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The Lr Henstock–Kurzweil integral

by

Paul M. Musial and Yoram Sagher (Chicago, IL)

Abstract. We present a method of integration along the lines of the Henstock–
Kurzweil integral. All Lr-derivatives are integrable in this method.

1. Introduction. During the early part of the twentieth century,
A. Denjoy and O. Perron developed equivalent integrals which extend the
Lebesgue integral and which integrate all derivatives.

Around 1960, R. Henstock and J. Kurzweil developed an integral which
is equivalent to the integrals of Denjoy and Perron and which therefore
integrates all derivatives. The construction of the Henstock–Kurzweil (HK)
integral is quite similar to that of the Riemann integral and so is much easier
than those of the Denjoy and Perron integrals. For a complete treatment of
the Henstock–Kurzweil integral we refer the reader to [1], [4], or [5].

Instead of the classical derivative one may consider the approximate
derivative, and with it integrals that will integrate such derivatives. Indeed,
there exist both Perron-type and HK-type integrals that integrate approx-
imate derivatives (see [4]).

Another notion of derivative, the Lr-derivative, useful in Harmonic Anal-
ysis, was developed by A. P. Calderón and A. Zygmund in [2]. L. Gordon,
in [3], developed the Pr-integral (Perron r-integral) which integrates Lr-
derivatives. In this paper we define a Henstock–Kurzweil type integral which
integrates all functions that are integrated by the Pr-integral.

We are considering functions defined on a finite closed interval, [a, b].
Also the parameter r, throughout the paper, satisfies 1 ≤ r < ∞. We use
the phrase “nearly every” (abbreviated to n.e.) for “all but countably many.”
Finally, the symbol

�
, without a modifier, stands for the Lebesgue integral.

2. The Pr-integral. To make our presentation reasonably self-contain-
ed we give an outline of the Pr-integral as developed by L. Gordon. For the
full details of the proofs, see [3].
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Definition 1 ([3]). Let f ∈ Lr(I) where 1 ≤ r < ∞ and I is an open
interval. For all x ∈ I we define the r-Dini derivates. In all cases below,
h→ 0+.

The upper-right Lr-derivate:

D+
r f(x) = inf

{
a :
(

1
h

h�

0

[f(x+ t)− f(x)− at]r+ dt
)1/r

= o(h)
}
,(2.1)

and similarly the lower-right Lr-derivate:

D+,rf(x) = sup
{
a :
(

1
h

h�

0

[f(x+ t)− f(x)− at]r− dt
)1/r

= o(h)
}
,(2.2)

the upper-left Lr-derivate:

D−r f(x) = inf
{
a :
(

1
h

h�

0

[−f(x− t) + f(x)− at]r+ dt
)1/r

= o(h)
}
,(2.3)

and the lower-left Lr-derivate:

D−,rf(x) = sup
{
a :
(

1
h

h�

0

[−f(x− t) + f(x)− at]r− dt
)1/r

= o(h)
}
.(2.4)

Theorem 1 ([3]).

D+
r f(x) = inf

{
a :

h�

0

(
f(x+ t)− f(x)

t
− a
)r

+
dt = o(h)

}

with similar results for the other r-Dini derivates.

The next theorem simplifies the exposition.

Theorem 2. Either D+
r f(x) = ±∞, or the extreme value in the defini-

tion is assumed. In other words,

D+
r f(x) = min

{
a :
(

1
h

h�

0

[f(x+ t)− f(x)− at]r+ dt
)1/r

= o(h)
}
.(2.5)

Also

D+
r f(x) = min

{
a :

h�

0

(
f(x+ t)− f(x)

t
− a
)r

+
dt = o(h)

}
(2.6)

with similar statements for D+,rf(x), D−r f(x), and D−,rf(x).

Proof. Let us prove (2.5). Define a0 = D+
r f(x). For every δ > 0 we have

(
1
h

h�

0

[f(x+ t)− f(x)− (a0 + δ)t]r+ dt
)1/r

= o(h) as h→ 0+.
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Let ε > 0 be given and let η > 0 be such that for all 0 < h < η we have
(

1
h

h�

0

[f(x+ t)− f(x)− (a0 + ε)t]r+ dt
)1/r

≤ εh.

Thus
(

1
h

h�

0

[f(x+ t)− f(x)− a0t]r+ dt
)1/r

=
(

1
h

h�

0

[f(x+ t)− f(x)− (a0 + ε)t+ εt]r+ dt
)1/r

≤
(

1
h

h�

0

[f(x+ t)− f(x)− (a0 + ε)t]r+ dt
)1/r

+ ε

(
1
h

h�

0

tr dt

)1/r

< 2εh

and so (
1
h

h�

0

[f(x+ t)− f(x)− a0t]r+ dt
)1/r

= o(h).

The proofs for the other r-Dini derivates and for (2.6) follow similarly.

Definition 2 ([3]). Let 1 ≤ r <∞. We define the Lr-upper derivate of
f at x, Drf(x), by

Drf(x) = max{D−r f(x),D+
r f(x)}.

We define the Lr-lower derivate of f at x, Drf(x), by

Drf(x) = min{D−,rf(x),D+,rf(x)}.
If Drf(x) = Drf(x) we say that f has an Lr-derivative and denote this
common value by f ′r(x).

Definition 3 ([3]). Let 1 ≤ r < ∞. A function f ∈ Lr[a, b] is said to
be Lr-continuous at x0 ∈ [a, b] if�

[a,b]∩[x0−h,x0+h]

|f(x)− f(x0)|rdx = o(h).

Points of Lr-continuity are, of course, Lebesgue points of f.

Definition 4 ([3]). Let f : [a, b]→ R := R∪{−∞,∞}. A finite function
Ψ ∈ Lr, 1 ≤ r <∞, is said to be an Lr-major function of f if

(1) Ψ(a) = 0,
(2) Ψ is Lr-continuous on [a, b],
(3) for nearly every x ∈ [a, b] we have

DrΨ(x) > −∞, DrΨ(x) ≥ f(x).
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Definition 5 ([3]). Let f : [a, b]→ R. A finite function Φ ∈ Lr, 1 ≤ r <
∞, is said to be an Lr-minor function of f if −Φ is an Lr-major function
of −f.

Theorem 3 ([3]). Let 1 ≤ r <∞. Suppose that Ψ is an Lr-major func-
tion and Φ an Lr-minor function of f on [a, b]. Then Ψ−Φ is non-decreasing
in [a, b].

Definition 6 ([3]). Let 1 ≤ r <∞. Let f : [a, b]→ R. If

inf{Ψ(b) : Ψ is an Lr-major function of f}
= sup{Φ(b) : Φ is an Lr-minor function of f},

then the common value, denoted

(Pr)
b�

a

f,

is called the Pr-integral of f on [a, b]. If the Pr-integral exists we write
f ∈ Pr[a, b].

Theorem 4 ([3]). For 1 ≤ r < ∞, the Pr-integral integrates all Lr-
derivatives.

Remark 1 ([3]). There exist functions which are Pr-integrable but not
Perron integrable.

