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On the geometry of Banach spaces with
modulus of convexity of power type 2

by

M. Ivanov (Sofia), A. J. Pallares (Murcia) and
S. Troyanski (Murcia)

Abstract. We use one-dimensional differential inequalities to estimate the squareness
and type of Banach spaces with modulus of convexity of power type two. The estimates
obtained are sharp and the constants involved moderate.

1. Introduction. The moduli of convexity and smoothness of a Banach
space X,

δX(ε) = inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
, 0 ≤ ε ≤ 2,

and

ρX(τ) = sup
{
‖x+ τy‖+ ‖x− τy‖ − 2

2
: ‖x‖ = ‖y‖ = 1

}
, τ ≥ 0,

respectively, play an important role in Banach space theory. The duality
between them reveals itself in the Lindenstrauss formula (e.g. [13, p. 61])

ρX∗(τ) = sup{τε/2− δX(ε) : 0 ≤ ε ≤ 2}.
According to the Nordlander Theorem [17], every Hilbert space H is in a
sense the most convex and the most smooth among Banach spaces, that is,

δX(ε) ≤ δH(ε) = 1−
√

1− ε2/4 = ε2/8 +O(ε4)

and
ρX(ε) ≥ ρH(ε) =

√
1 + τ2 − 1 = τ2/2 +O(τ4)

for arbitrary X. We write the Taylor expansion not only for the sake of
greater clarity but also because it is the asymptotic behaviour at 0 of δX
and ρX which matters the most.
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In this connection, it is rather difficult to compute precisely, or even up
to equivalence, the modulus of convexity (or smoothness) of a given space.
Notable among the special cases for which such calculations were carried
through are Lp spaces [8] (see also [15]), more general Orlicz spaces [14] (see
also [6]), and Lorentz spaces [1, 2].

By a surprisingly simple argument Figiel [6] proved a sharp estimate for
the case when X is a p-convex and q-concave Banach lattice, 1 < p ≤ 2 ≤
q <∞:

(1) δX(ε) ≥ p− 1
8

εq.

(For the definition of p-convexity and q-concavity we refer to [13, p. 40].)
Recently the class of Banach spaces with modulus of convexity of power

type 2 has been studied intensively in connection with the problem of exten-
sion of Lipschitz mappings [16, 3, 4].

In [9] we estimate some geometrical quantities for a Banach space with
modulus of convexity of power type 2 in terms of the constant p ∈ (1, 2] (see
(4) below). In this paper we elaborate on the method of [9] in order to find
new asymptotically sharp estimates.

Before stating the main result we make the convention that k, k1, k2, . . .
will denote positive absolute constants. In particular, we set

k = 2 +
√

2,(2)
k2 = k/2.(3)

We also recall a couple of well-known notions. The quantity

d2(X) = sup{d(Y, l(2)
2 ) : Y ⊂ X, dimY = 2},

where d is the Banach–Mazur distance, obviously measures how far from an
ellipse the two-dimensional sections of SX are. By the John Theorem [11],
d2(X) ≤

√
2, and by the Jordan–von Neumann Theorem [12], if d2(X) = 1

then X is Hilbert. So, we are inclined to assume that the smaller d2(X) the
nicer X is. Indeed, by the James Theorem, X is superreflexive if, for some
equivalent norm, d2(X) <

√
2 (see [10]).

We refer to [13, p. 72] for the definition of type.

Theorem 1.1. Suppose

(4) lim inf
ε→0

δX(ε)
ε2

≥ p− 1
8

for some p ∈ (1, 2]. Then

(5) d2(X) ≤ (p− 1) +
√

2 k2(2− p)
(p− 1) + k2(2− p)

.
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(In particular, (5) holds for every p-convex and 2-concave Banach lattice.)
Also,

(6) typeX ≥ 1 +
p− 1

p− 1 +
√

2 k(2− p)
.

