ I}) is abiorthogonal system.

Φ-bases. In [KPP88℄ Vladimir Kadets, Anatolij Plihko and Mikhail Po-pov introdued and investigated the notion of �nitary bases of Banah spaes,alled Φ-bases, whih are omplete minimal systems of a ertain type. Φ-basesare weaker than the so-alled En�o�Rosenthal bases, whih are ompleteminimal systems suh that every ountable subsystem is a basi sequene(i.e., a Shauder basis in the losure of its linear span) with respet to someenumeration of its elements.If {xi : 0 ≤ i ≤ n} ⊆ X is any �nite set of vetors of X, the basis onstant
µ{xi : 0 ≤ i ≤ n} is the least number M ≤ ∞ for whih

∥∥∥
k∑

i=0

aixi

∥∥∥ ≤ M ·
∥∥∥

n∑

i=0

aixi

∥∥∥

holds for any salars ai and any integer k with 0 ≤ k ≤ n. A ompletesystem {xi : i ∈ I} ⊆ X is alled a �nitary basis of X, brie�y a Φ-basis,if there exists a onstant M < ∞ suh that for any �nite set I0 ⊆ I thereis an ordering I0 = {ij : 0 ≤ j ≤ n} suh that µ{xij : 0 ≤ j ≤ n} ≤ M .The least suh onstant M is alled the Φ-basis onstant of the Φ-basis
{xi : i ∈ I}.

Φ-bases are in fat just a speial kind of omplete minimal systems. Tosee this let us reall the following result (f. [KPP88, Proposition 1℄):



Bases in Banah spaes 149Proposition 1.1. If {xi : i ∈ I} ⊆ X is a Φ-basis of some Banah spae
X with a Φ-basis onstant M , then the distane between any xj ∈ {xi : i ∈ I}and [xi : i ∈ I \ {j}] is greater than or equal to 1

2M
· ‖xj‖.Proof. By the de�nition of M it is straightforward to see that for any

xj ∈ {xi : i ∈ I0}, where I0 ⊆ I is a �nite subset of I, for any set of salars
ai we have

‖ajxj‖ ≤ 2M ·
∥∥∥

∑

i∈I0

aixi

∥∥∥,

and hene,
2M ·

∥∥∥xj −
∑

i∈I0\{j}

aixi

∥∥∥ ≥ ‖xj‖.

Thus, the distane between any xj and [xi : i ∈ I \ {j}] is greater than orequal to 1
2M

· ‖xj‖.Now, assume that {xi : i ∈ I} ⊆ X is a normalized Φ-basis of someBanah spae X. By the previous fat and the Hahn�Banah Theorem, forevery i ∈ I we �nd an fi ∈ X∗ suh that fi(xj) = δi
j , and moreover we anhave ‖fi‖ ≤ 2M (for all i ∈ I). In partiular {xi : i ∈ I} ⊆ X is a normalizedomplete minimal system.Auerbah bases. In a �nite-dimensional Hilbert spae one may easilyhek that the vetor x is orthogonal to a vetor y, denoted x ⊥ y, if andonly if inf{‖x − ry‖ : r ∈ R} = ‖x‖. This an be used as a de�nition oforthogonality in any Banah spae. In general this gives some surprising re-sults, suh as that the relation �⊥� is not neessarily symmetri. Neverthelessone may still ask if every Banah spae has a basis onsisting of orthogonalvetors, more preisely an Auerbah basis as de�ned below.Let X be a Banah spae and let {xi : i ∈ I} ⊆ X. Then {xi : i ∈ I} isan Auerbah basis of X if [xi : i ∈ I] = X, and if for every j ∈ I,

‖xj‖ = inf{‖xj − y‖ : y ∈ [xi : i ∈ I \ {j}]}.This notion was introdued by Herman Auerbah in his Ph.D. thesis[Au29℄ where he proved that every �nite-dimensional normed spae has anAuerbah basis, as mentioned in Stefan Banah's book [Ba32, p. 238℄. Thethesis and the proof were lost in World War II and Auerbah himself waskilled by the Gestapo at Lwów in the summer of 1943. In 1947 Auerbah'stheorem was reproved by Malon Day in [Da47℄ and Angus Taylor in [Ta47℄and a very elegant proof an also be found in [LT77, p. 16℄.Using biorthogonal systems we an haraterize Auerbah bases as aspeial kind of omplete minimal systems:



150 T. Bartoszy«ski et al.Let {xi : i ∈ I} be a normalized .m.s. of some Banah spae X and let
({xi : i ∈ I}, {fi : i ∈ I}) be the orresponding biorthogonal system. Then
{xi : i ∈ I} is an Auerbah basis of X if ‖fi‖ = 1 for every i ∈ I.To �onstrut� a Hamel basis in some Banah spae, we just well-orderthe vetors and then onstrut the Hamel basis by trans�nite indution. So,every Banah spae has a Hamel basis. However, the onstrution above usesthe Axiom of Choie, and hene, we do not know how a Hamel basis lookslike: For example, an a Hamel basis be losed, or non-meagre, or de�nable?We will answer some questions of that type in Setion 3.Unlike Hamel bases, not every Banah spae has a .m.s. (see, e.g., [Pl80℄or [GK80℄). Moreover, even though ℓ∞ has a .m.s. (see [DJ73℄ and [Go83℄),the spae ℓ∞ has a non-separable subspae X whih has omplete minimalsystems, but none of them an be extended to a .m.s. of ℓ∞ (f. [Go84,Theorem 3℄). The existene of Φ-bases and of Auerbah bases in ertainBanah spaes will be disussed in Setion 4.Before going to the main part of the paper we need to review some basiset-theoreti notions.Some set theory. For the reader's onveniene we shall reall some set-theoreti terminology and basi fats. Our set-theoreti axioms are the ax-ioms of Zermelo and Fraenkel inluding the Axiom of Choie AC, denotedZFC. All our set-theoreti notations and de�nitions are standard and anbe found in textbooks suh as [Je03℄, [Ku83℄ or [BJ95℄. In some parts ofthis paper we use the so-alled foring tehnique to onstrut models of ZFCin whih Banah spaes with ertain properties exist. Foring is a sophisti-ated tool and we do not attempt to explain it here. So, as far as foring isonerned, the paper is not self-ontained.A set x is transitive if every element of x is a subset of x. A relation Rwell-orders a set x, or 〈R, x〉 is a well-ordering, if 〈R, x〉 is a total orderingand every non-empty subset of x has an R-least element. The Axiom ofChoie is equivalent to the statement that every set an be well-ordered. Aset x is an ordinal number if x is transitive and well-ordered by ∈. Ordinalnumbers will usually be denoted by Greek letters like α, β, . . . . In partiular,for two ordinal numbers α and β, α < β is the same as saying α ∈ β. TheAxiom of Choie is also equivalent to the statement that for every set xthere exists an ordinal number α and a bijetion f : α → x. The lass of allordinal numbers is transitive and well-ordered by ∈. The set of all naturalnumbers is equal to the set of all �nite ordinal numbers and is denoted by ω.In partiular, a natural number n is the set of all natural numbers whihare smaller than n, e.g., 0 = ∅. An ordinal number α is a alled a suessorordinal if α = β ∪ {β} (for some ordinal β), otherwise, α is alled a limitordinal. If α is an in�nite limit ordinal, then the o�nality of α, denoted