3. The HKr-integral. We recall some elementary notions from the
theory of the HK-integral. Our notation in the main follows that of [4]. A
gauge function is a strictly positive function on [a, b]. A tagged interval is a
pair (x, [c, d]) where x ∈ [c, d] ⊆ [a, b]. We say that (x, [c, d]) is subordinate
to δ, and write (x, [c, d]) ≺ δ, if [c, d] ⊂ [a, b] ∩ (x − δ(x), x + δ(x)). If P
is a finite collection of non-overlapping tagged intervals, each of which is
subordinate to δ, then P is said to be subordinate to δ, and we write P ≺ δ.

Definition 7. For 1 ≤ r <∞, a real-valued function f is Lr-Henstock–
Kurzweil integrable (f ∈ HKIr[a, b]) if there exists a function F ∈ Lr[a, b]
so that for any ε > 0 there exists a gauge function δ so that for all finite col-
lections P = {(xi, [ci, di])} of non-overlapping tagged intervals in [a, b] with

P ≺ δ(3.1)

we have
n∑

i=1

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

< ε.(3.2)

If (3.1) implies (3.2) we say that δ is HKr-appropriate for ε and f. We
also say that F is an HKr-integral of f.
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We want to say that F in the definition above is the HKr-integral of f.
To do so we need to show that (3.2) determines F up to an additive constant.

If F1 and F2 are two Lr functions which satisfy (3.2) and G = F1 − F2
then

n∑

i=1

(
1

di − ci

di�

ci

|G(y)−G(xi)|r dy
)1/r

≤
n∑

i=1

(
1

di − ci

di�

ci

|F1(y)− F1(xi)− f(xi)(y − xi)|r dy
)1/r

+
n∑

i=1

(
1

di − ci

di�

ci

|F2(y)− F2(xi)− f(xi)(y − xi)|r dy
)1/r

< 2ε.

We will show that any function, F, which satisfies (3.2) is Lr-continuous, and
therefore approximately continuous, so that the following theorem proves the
uniqueness, up to an additive constant, of F in (3.2).

Theorem 5. Suppose F ∈ Lr[a, b], 1 ≤ r < ∞, is an approximately
continuous function on [a, b] and that α, β ∈ F ([a, b]) where |α − β| > 1.
Then for any gauge function, δ, there exists P = {(xm, [um, vm])} ≺ δ so
that

N∑

m=1

(
1

vm − um

vm�

um

|F (x)− F (xm)|r dx
)1/r

>
1
12
.(3.3)

The proof of the theorem will require some intermediate results.
We begin by recalling the definition of approximate continuity.

Definition 8. A function, f , defined on [a, b] is approximately continu-
ous at x0 if there exists E ⊆ (a, b) so that x0 is a point of density of E and
f |E is continuous at x0.

An application of Chebyshev’s inequality and Theorem 14.5 of [4] prove:

Theorem 6. If f is Lr-continuous at x0 then it is approximately con-
tinuous at x0.

We will make use of the well-known fact that approximately continu-
ous functions on an interval have the Darboux property. See for example
Theorem 14.9 in [4].

Theorem 7. Let 1 ≤ r <∞. Assume that f ∈ HKIr[a, b] and let F be
an HKr-integral of f. Then F is Lr-continuous everywhere.
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Proof. Let ε > 0 and x ∈ [a, b] be given. Let δ be a gauge function which
is HKr-appropriate for ε and f and so that |f(x)|δ(x) < ε. Then

(
1

2δ(x)

x+δ(x)�

x−δ(x)

|F (y)− F (x)− f(x)(y − x)|r dy
)1/r

≤ ε.

Thus

( x+δ(x)�

x−δ(x)

|F (y)− F (x)|r dy
)1/r

≤
( x+δ(x)�

x−δ(x)

|F (y)− F (x)− f(x)(y − x)|r dy
)1/r

+
( x+δ(x)�

x−δ(x)

|f(x)(y − x)|r dy
)1/r

≤ ε[2δ(x)]1/r + |f(x)|δ(x)[2δ(x)]1/r < 2ε[2δ(x)]1/r.

The essence of the assertion (3.3) is an estimate of the average devia-
tion of a function by the measure of its range. We therefore want to relate( 1
vi−ui

� vi
ui
|F (x)− F (xi)|r dx

)1/r to |F (vi)− F (ui)|. Since

|F (vi)− F (ui)| =
(

1
vi − ui

vi�

ui

|F (vi)− F (ui)|r dx
)1/r

(3.4)

≤
(

1
vi − ui

vi�

ui

|F (x)− F (ui)|r dx
)1/r

+
(

1
vi − ui

vi�

ui

|F (x)− F (vi)|r dx
)1/r

,

at least one of
(

1
vi − ui

vi�

ui

|F (x)− F (ui)|r dx
)1/r

,

(
1

vi − ui

vi�

ui

|F (x)− F (vi)|r dx
)1/r

is at least as large as half of |F (vi)− F (ui)|. We want therefore to have the
freedom to choose the tag for [ui, vi] to be either ui or vi. This leads us to
the concept of doubly subordinate tagged intervals:

Definition 9. Let δ be a gauge function on [a, b] and let [u, v] ⊆ [a, b].
We will say that [u, v] is doubly subordinate to δ, and write [u, v] ≺≺ δ, if
(u, [u, v]) and (v, [u, v]) are tagged intervals subordinate to δ. In other words,
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[u, v] ≺≺ δ if both [u, v] ⊆ (u−δ(u), u+δ(u)) and [u, v] ⊆ (v−δ(v), v+δ(v)).
We denote by D = D(δ) the collection of all doubly subordinate intervals.

There exist gauge functions for which we cannot find doubly subordinate
partitions of the interval. For example take any gauge on [0, 1] so that for all
x 6= 1/2 we have δ(x) < |x−1/2|. Any partition which is subordinate to such
a gauge can have only x = 1/2 as the tag for the interval which contains 1/2
and so this interval cannot be doubly subordinate to δ. However, the follow-
ing theorem proves that for any δ, the difficulty is confined to a countable
set of points. For nearly every x ∈ [a, b], in any open interval about x, there
exist uncountably many y > x so that [x, y] ∈ D and uncountably many
z < x so that [z, x] ∈ D:

Theorem 8. Let δ > 0 be a given gauge function on [a, b]. Let

Rx,n = {y : y − δ(y) < x < y < x+ min(δ(x), n−1)},
Lx,n = {y : x−min(δ(x), n−1) < y < x < y + δ(y)}.

Then for nearly every x ∈ [a, b], Rx,n and Lx,n are uncountable for all n.

Proof. Let

E = {x ∈ [a, b] : ∃n so that #Rx,n ≤ ℵ0}.
If #E > ℵ0 then there exists η > 0 so that #{x ∈ E : δ(x) > η} > ℵ0.
Define

E1 = {x ∈ E : δ(x) > η}.
There exists N so that #{x ∈ E1 : #Rx,N ≤ ℵ0} > ℵ0. We can assume
N−1 < η. Define

E2 = {x ∈ E1 : #Rx,N ≤ ℵ0}
There exists I ⊆ [a, b] such that λ(I) < N−1 and #(E2 ∩ I) > ℵ0. Let
x0 ∈ E2∩ I be such that #(E2∩ I ∩ (x0, b)) > ℵ0. For all y ∈ E2∩ I ∩ (x0, b)
we have

0 < y − x0 < N−1 < η < δ(y).

Thus y − δ(y) < x0, contradicting the claim that #Rx0,N ≤ ℵ0. The same
proof shows that for n.e. x ∈ [a, b], #Lx,n > ℵ0 for all n.

