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Fourier multipliers for Hölder continuous functions
and maximal regularity

by

Wolfgang Arendt (Ulm), Charles Batty (Oxford)
and Shangquan Bu (Beijing and Ulm)

Abstract. Two operator-valued Fourier multiplier theorems for Hölder spaces are
proved, one periodic, the other on the line. In contrast to the Lp-situation they hold for
arbitrary Banach spaces. As a consequence, maximal regularity in the sense of Hölder can
be characterized by simple resolvent estimates of the underlying operator.

1. Introduction. The aim of this article is to characterize well-
posedness of linear differential equations with maximal regularity in Hölder
spaces. More specifically, we consider the following two problems, the first
with periodic boundary conditions, the second on the real line.

Let A be a closed operator on a Banach space X and let α ∈ (0, 1).
By Cαper([0, 2π],X) we denote the space of all Hölder continuous functions
f : [0, 2π]→ X of Hölder index α such that f(0) = f(2π). We say that the
problem

(Pper)
{
u′(t) = Au(t) + f(t) (t ∈ [0, 2π]),

u(0) = u(2π)

is Cα-well-posed if, for each f ∈ Cαper([0, 2π],X), there is a unique solution
u ∈ C1+α

per ([0, 2π],X) ∩ Cαper([0, 2π],D(A)). This means that there exists a
classical solution with maximal regularity.

It is remarkable that well-posedness can be characterized completely in
terms of the resolvent of A without any restriction on the Banach space X.
In fact, we show in Theorem 4.2 that the problem (Pper) is Cα-well-posed if
and only if ik−A is invertible for all k ∈ Z and supk∈Z ‖k(ik−A)−1‖ <∞.

On the real line we show the following analogous result (Theorem 6.1).
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For each f ∈ Cα(R,X) there exists a unique u ∈ C1+α(R,X)∩Cα(R,D(A))
solving the problem

(P) u′(t) = Au(t) + f(t) (t ∈ R)

if and only if is−A is invertible for each s ∈ R and sups∈R ‖s(is−A)−1‖ <∞.
Our main tools are two operator-valued Fourier multiplier theorems, a

periodic one proved in Section 3 and one on the real line proved in Section 5.
These multiplier theorems are obtained as consequences of a basic estimate
for convolution with smooth operator-valued functions with compact sup-
port given in Section 2. This estimate involves a norm of Mikhlin’s type on
the multiplier, and such estimates are well known in the scalar case (see [Hö,
Theorem 7.9.6] and [Tr, Sections 2.3.7 and 5.2.2]). On the line (but not in
the periodic case), similar operator-valued multiplier theorems for Hölder
spaces, and more generally Besov spaces, have been obtained by Amann
[Am] (see also the research announcement by Weis [We1], as well as the
recent manuscript by Girardi and Weis [GW]). However, they differ from
ours in several aspects. We consider arbitrary Hölder continuous functions
and not only bounded functions in the Hölder space. Accordingly, we prove
an estimate for the homogeneous Mikhlin norm (in contrast to the inhomo-
geneous norm considered in [Am], [We1] and [GW]). It is possible to deduce
the homogeneous estimate from the inhomogeneous one by scaling and ap-
proximation, but we give a direct and completely elementary method using
pointwise estimates on Fourier transforms. This avoids any use of dyadic de-
compositions in the Fourier image, the theory of vector-valued distributions
or duality of function spaces which occur in approaches via Besov spaces.

Our characterization of Cα-maximal regularity of the problems (P),
(Pper) and some second order problems treated in Section 4 is new to our
knowledge. But some of the well-known estimates for generators of holo-
morphic semigroups (see the monograph of Lunardi [Lu]) can be deduced
from it.

More is known about maximal regularity of problems (Pper) and (P) in
the Lp-sense. Mielke [Mi] was the first to consider problem (P) on Hilbert
spaces and he actually characterized Lp-maximal regularity in terms of the
resolvent. It was Weis [We2] who discovered the right condition on a class of
Banach spaces (UMD-spaces), after previous work by Clément, de Pagter,
Sukochev and Witvliet [CPSW]. Thus maximal regularity of the inhomoge-
nous equation with a Dirichlet boundary condition on a UMD-space can
be characterized by R-boundedness of the resolvent (see the papers of Weis
[We2] and Clément and Prüss [CP]; see also [AB3]). A basic theorem in
this context is the operator-valued version of Mikhlin’s multiplier theorem
due to Weis [We2], where the Mikhlin estimate is formulated in terms of
R-boundedness. It allows one in particular to characterize maximal regu-
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larity of problem (P) in the sense of Lp (see the thesis of Schweiker [Sch]).
A periodic operator-valued multiplier theorem for Lp-spaces is given in [AB1]
where Lp-maximal regularity of (Pper) is characterized. However, in contrast
to the Cα-multiplier theorems given here, each of the Lp-multiplier theorems
(the one by Weis on the line as well as the periodic one) holds in the clas-
sical formulation (involving merely boundedness instead of R-boundedness)
if and only if the underlying Banach space is isomorphic to a Hilbert space
(see [AB1] and [AB2]). It was discovered by Amann [Am] (see also [We1]
and [GW]) that multipliers on Hölder spaces behave better in this respect.

2. The basic estimate. Throughout, X,Y will be Banach spaces, and
L(X,Y ) (or L(X) when Y = X) will be the space of all bounded linear
operators from X to Y .

Let 0 < α < 1. By Cα(R,X) we denote the space of all Hölder continuous
functions f : R→ X of exponent α. There is a seminorm ‖ · ‖α on Cα(R,X)
given by

‖f‖α = sup
s6=t

‖f(s)− f(t)‖
|s− t|α .(2.1)

Moreover, Cα(R,X) is a Banach space for the norm

‖f‖Cα := ‖f‖α + ‖f(0)‖.
Since

‖f(t)‖ ≤ ‖f(0)‖+ ‖f‖α|t|α (t ∈ R),(2.2)

convergence with respect to the norm ‖ · ‖Cα implies uniform convergence
on compact intervals.

Let M ∈ C2(R \ {0},L(X,Y )). We define the Mikhlin norm of order 2
by

‖M‖M = sup
t6=0
‖M(t)‖+ sup

t6=0
‖tM ′(t)‖+ sup

t6=0
‖t2M ′′(t)‖.

The spaces M(R,L(X,Y )) and M(R \ {0},L(X,Y )) consist of those func-
tions M ∈ C2(R,L(X,Y )) (resp., M ∈ C2(R \ {0},L(X,Y ))) such that
‖M‖M <∞.

By C2
c (R,L(X,Y )) (resp., C2

c (R \ {0},L(X,Y )) we denote the space of
all functions M ∈ C2(R,L(X,Y )) with compact support suppM (such that
0 6∈ suppM , respectively). For M ∈ C2

c (R,L(X,Y )), the Fourier transform
FM of M is given by

(FM)(s) =
�

R
e−itsM(t) dt.

Note that s2(FM)(s) = −(FM ′′)(s). Hence

‖(FM)(s)‖ ≤ max(‖M‖L1 , ‖M ′′‖L1s−2).(2.3)
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If f ∈ Cα(R,X), it follows from (2.2) and (2.3) that
�

R
‖(FM)(s)‖ ‖f(t− s)‖ ds ≤ c(1 + |t|α)(2.4)

for some constant c (depending on α, f and M). Hence the convolution
integral

(FM ∗ f)(t) :=
�

R
(FM)(t− s)f(s) ds =

�

R
(FM)(s)f(t− s) ds

is well defined for all t ∈ R.
The aim of this section is to prove the following basic estimate.

Proposition 2.1. For each α ∈ (0, 1) there exists a constant cα > 0
such that

‖FM ∗ f‖α ≤ cα‖M‖M‖f‖α(2.5)

for all f ∈ Cα(R,X) and all M ∈ C2
c (R,L(X,Y )).

This estimate will enable us to define Fourier multipliers associated with
M ∈ M(R \ {0},L(X,Y )) in Section 5 (and the periodic analogue in Sec-
tion 3) by taking an approximating sequence (Mn)n∈N in C2

c (R,L(X,Y )).
The existence of suitable Mn is a consequence of the following splitting re-
sult (more precisely, of Corollary 2.3), which will be used several times in
the construction.

Lemma 2.2. There is a constant κ > 0 such that the following holds.
Given a > 0 and M ∈M(R\{0},L(X,Y )) there exist M1,M2∈M(R\{0},
L(X,Y )) such that M = M1 +M2, suppM1 ⊂ [−2a, 2a]∩ suppM , suppM2
⊂ ((−∞,−a] ∪ [a,∞)) ∩ suppM , and ‖Mj‖M ≤ κ‖M‖M (j = 1, 2).

Proof. Let Φ : R → [0, 1] be a C2-function such that Φ(t) = 1 (t ∈
[−1, 1]) and suppΦ ⊂ [−2, 2]. Let

M1(t) = Φ(t/a)M(t), M2(t) = (1− Φ(t/a))M(t).

We have to check that ‖Mj‖M ≤ κ‖M‖M. Clearly, ‖M1(t)‖ ≤ ‖M(t)‖ ≤
‖M‖M (t ∈ R \ {0}). Furthermore

tM ′1(t) =
{

(t/a)Φ′(t/a)M(t) + Φ(t/a)tM ′(t) if a ≤ |t| ≤ 2a,

Φ(t/a)tM ′(t) otherwise.