Bases in Banah spaes 151
cf(α), is the least limit ordinal β suh that there is an inreasing β-sequene
〈αξ : ξ < β〉 with limξ→β αξ = α (see, e.g., [Je03, p. 31℄).For a set x the ardinality of x, denoted by |x|, is the least ordinal number
α for whih there exists a bijetion f : α → x; suh an ordinal number αis alled a ardinal number (or just a ardinal). For example, |ω| = ω, and�nite ardinal numbers orrespond to natural numbers. A set x is alled�nite if |x| ∈ ω, otherwise it is alled in�nite. Further, it is alled ountableif |x| ≤ ω. For a set x the power set of x is denoted by P(x). There existsa bijetion between R and P(ω), hene |R| = |P(ω)|, and we denote thisardinality by c. The Continuum Hypothesis CH states that c = ω1, where
ω1 denotes the least ordinal number whih is not ountable.For any ardinals κ and λ, κ · λ denotes the ardinality of the produt
κ × λ. If at least one of the two ardinals is in�nite, then κ · λ is alwaysequal to max{κ, λ}. For any ardinals κ and λ let κλ denote the ardinalityof the set λκ of all funtions from λ to κ. For example 2

λ = |P(λ)| whih isalways stritly greater than λ. For any ardinal κ let κ+ be the least ardinalwhih is stritly greater than κ. The Generalized Continuum HypothesisGCH states that for eah in�nite ardinal κ we have 2
κ = κ+. An in�niteardinal κ is alled regular if cf(κ) = κ. Notie that cf(κ) is always regular.As a onsequene of König's Theorem we get the following (see, e.g., [Je03,Corollaries 5.12�14℄):Fat 1.2. Let κ and λ be in�nite ardinals. Then cf(2κ) > κ, cf(κλ) > λ,and κcf(κ) > κ.For any set x and any ardinal κ let

[x]κ := {y ∈ P(x) : |y| = κ} and [x]<κ := {y ∈ P(x) : |y| < κ}.If x is in�nite, then |[x]<ω| = |x|.2. Cardinality issues in Banah spaes. In [HH00℄ (see also [Ma45℄)it is shown that for any in�nite-dimensional Banah spae X, and for anyHamel basis H of X we have |H| = |X|, whih is at least c. (Note that thepoint of this result is when |X| = c.) This implies the followingProposition 2.1. Every Banah spae X over a omplete �eld has 2
|X|di�erent normalized Hamel bases.Proof. Let H ⊆ X be a normalized Hamel basis of X and let h0 ∈ H.For any set I ⊆ H \ {h0}, let BI := {(h0 + h)/‖h0 + h‖ : h ∈ I} and let

HI := BI ∪ (H \ I). Now, HI is a normalized Hamel basis of X and for anytwo di�erent subsets I and I ′ of H \ {h0} we have HI 6= HI′ . Sine there are
2
|X| suh subsets, X has 2

|X| di�erent normalized Hamel bases.Can we ask for more? Obviously, one annot aim for more than 2
κ di�er-ent normalized Hamel bases, but one ould try to �nd a family of 2

κ di�erent



152 T. Bartoszy«ski et al.normalized Hamel bases suh that the ardinality of the intersetion of anytwo of them is less than κ (see Question 4 in Setion 5).Proposition 2.2. The unit sphere of a real Banah spae X is not theunion of fewer than c Hamel bases of X.Proof. Let x and y be two di�erent unit vetors of X and de�ne S =
{(rx + ty)/‖rx + ty‖ : r, t ∈ R}. Then S is a subset of the unit sphere with
|S| = c and every Hamel basis of X ontains at most two vetors from S.Thus S, and in partiular the unit sphere, annot be overed by fewer than
c Hamel bases of X.At this point we would like to mention that not even a weakened formof Proposition 2.2 works for the Banah spae R over Q: In fat Paul Erd®sand Shizuo Kakutani showed in [EK43, Theorem 2℄ that CH is equivalentto the statement that R is the union of ountably many sets of rationallyindependent numbers.With respet to omplete minimal systems we get the followingProposition 2.3. The ardinality of a .m.s. of a Banah spae X isequal to the density harater of X (denoted by d(X)).Proof. On the one hand, the set of all �nite linear ombinations of a.m.s. with rational oe�ients is dense in X, and on the other hand, every.m.s. of X is disrete in X.At this point we would like to introdue the notation Bx,r for the openball entred at x with radius r, whih will be useful throughout the paper.As a matter of fat we would like to mention the following simple obser-vations, as we shall use them later:Proposition 2.4. Let X be a Banah spae.(a) If A ⊆ X and |A| < d(X), then A is nowhere dense in X.(b) We always have |X| ≤ d(X)ω (see also Lemma 2.8).Proof. (a) Suppose otherwise, so let Bx,r be an open ball in whih A isdense. (Clearly this implies that A is in�nite.) Then ⋃

q∈Q q(A − x) is a setof the same size as A and is dense in X.(b) If D is a dense subset of X then every element of X is a limit pointof a ountable sequene from D.The following is a well known fat about metri spaes.Fat 2.5. For every in�nite- or �nite-dimensional Banah spae X wehave d(X) = w(X) (where w(X) denotes the weight of the spae X).Corollary 2.6. The number of open (and hene of losed) subsets ofa Banah spae X is at most 2
d(X). In partiular , |X| ≤ 2

d(X) (whih alsofollows from Lemma 2.8 below).



Bases in Banah spaes 153Proof. Every open set is the union of some family of basi open sets andevery point in a Banah spae is a losed set.Using these fats we an prove the following:Theorem 2.7. For any Banah spae X we have cf(|X|) > ω.In order to prove this theorem we need the followingLemma 2.8 (Juhász�Szentmiklóssy). For any Banah spae X we have
d(X)ω ≤ |X|. Consequently , by Proposition 2.4(b), |X| = d(X)ω.Proof. Let X be an in�nite-dimensional Banah spae with d(X) = λ,whih, by Fat 2.5, is the same as w(X). First note that by the Bing Metriza-tion Theorem (f. [Bi51℄), every metri spae of weight λ ontains λ pairwisedisjoint open sets. Consequently, sine every open subset of X has the sameweight as X itself, every open subset of X ontains λ pairwise disjoint opensets. Now start with λ pairwise disjoint open balls, inside of eah take λpairwise disjoint open balls and so on. The tree we get in this way is a treeof height ω whih ontains λω di�erent branhes, and sine the diameters ofthe open sets onverge to 0, every branh yields a Cauhy sequene. Hene,by the ompleteness of X we have λω ≤ |X|.Now we are ready to prove the theorem.Proof of Theorem 2.7. Let X be an in�nite-dimensional Banah spaeof ardinality κ with d(X) = λ. By Lemma 2.8 and by Proposition 2.4(b),
λω = κ, and hene, by Fat 1.2, cf(κ) > ω.3. The omplexity of Hamel bases3.1. The general ase. Many arguments about Banah spaes involvethe Baire Category Theorem the ontent of whih we reall brie�y. Let Xbe a Banah spae. Sine X is a omplete metri spae, X is a so-alledBaire spae, i.e., a spae in whih non-empty open sets are non-meagre.Equivalently, eah intersetion of ountably many open dense sets in X isdense in X. A subset A of X has the Baire property if there is an openset O suh that O △ A is meagre (i.e., of �rst ategory), where O △ A =
(O \ A) ∪ (A \ O).The ideal of meagre sets in a spae X will be denoted by MX . Its o�-nality cof(MX) is the smallest size of a subfamily F of MX suh that everymeagre set is ontained in an element of F . Notiing that Fσ meagre sets areo�nal in MX we may rede�ne cof(MX) as the smallest size of a subfamilyof Fσ meagre sets that is o�nal for the Fσ meagre sets.Let us �rst prove the following two results:Proposition 3.1. Suppose that X is any Banah spae and that H is aHamel basis of X. If H has the Baire property , then H is meagre.