We can now prove Theorem 5.

Proof of Theorem 5. It suffices to prove the theorem for r = 1. We can
assume that F (a) = 0 and F (b) = 1. Since F is approximately continuous,
it has the Darboux property, so that [0, 1] ⊆ F [a, b].

For nearly every x ∈ [a, b] there exist zn ↘ x so that for each n we have
[x, zn] ∈ D. Let

Z = {x ∈ [a, b] : ∃u ∈ F−1(F (x)) so that #Ru,n ≤ ℵ0 for some n > 0}.
Since F (Z) is countable, λ(F (Zc)) = λ(F [a, b]) ≥ 1.



60 P. M. Musial and Y. Sagher

Also define

E = {x ∈ Zc : F (x) ∈ [0, 1] & λ[F−1(F (x))] = 0}.(3.5)

Let

N = {y ∈ [0, 1] : λ(F−1(y)) > 0}.
Then #N ≤ ℵ0 and F (E) ∪ (N ∩ F (Zc)) = F (Zc) ∩ [0, 1] and therefore
λ(F (E)) = 1.

We are going to divide E into two sets. In one we will have all points,
x, so that F (y) 6= F (x) for all y in an open interval to the right of x. The
second set will consist of all other points in E. Let

A = {x ∈ E : ∃z ∈ (x, b) so that F−1(F (x)) ∩ (x, z) = ∅},
B = E \A.

For x ∈ A let zn(x) ↘ x be such that [x, zn(x)] ∈ D and F (zn(x)) 6=
F (x). Since [x, zn(x)] ∈ D we are free to choose for the interval [x, zn(x)] a
tag, xn, which is either x or zn(x), so that (3.4) applies and

1
zn(x)− x

zn(x)�

x

|F (w)− F (xn)|dw ≥ 1
2
|F (zn(x))− F (x)|.(3.6)

Now consider x ∈ B. In this case we may fail to find zn(x) ↘ x such
that both [x, zn(x)] ∈ D and F (zn(x)) 6= F (x). We therefore need a different
argument.

Since x ∈ B, there exists a sequence {tn(x)} with t1(x) < x + δ(x) and
tn(x) ↘ x so that F (x) = F (tn(x)). We claim that for each n we can find
ξn(x) so that x < ξn(x) < tn(x) and

1
ξn(x)− x

ξn(x)�

x

F 6= F (x).(3.7)

If for some h > 0 and for all ξ ∈ (x, x+h), we had
� ξ
x F = F (x)(ξ−x), then

differentiating with respect to ξ, we would have F (ξ) = F (x) at almost every
ξ ∈ (x, x+ h), and by the approximate continuity of F, F (ξ) = F (x) for all
ξ ∈ (x, x+h). But x ∈ E, so that F−1(F (x)) does not contain an interval, a
contradiction. Thus there exists a sequence {ξn(x)} so that ξn(x) ↘ x and
(3.7) holds. Since ξn(x)↘ x, we can also assume x < ξn(x) < tn(x).

Let us see that there exists ηn(x) = ηn(x, ξn(x)) so that x < ηn(x)
< ξn(x) and

F (ηn(x)) =
1

ξn(x)− x

ξn(x)�

x

F 6= F (x).(3.8)
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Since F cannot be a constant in (x, ξn(x)), the interval

( inf
x≤w≤ξn(x)

F (w), sup
x≤w≤ξn(x)

F (w))(3.9)

is not empty. The average

1
ξn(x)− x

ξn(x)�

x

F

is in
[ inf
x≤w≤ξn(x)

F (w), sup
x≤w≤ξn(x)

F (w)](3.10)

but if it is an endpoint of (3.10) then F is a constant a.e. in (x, ξn(x)) and
by the approximate continuity of F, everywhere in (x, ξn(x)), which is ruled
out. Thus the average is in (3.9) and since F has the Darboux property, it
assumes every value in (3.9) and there exists ηn(x) with x < ηn(x) < ξn(x)
so that (3.8) holds. We therefore have

0 < |F (ηn(x))− F (x)| ≤ 1
ξn(x)− x

ξn(x)�

x

|F (w)− F (x)| dw.

We have at this point associated with each x ∈ B a sequence of intervals,
{[x, ξn(x)]}, converging to x, and a sequence of intervals on the vertical axis,
{[F (ηn(x)) ∧ F (x), F (ηn(x)) ∨ F (x)]}, so that the average deviations of the
function on the horizontal intervals are bounded from below by the lengths
of the corresponding intervals on the vertical axis.

Similarly, by (3.6), we have associated with each x ∈ A a sequence of
intervals, {[x, zn(x)]}, converging to x, and a sequence of intervals on the
vertical axis, {[F (zn(x)) ∧ F (x), F (zn(x)) ∨ F (x)]}, so that the average de-
viations of the function on the horizontal intervals are bounded from below
by half the lengths of the corresponding intervals on the vertical axis.

For a ≤ x < z ≤ b, define

Q(x, z) = Q(x, z;F ) = [F (x) ∧ F (z), F (x) ∨ F (z)],

Qn(x) =
{
Q(x, zn(x)) if x ∈ A and n ∈ Z+,

Q(x, ηn(x)) if x ∈ B and n ∈ Z+.

Using a selection process related to the Vitali Covering Lemma, we make
an effective selection from the vertical intervals, which in turn makes certain
that the average deviation of the function on the horizontal intervals is large.

Define

γn(r) =
{
zn(r) if r ∈ A,

tn(r) if r ∈ B,
H1 = {[r, γn(r)] : r ∈ E, n ∈ Z+}.
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Since every y ∈ F (E) is an endpoint of an interval in

V1 := {Qn(r) : r ∈ E, n ∈ Z+},
V1 covers F (E). Let

t∗1 = sup{λ(Q) : Q ∈ V1}.
If t∗1 > 1/6, choose Qn1(u1) ∈ V1 so that λ(Qn1(u1)) > 1/6 and stop collect-
ing intervals. Otherwise, choose Qn1(u1) ∈ V1 so that λ(Qn1(u1)) > t∗1/2.

Let H2 be the collection of all intervals [r, γn(r)] ∈ H1 so that ei-
ther [r, γn(r)] × Qn(r) is to the right and above [u1, γn1(u1)] × Qn1(u1),
or [r, γn(r)]×Qn(r) is to the left and below [u1, γn1(u1)]×Qn1(u1).

In other words, [r, γn(r)] ∈ H2 iff [r, γn(r)] ∈ H1 and either

r > γn1(u1) and minQn(r) > maxQn1(u1),

or
γn(r) < u1 and maxQn(r) < minQn1(u1).

Observe that the definition of H2 implies that if [r, γn(r)] ∈ H2 then
both [r, γn(r)] ∩ [u1, yn1(u1)] = ∅ and Qn(r) ∩Qn1(u1) = ∅.

Define also

V2 = {Qn(u) : u ∈ E and [u, γn(u)] ∈ H2}.
Let us show that F (E) \ 5Qn1(u1) is covered by intervals in V2.

Observe that from the definition of E (see (3.5)),

F−1(F (E)) = E.(3.11)

If there exists

c ∈
[
[0,minQn1(u1)) ∩ F (E)

]
\ 5Qn1(u1)

then applying the argument which we used for the interval [a, b] to the
interval [a, u1] (observe that this includes the application of the Darboux
property of F on [a, u1]), there exists u1,1 ∈ [a, u1) so that F (u1,1) = c.
From (3.11) it follows that u1,1 ∈ E.