Hence

‖tM ′1(t)‖ ≤ 2‖Φ′‖∞‖M(t)‖+ ‖tM ′(t)‖ ≤ (2‖Φ′‖∞ + 1)‖M‖M.
Also

t2M ′′1 (t) =





(t/a)2Φ′′(t/a)M(t) + 2(t/a)Φ′(t/a)tM ′(t) + Φ(t/a)t2M ′′(t)

if a ≤ |t| ≤ 2a,

Φ(t/a)t2M ′′(t) otherwise.
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Hence

‖t2M ′′1 (t)‖ ≤ 4‖Φ′′‖∞‖M(t)‖+ 4‖Φ′‖∞‖tM ′(t)‖+ ‖t2M ′′(t)‖
≤ (4‖Φ′′‖∞ + 4‖Φ′‖∞ + 1)‖M‖M.

This establishes the required properties of M1. Those of M2 follow since
M = M1 +M2.

Corollary 2.3. Let M ∈ M(R \ {0},L(X,Y )) and 0 < a < b. There
exists M̃ ∈ C2

c (R,L(X,Y )) such that M̃(t) = M(t) whenever a < |t| < b,
supp M̃ ⊂ [−2b,−a/2] ∪ [a/2, 2b] and ‖M̃‖M ≤ κ2‖M‖M.

Proof. By Lemma 2.2, there exists M1 ∈M(R\{0},L(X,Y )) such that
M1(t) = M(t) whenever |t| < b, M1(t) = 0 whenever |t| > 2b, and ‖M1‖M ≤
κ‖M‖M. Now by Lemma 2.2 again, there exists M̃ ∈ M(R \ {0},L(X,Y ))
such that M̃(t) = M1(t) whenever |t| > a, M̃(t) = 0 whenever |t| < a/2,
and ‖M̃‖M ≤ κ‖M1‖M. Now M̃ has the required properties.

Now we turn more directly towards the proof of Proposition 2.1. There
are several possible approaches (see Remarks 2.7) and we wish to present one
which is very elementary. We therefore assume that M ∈ C2

c (R,L(X,Y ))
and we first obtain some very simple pointwise estimates on FM and its
first derivative.

Lemma 2.4. Let M ∈ C2
c (R,L(X,Y )) and 0 < a < b.

(1) If suppM ⊂ [−a, a], then ‖(FM)′(s)‖ ≤ a2‖M‖M for all s ∈ R.
(2) If suppM ⊂ [−b,−a] ∪ [a, b], then

(a) ‖(FM)′(s)‖ ≤ 4‖M‖M log(b/a)/s2,
(b) ‖(FM)(s)‖ ≤ 2‖M‖M log(b/a)/|s|,

for all s ∈ R \ {0}.
(3) If suppM ⊂ (−∞,−b] ∪ [b,∞), then ‖(FM)(s)‖ ≤ 2‖M‖M/(bs2)

for all s ∈ R \ {0}.

Proof. Let M1(t) = tM(t), so (FM)′(s) = −i(FM1)(s).
(1) In this case,

‖(FM)′(s)‖ ≤
�

R
‖M1(t)‖ dt

=
a�

−a
|t| ‖M(t)‖ dt ≤ a2 sup

t
‖M(t)‖ ≤ a2‖M‖M.
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(2) In this case,

‖s2(FM)′(s)‖ = ‖i(FM ′′1 )(s)‖ ≤
�

R
‖tM ′′(t) + 2M ′(t)‖ dt

≤ 2
b�

a

2‖M‖M
t

dt = 4‖M‖M log(b/a),

‖s(FM)(s)‖ = ‖i(FM ′)(s)‖ ≤
�

R
‖M ′(t)‖ dt

≤ 2
b�

a

‖M‖M
t

dt = 2‖M‖M log(b/a).

(3) In this case,

‖s2(FM)(s)‖ = ‖−(FM ′′)(s)‖ ≤
�

R
‖M ′′(t)‖ dt

≤ 2
∞�

b

‖M‖M
t2

dt =
2
b
‖M‖M.

Corollary 2.5. Let M ∈ C2
c (R,L(X,Y )) and a > 0.

(1) If suppM ⊂ [−a, a], then

‖(FM)′(s)‖ ≤ 4κ|M‖M(1 + log(a|s|))
s2

whenever |s| ≥ 1/a.
(2) If suppM ⊂ (−∞, a] ∪ [a,∞), then

‖(FM)(s)‖ ≤ 4κ‖M‖M(1 + log(1/a|s|))
|s|

whenever |s| ≤ 1/a.

Proof. (1) Fix s with |s| ≥ 1/a. By Lemma 2.2, M = M1 + M2 where
suppM1 ⊂ [−2/|s|, 2/|s|], suppM2 ⊂ [−a,−1/|s|] ∪ [1/|s|, a] and ‖Mj‖M ≤
κ‖M‖M. Then Lemma 2.4, (1) and (2)(a), give

‖(FM1)′(s)‖ ≤ κ‖M‖M4/s2,

‖(FM2)′(s)‖ ≤ 4κ‖M‖M log(a|s|)/s2.

The claim follows.
(2) Fix s with |s| ≤ 1/a. By Lemma 2.2, M = M1 +M2 where suppM1

⊂ [−1/|s|,−a] ∪ [a, 1/|s|], suppM2 ⊂ (−∞,−1/(2|s|)] ∪ [1/(2|s|),∞) and
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‖Mj‖M ≤ κ‖M‖M. Then by Lemma 2.4, (2)(b) and (3), we have

‖(FM1)(s)‖ ≤ 2κ‖M‖M log(1/a|s|)
|s| ,

‖(FM2)(s)‖ ≤ 2κ‖M‖M
s2/(2|s|) =

4κ‖M‖M
|s| .

Now we are able to prove Proposition 2.1.

Proof of Proposition 2.1. Take a > 0, and let κ,M1,M2 be as in Lemma
2.2. Then �

R
(FM2)(s) ds = 2πM2(0) = 0.

Hence,

(2.6) ‖(FM2 ∗ f)(t)‖
=
∥∥∥

�

R
(FM2)(s)(f(t− s)− f(t)) ds

∥∥∥

≤
�

R
‖(FM2)(s)‖ |s|α‖f‖α ds

≤ 2
1/a�

0

4κ‖M2‖M(1 + log(1/as))sα−1‖f‖α ds

+ 2
∞�

1/a

2‖M2‖M
as2−α ‖f‖α ds

≤
(

8κ
1�

0

(1 + log(1/s))sα−1 ds+ 4
∞�

1

ds

s2−α

)
a−ακ‖M‖M‖f‖α

=: cα2a
−α‖M‖M‖f‖α,

where we have used Corollary 2.5 and Lemma 2.4(3) to estimate ‖(FM2)(s)‖
for |s| ≤ 1/a and |s| ≥ 1/a respectively. Moreover,

�

R
(FM1)′(s) ds = lim

b→∞
((FM1)(b)− (FM1)(−b)) = 0.

Hence,

‖(FM1 ∗ f)′(t)‖ =
∥∥∥

�

R
(FM1)′(s)(f(t− s)− f(t)) ds

∥∥∥

≤
�

R
‖(FM1)′(s)‖ |s|α‖f‖α ds
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≤ 2
1/a�

0

‖M1‖Ma2sα‖f‖α ds

+ 2
∞�

1/a

4κ‖M1‖M(1 + log(as))sα−2‖f‖α ds

≤
(

2
1�

0

sα ds+ 8κ
∞�

1

(1 + log s)sα−2 ds
)
a1−ακ‖M‖M‖f‖α

=: cα1a
1−α‖M‖M‖f‖α,

where we have used Lemma 2.4(1) for |s| ≤ 1/a and Corollary 2.5 for |s|
≥ 1/a.

Now take t1 6= t2. Then

‖(FM ∗ f)(t1)− (FM ∗ f)(t2)‖

≤
∥∥∥
t2�

t1

(FM1 ∗ f)′(t) dt
∥∥∥+ ‖(FM2 ∗ f)(t1)‖+ ‖(FM2 ∗ f)(t2)‖

≤ (|t2 − t1|cα1a
1−α + 2cα2a

−α)‖M‖M‖f‖α

≤ cα
3

(|t2 − t1|a1−α + 2a−α)‖M‖M‖f‖α,
where cα = 3 max{cα1, cα2}. This is valid for all a > 0, and choosing a =
|t1− t2|−1 gives ‖(FM ∗ f)(t1)− (FM ∗ f)(t2)‖ ≤ cα‖M‖M‖f‖α|t1− t2|α.

Remark 2.6 (bounded Hölder continuous functions). For an operator-
valued function M ∈ C2

c (R,L(X,Y )) we can also consider the inhomoge-
neous Mikhlin norm of order 2:

‖M‖∼M := sup
t
‖M(t)‖+ sup

t
(1 + |t|)‖M ′(t)‖+ sup

t
(1 + t2)‖M ′′(t)‖.

Suppose that f ∈ Cα(R,X) is bounded. Then

‖FM ∗ f‖α + ‖FM ∗ f‖∞ ≤ const · ‖M‖∼M(‖f‖α + ‖f‖∞).(2.7)

In fact, fixing a = 1 and taking M1 = ΦM as in Lemma 2.2, one has
‖M1‖L1 = � 2

−2 |M1(s)| ds≤ 4‖M‖∞ ≤ 4‖M‖∼M and ‖M ′′1 ‖L1 = � 2
−2 |M ′′1 (s)| ds

≤ const · ‖M‖∼M. It follows from (2.3) that

‖(FM1 ∗ f)(t)‖ ≤
�

R
‖(FM1)(s)‖ ‖f‖∞ ds ≤ const · ‖M‖∼M‖f‖∞.

Combining this with (2.6) above, (2.7) follows.