154 T. Bartoszy«ski et al.Proof. Let H be a Hamel basis of X and assume that it has the Baireproperty but is non-meagre. Then there is a non-empty open set O suhthat O △ H is meagre. Let h ∈ H ∩ O and let xi (i < ω) be a sequene ofvetors onverging to h suh that eah xi needs at least four vetors from
H to represent it in the basis H. Suh a sequene exists, sine we an justtake any onverging sequene and then add some small linear ombinationsof H to it. Now, sine the xi's onverge to h and O is open, there is some
j < ω suh that (h + O) ∩ (xj + O) 6= ∅, in partiular it is open. Further,sine h ∈ H ∩O, we have (h+H)∩ (xj +H) 6= ∅, and by the property of xj,this ontradits the fat that H is a Hamel basis.Proposition 3.2. Every Banah spae over a omplete �eld ontains aHamel basis whih is nowhere dense and one whih is dense and meagre.Proof. Let X be a Banah spae over some omplete �eld, and let {Bα :
α < λ} be its open base, where λ is the weight of X.By trans�nite indution we an onstrut a linearly independent set H ′ =
{hα : α < λ} in X suh that for every α < λ we have hα ∈ Bα and
‖hα‖ ∈ Q. Why? Assume we have already onstruted a linearly independentset Hβ = {hα : α < β} for some β < λ. Let 〈Hβ〉 denote the linear spanof Hβ . Sine β < λ, we have Bβ * 〈Hβ〉, and therefore we an �nd a vetor
h ∈ Bβ \ 〈Hβ〉. Pik q ∈ (‖h‖ − ε, ‖h‖ + ε) ∩ Q, where ε > 0 is suh that
Bh,ε ⊂ Bβ . Let hβ = q · h/‖h‖; then hβ ∈ Bβ and ‖hβ‖ ∈ Q.Now extend H ′ by unit vetors to a Hamel basis H of X. By onstrution,
H is a Hamel basis of X whih is dense in X. Moreover, for every positiverational q the set {h ∈ H : ‖h‖ = q} is nowhere dense beause it is ontainedin a sphere. This implies that H, as the union of ountably many nowheredense sets, is meagre.De�ne H∼ = {h/‖h‖ : h ∈ H}. Then H∼ is a Hamel basis of X whih isnowhere dense.By trans�nite indution one an show that every separable Banah spaeontains a Hamel basis whih is non-meagre (see [GMP83℄). In fat, we anprove a slightly more general result:Theorem 3.3. Let X be a Banah spae satisfying cof(MX) ≤ |X|.Then X has a non-meagre Hamel basis.Proof. Let X be a Banah spae satisfying the assumptions and let {Bα :
α < κ} be an enumeration of a o�nal family of meagre Fσ sets of the leastpossible ardinality. Hene |X| ≥ κ by the assumptions. First we onstrut byindution on α a non-meagre set H ′ = {hα : α < κ} of linearly independentvetors. Assume we have already hosen the set H ′

α = {hβ : β < α} for some
α < κ. Now, there is an hα suh that hα /∈ 〈H ′

α〉 ∪ Bα. Why? Sine |X| ≥ κthe set H ′
α annot be a Hamel basis of X, and therefore 〈H ′

α〉 is a proper



Bases in Banah spaes 155subset of X. We hoose a (non-zero) x′ ∈ X \ 〈H ′
α〉. If 〈H ′

α〉 ∪ Bα = X,then the set A = X \ Bα is ontained in 〈H ′
α〉 and is hene disjoint from

x′ + 〈H ′
α〉 and in partiular from x′ + A. However, sine Bα is meagre Fσ,both A and x′ + A are ountable intersetions of open dense sets and henethe Baire Category Theorem implies that the intersetion of A and x′ + Amust be dense, a ontradition. Hene, 〈H ′

α〉 ∪Bα 6= X and we an hoose a(non-zero) hα ∈ X \ (〈H ′
α〉 ∪ Bα).Finally, let H ′ =

⋃
α<κ H ′

α and let H be a Hamel basis of X ontaining
H ′. Then, by onstrution, the set H is not ontained in any meagre set andtherefore annot be meagre.Corollary 3.4. If X is a Banah spae satisfying 2

d(X) ≤ |X|, then Xontains a non-meagre Hamel basis. In partiular , every separable Banahspae has a non-meagre Hamel basis.Proof. Sine every nowhere dense set is ontained in some losed setwhose omplement is open dense, and sine d(X) = w(X), there are atmost 2
d(X) di�erent open dense sets in X. This implies that cof(MX) ≤

(2d(X))ω = 2
d(X)·ω = 2

d(X), hene, by Theorem 3.3, X ontains a non-meagreHamel basis. In partiular, for separable spaes X we have d(X) = ω, whihimplies cof(MX) ≤ 2
d(X) = c ≤ |X|, and therefore, every separable Banahspae has a non-meagre Hamel basis.The problem whether every Banah spae ontains a non-meagre Hamelbasis will be disussed again in Setion 3.4.The following theorem was proved in [Hal01℄ and we shall use it on severaloasions. Before we state the theorem let us reall that a subset S of aBanah spae X is alled linearly Baire if for every positive integer n theset of all linear ombinations involving exatly n vetors of S has the Baireproperty.Theorem 3.5. If X is a Banah spae over any �eld F and H is a Hamelbasis of X, then H is not linearly Baire.To keep the notation short, let us introdue the following de�nition. Let

X be a Banah spae over the �eld F and let H ⊆ X. For a positive integer
n, let [H]n be the set of all n-element subsets of H and let

Hn :=
{ n∑

i=1

αihi : α1, . . . , αn ∈ F \ {0} and {h1, . . . , hn} ∈ [H]n
}
.A reformulation of Theorem 3.5 that we shall use below isCorollary 3.6. Let X be a Banah spae over the �eld F and let Γ bea family of subsets of X suh that every set in Γ has the property of Baireand for every natural number n and H ∈ Γ , the set Hn is in Γ . Then no setin Γ is a Hamel basis for X.