We immediately get the following

Corollary 1.2. If the Banach space X has no type greater than p ∈
(1, 2] then

(7) lim inf
ε→0

δX(ε)
ε2

≤ 1
8

(
1−

√
2(2− p)

k(p− 1) +
√

2(2− p)

)
.

(In particular, (7) holds for any Banach space which contains uniformly l(n)
p

for all n ∈ N.)

In conclusion we present some clarifying remarks.
Note first that from (5) it follows, as it should, that d2(X) <

√
2 for all

p ∈ (1, 2].

Remark 1.3. The estimate (5) is asymptotically sharp when p → 1 or
p→ 2.

Indeed, let Yp be the class of all Banach spaces that satisfy (4) and let

Dp = sup{d2(X) : X ∈ Yp}.

From (1) we know that l(2)
p ∈ Dp. Also, as is well-known, d2(l

(2)
p ) = 21/p−1/2.

Therefore, (5) implies

21/p−1/2 ≤ Dp ≤
(p− 1) +

√
2 k2(2− p)

(p− 1) + k2(2− p)
.

Considering the difference between the rightmost and leftmost sides of the
above as a function of p ∈ [1, 2], we see that it is zero at p = 1 and p = 2
and has bounded second derivative on [1, 2]. So, this difference is smaller
than k1(p− 1)(2− p), meaning that the estimate (5) of Dp is asymptotically
sharp.

Remark 1.4. The estimates (6) and (7) are also asymptotically sharp
for both p→ 1 and p→ 2.

We reason in similar fashion using lp as an example: lp ∈ Yp, type lp = p
and lp has no type strictly greater than p.

Remark 1.5. An asymptotically sharp estimate of the form (6) can be
deduced from the renorming result of [9], since an equivalent norm with
modulus of smoothness of power type p implies type p (e.g. [13, p. 100]).
However, the constant

√
2 k in (6) is much smaller than what can be obtained
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from [9]. Also, the main result of the latter depends upon much deeper
results.

Remark 1.6. For X = lp the constant (p − 1)/8 in (1) is the best
possible, since δlp(ε) = (p− 1)ε2/8 + o(ε2) (see [8, 15]). It is interesting that
for p = 2 the constant 1/8 is best possible even for equivalent norms, due to
the Nordlander Theorem. It is open if the same is true for lp.

2. Differential inequality. The proof of Theorem 1.1 is based on the
following

Proposition 2.1. Let r = r(θ) be a real 2π-periodic function with ab-
solutely continuous first derivative such that

(i) 0 ≤ r(r′′ + r) ≤ 1 + a a.e. for some a ≥ 0,
(ii) 0 ≤ r ≤ 1,
(iii) for every closed interval I of length π/2 there is α ∈ I with r(α) = 1,

Then

(8) r ≥ 1 + k2a

1 +
√

2 k2a
.

We postpone the proof of the proposition to the next section. Now we
deduce Theorem 1.1 from it.

In [9] we have introduced the shorthand notation

a(X) = 2 lim sup
τ→0

ρX(τ)
τ2

− 1, b(X) =
(

8 lim inf
ε→0

δX(ε)
ε2

)−1

− 1.

That is,

lim inf
ε→0

δX(ε)
ε2

=
1

8(1 + b(X))
, lim sup

τ→0

ρX(τ)
τ2

=
a(X) + 1

2
,

a(X), b(X) ≥ 0 and a(X∗) = b(X).
The main point is the following proposition whose proof is an elaboration

on some techniques in [9].

Proposition 2.2. Each Banach space X satisfies

(9) d2(X) ≤ 1 +
√

2 k2b(X)
1 + k2b(X)

and

(10) log2 d2(X) ≤ kb(X)
2(
√

2 + kb(X))
.

Proof. Since we are concerned with estimating, for the case dimX = 2,
the quantity

d2(X) := inf{‖T‖ ‖T−1‖; T : X ↔ l22}
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with respect to b(X), and d2(X) = d2(X∗), we assume that we are given
a = a(X∗) = b(X) ∈ (0,∞) and try to estimate d2(X).