Remarks 2.7. (a) The estimate (2.7) has been proven by Amann [Am]
(see also [We1] and [GW]) as a special case of a result about Fourier mul-
tipliers on Besov spaces. In the scalar case an estimate of this type can be
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found in the monograph of Triebel [Tr, Section 2.3.7]. Their proofs depend
on dyadic decomposition, the theory of distributions and duality. It is pos-
sible to deduce Proposition 2.1 from (2.7) by scaling and approximation (see
the proof of Proposition 2.8 below).

(b) A. Noll (private communication) has proved the basic estimate (2.5)
by using a dyadic decomposition as in [Hö, Theorem 7.9.6].

Recall that a Banach space X has Fourier type p, where 1 ≤ p ≤ 2, if
the Fourier transform defines a bounded linear operator from Lp(R,X) to
Lp
′
(R,X), where p′ is the conjugate index of p. For example, a space of the

form Lp(Ω), where 1 ≤ p ≤ 2, has Fourier type p; X has Fourier type 2 if
and only if X is a Hilbert space; X has Fourier type p if and only if X∗

has Fourier type p. Every Banach space has Fourer type 1; X is B-convex
if it has Fourier type p for some p > 1. Every uniformly convex space is
B-convex.

Assume that X and Y are B-convex. Then Girardi and Weis [GW] have
shown that (2.7) remains valid if the norm ‖M‖∼M is replaced by the inho-
mogeneous Mikhlin norm of order 1, i.e., by

‖M‖∼M1
:= sup

t
‖M(t)‖+ sup

t
(1 + |t|)‖M ′(t)‖.

We shall now show that if X is B-convex, the estimate (2.5) of Proposition
2.1 can be improved by replacing ‖M‖M by the (homogeneous) Mikhlin
norm of order 1, i.e., by

‖M‖M1 := sup
t
‖M(t)‖+ sup

t
‖tM ′(t)‖.

We shall deduce this from the result of [GW] by means of a scaling argument.
The proof in [GW] is set in the context of Besov spaces and uses a dyadic
decomposition in a way which seems to be unavoidable. So far, it seems not
to be known whether the geometric condition on X can be omitted.

Proposition 2.8. Let X be a B-convex space and Y be arbitrary. For
each α ∈ (0, 1) there exists a constant cα,X > 0 (depending only on α and
X) such that

‖FM ∗ f‖α ≤ cα,X‖M‖M1‖f‖α
for all f ∈ Cα(R,X) and all M ∈ C2

c (R,L(X,Y )).

Proof. First, assume that Y = C. The Besov space Bα
∞,∞(R,X) is the

space of all bounded functions f ∈ Cα(R,X), and the Besov norm is equiv-
alent to the norm ‖f‖α + ‖f‖∞ ([Tr, Theorem 2.5.7], [Am, p. 25]). Hence it
follows from [GW, Theorem 4.7 and Corollary 4.10] that there is a constant
c (depending only on α and X) such that

‖FM ∗ f‖α + ‖FM ∗ f‖∞ ≤ c‖M‖∼M1
(‖f‖α + ‖f‖∞)(2.8)

whenever f ∈ Cα(R,X) is bounded and M ∈ C2
c (R,X∗).
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Now let Y be arbitrary. Let f ∈ Cα(R,X) be bounded and M ∈
C2

c (R,L(X,Y )). For each y ∈ Y ∗, we can apply (2.8) with M replaced
by y∗ ◦M . This gives

‖y∗ ◦ (FM ∗ f)‖α + ‖y∗ ◦ (FM ∗ f)‖∞ ≤ c‖y∗‖ ‖M‖∼M1
(‖f‖α + ‖f‖∞).

By the Hahn–Banach theorem,

‖FM ∗ f‖α = sup
‖y∗‖≤1

‖y∗ ◦ (FM ∗ f)‖α ≤ c‖M‖∼M1
(‖f‖α + ‖f‖∞).(2.9)

Next, take λ > 0 and let fλ(t) = f(λt) and Mλ−1(t) = M(λ−1t). Then

‖fλ‖α = λα‖f‖α,
‖Mλ−1‖∼M1

≤ ‖Mλ−1‖M1 + ‖(Mλ−1)′‖∞ = ‖M‖M1 + λ−1‖M ′‖∞,
(FMλ−1)(s) = λ(FM)(λs),

(FM ∗ f)(t) = (FMλ−1 ∗ fλ)(λ−1t).

It follows from these relations and (2.9) that

‖FM ∗ f‖α = λ−α‖FMλ−1 ∗ fλ‖α
≤ c‖Mλ−1‖∼M1

λ−α(‖fλ‖α + ‖fλ‖∞)

≤ c(‖M‖M1 + λ−1‖M ′‖∞)(‖f‖α + λ−α‖f‖∞).

Letting λ→∞ gives

‖FM ∗ f‖α ≤ c‖M‖M1‖f‖α(2.10)

when f is bounded.
Now suppose that f ∈ Cα(R,X) is arbitrary. Let

fn(t) =

{
f(t) if ‖f(t)‖ ≤ n,
nf(t)/‖f(t)‖ otherwise.

Then fn is bounded, fn ∈ Cα(R,X), ‖fn‖α ≤ 2‖f‖α, ‖fn(t)‖ ≤ ‖f(t)‖ and
f(t) = limn→∞ fn(t). By the dominated convergence theorem,

(FM ∗ f)(t) = lim
n→∞

(FM ∗ fn)(t).

Applying (2.10) to fn gives

‖FM ∗ f‖α ≤ lim sup
n→∞

‖FM ∗ fn‖α ≤ 2c‖M‖M1‖f‖α.

For simplicity, we have given the results above (and we will give the mul-
tiplier theorems in Sections 3 and 5) for functions on R. There are straight-
forward generalizations to functions on RN which we state here. Let k ∈ N
and M ∈ Ck(RN \{0},L(X,Y )). The Mikhlin norm of order k is defined by

‖M‖Mk
=
∑

|β|≤k
sup

t∈RN\{0}
|t||β|‖DβM(t)‖,
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where the sum is taken over all multi-indices β = (β1, . . . , βN ) ∈ (N∪{0})N
with |β| := β1 + . . .+ βN ≤ k.

Proposition 2.9. Let X be a Banach space of Fourier type p ∈ [1, 2]
and Y be arbitrary. Let k be an integer such that k > N/p (for example,
k = N + 1 for arbitrary X). For each α ∈ (0, 1), there is a constant cα,N,X
(depending on α, N and p) such that

‖FM ∗ f‖α ≤ cα,N,X‖M‖Mk
‖f‖α

for all f ∈ Cα(RN ,X) and all M ∈ CN+1
c (RN ,L(X,Y )).

The proof is very similar to that of Proposition 2.1 (for the case when
p = 1, k = N + 1 and X is arbitrary) or Proposition 2.8 (for general p).

3. Periodic multipliers. Let X,Y be Banach spaces, 0 < α < 1 and
τ > 0. By Cτ (R,X) we denote the space of all τ -periodic continuous func-
tions f : R → X. We let Cατ (R,X) = Cα(R,X) ∩ Cτ (R,X). Observe that
Cατ (R,X) is a Banach space for the norm

‖f‖Cατ := ‖f‖α +

∥∥∥∥
1
τ

τ�

0

f(t) dt

∥∥∥∥,

and that convergence in this norm implies uniform convergence. Our aim is
to prove a multiplier theorem for Cα

τ (R,X). Without loss of generality, we
shall take τ = 2π.

For x ∈ X, k ∈ Z we let (ek ⊗ x)(t) = eiktx (t ∈ R). For k 6= 0,

‖ek ⊗ x‖Cα2π = ‖ek ⊗ x‖α = γα|k|α‖x‖,(3.1)

where γα = ‖e1‖α = 2 supt>0 t
−α sin(t/2). A trigonometric polynomial is a

function p of the form p =
∑

k∈Z ek ⊗ xk where xk ∈ X and xk = 0 for all
but finitely many k ∈ Z.

Let f ∈ C2π(R,X). We denote by

f̂(k) =
1

2π

2π�

0

f(t)e−ikt dt(3.2)

the kth Fourier coefficient of f (k ∈ Z). By Fejér’s theorem

σn(f) :=
1

n+ 1

n∑

l=0

l∑

k=−l
ek ⊗ f̂(k) =

n∑

k=−n

(
1− |k|

n+ 1

)
ek ⊗ f̂(k)(3.3)

converges uniformly to f as n → ∞ (see [ABHN, Theorem 4.2.19]). More-
over, σn is given as convolution by the Fejér kernel

Fn(t) =





1
n+ 1

(
sin((n+ 1)t/2)

sin(t/2)

)2

(t 6∈ 2πZ),

n+ 1 (t ∈ 2πZ),
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i.e.,

σn(f)(t) =
1

2π

π�

−π
f(t− s)Fn(s) ds.(3.4)

The uniqueness theorem asserts that a function f ∈ C2π(R,X) is 0 whenever
f̂(k) = 0 for all k ∈ Z. This is a direct consequence of Fejér’s theorem.

Definition 3.1. A sequence (Mk)k∈Z ⊂ L(X,Y ) is called a Cα2π-multi-
plier if for each f ∈ Cα2π(R,X) there exists a u ∈ Cα2π(R, Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.
It follows from the uniqueness theorem that u is uniquely determined by f .
If (Mk)k∈Z is a Cα2π-multiplier then the uniqueness theorem and the closed
graph theorem show that the mapping

M : f 7→ u : Cα2π(R,X)→ Cα2π(R, Y )

is linear and continuous. We call it the operator associated with the Cα
2π-

multiplier (Mk)k∈Z. Clearly,

M
(∑

k∈Z
ek ⊗ xk

)
=
∑

k∈Z
ek ⊗Mkxk(3.5)

for each trigonometric polynomial. Note however that the space of all
trigonometric polynomials is not dense in Cα

2π(R,X) (for example, the func-
tion |sin t|α is not in the closure of the trigonometric polynomials).