156 T. Bartoszy«ski et al.Another onsequene of this result isTheorem 3.7. No Banah spae X has a Hamel basis that is σ-ompat.Proof. Let X be a Banah spae. To better illustrate the method ofthe proof let us �rst show that X annot have a ompat Hamel basis. Sosuppose towards a ontradition that H were suh. Hene for every a ≤ bin R the set [a, b] · H is ompat and so is any �nite sum of suh sets sinefor any ompat K the set K + K is ompat. In this way we dedue that
H1 =

⋃∞
n=1[−n, n]·H\{0}, H1∪H2 =

⋃∞
n=1{[−n, n]·H+[−n, n]·H}\{0} et.are all Borel and so H is linearly Baire, in ontradition with Theorem 3.5.The proof for σ-ompatness is the same, notiing that if H =

⋃
n<ω Knthen for example H +H =

⋃
n<ω,m<ω(Kn +Km), and the other sets involvedin heking that H is linearly Baire have similar de�nitions.As opposed to ompat sets, losed sets C do not neessarily satisfy that

C + C is losed and in fat in Setion 3.2 we shall see an example of aBanah spae that has a losed Hamel basis. This spae is non-separableand by Theorem 3.10 this assumption is neessary.3.2. The non-separable aseTheorem 3.8. There are non-separable Banah spaes whih have alosed Hamel basis. Moreover , there are Hilbert spaes of arbitrarily largeardinality whih have a disrete and losed Hamel basis.Proof. Let κ be an arbitrarily large ardinal satisfying κω = κ (for ex-ample for any λ we may let κ = λω). Further, let ℓ2(κ) be the Hilbert spaeof all funtions f : κ → R with
‖f‖ :=

√∑

β<κ

f(β)2 < ∞.

Notie that every f ∈ ℓ2(κ) must have ountable (or �nite) support, i.e., theset {β < κ : f(β) 6= 0} is at most ountable.We shall see that ℓ2(κ) has a disrete and losed Hamel basis. Note that
|ℓ2(κ)| = κ sine κω = κ.Let X be the diret sum of ω1 opies of ℓ2(κ) with the ℓ2-norm. By thede�nition of κ it is easy to see that |ℓ2(κ)| = |X| = κ and that X and ℓ2(κ)are essentially the same spae, so X is a Hilbert spae of ardinality κ. For
α < ω1, let Yα be the α's opy of ℓ2(κ) (with respet to the diret sum X)and let Eα = {eα

ι : ι < κ} be the anonial orthonormal vetors of Yα, i.e.,
eα
ι (β) = δι

β (for all β < κ). Further, for α < ω1 let
Xα =

⊕

η≤α

Yη,so X =
⋃

α<ω1
Xα.



Bases in Banah spaes 157Let H0 = {x0
ι : ι < κ} be a Hamel basis for X0 and let

B1 = {x0
ι + e1

ι : ι < κ} ∪ {e1
ι : ι < κ}.Then B1 is a linearly independent set of vetors whih is losed in X1�sineit does not ontain any onverging sequene�and whose linear span ontains

Y0 ⊆ X1, as x0
ι = x0

ι + e1
ι − e1

ι . However, B1 is not a Hamel basis for X1. Let
H1 be a Hamel basis of Y1 extending E1 and let {x1

ι : ι < κ} = H1 \ E1.We proeed now by trans�nite indution. For suessor ordinals α + 1
< ω1 we de�ne

• Bα+1 := Bα ∪ {xα
ι + eα+1

ι : ι < κ} ∪ {eα+1
ι : ι < κ},

• Hα+1 is a Hamel basis of Yα+1 extending Eα+1, and
• {xα+1

ι : ι < κ} = Hα+1 \ Eα+1.By indution, Bα+1 is a set of linearly independent vetors whose linear spanontains Xα. Further, for limit ordinals γ < ω1 we de�ne
• Bγ =

⋃
α<γ Bα,

• Hγ is a Hamel basis of Xγ extending Bγ , and
• {xγ

ι : ι < κ} = Hγ \ Bγ .For α < β ≤ γ we have Bα ⊆ Bβ ⊆ Bγ , and sine, by indution, Bαand Bβ are sets of linearly independent vetors, also Bγ is a set of linearlyindependent vetors. Further note that Hγ \ Bγ is non-empty. Moreover,
|Hγ \ Bγ | = κ beause taking a o�nal sequene 〈γn : n < ω〉 in γ, we seethat no vetor of the form ∑

n<ω 2−nxγn

ι(n) where ι(n) < κ is in 〈Bγ〉. Finally,let
H =

⋃

α<ω1

Bα;

then, by onstrution, H is disrete and losed in X, and sine every vetorin X has ountable support, H is a Hamel basis of the Hilbert spae X.3.3. The separable ase. It may be onjetured from Corollary 3.4 thatseparable Banah spaes behave with respet to the Hamel bases similarlyto the spae R onsidered as a vetor spae over Q. We shall give somefurther remarks whih seem to support this statement. Let us �rst showthat a Hamel basis in a separable Banah spae over R annot be a Borel oran analyti set. In order to do so, we have to �rst reall a basi property of
Σ

1
n sets (see also [Ke95, Chapter V℄):For eah n ≥ 1 we de�ne the projetive lasses Σ

1
n and Π

1
n of sets ina Polish spae X as follows: Σ

1
1 is the olletion of all analyti sets (i.e.,projetions of losed sets in X × ωω) and Π

1
1 is the olletion of the omple-ments of analyti sets. Further, Σ

1
n+1 is the olletion of projetions of Π

1
nsets in X × ωω, and Π

1
n+1 is the olletion of the omplements of Σ1

n+1 sets.



158 T. Bartoszy«ski et al.Finally, a subset S of X is alled a projetive set of X if there is a positiveinteger n suh that S belongs to Σ
1
n.Now, the lasses Σ

1
n are losed under images and preimages of ontinuousfuntions between Polish spaes (f. [Ke95, Proposition 37.1℄).Lemma 3.9. Suppose that X is a separable Banah spae. Then for every

Σ
1
n set H and every positive integer m, ⋃

i≤m Hi is a Σ
1
n set.Proof. Let H ⊆ X be aΣ

1
n set in X. As R is a Polish spae, H × (R \ {0})is a Σ

1
n set in X × R. De�ne the funtion f : X × R → X by stipulating

f(x, r) := rx. Then f is ontinuous and by the previous fats we deduethat f [H × (R \ {0})] = {rh : r ∈ R \ {0}, h ∈ H} is a Σ
1
n set in X, whihshows that H1 is a Σ

1
n set in X. Further, if H ′ and H ′′ are both Σ

1
n sets,then H ′ + H ′′, as the image of the ontinuous funtion X ×X → X + X, isagain a Σ