As in [9], we assume that Y = X∗ is realised on the plane R2 in such a
way that the Euclidean sphere

S = {(x1, x2) : x2
1 + x2

2 = 1}
is the John sphere for BY . That is, the Euclidean norm | · | satisfies | · | ≥ ‖ ·‖
and there is no ellipse of area greater than π included in BY . It is well known
(see e.g. [5, p. 68] or [7]) that | · | ≤

√
2 ‖ · ‖. Let e1, e2 be the unit vector

basis in R2 and r(θ) = ‖cos θ e1 + sin θ e2‖. Then

SY =
{

1
r(θ)

(cos θ, sin θ) : θ ∈ [−π, π]
}
.

Since ‖·‖ ≤ |·| ≤
√

2 ‖·‖, we have 1/
√

2 ≤ r(θ) ≤ 1 for all θ. In [19, Lemma 1]
it is shown that each arc of the Euclidean sphere S with Euclidean length
π/2 has a point of contact w ∈ S ∩ SY . Thus, r satisfies (ii) and (iii) of
Proposition 2.1.

In [9, Lemma 3.1] it is shown that r has Lipschitz continuous first deriva-
tive. Also in [9, pp. 385–386] it is proved that r satisfies the right hand
inequality of Proposition 2.1(i) for a = a(Y ), while the left hand inequality
follows from the convexity of the unit ball.

We see that r satisfies all the hypotheses of Proposition 2.1 and that
d2(Y ) = max{1/r(θ)}. So from (8) we get (9):

d2(X) = d2(Y ) ≤ 1 +
√

2 k2a

1 + k2a
=

1 +
√

2 k2b(X)
1 + k2b(X)

.

To complete the proof we need the following elementary inequality that
follows from the convexity of the function t log t:

(11) 2 log2 t ≤
√

2(t− 1)
(
√

2− 1)t
, t ∈ [1,

√
2].

Also, the function on the right hand side of this inequality is increasing. Thus
we can put t = d2(X) in this inequality and replace t with the estimate of
d2(X) given in (9) to get

2 log2 d2(X) ≤
√

2 k2b(X)
1 +
√

2 k2b(X)
,

which implies (10).

In the proof Theorem 1.1 we will also use the following

Proposition 2.3 ([18, 19]). Each Banach space has type
2

1 + 2 log2 d2(X)
.
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Proof of Theorem 1.1. From (4) we have

b(X) ≤ 1
p− 1

− 1 =
2− p
p− 1

.

The straightforward substitution in (9) gives (5).
Also, from Proposition 2.2 we get

2 log2 d2(X) ≤ 1−
√

2√
2 + kb(X)

= 1− 1
1 + k3b(X)

≤ 1− p− 1
p− 1 + k3(2− p)

,

where k3 = k/
√

2 = 1 +
√

2. So,

1 + 2 log2 d2(X) ≤ (p− 1) + 2k3(2− p)
(p− 1) + k3(2− p)

and
2

1 + 2 log2 d2(X)
≥ 2(p− 1) + 2k3(2− p)

(p− 1) + 2k3(2− p)
= 1 +

p− 1
(p− 1) + 2k3(2− p)

,

which together with Proposition 2.3 implies (6).

Proof of Corollary 1.2. Since X has no type greater than p, Proposi-
tion 2.3 implies

p ≥ 2
1 + 2 log2 d2(X)

.

This and (10) give
2
p
− 1 ≤ 2 log2 d2(X) ≤ kb

2(
√

2 + kb)
,

where b = b(X). That is,

kb ≥
√

2
2− p
p− 1

and
1

1 + b
≤ k(p− 1)
k(p− 1) +

√
2(2− p)

= 1−
√

2(2− p)
k(p− 1) +

√
2(2− p)

.