Lemma 3.2. If (Mk)k∈Z ⊂ L(X,Y ) is a Cα2π-multiplier , then

sup
k∈Z
‖Mk‖ <∞.

Proof. Let x ∈ X, x 6= 0, k ∈ Z \ {0}. Then M(ek ⊗ x) = ek ⊗Mkx.
Hence

γα|k|α‖Mkx‖ = ‖ek ⊗Mkx‖Cα2π = ‖M(ek ⊗ x)‖Cα2π
≤ ‖M‖ ‖ek ⊗ x‖Cα2π = ‖M‖γα|k|α‖x‖.

Since M0 is bounded, the claim follows.

The following definition is the discrete analogue of the Mikhlin norm
defined in Section 2.

Definition 3.3. A sequence (Mk)k∈Z ⊂ L(X,Y ) satisfies a Marcin-
kiewicz estimate of order 1 if it is bounded and supk∈Z ‖k(Mk+1−Mk)‖ <∞.
If in addition supk∈Z k

2‖Mk+1−2Mk+Mk−1‖ <∞ then we say that (Mk)k∈Z
satisfies a Marcinkiewicz estimate of order 2. We let

‖(Mk)k∈Z‖M(Z)

= sup
k
‖Mk‖+ sup

k
‖k(Mk+1 −Mk)‖+ sup

k
‖k2(Mk+1 − 2Mk +Mk−1)‖
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and denote by M(Z) the space of all sequences such that ‖(Mk)k∈Z‖M(Z)
<∞.

Now we formulate the periodic multiplier theorem.

Theorem 3.4. If (Mk)k∈Z ⊂ L(X,Y ) satisfies a Marcinkiewicz estimate
of order 2, then (Mk)k∈Z is a Cα2π-multiplier.

For the proof we need the following extension lemma.

Lemma 3.5. There exists a constant cM > 0 such that for each (Mk)k∈Z
∈ M(Z) there exists M ∈ C∞(R,L(X,Y )) such that

M(k) = Mk (k ∈ Z) and ‖M‖M ≤ cM‖(Mk)k∈Z‖M(Z).

Moreover , if Mk = 0 for all but finitely many k, one may choose M of
compact support.

Proof. Let Φ : [0, 1]→ R be a C∞-function such that Φ(t) = 0 whenever
0 ≤ t ≤ 1/4 and Φ(t) = t− 1 whenever 3/4 ≤ t ≤ 1. Define

M(k+t) = (1−t)Mk+tMk+1 +(Mk+2−2Mk+1 +Mk)Φ(t) (0 ≤ t < 1).

Then

lim
t↑1

M(k + t) = Mk+1 = lim
t↓0

M(k + 1 + t),

lim
t↑1

M(k + 1)−M(k + t)
1− t = Mk+2 −Mk+1 = lim

t↓0
M(k + 1 + t)−M(k + 1)

t
,

M ′′(k + t) = 0 (|t| ≤ 1/4).

So M ∈ C∞(R,L(X,Y )). Furthermore,

‖M(k + t)‖ ≤ sup
r
‖Mr‖∞ + ‖Φ‖∞‖Mk+2 − 2Mk+1 +Mk‖

≤ (1 + 4‖Φ‖∞) sup
r
‖Mr‖.

Moreover,

‖(k + t)M ′(k + t)‖
≤ (|k|+ 1)‖Mk+1 −Mk‖+ |k + t| ‖Φ′‖∞‖Mk+2 − 2Mk+1 +Mk‖
≤ (|k|+ 1)‖Mk+1 −Mk‖

+ ‖Φ′‖∞((|k|+ 1)‖Mk+1 −Mk‖+ (|k + 1|+ 1)‖Mk+2 −Mk+1‖)
≤ (1 + 2‖Φ′‖∞) sup

r
|r| ‖Mr+1 −Mr‖+ (2 + 4‖Φ′‖∞) sup

r
‖Mr‖.

Finally,

‖(k + t)2M ′′(k + t)‖ = (k + t)2‖Mk+2 − 2Mk+1 +Mk‖ ‖Φ′′‖∞
≤ ((k + 1)2 + 2|k| − 1)‖Mk+2 − 2Mk+1 +Mk‖ ‖Φ′′‖∞
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≤ {(k + 1)2‖Mk+2 − 2Mk+1 +Mk‖+ 2|k| ‖Mk+1 −Mk‖
+ 2|k + 1| ‖Mk+2 −Mk+1‖+ ‖Mk+2‖+ ‖Mk+1‖}‖Φ′′‖∞

≤ 4‖(Mr)r∈Z‖M(Z)‖Φ′′‖∞.
Proof of Theorem 3.4. (a) Let f =

∑
|k|≤N ek ⊗ f̂(k) be a trigonometric

polynomial. We show that∥∥∥
∑

|k|≤N
ek ⊗Mkf̂(k)

∥∥∥
α
≤ c
∥∥∥
∑

|k|≤N
ek ⊗ f̂(k)

∥∥∥
α

where

c =
cαcMκ2

2π
‖(Mk)k∈Z‖M(Z).

By Lemma 3.5 and Corollary 2.3, there exists M̃ ∈ C∞c (R,L(X,Y )) such
that M̃(k) = M−k (|k| ≤ N) and ‖M̃‖M ≤ cMκ2‖(Mk)k∈Z‖M(Z). One has

∑

|k|≤N
eiktMkf̂(k) =

∑

|k|≤N
eikt(F−1FM̃)(−k)f̂(k)

=
1

2π

∑

|k|≤N

�

R
(FM̃)(s)e−iks ds f̂(k)eikt

=
1

2π
(FM̃ ∗ f)(t).

The basic estimate (2.5) of Proposition 2.1 gives

‖FM ∗ f‖α ≤ cα‖M‖M‖f‖α.
Now the claim follows.

(b) Assume that Y = C. Let f ∈ Cα2π(R,X). We show that there ex-
ists u ∈ Cα2π(R,C) such that ‖u‖α ≤ c‖f‖α and û(k) = Mkf̂(k) (k ∈ Z).
Let fn = σn(f). Since (2π)−1 � π−π Fn(s) ds = 1, it follows from (3.3) that

‖fn‖α ≤ ‖f‖α (n ∈ N). Let un =
∑
|k|≤n ek ⊗ Mkf̂n(k). Then ‖un‖α ≤

c‖fn‖α ≤ c‖f‖α by (a). Moreover, ûn(0) = M0f̂(0). This implies that (un)
is equicontinuous and uniformly bounded. It follows from Ascoli’s theorem
that every subsequence of (un) has a subsequence which converges uniformly
to a function u. Then û(k) = Mkf̂(k) for all k ∈ Z. This shows that u is
independent of the subsequences. Hence limn→∞ un = u uniformly, where
u ∈ Cα2π(R,C) and ‖u‖α ≤ lim supn→∞ ‖un‖α ≤ c‖f‖α.

(c) Let Y be arbitrary. Let y∗ ∈ Y ∗. Then by (b) there exists a unique
uy∗ ∈ Cα2π(R,C) such that ûy∗(k) = 〈y∗,Mkf̂(k)〉 (k ∈ Z). Moreover,
‖uy∗‖α ≤ c‖y∗‖ ‖f‖α. Define u(t) ∈ Y ∗∗ by 〈u(t), y∗〉 = uy∗(t). Then u ∈
Cα2π(R, Y ∗∗) and 〈û(k), y∗〉 = 〈y∗,Mkf̂(k)〉. Thus, û(k) = Mkf̂(k) ∈ Y for
all k ∈ Z. Consider the quotient map q : Y ∗∗ → Y ∗∗/Y (where we consider
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Y as a subspace of Y ∗∗ via evaluation). Then q ◦ u ∈ C2π(R, Y ∗∗/Y ) and
q̂ ◦ u(k) = 0 for all k ∈ Z. Hence q ◦ u(t) = 0 for all t ∈ R by the uniqueness
theorem. We have shown that u(t) ∈ Y for all t ∈ R. Finally, for t 6= s we
have

‖u(t)− u(s)‖
|t− s|α = sup

‖y∗‖≤1

|uy∗(t)− uy∗(s)|
|t− s|α ≤ c‖f‖α.

This completes the proof.

Remark 3.6. A Marcinkiewicz estimate of order 1 suffices in order that
Theorem 3.4 holds true when X is B-convex. The proof is the same as
above, except that Proposition 2.8 (or the result of Girardi and Weis [GW,
Corollary 2.10]) is used instead of Proposition 2.1. We do not know whether
the same result is true for general Banach spaces.

Example 3.7 (Hilbert transform and Riesz projection). Let X be an
arbitrary Banach space and 0 < α < 1. Let Mk = I for k ≥ 0 and Mk = 0
for k < 0. Then (Mk)k∈Z is a Cα2π-multiplier by Theorem 3.4. The associated
operator is called the Riesz projection. Similarly, letting Mk = (−i sign k)I
defines a Cα2π-multiplier. The associated operator on Cα

2π(R,X) is called the
Hilbert transform.

4. Periodic boundary conditions. In this section we apply the mul-
tiplier theorem (Theorem 3.4) to differential equations with periodic bound-
ary conditions. It is remarkable that in this context (i.e., applying the mul-
tiplier theorem to resolvents) one obtains a complete characterization of
well-posedness. At the end of the section we consider Dirichlet boundary
conditions and also the second order problem with diverse boundary condi-
tions.