1
n set.Sine all analyti sets have the Baire property, by Lemma 3.9 and theproof of Proposition 3.1 we get the following: If an analyti set H is a Hamelbasis of a separable Banah spae, and if H1 has the Baire property, then

H1 is meagre. However, the next result shows that a Hamel basis of suh aBanah spae an never be an analyti set.Theorem 3.10. If X is a separable Banah spae and H is a Hamelbasis of X, then H is not an analyti set.Proof. Suppose H ⊆ X is an analyti Hamel basis of X. By Lemma 3.9,for every natural number n the set ⋃
i≤n Hi is analyti. Now, by Theorem 3.5it follows that there is an n0 for whih Hn0

does not have the Baire property.But Hn0
=

⋃
i≤n0

Hi \
⋃

i<n0
Hi, and therefore, as the di�erene of two setshaving the Baire property, Hn0

must have the Baire property as well�aontradition.It is (relatively) onsistent with ZFC that all projetive sets in R havethe property of Baire, by a theorem of Saharon Shelah in [Sh84℄. We shalluse this in Setion 3.5 to see that it is onsistent that no separable Banahspae over R has a Hamel basis that is a projetive set.3.4. Consisteny results. In modern set theory, one usually gets onsis-teny results by a foring onstrution. Foring was invented by Paul Cohenin the early 1960s to show that AC as well as CH are not provable in Zermelo�Fraenkel Set Theory ZF. In fat he showed that ¬AC is relatively onsistentwith ZF and that ¬CH is relatively onsistent with ZFC. (Apart from thisparagraph, we use the ommon set-theoreti shorthand where �onsistent�stands for �relatively onsistent�). Foring is a tehnique to extend modelsof set theory in suh a way that ertain statements beome true in the ex-tension, no matter if they were true or false in the ground model. In other



Bases in Banah spaes 159words, foring adds new sets to some ground model and by hoosing theright foring notion we an make sure that the new sets have some desiredproperties. For a short introdution to foring we refer the reader to [Je86℄.To get onsisteny results with respet to Hamel bases we �rst have to de�nea notion of foring, i.e., a partial order, whih adds new Hamel bases withertain properties to the ground model. So, let us �rst introdue a foringnotion whih does the job:In the following, let X be an arbitrary but �xed real Banah spae ofardinality κ and let λ be a ardinal less than or equal to κ. With respetto the spae X, let Bλ = 〈Bλ,≤〉 be the following partially ordered set.A so-alled ondition p ∈ Bλ onsists of less than λ linearly independentvetors of X and for p, q ∈ Bλ let p ≤ q if and only if p ⊆ q.Our goal is to show that, for λ = cf(κ) > ω, foring with Bλ adds aHamel basis of X whih is non-meagre. For this we have to make sure thatthe Banah spae X in the extension is very muh the same as in the groundmodel, i.e., we would not like to add new vetors to X, but how an we dothis? We may onsider a Banah spae X as a set of vetors belonging tosome universe V. This set is denoted by XV. Now, if we extend V, then theset XV still exists in the extension but may have some other properties thanin the ground model V. For example the norm on XV in the extension mightno longer be omplete or the de�nition of XV might have hanged in theextension. However, in most of the ases the �de�nition� or �onstrution� ofthe Banah spae X is the same in V as in the extension, so, foring with
Bλ does not hange the spae in some sense and we will all suh spaesonservative.Before we an give some examples of onservative spaes we have to knowmore about the foring notion Bλ.Let λ be an in�nite ardinal. A foring notion P = 〈P,≤〉 is alled λ-losed if for any inreasing sequene p0 ≤ · · · ≤ pα ≤ · · · in P of length
γ < λ there is a q ∈ P suh that q ≥ pα for all α < γ. A foring notion
P whih is λ-losed does not add new bounded subsets to λ and does notollapse any ardinals less than or equal to λ. In partiular, if λ > ω then a
λ-losed foring notion does not add new reals.Let us turn bak to the foring notion Bλ: Let X be a Banah spaeand let λ = cf(κ), where κ = |X|. Then λ is a regular unountable ardinal,whih implies that any inreasing sequene p0 ≤ · · · ≤ pα ≤ · · · of onditionsof Bλ of length less than λ has an upper bound, and thus Bλ is λ-losed.This tells us that foring with Bλ does not ollapse any ardinals less thanor equal to λ. Moreover, sine λ > ω, foring with Bλ does not add any newreals.Let us now give some examples of onservative spaes: For 1 ≤ p ≤ ∞,all ℓp and Lp spaes, as well as all ℓp(c) spaes (and for regular λ even all
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ℓp(λ) spaes) are onservative. All these spaes are present in every universeof ZFC. As an illustration let us demonstrate that ℓ∞(c) is onservative: Firstnotie that every vetor x in ℓ∞(c) is a sequene of real numbers of length c,so x is an element of cR, whih implies κ = |ℓ∞(c)| = 2

c > c. By Fat 1.2 weget cf(κ) = cf(2c) > c > ω. Now, sine x ∈ cR = c
c, it an be enoded as asubset of c × c of ardinality c, and sine |c × c| = c, every x ∈ ℓ∞(c) an beenoded as a subset of c (whih is a subset of κ) of ardinality c, where c isstritly less than cf(κ). Sine this enoding is done in an absolute way (i.e.,not depending on the underlying universe of ZFC) the spae will not hangeunless we add bounded subsets to cf(κ).Now let us prove the followingTheorem 3.11. Let X be a Banah spae in some universe V of ZFC inwhih X has ardinality κ and in whih θ < cf(κ) implies θω < κ. Then thereexists a cf(κ)-losed foring extension of V in whih XV has a non-meagreHamel basis.Proof. Let X be a Banah spae in V of size κ. We shall show thatthe foring extension by Bλ, where λ = cf(κ), adds a non-meagre Hamelbasis to XV, even though it does not add bounded subsets to λ. Note thatby Theorem 2.7 we have cf(κ) > ω, hene Bλ does not add new reals tothe ground model. Also, note that for any θ < λ we have θω < κ by ourassumptions, so no subset of X of ardinality < λ is dense in X. Let usde�ne

H :=
⋃

G, where G is the generi of Bλ.Sine G is a �lter it follows that H is a set of linearly independent vetors.Further, for any x ∈ X, the set Dx = {p ∈ Bλ : x ∈ 〈p〉} is dense in Bλ. Thisimplies that H is atually a Hamel basis of XV in the extension.Let us suppose for ontradition that H is meagre in the extension. Thus,there exists a ondition q, a name C
˜

for a dense Gδ set and names O
˜ n fordense open sets suh that

q  C
˜

=
⋂

n<ω

O
˜ n is dense Gδ and H

˜
∩ C

˜
= ∅.So, there exist x

˜
and a rational r

˜
suh that q  Bx

˜
,r
˜

⊆ O
˜ 0. Sine theardinality of q is less than λ we an �nd q0 ≥ q and x0, r0 suh that

q0  Bx0,r0
⊆ Bx

˜
,r
˜
and Bx0,r0

∩ 〈q〉 = ∅,and by indution we �nd qn, xn, and rn (for n < ω) suh that qn+1 ≥ qn and
qn+1  Bxn,rn ⊆ Bxn−1,rn−1

∩ O
˜ n and Bxn,rn ∩ 〈qn〉 = ∅.At the end let p =

⋃
n<ω qn and let h ∈

⋂
Bxn,rn . Hene h /∈ 〈

⋃
n<ω qn〉 =⋃

n<ω〈qn〉. In partiular p  h ∈ C
˜
, so

p ∪ {h}  h ∈ C
˜
∩ H

˜
,whih is a ontradition with p ∪ {h} ≥ q.