There exists n1,1 so that γn1,1(u1,1) < u1 and λ(Qn1,1(u1,1)) > 0. Since
c 6∈ 5Qn1(u1) and since

λ(Qn1,1(u1,1)) ≤ t∗1 < 2λ(Qn1(u1)),

we have Qn1,1(u1,1) ∩Qn1(u1) = ∅, which shows

minQn1(u1)−maxQn1,1(u1,1) > 0

and so [u1,1, γn1,1(u1,1)] ∈ H2. To summarize, c = F (u1,1) and c ∈ Qn1,1(u1,1)
∈ V2.

Consider

c ∈
[
(maxQn1(u1), 1] ∩ F (E)

]
\ 5Qn1(u1).

There are two cases: u1 ∈ A and u1 ∈ B.
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Consider u1 ∈ A. The existence of c implies maxQn1(u1) < 1 = F (b).
If u1 ∈ A then γn1(u1) = zn1(u1). Since F (zn1(u1)) ≤ maxQn1(u1) < c,
by the Darboux property of F, there exists u1,2 ∈ (γn1(u1), b] ∩ E so that
F (u1,2) = c. If u1 ∈ B then γn1(u1) = tn1(u1) so that F (γn1(u1)) = F (u1) ≤
maxQn1(u1) < c and so, by the Darboux property of F, there exists u1,2 ∈
(γn1(u1), b] ∩ E so that F (u1,2) = c. As in the previous argument we have
[u1,2, γn1,2(u1,2)] ∈ H2.

Let
t∗2 = sup{λ(Q) : Q ∈ V2}

and choose [u2, γn2(u2)] ∈ H2 so that

λ(Qn2(u2)) >
1
2
t∗2.

We proceed inductively, and as in the proof of the Vitali Lemma we get a
sequence of disjoint intervals, {Qnm(um)}, so that [um, γnm(um)] are disjoint
and

∞∑

m=1

λ(Qnm(um)) ≥ 1
5
.

There exists N so that
N∑

m=1

λ(Qnm(um)) >
1
6
.

For all x ∈ E we set

yn(x) =
{
zn(x) if x ∈ A,
ξn(x) if x ∈ B.

We now assign a tag, xm, to each [um, ynm(um)]. If um ∈ B we have seen
that

λ(Qnm(um)) = |F (ηnm(um))− F (um)|

≤ 1
ξnm(um)− um

ξnm(um)�

um

|F (w)− F (um)| dw

so that we take xm = um. Observe that ξnm(um) < um + δ(um) so that
(um, [um, ξnm(um)]) ≺ δ.

If um ∈ A then [um, znm(um)] ≺≺ δ so that we are free to choose xm =
um or xm = znm(um). By (3.4) we can choose the tag so that

1
2
λ(Qnm(um)) =

1
2
|F (um)− F (znm(um))|

≤ 1
znm(um)− um

znm(um)�

um

|F (w)− F (xm)| dw.
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Therefore, P := {(xm, [um, ynm(um)])} ≺ δ and

N∑

m=1

1
ynm(um)− um

ynm(um)�

um

|F (w)− F (xm)| dw >
1
12
.

Having shown that for 1 ≤ r < ∞ the indefinite HKr-integral of f is
defined up to an additive constant, we can define

(HKr)
b�

a

f = F (b)− F (a)

with F as in (3.2).
It is easy to see that if f, g ∈ HKIr[a, b] then αf + βg ∈ HKIr[a, b] and

(HKr)
b�

a

(αf + βg) =
(
α · (HKr)

b�

a

f
)

+
(
β · (HKr)

b�

a

g
)

Let us see that the HKr-integral generalizes the HK-integral.

Theorem 9. Let 1 ≤ r < ∞, f ∈ HKI[a, b], and F (x) := (HK)
� x
a f.

Then f ∈ HKIr[a, b] and F (x) = (HKr)
� x
a f. Moreover if δ is such that for

all P = {(xj , [cj, dj])} ≺ δ we have
∑

j

|F (dj)− F (cj)− f(xj)(dj − cj)| < ε

then for all such P we also have

∑

j

(
1

dj − cj

dj�

cj

|F (y)− F (xj)− f(xj)(y − xj)|r dy
)1/r

< ε.

Proof. Consider

∑

j

(
1

dj − cj

dj�

cj

|F (y)− F (xj)− f(xj)(y − xj)|r dy
)1/r

.

For each j the integrand is a continuous function of y so that in each interval
[cj, dj ] there exists yj 6= xj so that for all y ∈ [cj, dj ] we have

|F (y)− F (xj)− f(xj)(y − xj)| ≤ |F (yj)− F (xj)− f(xj)(yj − xj)|.
We define P ′ := {xj , [xj ∧ yj , xj ∨ yj ]}. Since P ′ ≺ δ,

∑

j

(
1

dj − cj

dj�

cj

|F (y)− F (xj)− f(xj)(y − xj)|r dy
)1/r

≤
∑

j

|F (yj)− F (xj)− f(xj)(yj − xj)| < ε.
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Assume that f and g are two real-valued functions, f = g almost every-
where, and f ∈ HKIr[a, b]. Let us write g = f + h so that h = 0 almost
everywhere. This implies that h is Lebesgue integrable and

�
h = 0. There-

fore h ∈ HKI[a, b] and by the previous theorem h ∈ HKIr[a, b] and

(HKr)
b�

a

h = 0.

By the additivity of the HKr-integral we have g ∈ HKIr[a, b], and the
HKr-integrals of f and g are equal.

We therefore define the HKr-integral for functions that are defined only
almost everywhere on [a, b]: given f which is defined on [a, b] \ Z where
λ(Z) = 0 we define

g(x) :=
{
f(x) if x 6∈ Z,
0 if x ∈ Z,

and say that f ∈ HKIr[a, b] iff g ∈ HKIr[a, b]. We also define

(HKr)
b�

a

f = (HKr)
b�

a

g.

It is also easy to see that if f ∈ HKIr[a, b] and if [c, d] is a subinterval
of [a, b], then f ∈ HKIr[c, d].

We next consider convergence theorems for the HKr-integral.

Theorem 10. Let 1 ≤ r <∞. Assume that {fn} ∈ HKIr[a, b] and that
{fn} converges uniformly to a function f. Let

Fn(x) = (HKr)
x�

a

fn

and assume that {Fn} converges uniformly to a function F. Then f ∈
HKIr[a, b] and

F (x) = (HKr)
x�

a

f.

Proof. Given ε > 0 we choose n so that both

sup
x∈[a,b]

|fn(x)− f(x)| < ε and sup
x∈[a,b]

|Fn(x)− F (x)| < ε.

Let δ be an HKr-appropriate gauge for ε and fn and let P = {(xi, [ci, di])}
≺ δ. Then

∑

i

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r



66 P. M. Musial and Y. Sagher

≤
∑

i

(
1

di − ci

di�

ci

|F (y)− Fn(y)− (F (xi)− Fn(xi))|r dy
)1/r

+
∑

i

(
1

di − ci

di�

ci

|Fn(y)− Fn(xi)− fn(xi)(y − xi)|r dy
)1/r

+
∑

i

(
1

di − ci

di�

ci

|(fn(xi)− f(xi))(y − xi)|r dy
)1/r

≤ 2ε+ ε+ ε(b− a).