Let A be a closed operator on a Banach space X, and let τ > 0. For
f ∈ C([0, τ ],X) we consider the problem

(Pper(f))
{
u′(t) = Au(t) + f(t) (t ∈ [0, τ ]),

u(0) = u(τ).

A classical solution of (Pper(f)) is a function u ∈ C1([0, τ ],X) such that
u(t) ∈ D(A) for all t ∈ [0, τ ] and (Pper(f)) is satisfied. A mild solution is a
function u ∈ C([0, τ ],X) such that u(0) = u(τ) and

t�

0

u(s) ds ∈ D(A) and u(t) = u(0) + A

t�

0

u(s) ds+
t�

0

f(s) ds(4.1)

for all t ∈ [0, τ ]. Since A is closed, each classical solution is a mild so-
lution. Moreover, a mild solution u is a classical solution if and only if
u ∈ C1([0, τ ],X) (cf. [ABHN, Section 3.1]).
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Denote by Cper([0, τ ],X) the space of all continuous functions f : [0, τ ]→
X such that f(0) = f(τ). Let 0 < α < 1. For f : [0, τ ]→ X, let

‖f‖α = sup
{‖f(t)− f(s)‖

|t− s|α : s, t ∈ [0, τ ], s 6= t

}
.

Define

Cαper([0, τ ],X) = {f ∈ Cper([0, τ ],X) : ‖f‖α <∞},
C1+α

per ([0, τ ],X) = {f ∈ C1([0, τ ],X) : f(0) = f(τ), f ′ ∈ Cαper([0, τ ],X)}.
It is easy to see that the τ -periodic extension f̃ of a function f∈Cαper([0, τ ],X)
to R satisfies

sup
{‖f̃(t)− f̃(s)‖

|t− s|α : s, t ∈ R, s 6= t

}
≤ 2‖f‖α.

Thus we may identify Cαper([0, τ ],X) with the space Cα
τ (R,X) introduced in

Section 3.

Definition 4.1. We say that the problem (Pper) is Cα-well-posed if
for every f ∈ Cαper([0, τ ],X) there exists a unique classical solution u ∈
C1+α

per ([0, τ ],X) of (Pper(f)).

Based on the multiplier theorem (Theorem 3.4) it is now possible to
characterize Cα-well-posedness by properties of the resolvent.

Theorem 4.2. Let A be a closed operator and let τ > 0, 0 < α < 1. The
following assertions are equivalent :

(i) the problem (Pper) is Cα-well-posed ;
(ii) (2πi/τ)Z ⊂ %(A) and supk∈Z ‖kR(2πik/τ,A)‖ <∞.

Replacing A by τ
2πA we can assume that τ = 2π, which we will do

throughout what follows. We need the following lemma whose proof is similar
to [AB1, Lemma 3.1].

Lemma 4.3. Let v, g ∈ Cper([0, 2π],X). The following are equivalent :

(i) v̂(k) ∈ D(A) and Av̂(k) = ĝ(k) for all k ∈ Z;
(ii) v(t) ∈ D(A) and Av(t) = g(t) for all t ∈ [0, 2π].

Now mild solutions can be described as follows.

Proposition 4.4. Let u, f ∈ Cper([0, 2π],X). The following assertions
are equivlent :

(i) u is a mild solution of (Pper(f));
(ii) û(k) ∈ D(A) and (ik − A)û(k) = f̂(k) for all k ∈ Z.

Proof. First case: Assume that û(0) = f̂(0) = 0. Then v(t) := � t0 u(s) ds
and g(t) := u(t)− u(0)− � t0 f(s) ds define functions v, g ∈ Cper([0, 2π],X).
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(a) Assume that u is a mild solution of (Pper(f)). By Lemma 4.3, û(k) =
ikv̂(k) ∈ D(A) and Aû(k) = ikĝ(k) = ikû(k) − f̂(k) for all k. This shows
that condition (ii) holds.

(b) Conversely, assume (ii). Consider v1(t) := v(t)− x, g1(t) := g(t)− y
where x = v̂(0), y = ĝ(0). Then v̂1(0) = ĝ1(0) = 0 and v̂1(k) = v̂(k) =
û(k)/ik and ĝ1(k) = û(k)− f̂(k)/ik for k 6= 0. Thus Av̂1(k) = ĝ1(k) for all
k ∈ Z. It follows from Lemma 4.3 that v1(t) ∈ D(A) and Av1(t) = g1(t) for
all t ∈ [0, 2π]. Choosing t = 0 we conclude that −x = v1(0) ∈ D(A) and
−Ax = −y = g1(0). Hence � t0 u(s) ds ∈ D(A) and A � t0 u(s) ds = g(t) for all
t ∈ [0, 2π]; that is, u is a mild solution of (Pper(f)).

Second case: u, f are arbitrary. Consider u1(t) := u(t) − û(0), f1(t) :=
f(t) − f̂(0). Then û1(k) = û(k), f̂1(k) = f̂(k) for all k ∈ Z \ {0} and
û1(0) = f̂1(0) = 0.

(a) Assume that u is a mild solution of (Pper(f)). Letting t = 2π in (4.1),
one sees that û(0) ∈ D(A) and −Aû(0) = f̂(0). Thus u1 is a mild solution
of (Pper(f1)). It follows from the first case that û(k) = û1(k) ∈ D(A) and
(ik − A)û(k) = (ik − A)û1(k) = f̂1(k) = f̂(k) for all k ∈ Z \ {0}.

(b) Conversely, assume (ii). Then û1(k) ∈ D(A) and (ik − A)û1(k) =
f̂1(k) for all k ∈ Z. It follows from the first case that u1 is a mild solution
of (Pper(f1)); that is, � t0 u(s) ds− tû(0) ∈ D(A) and A( � t0 u(s) ds− tû(0)) =
u1(t) − u1(0) − � t0 f1(s) ds = u(t) − u(0) − � t0 f(s) ds + tf̂(0). Since by the
assumption û(0) ∈ D(A) and −Aû(0) = f̂(0), this implies that u is a mild
solution.

Proof of Theorem 4.2. We assume that τ = 2π. Assume that iZ ⊂ %(A)
and supk∈Z ‖kR(ik,A)‖ < ∞. Let Mk = kR(ik,A) (k ∈ Z). We show that
(Mk)k∈Z satisfies the Marcinkiewicz condition of order 2 in L(X).

Let B = −iA and R(k) = R(k,B) = iR(ik,A). Then the resolvent
identity gives

i(Mk+1 −Mk) = (k + 1)R(k + 1)− kR(k)

= R(k + 1) + k(R(k + 1)−R(k))

= R(k + 1)(I − kR(k)).

It follows that supk∈Z ‖k(Mk+1 −Mk)‖ < ∞. The order-2-condition is ob-
tained by

i(Mk+1 − 2Mk +Mk−1)

= (k + 1)R(k + 1)− kR(k) + (k − 1)R(k − 1)− kR(k)

= R(k + 1)−R(k − 1) + k(R(k + 1)−R(k) +R(k − 1)−R(k))
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= R(k + 1)−R(k − 1)− kR(k + 1)R(k) + kR(k − 1)R(k)

= (R(k + 1)−R(k − 1))(I − kR(k))

= 2R(k + 1)R(k − 1)(I − kR(k)).

This shows that supk∈Z ‖k2(Mk+1 − 2Mk +Mk−1)‖ <∞.
Let f ∈ Cα2π(R,X). Since A is invertible and AR(ik,A) = ikR(ik,A)− I

it follows from Theorem 3.4 that (R(ik,A))k∈Z ⊂ L(X,D(A)) is a Cα2π-
multiplier, where D(A) is considered as a Banach space in the graph norm.
Hence there exists u ∈ Cα2π(R,D(A)) such that R(ik,A)f̂(k) = û(k) for all
k ∈ Z. It follows from Proposition 4.4 that u is a mild solution of (Pper(f)).
Since (ikR(ik,A))k∈Z is a Cα2π-multiplier in L(X), there exists v ∈ Cα

2π(R,X)
such that v̂(k) = ikR(ik,A)f̂(k) for all k ∈ Z. Hence v̂(k) = ikû(k) for all
k ∈ Z. It follows from the proof of [AB1, Lemma 2.1] that u is differentiable
and u′ = v. Thus u is a classical solution of (Pper(f)). Uniqueness follows
from Proposition 4.4.

This finishes the proof of one implication. The other is proved as [AB1,
Theorem 2.3(i)⇒(ii)].

Remark 4.5. Using the same techniques as in Theorem 4.2, it is pos-
sible to treat a more general situation. Suppose that iZ \ {0} ⊂ %(A) and
supk∈Z\{0} ‖kR(ik,A)‖ <∞. Let f ∈ Cαper([0, 2π],X). Then (Pper(f)) has a

mild or classical solution u ∈ Cper([0, 2π],X) if and only if f̂(0) belongs to
the range of A. In that case u ∈ C1+α

per ([0, 2π]),X) and u is given by

u(t) = x+
t�

0

v(s) ds,

where x ∈ D(A) and Ax = −f̂(0), and

v̂(k) =

{
ikR(ik,A)f̂ (k 6= 0),

0 (k = 0).

The existence of such v ∈ Cαper([0, 2π],X) follows from Theorem 3.4.

Next we apply the multiplier theorem to establish the existence of mild
solutions under a weaker growth condition on the resolvent.