Bases in Banah spaes 1613.5. An independene result. So far we have seen that in the non-separ-able ase a Hamel basis an be losed, and that in the separable ase aHamel basis annot even be analyti, but we did not answer the question howomplex a Hamel basis of a separable Banah spae might be. For example,an a Hamel basis be a projetive set? (Reall that a projetive set is aset that one gets after suessively applying the projetion-operator and theomplement-operator to a Borel set.) In the following we shall see that theabove question is not deidable within ZFC.Theorem 3.12. It is onsistent with ZFC that no separable Banah spaeontains a Hamel basis whih is a projetive set.The theorem follows fromLemma 3.13. Suppose that X and Y are Polish spaes, i.e., ompleteseparable metri spaes without isolated points. Then there exists a Borelhomeomorphism f : X → Y suh that A ⊆ X is meagre if and only if f [A]is meagre.Proof. Let BOREL(X) and BOREL(Y ) denote the sets of Borel sets in
X and Y respetively, and let MX and MY denote their respetive ideals ofmeagre sets. Sine the algebras BOREL(X)/MX and BOREL(Y )/MY areomplete and have both ountable atomless dense subalgebras, both alge-bras are isomorphi to the Cohen algebra. In partiular, they are isomorphivia the isomorphism Φ : BOREL(X)/MX → BOREL(Y )/MY . By [Ke95,Theorem 15.10℄, the isomorphism is determined by a Borel homeomorphism
g : Y → X suh that Φ([A]) = [g−1(A)]. So, if A is a meagre Borel set in X,then g−1(A) is meagre in Y .Proof of Theorem 3.12. Let X and Y be Polish spaes. Then, by Lemma3.13, all projetive sets have the Baire property in Y if and only if the samehappens in X. In [Sh84℄ it is proved that if there is a model for ZFC, thenthere is also one in whih all projetive sets of reals have the Baire property.Let X be any separable Banah spae in this model. Then all projetivesets of the separable Banah spae X have the Baire property, hene, byLemma 3.9 and Corollary 3.6, no projetive set is a Hamel basis of X.As we have seen in Setion 3.3, no separable Banah spae has a Hamelbasis that is an analyti set. However, it is a well-known result of ArnoldMiller in [Mi89, Theorem 9.26℄ that in Gödel's onstrutible universe the sep-arable Banah spae R over Q has a o-analyti Hamel basis. So althoughHamel bases in separable Banah spaes annot be as simple as being ana-lyti, there still an onsistently exist a Hamel basis in suh a spae that isalmost as simple, namely o-analyti. Using Miller's tehnique one an provea similar statement for all lassial Banah sequene spaes, but sine boththe exat statement and the proof of this result are rather tehnial in the



162 T. Bartoszy«ski et al.sense of the set theory involved, we deided not to elaborate on this pointhere.4. On omplete minimal systems4.1. Complete minimal systems versus Hamel bases. As mentioned above,not every Banah spae has a .m.s., while every Banah spae has a Hamelbasis. Thus, not every Hamel basis is a .m.s., in fat, a Hamel basis is nevera .m.s.:Proposition 4.1. No Hamel basis of a Banah spae is a omplete min-imal system.Proof. Let H = {hι : ι < κ} be a Hamel basis of some Banah spae X.Consider the vetor
x =

∑

i<ω

2−i hi

‖hi‖
.Sine x ∈ X, there are hι0 , . . . , hιn ∈ H and salars a0, . . . , an suh that

x =
∑n

j=0 ajhιj . Let k < ω be suh that hk /∈ {hι0 , . . . , hιn}. Then hkbelongs to the losure of the linear span of H \ {hk}, and therefore H is nota .m.s. of X.We have also seen (f. Proposition 3.2) that every Banah spae over aomplete �eld has a dense Hamel basis. To the ontrary a .m.s. an neverbe dense, in fat we get the followingFat 4.2. A omplete minimal system is always nowhere dense.Proof. Reall that a .m.s. must be disrete. Let S ⊆ X be a .m.s.of X. For every x ∈ S, let Bx,rx be suh that Bx,rx ∩ S = {x}. Let O bea non-empty open set in X. If O ∩ Bx,rx = ∅ for all x ∈ S, then learly Oontains a non-empty open set that misses S. Otherwise suppose that x ∈ Sis suh that O∩Bx,rx 6= ∅. Then the open set Bx,r \ {x}∩O is a non-emptyopen subset of O that misses S.Sine a .m.s. onsists of linearly independent vetors, every .m.s. anbe extended to a Hamel basis of the whole spae. However, not every Hamelbasis ontains a subset whih is a .m.s. (sine there are Banah spaes whihdo not have a .m.s.).Thus Hamel bases behave very di�erently than omplete minimal sys-tems.4.2. On Φ-bases. Let us �rst haraterize Φ-bases as linearly orderedsets. The following result was proved in [KPP88℄:Theorem 4.3. A omplete minimal system {xa : a ∈ A} of a Banahspae X is a Φ-basis of X if and only if there exists a linear ordering �≺�



Bases in Banah spaes 163on A, whih we will all uniform, suh that
sup{µ{xak

: ak ∈ A, 0 ≤ k ≤ n}} < ∞,where the sup is taken over the set of all �nite inreasing sequenes a0 ≺
· · · ≺ an in A. In addition the order �≺� on A an be assumed to satisfy

sup{µ{xak
: 0 ≤ k ≤ n} : a0 ≺ · · · ≺ an} = M,where M is a Φ-basis onstant of the Φ-basis {xa : a ∈ A}.Notie that if a linear ordering on A is uniform (with onstant M), thenthe inverse ordering is uniform as well (with onstant at most 1 + M).As a onsequene of Theorem 4.3 we get the following (f. [KPP88, Corol-lary 2℄):Corollary 4.4. If {xn : n < ω} is a Φ-basis in the spae X whih is nota Shauder basis for any permutation of the indies, then X is representableas the diret sum of two in�nite-dimensional subspaes.Proof. Let A = ω be the uniformly ordered set. It is enough to showthat A an be deomposed into two disjoint in�nite subsets A = A0 ∪ A1suh that a′ ≺ a′′ for all a′ ∈ A0 and a′′ ∈ A1, for then X = X0 ⊕ X1,where X0 = [xa : a ∈ A0] and X1 = [xa : a ∈ A1]. Indeed, for any r ∈ Alet Dr := {a ∈ A : a ≺ r}. If there is an r ∈ A suh that both Dr and