Theorem 5 enables us to extend to the HKr-integral a convergence the-
orem for the HK-integral.

Definition 10. Let 1 ≤ r < ∞. Assume that {fn} is a sequence of
HKIr[a, b] functions. We say that {fn} is uniformly in HKIr[a, b], and
write {fn} ∈ UHKIr[a, b], if for each ε > 0 there exists a gauge function
which is HKr-appropriate for ε and fn, for all n ≥ 1.

Theorem 11. Let 1 ≤ r < ∞. Assume that {fn} ∈ UHKIr[a, b] and
that {fn} converges uniformly to f. Let

Fn(x) = (HKr)
x�

a

fn.

Then {Fn} converges uniformly to a function F , and F = (HKr)
�
f.

Proof. Let ε > 0 be given and let N be such that if m,n > N then for
all x ∈ [a, b] we have |fn(x) − fm(x)| < ε. Let δ be an HKr-appropriate
gauge function for ε and for all fn, and let P = {(xi, [ci, di])} ≺ δ. Then for
all m,n > N,

∑

i

(
1

di − ci

di�

ci

|(Fn − Fm)(y)− (Fn − Fm)(xi)|r dy
)1/r

≤
∑

i

(
1

di − ci

di�

ci

|Fn(y)− Fn(xi)− fn(xi)(y − xi)|r dy
)1/r

+
∑

i

(
1

di − ci

di�

ci

|Fm(y)− Fm(xi)− fm(xi)(y − xi)|r dy
)1/r

+
∑

i

(
1

di − ci

di�

ci

|(fm − fn)(xi)(y − xi)|r dy
)1/r

< 2ε+ ε(b− a).
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This, by Theorem 5, implies

sup
x∈[a,b]

|Fn(x)− Fm(x)| ≤ 12[2ε+ ε(b− a)].

The claim F (x) = (HKr)
� x
a f follows from Theorem 10.

Theorem 12. Let 1 ≤ r < ∞. If f ∈ HKIr[a, b] and F is the HKr-
integral of f then the Lr-derivative of F, F ′r, is equal to f a.e. on [a, b].

Proof. If either F ′r(x) does not exist or else it exists but is not equal to
f(x) then

lim
h→0+

1
hr+1

x+h�

x−h
|F (y)− F (x)− f(x)(y − x)|r dy > 0.(3.12)

Suppose that the set of points where (3.12) holds has positive exterior
measure. Then there exists η > 0 so that

Aη :=
{
x : lim

h→0+

1
2hr+1

x+h�

x−h
|F (y)− F (x)− f(x)(y − x)|r dy > ηr

}

satisfies λe(Aη) > 0. Thus for each x ∈ Aη there exist arbitrarily small h so
that (

1
2h

x+h�

x−h
|F (y)− F (x)− f(x)(y − x)|r dy

)1/r

> ηh.(3.13)

Let 0 < α < λe(Aη). Since F is the HKr-integral of f, there exists a gauge
function δ so that if P = {(xi, [ci, di])} ≺ δ then

q∑

i=1

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

< ηα.

But
{[x− h, x+ h] : x ∈ Aη, 0 < h < δ(x), (3.13) holds}

is a Vitali cover of Aη. Thus we can find a disjoint subcollection

{[xi − hi, xi + hi] : xi ∈ Aη and 0 < hi < δ(xi), (3.13) holds}
with

∑n
i=1 hi > α. Thus

n∑

i=1

(
1

2hi

xi+hi�

xi−hi
|F (y)− F (xi)− f(xi)(y − xi)|r dy

)1/r

>

n∑

i=1

ηhi > ηα,

a contradiction.

Let us see that the HKr-integral integrates all Lr-derivatives. We do
that by showing that it integrates all Pr-integrable functions.

Theorem 13. For 1 ≤ r <∞, Pr[a, b] ⊆ HKIr[a, b].
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Proof. Let f ∈ Pr[a, b]. We can assume that f is finite-valued. Given
ε > 0 there exist an Lr-major function, Ψ, and an Lr-minor function, Φ,
of f so that 0 ≤ Ψ(b) − Φ(b) < ε. We know that DrΨ(x) ≥ f(x) n.e. and
similarly DrΦ(x) ≤ f(x) n.e. Define

F (x) = (Pr)
x�

a

f, H(x) = Ψ(x)− F (x), J(x) = F (x)− Φ(x).

We have already mentioned that Ψ − Φ is a non-decreasing function. It
follows that H and J are non-decreasing functions as well. Indeed, let a ≤
x1 < x2 ≤ b. Thus Ψ(x) − Ψ(x1) is an Lr-major function for f on [x1, x2].
Let

G(x) = (Pr)
x�

x1

f = F (x)− F (x1).

Thus Ψ(x2)−Ψ(x1) ≥ G(x2) = F (x2)−F (x1), which implies Ψ(x2)−F (x2) ≥
Ψ(x1)− F (x1) and H ↗ . The proof that J ↗ is the same.

We define the gauge function. For x outside a countable set, Z = {zk},
there exists δ(x) > 0 so that if 0 < h < δ(x) we have the following four
inequalities:

x+h�

x

[Ψ(y)− Ψ(x)− f(x)(y − x)]r− dy < εrhr+1,(3.14)

x�

x−h
[Ψ(y)− Ψ(x)− f(x)(y − x)]r+ dy < εrhr+1,(3.15)

x+h�

x

[Φ(y)− Φ(x)− f(x)(y − x)]r+ dy < εrhr+1,(3.16)

x�

x−h
[Φ(y)− Φ(x)− f(x)(y − x)]r− dy < εrhr+1.(3.17)

On Z we define δ(zk) > 0 to be such that both

δ(zk) <
ε2−k

1 + |f(zk)|
and for all 0 < h1, h2 < δ(zk),
(

1
h1 + h2

zk+h2�

zk−h1

|Ψ(y)− Ψ(zk)|r dy
)1/r

+
(

1
h1 + h2

zk+h2�

zk−h1

|Φ(y)− Φ(zk)|r dy
)1/r

< ε2−k.
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The last condition is possible since Ψ and Φ are Lr-continuous everywhere.
Let P = {(xi, [ci, di])} ≺ δ. We then have

q∑

i=1

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

=
∑

xi∈Z

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

+
∑

xi 6∈Z

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

.

Consider (xi, [ci, di]) with xi ∈ Z:

( di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

≤
( di�

ci

|F (y)− F (xi)|r dy
)1/r

+ |f(xi)|
( di�

ci

|y − xi|r dy
)1/r

≤
( di�

ci

|Φ(y)− Φ(xi)|r dy
)1/r

+
( di�

ci

|J(y)− J(xi)|r dy
)1/r

+ |f(xi)|
( di�

ci

|y − xi|r dy
)1/r

.

Consider each one of the last three terms:

∑

xi∈Z

(
1

di − ci

di�

ci

|Φ(y)− Φ(xi)|r dy
)1/r

≤ ε
∞∑

i=1

2−i < ε.