Theorem 4.6. Let A be a closed operator such that iZ ⊂ %(A) and

sup
k∈Z
|k|2/3‖R(ik,A)‖ <∞.(4.2)

Then for all f ∈ Cαper([0, 2π],X) there exists a unique mild solution u ∈
Cαper([0, 2π],X) of (Pper(f)).
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Proof. Let Mk = R(ik,A) (k ∈ Z). Then
Mk+1 −Mk = −iR(i(k + 1), A)R(ik,A)

by the resolvent equation. Moreover,
Mk+1 − 2Mk +Mk−1 = (Mk+1 −Mk)− (Mk −Mk−1)

= −iR(i(k + 1), A)R(ik,A) + iR(ik,A)R(i(k − 1), A)

= iR(ik,A)(R(i(k − 1), A)−R(i(k + 1), A))

= iR(ik,A)2iR(i(k − 1), A)R(i(k + 1), A)

by the resolvent equation. It follows from these identities that (R(ik,A))k∈Z
satisfies the Marcinkiewicz condition of order 2. Let f ∈ Cα

per([0, 2π],X). By

Theorem 3.4 there exists u ∈ Cαper([0, 2π],X) such that û(k) = R(ik,A)f̂(k)
(k ∈ Z). Thus u is the unique mild solution of (Pper(f)) by Proposition 4.4.

Remark 4.7. If X is B-convex then the growth condition (4.2) in The-
orem 4.6 can be weakened to

sup
k∈Z
|k|1/2‖R(ik,A)‖ <∞.

This condition implies that Mk := R(ik,A) satisfies a Marcinkiewicz condi-
tion of order 1, and then the result follows from Remark 3.6.

Next we consider Dirichlet boundary conditions. Let τ > 0. For f ∈
C([0, τ ],X) and x ∈ X we consider the problem

(P(x, f))
{
u′(t) = Au(t) + f(t) (t ∈ [0, τ ]),
u(0) = x.

Assume that for all y ∈ X, the problem (P(0, fy)) with fy(t) ≡ y has a
unique classical solution. Then by [ABHN, Theorem 3.17.1], the operator
A generates a C0-semigroup T and the solution of (P(0, fy)) is given by
u(t) = � t0 T (s)y ds. Now assume that u ∈ C1+α([0, τ ],X). Then T (·)y = u′ ∈
Cα([0, τ ],X). Consequently, there exists a constant cy ≥ 0 such that

‖T (t)y − y‖
tα

≤ cy (0 < t ≤ τ).

It follows from the closed graph theorem that sup0<t≤τ t
−α‖T (t)− I‖ <∞.

This implies that A is bounded (by [ABHN, Theorem 3.1.10]). Thus, one
has maximal regularity for the problem (P(0, f)), i.e., for Dirichlet boundary
conditions, only in trivial cases. It is remarkable that periodic boundary
conditions are different in this respect, by Theorem 4.2.

The following result is well known (see the monograph by Lunardi [Lu,
Theorem 4.3.1]). We obtain it as a consequence of Theorem 4.2.

Corollary 4.8. Let A be the generator of a holomorphic semigroup.
Then for all x ∈ X and f ∈ Cα([0, τ ],X) there is a unique mild solution u
of (P(x, f)). One has u ∈ C1+α([ε, τ ],X) for all ε ∈ (0, τ).
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Proof. Let T be the semigroup generated by A. Replacing A by A−ω we
may assume that T is exponentially stable. Then condition (ii) of Theorem
4.2 is satisfied. Hence there exists a unique classical solution v of (Pper(f))
and v ∈ C1+α([0, τ ],X). Let u(t) = v(t) − T (t)v(0) + T (t)x. Then u is the
unique mild solution of (P(x, f)) (see [ABHN, Proposition 3.1.16]). Since
T (·)(x− v(0)) ∈ C∞((0, τ ],X), one has u ∈ C1+α([ε, τ ],X) for all ε > 0.

Finally in this section, we consider second order problems. Let A be a
closed operator on X. The following result is deduced from Theorem 3.4 in
much the same way as [AB1, Theorem 6.1] is obtained from the correspond-
ing multiplier theorem on Lp. We omit the proof. Let N0 = N ∪ {0}. Let
0 < α < 1, and let C2+α([0, 2π],X) be the space of all f ∈ C2([0, 2π],X)
such that f ′′ ∈ Cα([0, 2π],X).

Theorem 4.9. The following assertions are equivalent :

(i) k2 ∈ %(A) for all k ∈ N0 and supk∈N ‖k2R(k2, A)‖ <∞;
(ii) for all f ∈ Cαper([0, 2π],X) there exists a unique u ∈ C2+α([0, 2π],X)

∩ Cα([0, 2π],D(A)) satisfying
{
u′′(t) + Au(t) = f(t) (t ∈ [0, 2π]),

u(0) = u(2π), u′(0) = u′(2π).
(4.3)

Similarly to [AB1, Theorems 6.3 and 6.4] one may characterize Cα-well-
posedness of the second order problem with Dirichlet and Neumann bound-
ary conditions.

Theorem 4.10. The following assertions are equivalent :

(i) k2 ∈ %(A) for all k ∈ N and supk∈N k
2‖R(k2, A)‖ <∞;

(ii) for all f ∈ Cαper([0, π],X) with f(0) = 0 there exists a unique function
u ∈ C2+α([0, π],X) ∩ Cα([0, π],D(A)) satisfying

{
u′′(t) + Au(t) = f(t) (t ∈ [0, π]),

u(0) = u(π) = 0.
(4.4)

Theorem 4.11. The following assertions are equivalent :

(i) k2 ∈ %(A) for all k ∈ N0 and supk∈N ‖k2R(k2, A)‖ <∞;
(ii) for all f ∈ Cα([0, π],X) there exists a unique u ∈ C2+α([0, π],X) ∩

Cα([0, π],D(A)) satisfying
{
u′′(t) + Au(t) = f(t) (t ∈ [0, π]),

u′(0) = u′(π) = 0.
(4.5)

Since Theorem 4.10 can be proved by using an argument similar to the
proof of [AB1, Theorem 6.3], we only give the proof for Theorem 4.11. We
will use the following lemma. Its simple proof is similar to that of [AB1,
Lemma 6.2]. Note that the key point in the proof of [AB1, Lemma 6.2] is
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the boundedness of the Riesz projection on Lp([−π, π],X) when 1 < p <∞
and X is a UMD-space. In our situation we can use Example 3.7.

Lemma 4.12. Let (Mk)k∈Z ⊂ L(X) be such that Mk = M−k (k ∈ Z). As-
sume that for each even f ∈Cαper([−π, π],X) there exists u∈Cαper([−π, π],X)

such that û(k) = Mkf̂(k) (k ∈ Z). Then (Mk)k∈Z is a Cα2π-multiplier.

Proof of Theorem 4.11. (ii)⇒(i). Let k ∈ Z. If x ∈ D(A) is such that
(−k2 + A)x = 0, then u(t) = cos(kt)x satisfies (4.5) with f = 0. Thus
x = 0 and hence −k2 + A is injective. To show surjectivity, take x ∈ X
and let f(t) = cos(kt)x. Let u be the solution of (4.5), and extend u to
an even function. Then it is easy to verify that u is twice differentiable on
[−π, π] and u(j)(−π) = u(j)(π) for j = 0, 1, 2. Thus u ∈ C2+α

per ([−π, π],X) ∩
Cαper([−π, π],D(A)) and u′′ + Au = f on [−π, π]. We deduce from Lemma

4.3 that (−k2 + A)û(k) = f̂(k) = x/2. We have shown that −k2 + A is
surjective. Hence k2 ∈ %(A).

Now let f ∈ Cαper([−π, π],X) be even and let u ∈ C2+α([0, π],X) ∩
Cα([0, π],D(A)) be the solution of (4.5). Extend u to an even function; then
it is easy to verify that u ∈ C2+α

per ([−π, π],X) ∩ Cαper([−π, π],D(A)) and

u′′ + Au = f on [−π, π]. From Lemma 4.3 we have (−k2 + A)û(k) = f̂(k)
(k ∈ Z). This implies that (u′′)∧(k) = k2R(k2, A)f̂(k) (k ∈ Z). By Lemma
4.12, (k2R(k2, A))k∈Z is a Cα2π-multiplier. It follows from Lemma 3.2 that
supk∈Z ‖k2R(k2, A)‖ <∞.

(i)⇒(ii). Assume that supk∈Z ‖k2R(k2, A)‖<∞. Then by using an argu-
ment similar to the proof of Theorem 4.2 we can show that (k2R(k2, A))k∈Z
is a Cα2π-multiplier. Let f ∈ Cα([0, π],X). Extend f to an even function;
then f ∈ Cαper([−π, π],X). There exists v ∈ Cαper([−π, π],X) such that

v̂(k) = k2R(k2, A)f̂(k) (k ∈ Z). Then v is even and v̂(0) = 0. Let x =
� π0 (s− (2π)−1s2

)
v(s) ds+A−1f̂(0) and let u(t) = � t0(t− s)v(s) ds+ x. Then

u ∈ C2+α
per ([−π, π],X) and u′(0) = u′(π) = 0. An easy computation shows

that û(k) = −R(k2, A)f̂(k), (u′′)∧(k) = k2R(k2, A)f̂(k) (k ∈ Z). Now
(−k2 + A)û(k) = f̂(k) (k ∈ Z) and Lemma 4.3 shows that u′′ + Au = f on
[−π, π]. In particular, u ∈ Cα([−π, π],D(A)) and u′′ + Au = f on [0, π].