A \ Dr are in�nite, then we are done. So, assume that for eah r ∈ A, Dris either �nite or o-�nite. Without loss of generality we may assume thatthe set I = {r ∈ A : Dr is �nite} is in�nite. Sine A is linearly ordered, I islinearly ordered as well and, by de�nition of I, the order type of I is ω. If
I = A, then {xn : n < ω} would be a Shauder basis of X, whih ontraditsthe premiss of the orollary. Further, for any a ∈ A \ I and any r ∈ I, byde�nition of I we have r ≺ a. If A \ I is �nite, then a permutation of theindies would give us a Shauder basis of X, whih again ontradits thepremiss of the orollary; thus, A \ I is in�nite and we an just put A0 = Iand A1 = A \ I.The name �Φ-basis� is just an abbreviation for ��nitary basis�, but sinethe main feature of Φ-bases is the linear ordering on the index set given byTheorem 4.3, we ould all Φ-bases also linearly ordered bases.Let us now present some examples of Φ-bases:1. ([KPP88℄) Let X be the spae of left ontinuous funtions, de�nedon [0, 1], whih have disontinuities of the �rst kind only at rationalpoints, with the supremum norm. The harateristi funtions xq(t)of segments [0, q] (for q ∈ Q ∩ [0, 1]) form a (ountable) Φ-basis in Xwhih is not a Markushevih basis, where a Markushevih basis is a.m.s. with the additional property that the dual system is total, i.e.,

fi(x) = 0 for all i implies x = 0.



164 T. Bartoszy«ski et al.The next example is well known in non-separable Banah spae theory (see,e.g., [Co61, Example 2℄).2. Let X be a (non-separable) Banah spae whih is onstruted as inExample 1, but any salar of [0, 1] an be a point of disontinuity.Then the funtions xa(t) (for a ∈ [0, 1]) form a Φ-basis in X.3. (f. [PP90, �7℄) Let Bp (1 < p < ∞) be the spae of Besiovith almostperiodi funtions. The trigonometri funtions eiλt (for λ ∈ R) forma Φ-basis in Bp, with the natural order generated by the real line.This system forms a Markushevih basis and has good approximationproperties. In addition it forms an (unountable) orthogonal basis in
B2. Related to this example are Questions 5 and 6 in Setion 5.4. Let us onsider the spae X = C[0, ω1]. The harateristi funtionsof segments [0, α] form a trans�nite (hene, a Φ-) basis of X, but Xdoes not have a norming Markushevih basis ([AP∞℄). Beause everyEn�o�Rosenthal basis is norming ([Pl84℄), X has no En�o�Rosenthalbasis. (A de�nition of trans�nite bases an be found in [KPP88℄ or in[Si81℄.)5. The natural unit vetors form a Shauder basis in the well-knownJames spae J , but J has no unonditional basis (f. [LT77, p. 25℄).The natural unit vetors form a trans�nite (hene, a Φ-) basis in theLong James spae X = Long J (see also Question 7).6. We an onstrut the James type spaes J(Q) and J(R) exatly in thesame way as J is onstruted from N or Long J from [0, ω1]. Obviously,the natural unit vetors form again a Φ-basis in these spaes (but seeQuestion 8).There are Banah spaes having omplete minimal systems whih are notlinearly ordered, but partially ordered by other sets, for example by trees (see[Ja74℄ or [Hay99℄). So we an introdue the following de�nition: Let A be apartially ordered set. We say that a omplete minimal system {xa : a ∈ A}forms an A-ordered basis in a Banah spae X if the projetions of X onto

[xb : b > a], along [xb : b ≯ a], are uniformly bounded on A.Now we give an answer to the �rst two questions posed in [KPP88℄ anddisuss the third. The questions are the following:
• Does there exist a Φ-basis in ℓ∞?
• Does eah separable Banah spae have a Φ-basis?
• Is the existene of a Φ-basis in a Banah spae related to its approxi-mation properties?Theorem 4.5. Not every separable Banah spae has a Φ-basis.Proof. In [AKP99℄ it is shown that there exists a separable Banah spaewhih has neither a Shauder basis nor a deomposition into a diret sum



Bases in Banah spaes 165of in�nite-dimensional losed subspaes. This result in ombination withCorollary 4.4 gives the proof of the theorem.Before answering the �rst question let us reall some de�nitions. A se-quene of losed subspaes {Xn : n < ω} forms a Shauder deomposition of aBanah spae X if [⋃n<ω Xn] = X and the projetions Pn : X → [
⋃

m≤n Xm]along [
⋃

m<n Xm] are uniformly bounded, whih is equivalent to saying thatthe projetions I − Pn are uniformly bounded. Obviously, we an enumer-ate the Shauder deomposition by 1 ≤ n ≤ ω, moving 0 to ω and shift-ing n + 1 → n. A Banah spae X is alled Grothendiek if weak∗ andweak onvergene of sequenes in X∗ oinide. A Banah spae X has theDunford�Pettis property if every weakly ompat operator T of X into anyBanah spae Y maps weakly onvergent sequenes into norm onvergentsequenes.All spaes C(K) where K is a ompat extremely disonneted spae(hene also their omplemented subspaes) are Grothendiek and have theDunford�Pettis property. In partiular, ℓ∞ has these properties (f. [Si81,p. 497℄).Theorem 4.6. Let X be a Grothendiek spae with the Dunford�Pettisproperty. Then X has no Φ-basis.Proof. Suppose towards a ontradition that X has a Φ-basis {xa : a∈A}and that A is linearly ordered by �≺�. Obviously, eah in�nite subset of Aontains either an inreasing or dereasing in�nite sequene. If {xa : a ∈ A}is a Φ-basis with respet to the order �≺�, then it is also a Φ-basis with respetto the opposite order �≻�. So, without loss of generality let us assume that
{an : n < ω} is suh that an ≺ an+1 for all n < ω. Put X0 = [xa : a � a0], for
n > 0 let Xn = [xa : an−1 ≺ a � an], and let Xω = [xa : ∀n < ω (an ≺ a)].Obviously, {Xn : n ≤ ω} is a Shauder deomposition of X. But X has nosuh deomposition (see [De67℄ or [Si81, p. 497℄).Now let us disuss the onnetion of Φ-bases with the approximationproperty. A Banah spae X has the approximation property if for every ε > 0and every ompat set K ⊆ X there is a bounded linear �nite-dimensionaloperator T : X → X suh that

‖Tx − x‖ < ε for every x ∈ K.Haskell Rosenthal has proved in [Ro85℄ that a spae with a trans�nite basisalways has the approximation property.The �rst step in Rosenthal's proof is the followingLemma. Suppose that X1, X2, . . . is a Shauder deomposition of a Ba-nah spae X and that for every n ∈ ω, Xn has the approximation property.Then X has the approximation property.