The second term:

∑

xi∈Z

(
1

di − ci

di�

ci

|J(y)− J(xi)|r dy
)1/r

≤
∑

xi∈Z

(
1

di − ci

xi�

ci

(J(xi)− J(y))r dy
)1/r

+
∑

xi∈Z

(
1

di − ci

di�

xi

(J(y)− J(xi))r dy
)1/r
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≤
∑

xi∈Z

((
xi − ci
di − ci

)1/r

(J(xi)− J(ci)) +
(
di − xi
di − ci

)1/r

(J(di)− J(xi))
)

≤
∑

xi∈Z
(J(di)− J(ci)) ≤ J(b)− J(a) < ε.

The last term:

∑

xi∈Z
|f(xi)|

(
1

di − ci

di�

ci

|y − xi|r dy
)1/r

≤
∑

xi∈Z
|f(xi)|(di − ci) ≤

∑

i

ε2−i < ε.

Therefore

∑

xi∈Z

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

< 3ε.

Consider (xi, [ci, di]) with xi 6∈ Z:

∑

xi 6∈Z

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

≤
∑

xi 6∈Z

(
1

di − ci

xi�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

+
∑

xi 6∈Z

(
1

di − ci

di�

xi

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

.

Consider first

∑

xi 6∈Z

(
1

di − ci

xi�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

.

Using the Lr-major and Lr-minor functions, we obtain

( xi�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

≤
( xi�

ci

[F (y)− F (xi)− f(xi)(y − xi)]r+ dy
)1/r

+
( xi�

ci

[F (y)− F (xi)− f(xi)(y − xi)]r− dy
)1/r
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≤
( xi�

ci

[Ψ(y)− Ψ(xi)− f(xi)(y − xi)]r+ dy
)1/r

+
( xi�

ci

[H(y)−H(xi)]r− dy
)1/r

+
( xi�

ci

[Φ(y)− Φ(xi)− f(xi)(y − xi)]r− dy
)1/r

+
( xi�

ci

[J(y)− J(xi)]r− dy
)1/r

.

We consider each one of the last four terms. By (3.15),

∑

xi 6∈Z

(
1

di − ci

xi�

ci

[Ψ(y)− Ψ(xi)− f(xi)(y − xi)]r+ dy
)1/r

≤
∑

xi 6∈Z

(
εr

di − ci
(xi − ci)r+1

)1/r

≤ ε
∑

xi 6∈Z
(xi − ci) ≤ ε(b− a).

Since [H(y)−H(xi)]− = H(xi)−H(y) for y ∈ [ci, xi], we have

∑

xi 6∈Z

(
1

di − ci

xi�

ci

[H(y)−H(xi)]r− dy
)1/r

=
∑

xi 6∈Z

(
1

di − ci

xi�

ci

[H(xi)−H(y)]r dy
)1/r

≤
∑

xi 6∈Z

(
1

di − ci

xi�

ci

[H(xi)−H(ci)]r dy
)1/r

≤
∑

xi 6∈Z
[H(xi)−H(ci)] ≤ H(b)−H(a) < ε.

By (3.17),

∑

xi 6∈Z

(
1

di − ci

xi�

ci

[Φ(y)− Φ(xi)− f(xi)(y − xi)]r− dy
)1/r

≤ ε
∑

xi 6∈Z
(xi − ci) ≤ ε(b− a).

Since [J(y)− J(xi)]− = J(xi)− J(y) for y ∈ [ci, xi], we have

∑

xi 6∈Z

(
1

di − ci

xi�

ci

[J(y)− J(xi)]r− dy
)1/r

=
∑

xi 6∈Z

(
1

di − ci

xi�

ci

[J(xi)− J(y)]r dy
)1/r
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≤
∑

xi 6∈Z

(
1

di − ci

xi�

ci

[J(xi)− J(ci)]r dy
)1/r

≤
∑

xi 6∈Z
[J(xi)− J(ci)] ≤ J(b)− J(a) < ε.

Therefore
∑

xi 6∈Z

(
1

di − ci

xi�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

≤ Cε.

The estimate of

∑

xi 6∈Z

(
1

di − ci

di�

xi

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

follows in the same manner and we have

∑

xi 6∈Z

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

≤ Cε.

4. HKr-absolute continuity. We present a concept of absolute conti-
nuity which characterizes indefinite HKr-integrals. We write

P = {(xi, [ci, di])} ≺E δ
if P ≺ δ and xi ∈ E for all i.

Definition 11. Let 1 ≤ r < ∞. We say that F ∈ ACr(E) if for all
ε > 0 there exist η > 0 and a gauge function δ(x) defined on E so that for
all P = {(xi, [ci, di])} ≺E δ such that

∑q
i=1(di − ci) < η we have

q∑

i=1

(
1

di − ci

di�

ci

|F (y)− F (xi)|r dy
)1/r

< ε.

Definition 12. Let 1 ≤ r < ∞. We say that F ∈ ACGr(E) if E can
be written as E =

⋃∞
n=1En and F ∈ ACr(En) for all n.

Theorem 14. Let 1 ≤ r < ∞. Then f ∈ HKIr[a, b] iff there exists
F ∈ ACGr[a, b] so that F ′r = f a.e.

Proof. If f ∈ HKIr[a, b] then there exists an F so that F ′r = f a.e. and
for any ε > 0 there exists a gauge function, δ, HKr-appropriate for ε and
f. Define

En = {x ∈ [a, b] : n− 1 ≤ |f(x)| < n}.
Clearly [a, b] =

⋃∞
n=1En. Fix n. Let Pn = {(xn,i, [cn,i, dn,i])} ≺En δ satisfy
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qn∑

i=1

(dn,i − cn,i) < ε/n.

Then
qn∑

i=1

(
1

dn,i − cn,i

dn,i�

cn,i

|F (y)− F (xn,i)|r dy
)1/r

≤
qn∑

i=1

(
1

dn,i − cn,i

dn,i�

cn,i

|F (y)− F (xn,i)− f(xn,i)(dn,i − cn,i)|r dy
)1/r

+
qn∑

i=1

(
1

dn,i − cn,i

dn,i�

cn,i

|f(xn,i)(dn,i − cn,i)|r dy
)1/r

.

But, since f ∈ HKIr[a, b], δ is HKr-appropriate for ε and f, and Pn ≺ δ,
we have

qn∑

i=1

(
1

dn,i − cn,i

dn,i�

cn,i

|F (y)− F (xn,i)− f(xn,i)(dn,i − cn,i)|r dy
)1/r

< ε

so that
qn∑

i=1

(
1

dn,i − cn,i

dn,i�

cn,i

|F (y)− F (xn,i)|r dy
)1/r

≤ ε+
qn∑

i=1

|f(xn,i)|(dn,i − cn,i) ≤ ε+ n
ε

n
= 2ε.

Thus F ∈ ACr(En) for all n.
Conversely, suppose that there exists F ∈ ACGr[a, b] and F ′r = f a.e.

and show that F is the HKr-integral of f. Let

E = {x ∈ [a, b] : F ′r(x) = f(x)}.
Let ε > 0 be given. By Lemma 9.15 of [4] there exists δ0 so that if P =
{(xi, [ci, di])} ≺Ec δ0 then |f |(P) < ε. Since F ∈ ACGr[a, b] there exist En,
disjoint, so that

⋃∞
n=1En = Ec and F ∈ ACr(En) for all n. For each n define

δn on En and ηn so that
qn∑

i=1

(
1

dn,i − cn,i

dn,i�

cn,i

|F (y)− F (xn,i)|r dy
)1/r

< ε2−n

whenever Pn = {(xn,i, [cn,i, dn,i])} ≺En δn and
qn∑

i=1

(dn,i − cn,i) < ηn.
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Each En is a set of measure 0. We therefore choose open sets On so that
En ⊆ On and λ(On) < ηn. For each x ∈ Ec, there exists a unique n so that
x ∈ En. For x ∈ Ec, we define

δ(x) = min{δ0(x), δn(x),dist(x,Oc
n)}.