3. The proof of Proposition 2.1. For α ∈ (0, π/4] and m, t ≥ 1 we
denote by Pα,m,t the following problem:

Pα,m,t


0 ≤ f ′′(θ) + f(θ) ≤ tm for almost all θ ∈ (0, α),
f(0) = m−1, f(α) = 1,
f ′(0) = f ′(α) = 0.

We say that the function f is a solution to Pα,m,t if f ′ is absolutely continuous
on [0, α] and f and its derivatives satisfy the above conditions.

Let r(θ) be a function that satisfies the hypothesis of Proposition 2.1.
Translating the independent variable if necessary, we can assume that r(0) =
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min{r(θ) : θ ∈ [−π, π]}. By property (iii) in the proposition with I =
[−π/4, π/4] we can also assume that there is α ∈ (0, π/4] such that r(α) =
1 = max{r(θ) : θ ∈ [−π, π]}, using a change of sign when α is negative. Thus
our function r is a solution of the problem Pα,1/r(0),1+a.

We prove our proposition by studying the solutions of Pα,m,t. One simple
fact we will use is given in the following

Lemma 3.1. Let β ∈ (0, π) and the function f : [0, β] → R be such that
f ′ is absolutely continuous and

f ′′ + f ≥ 0 a.e. on (0, β) and f(0) = f ′(0) = 0.

Then f ≥ 0 on [0, β].

Proof. Assume that there is β1 ∈ [0, β] such that f(β1) < 0.
For small enough η > 0 the function f1 = f + η sin t satisfies

(12) f ′′1 + f1 = f ′′ + f ≥ 0 a.e. on (0, β),

f1(β1) < 0, f1(0) = 0 and f ′1(0) = η > 0. Because of the latter, f1 is
positive for small enough t, and since it is continuous and becomes negative
at β1 ∈ (0, π), there is β2 ∈ (0, β1) such that

(13) f1(0) = f1(β2) = 0, f1 > 0 on (0, β2).

Let k = π/β2 and g = sin kt. Then

(14) k > 1

and

(15) g(0) = g(β2) = 0, g > 0, g′′ = −k2g on (0, β2).

Integrating twice by parts and using (13) and (15) we get
β2�

0

f ′′1 g dt = −k2
β2�

0

f1g dt.

Together with (12)–(15), this implies

0 ≤
β2�

0

(f ′′1 + f1)g dt = (1− k2)
β2�

0

f1g dt < 0,

a contradiction.

The key to our proof of Proposition 2.1 is

Lemma 3.2. For t ≥ 1 let

(16) ψα(t) = sup{m : there exists a solution to Pα,m,t}.
Then

(17) ψα(t) ≤ 2
t+
√

2− 2√
2 +
√

2 t− 2
.
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Proof. We fix t ≥ 1 and observe that ψα(t) ≥ 1, since f ≡ 1 is a solution
to Pα,1,t. We then fix m ≥ 1 such that there is a solution, say f , to Pα,m,t.
In order to prove (17) it is enough to show that

(18) m ≤ 2
t+
√

2− 2√
2 +
√

2 t− 2
.

Let f1(θ) = f(α− θ)− cos θ for θ ∈ [0, α]. Since f is a solution to Pα,m,t
we see that a.e. on (0, α),

f ′′1 (θ) + f1(θ) = f ′′(α− θ) + f(α− θ) ≥ 0,

and f1(0) = f(α)−1 = 0, and f ′1(0) = f ′(α) = 0, so Lemma 3.1 implies that
f1 ≥ 0 on [0, α]. In other words,

(19) f(θ) = f(α− (α− θ)) ≥ cos(α− θ), ∀θ ∈ [0, α].

Applying the same reasoning to the function f2(θ) = tm+(m−1−tm) cos θ−
f(θ), satisfying f ′′2 + f2 = tm − f − f ′′ ≥ 0, f2(0) = m−1 − f(0) = 0, and
f ′2(0) = −f ′(0) = 0, we get f2 ≥ 0 on [0, α]. That is,

(20) f(θ) ≤ tm+ (m−1 − tm) cos θ, ∀θ ∈ [0, α].