5. The multiplier theorem on the real line. Let X,Y be Banach
spaces and let 0 < α < 1. In order to define multipliers on this space, it is
necessary to operate modulo the constant functions (see [Tr, Sections 5.1.2
and 5.2.2], noting that Cα(R,C) is the homogeneous Besov space Ḃα

∞,∞(R)).
The kernel of the seminorm ‖·‖α on Cα(R,X) given by (2.1) is the space

of all constant functions and the corresponding quotient space Ċα(R,X) is
a Banach space in the induced norm. We will frequently identify a function
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f ∈ Cα(R,X) with its equivalence class

ḟ := {g ∈ Cα(R,X) : f − g ≡ constant}.
In particular, when considering ḟ we may assume that f(0) = 0. In this
way, Ċα(R,X) may be identified with the space of all f ∈ Cα(R,X) with
f(0) = 0.

The next lemma enables us to define multipliers from Ċα(R,X) into
Ċα(R, Y ). It follows from [ABHN, Theorems 4.8.2 and 4.8.1]. By D(R\{0})
we denote the space of all C∞-functions on R having compact support in
R \ {0}.

Lemma 5.1. Let f ∈ Cα(R,X). Then
�

R
f(s)(Fϕ)(s) ds = 0 for all ϕ ∈ D(R \ {0})

if and only if f is constant.

Definition 5.2. Let M : R\{0} → L(X,Y ) be continuous. We say that
M is a Ċα-multiplier if there exists a mapping L : Ċα(R,X) → Ċα(R, Y )
such that �

R
(Lf)(s)(Fϕ)(s) ds =

�

R
(F(ϕM))(s)f(s) ds(5.1)

for all f ∈ Cα(R,X) and all ϕ ∈ D(R \ {0}).
Here (F(ϕM))(s) = � R e−istϕ(t)M(t) dt ∈ L(X,Y ). Note that the right-

hand side of (5.1) does not depend on the representative of ḟ since
�

R
(F(ϕM))(s) ds = 2π(ϕM)(0) = 0.

Moreover, the identity (5.1) defines Lf ∈ Cα(R,X) uniquely up to an ad-
ditive constant, by Lemma 5.1. Hence, if (5.1) holds, then L : Ċα(R,X)→
Ċα(R, Y ) is well defined and linear. The closed graph theorem implies that
L is continuous.

Let spC(f) be the Carleman spectrum of f , i.e., the support of the dis-
tributional Fourier transform of f (see [ABHN, Section 4.8]). It follows from
(5.1) that spC(Lf) ⊂ spC(f) ∪ {0}. Suppose that 0 6∈ spC(f). Then the
theory of the Carleman spectrum shows that there exists a unique x ∈ X
such that 0 6∈ spC(L̃f), where

L̃f(t) = Lf(t)− x.
Then L̃ is a well defined linear mapping, satisfying (5.1), on the space of all
f ∈ Cα(R,X) such that 0 6∈ spC(f).

Our aim is to prove the following multiplier theorem (see [Tr, Section
5.2.2] for a result of this type in the scalar case). We make use of the space
M(R \ {0},L(X,Y )) defined in Section 2.
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Theorem 5.3. Let M∈M(R\{0},L(X,Y )). Then M is a Ċα-multiplier.

The proof will be similar to that of Theorem 3.4. We start by considering
multipliers with compact support for which we have the basic estimate of
Proposition 2.1. This corresponds to part (a) of the proof of Theorem 3.4.

Proposition 5.4. Let M ∈ C2
c (R \ {0},L(X,Y )). Then M is a Ċα-

multiplier and the associated operator L is given by

Lf = F−1M ∗ f (f ∈ Ċα(R,X)).

In particular
‖Lf‖α ≤

cα
2π
‖M‖M‖f‖α

for all f ∈ Ċα(R,X), where cα is the constant of Proposition 2.1.

Proof. Let ϕ ∈ D(R\{0}) and ψ = Fϕ ∈ S(R). For r ∈ R let ψr(s) =
ψ(s+ r). Then (F−1ψr)(s) = e−isrϕ(s). Observe that by Fubini’s theorem

�

R
(F−1h)(s)k(s) ds =

�

R
h(s)(F−1k)(s) ds

for all integrable functions h, k on R, one scalar and the other vector-valued.
Hence�

R
(F−1M)(s− r)ψ(s) ds =

�

R
(F−1M)(s)ψr(s) ds

=
�

R
M(s)(F−1ψr)(s) ds =

�

R
M(s)e−isrϕ(s) ds

= (F(ϕM))(r).

Let f ∈ Cα(R,X) and Lf = F−1M ∗ f . Since F−1M = 1
2πFM̌ , where

M̌(t) = M(−t), Proposition 2.1 shows that

Lf ∈ Cα(R,X) and ‖Lf‖α ≤
cα
2π
‖M‖M‖f‖α.

It follows from (2.4) that
�

R

�

R
‖(F−1M)(s− r)‖ ‖f(r)‖ dr |ψ(s)| ds <∞.

Fubini’s theorem gives
�

R
(F−1M ∗ f)(s)(Fϕ)(s) ds =

�

R

�

R
(F−1M)(s− r)f(r) dr ψ(s) ds

=
�

R

�

R
(F−1M)(s− r)ψ(s) ds f(r) dr

=
�

R
(F(ϕM))(r)f(r) dr.

This shows that Lf := F−1M ∗ f satisfies (5.1).
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Proof of Theorem 5.3. (a) We first assume that Y = C. Let M ∈
M(R \ {0},L(X,C)). By Corollary 2.3, there is a sequence (Mn)n∈N ⊂
C2

c (R\{0},L(X,C)) such that Mn(t)→M(t) uniformly on compact subsets
of R \ {0} and ‖Mn‖M ≤ κ2‖M‖M. Let f ∈ Cα(R,X), gn = F−1Mn ∗ f ,
hn = gn − gn(0). Then

‖hn‖α = ‖gn‖α ≤
cακ

2

2π
‖M‖M‖f‖α =: c‖f‖α.

By Ascoli’s theorem there exists a subsequence (hnk)k∈N converging to a
function h : R→ C uniformly on compact subsets of R. Then h ∈ Cα(R,C)
and ‖h‖α ≤ c‖f‖α. Let ϕ ∈ D(R \ {0}). Since Fϕ ∈ S(R) and |hn(s)| ≤
c‖f‖α|s|α, we have

�

R
h(s)(Fϕ)(s) ds = lim

k→∞

�

R
hnk(s)(Fϕ)(s) ds

= lim
k→∞

�

R
(F(ϕMnk))(s)f(s) ds

=
�

R
(F(ϕM))(s)f(s) ds.

Thus Lf := h satisfies (5.1).
(b) Now let Y be arbitrary. Let f ∈ Cα(R,X). For y∗ ∈ Y ∗ we can apply

(a) to y∗ ◦M . Thus there exists a unique function gy∗ ∈ Cα(R,C) such that
gy∗(0) = 0 and

�

R
gy∗(s)(Fϕ)(s) ds =

�

R
(F(ϕ · (y∗ ◦M)))(s)f(s) ds

for all ϕ ∈ D(R \ {0}); moreover,

‖gy∗‖α ≤
cακ

2

2π
‖M‖M‖f‖α‖y∗‖.

It follows that, for each t ∈ R, the mapping y∗ 7→ gy∗(t) is linear and
continuous. So we find g : R → Y ∗∗ such that 〈g(t), y∗〉 = gy∗(t) for all
y∗ ∈ Y ∗ and all t ∈ R. Consequently, g ∈ Cα(R, Y ∗∗) and

‖g‖α ≤
cακ

2

2π
‖M‖M‖f‖α.

We have 〈 �

R
g(s)(Fϕ)(s) ds, y∗

〉
=

�

R
(F(ϕ · (y∗ ◦M)))(s)f(s) ds

=
〈
y∗,

�

R
(F(ϕM))(s)f(s) ds

〉
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for all y∗ ∈ Y ∗. Identifying Y with a subspace of Y ∗∗ we conclude that
�

R
g(s)(Fϕ)(s) ds =

�

R
(F(ϕM))(s)f(s) ds

for all ϕ ∈ D(R \ {0}). Consider the quotient mapping q : Y ∗∗ → Y ∗∗/Y .
Then q ◦ g ∈ Cα(R, Y ∗∗/Y ) and (q ◦ g)(0) = 0. Since � R(F(ϕM))(s)f(s) ds
∈ Y , one has

�

R
(q ◦ g)(s)(Fϕ)(s) ds = q

( �

R
g(s)(Fϕ)(s) ds

)

= q
( �

R
(F(ϕM))(s)f(s) ds

)
= 0

for all ϕ∈D(R\{0}). By Lemma 5.1 this implies that (q ◦ g)(t)=(q ◦ g)(0)=0
for all t ∈ R. Hence g(t) ∈ Y for all t ∈ R. Thus Lf := g satisfies (5.1).

Remark 5.5. If X is B-convex, Theorem 5.3 remains valid ifM(R\{0},
L(X,Y )) is replaced by the space of all M ∈ C1(R \ {0},L(X,Y )) such
that ‖M‖M1 < ∞. The proof is almost the same as above. In Proposi-
tion 5.4, Proposition 2.8 is used instead of Proposition 2.1. In part (a) of
the proof of Theorem 5.3, the construction in Corollary 2.3 produces a se-
quence (Mn)n∈N ⊂ C1

c (R \ {0}),L(X,C)) approximating M . In order to
apply Proposition 5.4, one needs that Mn ∈ C2

c (R \ {0},L(X,C)). This can
be achieved by replacing Mn by %n ∗Mn for suitable %n ∈ C2

c (R,C).

Example 5.6 (Riesz projection and Hilbert transform). Let X be an
arbitrary Banach space and 0 < α < 1.

(a) Let M(t) = I for t ≥ 0 and M(t) = 0 for t < 0. It follows from The-
orem 5.3 that M is a Ċα-multiplier. The associated operator on Ċα(R,X)
is called the Riesz projection.