For all x ∈ E there exists δ(x) > 0 so that for all 0 < h < δ(x),

1
h1 + h2

x+h2�

x−h1

|F (y)− F (x)− f(x)(y − x)|r dy < εr(h1 + h2)r.

Let P = {(xi, [ci, di])} ≺ δ. Then

q∑

i=1

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

=
∑

{i : xi∈E}

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

+
∑

{i : xi∈Ec}

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

≤
∑

{i : xi∈E}
(di − ci)ε+

∑

{i : xi∈Ec}

(
1

di − ci

di�

ci

|F (y)− F (xi)|r dy
)1/r

+
∑

{i : xi∈Ec}

(
1

di − ci

di�

ci

|f(xi)(y − xi)|r dy
)1/r

≤ (b− a)ε+
∞∑

n=1

∑

{i :xi∈En}

(
1

di − ci

di�

ci

|F (y)− F (xi)|r dy
)1/r

+
∑

{i : xi∈Ec}
|f(xi)|(di − ci) ≤ ε(b− a+ 2).

We denote the space of absolutely continuous functions on [a, b] by
AC[a, b].

Theorem 15. For any 1 ≤ r <∞, ACr[a, b] = AC[a, b].

Proof. Let us first show that AC[a, b] ⊆ ACr[a, b]. Let F ∈ AC[a, b],
and let ε > 0 be given. There exists η > 0 such that if {[aj , bj]} is a finite
collection of non-overlapping subintervals of [a, b] so that

∑q
j=1(bj−aj) < η

then
∑q

j=1 |F (bj)−F (aj)| < ε. This implies a seemingly stronger statement
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that if
∑q

j=1(bj − aj) < η then
q∑

j=1

( max
x∈[aj ,bj ]

F (x)− min
x∈[aj ,bj ]

F (x)) < ε.

Thus for any choice of xj ∈ [aj , bj ],

q∑

j=1

(
1

bj − aj

bj�

aj

|F (y)− F (xj)|r dy
)1/r

≤
q∑

j=1

( max
x∈[aj ,bj ]

F (x)− min
x∈[aj ,bj ]

F (x)) < ε.

Observe that this holds for any gauge function δ.
For the converse it suffices to show that AC1[a, b] ⊆ AC[a, b]. Assume

that F ∈ AC1[a, b] and let ε > 0. There exist η > 0 and a gauge function δ
defined on [a, b] so that if P = {(xn, [cn, dn])} ≺ δ and

∑q
n=1(dn − cn) < η

then
q∑

n=1

1
dn − cn

dn�

cn

|F (y)− F (xn)| dy < ε.

Let {[cn, dn]} be any finite collection of non-overlapping intervals so that∑q
n=1(dn−cn) < η. The function F is L1-continuous and so certainly approx-

imately continuous. By Theorem 5 there exist Pn := {(xn,i, [cn,i, dn,i])} ≺ δ,
where [cn,i, dn,i] ⊆ [cn, dn] for all n and all i, so that

qn∑

i=1

1
dn,i − cn,i

dn,i�

cn,i

|F (y)− F (xn,i)| dy ≥
1
12
|F (dn)− F (cn)|.

Since P :=
⋃q
n=1 Pn is subordinate to δ, we have

q∑

n=1

|F (dn)− F (cn)|

≤ 12
q∑

n=1

qn∑

i=1

1
dn,i − cn,i

dn,i�

cn,i

|F (y)− F (xn,i)| dy < 12ε.

Definition 13 ([6]). We say that F is absolutely continuous on E, and
write F ∈ AC(E), if for all ε > 0 there exists η > 0 so that for all finite
collections of non-overlapping intervals [aj , bj ] such that aj , bj ∈ E and∑

j(bj − aj) < η we have
∑

j

|F (bj)− F (aj)| < ε.
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Note that if E is a finite set then all functions are absolutely continuous
on E.

Theorem 16. If F ∈ AC1(E) then we can find En so that E =
⋃∞
n=1En

and F ∈ AC(En) for all n.

Proof. Since F ∈ AC1(E), for each ε > 0 there exists η > 0 and a gauge
function δ on E so that

∑

i

1
di − ci

di�

ci

|F (y)− F (xi)| dy < ε

whenever P ={(xi, [ci, di])} ≺E δ and
∑

i(di − ci) < η. Let

Sn = {x ∈ E : δ(x) > 1/n}.
Then E =

⋃∞
n=1 Sn. Let cn = inf Sn and dn = supSn. Fix n. Let qn be a

sufficiently large integer so that
dn − cn
qn

< min{1/n, η}.

Let

yn,j = cn + j
dn − cn
qn

for j = 0, . . . , qn − 1.

Let {[sn,j,i, tn,j,i]}i be a collection of non-overlapping intervals with end-
points in Sn ∩ [yn,j , yn,j+1]. Then

∑

i

|F (tn,j,i)− F (sn,j,i)| =
∑

i

1
tn,j,i − sn,j,i

tn,j,i�

sn,j,i

|F (tn,j,i)− F (sn,j,i)| dy

≤
∑

i

1
tn,j,i − sn,j,i

tn,j,i�

sn,j,i

|F (y)− F (sn,j,i)| dy

+
∑

i

1
tn,j,i − sn,j,i

tn,j,i�

sn,j,i

|F (y)− F (tn,j,i)| dy.

But since tn,j,i−sn,j,i < min{δ(sn,j,i), δ(tn,j,i)} we can consider the intervals
[sn,j,i, tn,j,i] as tagged intervals with tags at sn,j,i or at tn,j,i. Thus

∑

i

(
1

tn,j,i − sn,j,i

tn,j,i�

sn,j,i

|F (y)− F (sn,j,i)|r dy
)1/r

< ε

and similarly

∑

i

(
1

tn,j,i − sn,j,i

tn,j,i�

sn,j,i

|F (y)− F (tn,j,i)|r dy
)1/r

< ε.
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Thus F ∈ AC(Sn ∩ [yn,j, yn,j+1]) and

E =
∞⋃

n=1

qn⋃

j=1

(Sn ∩ [yn,j, yn,j+1]).

Corollary 1. Let 1 ≤ r < ∞. If F ∈ ACGr[a, b] then we can find En
so that [a, b] =

⋃∞
n=1En and F ∈ AC(En) for all n (1).

Theorem 17 ([4, p. 97]). If F ∈ AC(E) then F satisfies Lusin’s condi-
tion N, in other words, if Z ⊆ E and λ(Z) = 0 then λ(F (E)) = 0.

Theorem 18. Let 1 ≤ r < ∞. If F is an indefinite HKr-integral then
F satisfies Lusin’s condition N.

