STUDIA MATHEMATICA 160 (1) (2004)

Erratum/Addendum to the paper "Some seminorms on quasi *-algebras"

(Studia Math. 158 (2003), 99-115)

by

CAMILLO TRAPANI (Palermo)

In the paper cited in the title the definition of *quasi* *-*algebra* was given in the following terms:

Let \mathfrak{A} be a linear space and \mathfrak{A}_0 a *-algebra contained in \mathfrak{A} . We say that \mathfrak{A} is a quasi *-algebra with distinguished *-algebra \mathfrak{A}_0 (or, simply, over \mathfrak{A}_0) if:

(i) the right and left multiplications of an element of \mathfrak{A} by an element of \mathfrak{A}_0 are always defined and linear;

(ii) an involution * (which extends the involution of \mathfrak{A}_0) is defined in \mathfrak{A} with the property $(AB)^* = B^*A^*$ whenever the multiplication is defined.

This is the original definition due to Lassner (see ref. [9] of the paper). In the paper, however, a stronger definition has been used, without mentioning this fact. Actually, item (i) of the above definition should be replaced with the following one:

(i) the right and left multiplications of an element of \mathfrak{A} by an element of \mathfrak{A}_0 are always defined and linear; moreover

 $A(BC) = (AB)C, \quad (AC)B = A(CB), \quad \forall A, B \in \mathfrak{A}_0, C \in \mathfrak{A}.$

The above forms of the associative law imply that \mathfrak{A} is an \mathfrak{A}_0 -bimodule, in accordance with the definition of quasi *-algebra given by K. Schmüdgen in his book Unbounded Operator Algebras and Representation Theory, Birkhäuser, Basel, 1990.

Dipartimento di Matematica e Applicazioni Università di Palermo I-90123 Palermo, Italy E-mail: trapani@unipa.it

Received October 3, 2003

(4899a)

²⁰⁰⁰ Mathematics Subject Classification: Primary 46K05.