Combining (19) with (20), we obtain

tm+ (m−1 − tm) cos θ ≥ cos(α− θ)
for all θ ∈ [0, α]. Equivalently,

(21) tm ≥ g(θ), ∀θ ∈ [0, α],

where g(θ) = (tm−m−1) cos θ + cos(α− θ).
Since m, t ≥ 1 we get tm−m−1 ≥ 0. Hence g(θ) > 0 for θ ∈ [0, α]. Since

g′(θ) = sin(α− θ)− (tm−m−1) sin θ, g′(0) = sinα > 0 and

g′(α) = −(tm−m−1) sinα ≤ 0,

there is θ1 ∈ [0, α] such that g′(θ1) = 0. Then from (21) it follows that

(tm)2 ≥ g2(θ1) = g2(θ1) + g′2(θ1)

= [(tm−m−1) cos θ1 + cos(α− θ1)]2

+ [sin(α− θ1)− (tm−m−1) sin θ1]2

= (tm−m−1)2 + 1 + 2(tm−m−1) cosα.

The latter is equivalent to

2(tm−m−1) cosα ≤ 2t−m−2 − 1 ≤ 2(t−m−2) = 2m−1(tm−m−1).

Thus

(22) m < cos−1 α ≤
√

2,

and moreover
2t− 2tm cosα ≥ m−2 + 1− 2m−1 cosα
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so that

t ≥ m2 + (1− 2m cosα)
2m2(1−m cosα)

=
1
m2

+
m2 − 1

2m2(1−m cosα)

≥ 1
m2

+
(m2 − 1)

m2(2−m
√

2)
=

1−
√

2m+m2

m2(2−
√

2m)
.

Let h(u) := (u2 −
√

2u+ 1)/u2. Then

(23) t ≥ h(m)
2−
√

2m
.

On the other hand, we have

h(u) = 1−
√

2
u

+
1
u2
, h′(u) =

√
2

u2
− 2
u3
,

h′′(u) = −2
√

2
u3

+
6
u4

=
2
√

2
u4

(
3√
2
− u
)
.

Since obviously 3/
√

2 >
√

2, we find that h′′ ≥ 0 and h is convex for u ∈
[1,
√

2]. In particular, h is greater than its tangent at (1, h(1)). Since h(1) =
2−
√

2 and h′(1) = −(2−
√

2), we get

h(u) ≥ (2−
√

2)− (2−
√

2)(u− 1) = (2−
√

2)(2− u), u ∈ [1,
√

2].

From this and (23) it follows that

t ≥ (2−
√

2)
2−m

2−
√

2m
.

Multiplying by 2−
√

2m ≥ 0 (see (22)), we obtain

2t− (
√

2 t)m ≥ 2(2−
√

2) + (
√

2− 2)m,

2(t+
√

2− 2) ≥ (
√

2 +
√

2 t− 2)m.

Since t ≥ 1 and thus
√

2 +
√

2 t− 2 > 0, the latter is equivalent to (18).

Proof of Proposition 2.1. Recall that by the assumptions at the beginning
of this section, r is a solution to Pα,1/r(0),1+a and r(0) = min{r(θ) : θ ∈
[−π, π]}.

From Lemma 3.2 we get

1
r(0)

≤ 2
1 + a+

√
2− 2√

2 +
√

2 (1 + a)− 2
=
√

2
a+
√

2− 1
a+ 2−

√
2

=
√

2a+ 2−
√

2
a+ 2−

√
2

=
1 +
√

2 k2a

1 + k2a
,

recalling that k2 = 1/(2−
√

2) = k/2. Hence we have (8):

r ≥ r(0) ≥ 1 + k2a

1 +
√

2 k2a
.
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