(b) Let M(t) = (−i sign t)I (t ∈ R). Then M is a Ċα-multiplier by
Theorem 5.3. The associated operator on Ċα(R,X) is called the Hilbert
transform.

6. Differential equations on the line. Let A be a closed linear oper-
ator on X and let α ∈ (0, 1). Given f ∈ Cα(R,X), we consider the problem

u′(t) = Au(t) + f(t) (t ∈ R).(6.1)

We say that (6.1) is Cα-well-posed if for each f ∈ Cα(R,X) there is a unique
solution u ∈ C1+α(R,X)∩Cα(R,D(A)) of (6.1). Here D(A) is considered as
a Banach space with the graph norm, and C1+α(R,X) is the Banach space
of all u ∈ C1(R,X) such that u′ ∈ Cα(R,X), equipped with the norm

‖u‖C1+α = ‖u′‖Cα + ‖u(0)‖.
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If (6.1) is Cα-well-posed, it follows from the closed graph theorem that the
mapping L : Cα(R,X) → C1+α(R,X) which associates to f the solution u
is linear and continuous.

Our aim is to prove the following characterization of Cα-well-posedness.

Theorem 6.1. The following assertions are equivalent :

(i) iR ⊂ %(A) and sups∈R ‖sR(is, A)‖ <∞;
(ii) the problem (6.1) is Cα-well-posed.

We start with the following lemma. Here we define id : R → R by
id(s) = is.

Lemma 6.2. Let 0 < α < 1 and u, v ∈ Cα(R,X). The following are
equivalent :

(i) u ∈ C1+α(R,X) and u′ − v is constant ;
(ii) � R v(s)(Fψ)(s) ds = � R u(s)F(id · ψ)(s) ds for all ψ ∈ D(R \ {0}).

Proof. (i)⇒(ii). Let ψ ∈ D(R \ {0}). Then
�

R
v(s)(Fψ)(s) ds =

�

R
u′(s)(Fψ)(s) ds

= −
�

R
u(s)(Fψ)′(s) ds =

�

R
u(s)F(id · ψ)(s) ds.

(ii)⇒(i). Let ϕ ∈ D(R \ {0}), and ψ(s) = iϕ(s)/s. Then ψ ∈ D(R \ {0})
and Fϕ = −F(id · ψ) = (Fψ)′. Let w(t) = � t0 v(s) ds. Then integration by
parts and the assumption give

�

R
w(s)(Fϕ)(s) ds = −

�

R
v(s)(Fψ)(s) ds = −

�

R
u(s)F(id · ψ)(s) ds

=
�

R
u(s)(Fϕ)(s) ds.

It follows from [ABHN, Theorems 4.8.2 and 4.8.1] that w−u is a polynomial.
Since ‖w(t)‖ ≤ c(1+ |t|α+1) it follows that u(t) = w(t)+x+ty = � t0 v(s) ds+
x+ ty for some vectors x, y ∈ X. Thus u′ = v + y.

Proof of Theorem 6.1. (i)⇒(ii). The argument is similar to Theorem 4.2.
Define M ∈ C2(R,L(X,D(A))) by M(s) = R(is, A). It is easy to see that
M ∈ M(R,L(X,D(A))) and id ·M ∈ M(R,L(X)). Let f ∈ Cα(R,X). By
Theorem 5.3 there exist u ∈ Cα(R,D(A)) and v ∈ Cα(R,X) such that

�

R
u(s)(Fϕ)(s) ds =

�

R
F(ϕ ·R(i·, A))(s)f(s) ds,

�

R
v(s)(Fψ)(s) ds =

�

R
F(ψ · id ·R(i·, A))(s)f(s) ds
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for all ϕ,ψ ∈ D(R \ {0}). Choosing ϕ = id · ψ, it follows from Lemma 6.2
that u ∈ C1+α(R,X) and u′ = v + y1 for some y1 ∈ X. Since

id ·R(i·, A)− AR(i·, A) = I,

choosing ϕ = ψ gives
�

R
v(s)(Fψ)(s) ds =

�

R
Au(s)(Fψ)(s) ds+

�

R
f(s)(Fψ)(s) ds

for all ψ ∈ D(R \ {0}). By Lemma 5.1 this implies that for some y2 ∈ X one
has

v(t) = Au(t) + f(t) + y2 (t ∈ R).

Consequently, u′(t) = Au(t) + f(t) + y (t ∈ R) where y = y1 + y2. Let
x = A−1y. Then u1(t) := u(t) + x solves (6.1). We have shown that a
solution of (6.1) exists.

In order to prove uniqueness we consider u ∈ C1+α(R,X)∩Cα(R,D(A))
such that u′(t) = Au(t) (t ∈ R). We have to show that u ≡ 0. Consider
the Carleman transform û of u (see [ABHN, (4.25), p. 292]). Since û′(λ) =
λû(λ) − u(0) (Reλ 6= 0), one has û(λ) ∈ D(A) and (λ − A)û(λ) = u(0)
for all λ ∈ C \ iR. Since iR ⊂ %(A), it follows that the Carleman spectrum
spC(u) of u is empty. Hence u ≡ 0 by [ABHN, Theorem 4.8.2]. Thus (6.1)
is Cα-well-posed.

(ii)⇒(i). Assume that (6.1) is Cα-well-posed. Denote by L : Cα(R,X)→
C1+α(R,X) the bounded operator which associates to each f ∈ Cα(R,X)
the solution u of (6.1).

Let η ∈ R. We show that iη ∈ %(A). Let x ∈ X be such that Ax = iηx.
Let u = eη ⊗x, i.e., u(t) = eiηtx. Then u′(t) = Au(t); that is, u is a solution
of (6.1) with f ≡ 0. Hence u ≡ 0, i.e., x = 0. We have shown that iη − A
is injective. In order to show surjectivity let y ∈ X. Let f = eη ⊗ y and
u = Lf . Then for fixed s ∈ R, v1(t) = u(t+ s) and v2(t) = eisηu(t) are both
solutions of v′ = Av + eisηf . Hence v1 = v2; that is, u(t + s) = eiηsu(t) for
all t ∈ R, s ∈ R. Let x = u(0) ∈ D(A). Then iηx = u′(0) = Au(0) + f(0) =
Ax+ y. Hence (iη−A)x = y. Thus iη−A is bijective and so iη ∈ %(A) and
Lf = u = eη ⊗R(iη, A)y. Consequently,

γα|η|α‖ηR(iη, A)y‖ = ‖iηeη ⊗R(iη, A)y‖α = ‖u′‖α ≤ ‖u‖C1+α

≤ ‖L‖ ‖f‖Cα = ‖L‖(‖f‖α + ‖f(0)‖)
= ‖L‖(γα|η|α‖y‖+ ‖y‖).

Thus ‖ηR(iη, A)‖ ≤ ‖L‖(1 + γ−1
α |η|−α). Since sup|η|≤1 ‖ηR(iη, A)‖ <∞ by

continuity, it follows that (i) holds.

Remarks 6.3. (a) When condition (i) of Theorem 6.1 is satisfied, the
functions M := R(i·, A) and id ·M satisfy the respective inhomogeneous
Mikhlin conditions (Remark 2.6). It follows from the multiplier theorems of
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[Am], [GW] that if f ∈ Cα(R,X) is bounded, then the solution u of (6.1)
and u′ are both bounded.

(b) Suppose that iR \ {0} ⊂ %(A) and sups∈R\{0} ‖sR(is, A)‖ =: C <∞.
Then M(s) := isR(is, A) defines M ∈ M(R\{0},L(X)). Let f ∈ Cα(R,X)
and Lf be as in Definition 5.2. One might hope that there will be a solution
u of (6.1) such that u′ coincides with Lf up to a constant, but in general
this is not true (cf. Remark 4.7). However the situation is different when
0 6∈ spC(f). Using the techniques of Theorem 6.1 and the remarks preceding
Theorem 5.3, it is then possible to show that (6.1) has a unique solution
u ∈ C1+α(R,X)∩Cα(R,D(A)) with 0 6∈ spC(u). Moreover, spC(u) ⊂ spC(f)
and ‖u′‖α ≤ c‖f‖α for some constant c depending only on α and C.

Finally, we show how Theorem 5.3 can be used to recover results about
generators of bounded holomorphic semigroups (see [Lu, Theorem 4.4.3]).

Example 6.4. Suppose that A is the generator of a bounded holomor-
phic semigroup T on X, and let M(s) = AR(is, A) (s 6= 0). Then M ∈
M(R \ {0},L(X)), so M is a Ċα-multiplier. Let L be the associated opera-
tor.

Let f ∈ Cα(R+,X) with f(0) = 0. The convolution T ∗ f is defined on
R+, and (T ∗ f)(t) ∈ D(A) and

A(T ∗ f)(t) =
t�

0

AT (s)(f(t− s)− f(t)) ds+ T (t)f(t)− f(t) (t ≥ 0).

Extend f and T ∗ f to R by putting them equal to 0 on (−∞, 0). Then
u := T ∗ f is a solution of (6.1). It is not difficult to show that

∞�

0

A(T ∗ f)(s)(Fϕ)(s) ds =
∞�

0

(F(ϕM))(s)f(s) ds

for all ϕ ∈ D(R \ {0}). Since ‖A(T ∗ f)(t)‖ ≤ ctα (t ≥ 0), it follows that
Lf = A(T ∗ f) (see Lemma 5.1). Thus A(T ∗ f) ∈ Cα(R+,X).

References

[Am] H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces,
and applications, Math. Nachr. 186 (1997), 5–56.

[ABHN] W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace
Transforms and Cauchy Problems, Birkhäuser, Basel, 2001.
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