Proof. We have shown that if F (x) = (HKr)
� x
a f then F ∈ ACGr[a, b]

and that this implies that we can find En so that [a, b] =
⋃∞
n=1En and

F ∈ AC(En) and so satisfies Lusin’s condition N on each En. If Z ⊆ [a, b]
and λ(Z) = 0 then

λ(F (Z)) = λ
(
F
( ∞⋃

n=1

Z ∩ En
))

= λ
( ∞⋃

n=1

F (Z ∩ En)
)

≤
∞∑

n=1

λ(F (Z ∩ En)) = 0.

The HKr-integral of a non-negative function is non-decreasing.

Definition 14. We denote by D(A) the set of points of density of A.

Definition 15 ([4, p. 249]). The lower approximate derivate of F at a
point, x0, is defined by

DappF (x0) = sup
{
β : x0 ∈ D

({
x :

F (x)− F (x0)
x− x0

> β

})}
.

Theorem 19 ([3]). Assume that E ′ ⊆ [a, b] is such that F (E′) contains
no intervals. Assume also that for all x ∈ [a, b] \ E ′,

DappF (x) ≥ 0

and that F is approximately continuous for all x ∈ E ′. Then F ↗ on [a, b].

Proof. The theorem follows from Lemma 4 and Remark 1 of [3].

Definition 16. A function, F, is approximately differentiable at x0 if
there exists a number, A, so that the function

G(x) :=

{
F (x)− F (x0)

x− x0
if x 6= x0,

A if x = x0,

(1) This is not quite F ∈ ACG[a, b] since for F ∈ ACG[a, b] we also postulate that F
is continuous. See [4, p. 90].
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is approximately continuous at x0. We then say that A is the approximate
derivative of F at x0 and denote it by DappF (x0).

It is easy to see that if F is approximately differentiable at x0 then
DappF (x0) = DappF (x0).

Clearly A is the Lr-derivative of F at x0 iff the function G is Lr-
continuous at x0. By Theorem 6, if F is Lr-differentiable at x0, then G
is approximately continuous at x0, which proves that F is approximately
differentiable at x0 and the approximate and Lr-derivatives are equal.

Theorem 20. Let 1 ≤ r <∞. Suppose that f ∈ HKIr[a, b] and

F (x) = (HKr)
x�

a

f.

If f ≥ 0 a.e. then F ↗ in [a, b].

Proof. We have shown that F ′r = f a.e. and so DappF = f ≥ 0 a.e. The
complement, E′, of {DappF ≥ 0} is a set of measure 0 and since we have
shown that F satisfies condition N we see that F (E ′) is a set of measure 0
and so contains no intervals. Finally, since F is approximately continuous,
F ↗ in [a, b] by Theorem 19.

Theorem 21. Suppose that f ∈ HKIr[a, b], 1 ≤ r <∞, and f ≥ 0 a.e.
Then f ∈ L1[a, b].

Proof. Let

F (x) = (HKr)
x�

a

f.

We have shown that F ↗. By Lebesgue’s theorem F is differentiable a.e.
and F ′ ∈ L1[a, b]. By Theorem 12, f is the Lr-derivative of F a.e. We saw
that f is therefore also the approximate derivative of F. The approximate
and the usual derivatives are clearly consistent so that f = F ′ ∈ L1[a, b].

The next two theorems show that if f ∈ HKIr[a, b] then we can choose
a measurable gauge function which is HKr-appropriate for ε and f.

Theorem 22. Let 1 ≤ r <∞. Assume that E is a measurable subset of
[a, b] and that f is a measurable function on [a, b]. Suppose that there exists
F defined on [a, b] so that F ′r(x) = f(x) for all x ∈ E. Let ε > 0 be given.
For each x ∈ E, let δ(x) be the supremum of all η so that for closed intervals
I ⊆ [a, b] with λ(I) < η and x ∈ I we have

(
1

λr+1(I)

�

I

|F (y)− F (x)− f(x)(y − x)|r dy
)1/r

≤ ε.

Then δ : E → (0,∞) is a measurable function.
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Proof. We can assume that E ⊆ (a, b). Let r > 0 and define A = {x∈E :
δ(x) ≥ r}. Let {Ik} be the sequence of all closed intervals in [a, b] with
rational endpoints which satisfy λ(Ik) < r. For each k, define

Hk =
{
x ∈ Ik :

(
1

λr+1(Ik)

�

Ik

|F (y)− F (x)− f(x)(y − x)|r dy
)1/r

≤ ε
}
,

Gk = (([a, b] \ Ik) ∪Hk) ∩ E.
Since f and F are measurable functions, Gk are measurable sets.

Let us show that A =
⋂∞
k=1Gk. Let x ∈ A, that is to say, δ(x) ≥ r. For

each k if x 6∈ Ik then x ∈ Gk; if x ∈ Ik, then since δ(x) ≥ r and λ(Ik) < r,
we have

(
1

λr+1(Ik)

�

Ik

|F (y)− F (x)− f(x)(y − x)|r dy
)1/r

≤ ε

and so x ∈ Gk. Thus A ⊆ ⋂∞k=1Gk.

Conversely, if x ∈ ⋂∞k=1Gk, then if I is any closed subinterval of [a, b] so
that x ∈ I and λ(I) < r choose a subsequence {Ikj} so that Ikj → I and
x ∈ Ikj for all j. We have

(
1

λr+1(I)

�

I

|F (y)− F (x)− f(x)(y − x)|r dy
)1/r

= lim
j→∞

(
1

λr+1(Ikj )

�

Ikj

|F (y)− F (x)− f(x)(y − x)|r dy
)1/r

≤ ε

so that δ(x) ≥ r. Thus A is a measurable set and hence δ is a measurable
function.

Theorem 23. Let 1 ≤ r <∞. Suppose f ∈ HKIr[a, b] and

F (x) = (HKr)
x�

a

f.

Then for any ε > 0 there exists a measurable gauge function, δ, so that if
P = {(xi, [ci, di])} ≺ δ, then

n∑

i=1

(
1

di − ci

di�

ci

|F (y)− F (x)− f(xi)(y − xi)|r dy
)1/r

< ε.

Proof. Let E = {x ∈ [a, b] : F ′r(x) = f(x)} so that λ(Ec) = 0. Let δ1 be
the measurable gauge function defined on E as in the previous theorem. Let
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δ2 = 1
2δ1, so that whenever (x, [c, d]) ≺E δ2 we have

(
1

d− c

d�

c

|F (y)− F (x)− f(x)(y − x)|r dy
)1/r

≤ ε(d− c).

Let δ3 be a gauge function defined on Ec (see Theorem 14) so that if P =
{(xi, [ci, di])} ≺Ec δ3, then

n∑

i=1

(
1

di − ci

di�

ci

|F (y)− F (xi)|r dy
)1/r

< ε,

n∑

i=1

|f(xi)|(di − ci) < ε.

Define

δ(x) =
{
δ2(x) if x ∈ E,
δ3(x) if x ∈ Ec.

Clearly δ is measurable. Let P = {(xi, [ci, di])} be a partition of [a, b] which
is subordinate to δ. Then

∑

i

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

≤
∑

{i : xi∈E}

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

+
∑

{i : xi∈Ec}

(
1

di − ci

di�

ci

|F (y)− F (xi)− f(xi)(y − xi)|r dy
)1/r

≤ ε(b− a) +
∑

{i :xi∈Ec}

(
1

di − ci

di�

ci

|F (y)− F (xi)|r dy
)1/r

+
∑

{i : xi∈Ec}
|f(xi)|(di − ci)

< ε(b− a+ 2).
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