166 T. Bartoszy«ski et al.The seond step is a remark that in order to prove that a spae has theapproximation property it is su�ient to onsider only separable Banahspaes (and hene, only ountable trans�nite bases).Finally, the third step is just trans�nite indution.This leads to the following:(a) Can we use Rosenthal's proof to show that a spae with a Φ-basis hasthe approximation property? How an we desribe linearly orderedountable sets whih allow the trans�nite indution? For example,the union of an inreasing and a dereasing sequenes, without �over-lapping�, is good.(b) On the other hand, there exists a (separable) Banah spae whih hasthe approximation property but whih does not have the boundedapproximation property (f. [LT77, p. 42℄), hene, does not have a�nite-dimensional Shauder deomposition. Is there a Φ-basis in thatspae?() Let X be a Banah spae with a .m.s. whih is tree ordered. Does
X have the approximation property?4.3. On Auerbah bases in ℓ∞. As mentioned above, every �nite-dimen-sional Banah spae has an Auerbah basis. Further it is well known that ev-ery separable Banah spae has a Markushevih basis (hene, a .m.s.), but itis still unknown whether every separable Banah spae has an Auerbah ba-sis (see also Question 12). On the other hand, a non-separable Banah spaeeven with a .m.s. may not have an Auerbah basis (f. [Go85, Theorem 2℄),and there exists an Auerbah basis of c0 whih is not a Markushevih basis(f. [Go85, p. 223℄). Moreover, every non-separable Banah spae X with aseparable norming subspae in X∗ admits an equivalent norm ||| · ||| suh that

(X, ||| · |||) does not have an Auerbah basis (f. [GLT93℄). Thus Auerbahbases are muh stronger than ordinary omplete minimal systems.In the following we always assume that the Auerbah basis is normalized.For a set A ⊆ R, we say that {xi : i ∈ I} ⊆ ℓ∞ is an A-Auerbah basis of
ℓ∞ if {xi : i ∈ I} is a normalized Auerbah basis of ℓ∞ and for all i ∈ I andall n < ω we have xi(n) ∈ A.We an prove the followingProposition 4.7. For ε > 0, the spae ℓ∞ does not have a [−1 + ε, 1]-Auerbah basis.Proof. Assume towards a ontradition that {xi : i ∈ I} ⊆ ℓ∞ is a
[−1 + ε, 1]-Auerbah basis of ℓ∞, and let {fi : i ∈ I} be the orrespondingbiorthogonal funtionals. Let 1 = (1, 1, 1, . . .) and let I1 be a ountablesubset of I suh that 1 ∈ [xi : i ∈ I1]. There is a �nite set I0 ⊆ I1 and avetor y ∈ 〈xi : i ∈ I0〉 suh that ‖(ε/2)1− y‖ < ε/4, whih implies that forany j ∈ I \ I1 we have ‖xj − y‖ < 1. Now, sine by de�nition fj(xi) = 0 for



Bases in Banah spaes 167every i ∈ I0, we get
fj(xj − y) = fj(xj) − fj(y) = 1 − 0 = 1,whih ontradits ‖fj‖ = 1.5. What we would like to know. While writing this paper we ameaross some problems we ould not solve. We think that some of them arequite interesting and working on them ould probably give a better un-derstanding of the geometry of Banah spaes, espeially of non-separableBanah spaes.5.1. Questions on Hamel bases. In Setion 3 we have seen that everyBanah spae X in whih cof(MX) is less than or equal to |X| ontains anon-meagre Hamel basis. In partiular, every separable Banah ontains anon-meagre Hamel basis. This leads to the following questions:Question 1. Does there exist a Banah spae in whih every Hamelbasis is meagre? Or is it at least onsistent with ZFC that suh a Banahspae exists?A related question is whether there exists a Banah spae X suh that

cof(MX) > |X|. Now, if topologial spaes X and Y are homeomorphi, thenboth |X| = |Y | and cof(MX) = cof(MY ). Moreover, it is well known thatany two Banah spaes of the same weight are homeomorphi (f. [To81℄),and in partiular, any Banah spae of weight λ is homeomorphi to ℓ2(λ).Thus, the question above is in fat just a question on the existene or non-existene of a ertain ardinal:Question 2. Is there a ardinal λ suh that cof(Mℓ2(λ)) > λω? (Notiethat λω = |ℓ2(λ)|.) Or is it at least onsistent with ZFC that suh a ardinalexists?Remember that every Banah spae over a omplete �eld ontains aHamel basis whih is nowhere dense and one whih is dense and meagre.Further we have seen that for all lassial Banah spaes it is onsistent withZFC that they ontain a non-meagre Hamel basis.In Proposition 2.2 we have seen that the unit sphere of a real Banahspae X is not the union of fewer than c Hamel bases of X. This suggeststhe followingQuestion 3. Let X be a real Banah spae. Can the unit sphere of Xbe the union of fewer than |X| Hamel bases of X? Or is it at least onsistentwith ZFC that there is a Banah spae in whih this happens?The following question was reently investigated in [Hal∞℄, where it isshown that the question is not deidable within ZFC.



168 T. Bartoszy«ski et al.Question 4. Does every real Banah spae of ardinality κ admit afamily of 2
κ di�erent normalized Hamel bases suh that the ardinality ofthe intersetion of any two of them is less than κ?5.2. Questions on omplete minimal systemsQuestion 5. As we have seen, the trigonometri funtions eiλt (for

λ ∈ R) form a Φ-basis in Bp (where 1 < p < ∞), with the natural ordergenerated by the real line. Does this system also form an En�o�Rosenthalbasis in Bp? In partiular, does there exist a linear ordering of Q suh that
eiλt (for λ ∈ Q) is a basi sequene?Probably not, and probably it is a purely ombinatorial question.The next question is a well known question by En�o and Rosenthal (see,e.g., [Si81, Problem 17.1℄):Question 6. Does a non-separable spae L1(µ), where µ is a �nite mea-sure, have an En�o�Rosenthal basis? Or slightly weaker: Does this spae havea Φ-basis?This question was one of the reasons to introdue and investigate in[KPP88℄ the notion of Φ-bases.Question 7. Let X = Long J . Do the natural unit vetors form anEn�o�Rosenthal basis of X? Does X have an En�o�Rosenthal basis?Question 8. What an we say about geometri properties of the spaes
J(Q) and J(R)? Are the natural unit vetors Markushevih bases in thesespaes?The main question about Auerbah bases isQuestion 9. Does ℓ∞ have an Auerbah basis?Probably easier to answer than Question 9 isQuestion 10. Does ℓ∞ have a {−1, 1}-Auerbah basis, or at least a
{−1, 0, 1}-Auerbah basis?It is known (f. [Hal03℄) that ℓ∞ has a quotient whih is isomorphi to
ℓ2(c) and whih has a {−1, 1}-Auerbah basis. However, it seems that oneannot extend this Auerbah system to an Auerbah basis of the whole spae.Related to Question 10 isQuestion 11. Does ℓ∞ have a {0, 1}-.m.s. (whih is a .m.s. whosevetors onsist of 0's and 1's), or at least a {−1, 1}-.m.s. or a {−1, 0, 1}-.m.s.?Still open is also the following question by Peªzy«ski:



Bases in Banah spaes 169Question 12. Does every separable Banah spae have an Auerbahbasis?
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