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A double commutant theorem for purely large
C∗-subalgebras of real rank zero corona algebras

by

P. W. Ng (Lafayette, LA)

Abstract. LetA be a unital separable simple nuclear C∗-algebra such thatM(A⊗K)
has real rank zero. Suppose that C is a separable simple liftable and purely large uni-
tal C∗-subalgebra of M(A ⊗ K)/(A ⊗ K). Then the relative double commutant of C in
M(A⊗K)/(A⊗K) is equal to C.

1. Introduction. A basic result in the theory of von Neumann algebras
is von Neumann’s double commutant theorem, which says that if A0 is a
unital C∗-subalgebra of B(H), then the double commutant of A0 is equal
to the weak operator closure of A0 [11]. (We note that in our terminology,
a unital C∗-subalgebra of B(H) contains the unit of B(H). Hence, such an
algebra acts nondegenerately on H.)

In [13], [14] (see also [1]), Voiculescu proved an interesting C∗-algebraic
version of von Neumann’s result for the case of the Calkin algebra.
Specifically, he showed that if A0 is a separable unital C∗-subalgebra of
B(H)/K(H), then the relative double commutant of A0 in B(H)/K(H) is
equal to A0 itself.

Attempts have been made to generalize Voiculescu’s theorem to more
general corona algebras than the Calkin algebra. Generalizations to the case
of hereditary C∗-subalgebras (which need not be separable) of a corona al-
gebra have been. Specifically, in [6], Kucerovsky showed that if B is a stable
separable C∗-algebra with a “purely large” type property (more precisely,
for every positive element c ∈M(B)−B, the hereditary C∗-subalgebra cBc
contains a full stable hereditary C∗-subalgebra of B) then for every nonuni-
tal, hereditary, σ-unital C∗-subalgebra C of the corona algebra M(B)/B,
the relative double commutant of C in M(B)/B is equal to the unitization
of C. In [5], Elliott and Kucerovsky showed that if B is a σ-unital simple
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stable C∗-algebra, and if C is a singly generated hereditary C∗-subalgebra
of M(B)/B, then the relative double commutant of C in M(B)/B is equal
to the unitization of C.

In this paper, we also extensively use the theory of absorbing extensions
as in [6], [4] and [5], but we approach the problem in a different manner and
do not require the initial algebra to be a hereditary C∗-subalgebra of the
corona algebra. However, we do require that the initial algebra be a purely
large C∗-subalgebra.

For a C∗-algebra B, let π : M(B) → M(B)/B be the natural quotient
map.

Definition 1.1. Let A be a unital separable simple C∗-algebra.

(1) Let D be a separable simple unital C∗-subalgebra of M(A ⊗ K).
Then D is said to be purely large if for every nonzero positive element
a ∈ D, the hereditary C∗-subalgebra a(A⊗K)a contains a full stable
hereditary C∗-subalgebra of A⊗K.

(2) Let C be a unital separable simple C∗-algebra, and let φ : C →
M(A ⊗ K) be a unital ∗-homomorphism (which is necessarily in-
jective). Then φ is said to be purely large if φ(C) is a purely large
C∗-subalgebra of M(A⊗K).

(3) Let C be a separable simple unital C∗-subalgebra of the quotient
M(A⊗K)/(A⊗K). Let i : C →M(A⊗K)/(A⊗K) be the natural
inclusion map. Then C is said to be liftable and purely large if there
exists a purely large unital ∗-homomorphism φ : C → M(A ⊗ K)
such that i = π ◦ φ.

(We note that, in the literature, the notion of purely large is defined with-
out the condition of simplicity: see, for example, [4]. However, adding this
condition makes the definition and the paper in general less complicated.)

Our main result is the following:

Theorem 1.2. Suppose that A is a unital separable simple nuclear C∗-
algebra such that M(A⊗K) has real rank zero. Suppose that C is a simple se-
parable liftable and purely large unital C∗-subalgebra of M(A⊗K)/(A⊗K).
Then the relative double commutant of C in M(A ⊗ K)/(A ⊗ K) is equal
to C.

As a corollary, we get the following result:

Theorem 1.3. Let A be a unital separable simple nuclear C∗-algebra
with K1(A) = 0 such that either

(1) A has real rank zero, stable rank one and weak unperforation, or
(2) A is purely infinite.
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Let C be a simple separable unital C∗-subalgebra of M(A⊗K)/(A⊗K), and
i : C → M(A ⊗ K)/(A ⊗ K) the natural inclusion map. Suppose that there
exists a unital ∗-homomorphism φ : C → M(A ⊗ K) such that i = π ◦ φ.
Then the relative double commutant of C in M(A⊗K)/(A⊗K) is equal to
C itself.

In this paper, we will use the following notation: Suppose that A is a
unital separable simple C∗-algebra and suppose that C is a C∗-subalgebra
of M(A ⊗ K)/(A ⊗ K). Then C′ will denote the relative commutant of C
in M(A ⊗ K)/(A ⊗ K). In other words, C′ := {d ∈ M(A ⊗ K)/(A ⊗ K) :
dc = cd, ∀c ∈ C}. Thus, C′′ will be the relative commutant of C′ in
M(A ⊗ K)/(A ⊗ K); i.e., C′′ is the relative double commutant of C in
M(A⊗K)/(A⊗K).

2. Main theorem

Lemma 2.1. Let A be a unital separable C∗-algebra. Then there is no
sequence {an}∞n=1 of norm one elements in A ⊗ K ⊗ K such that for all
a ∈M(A⊗K)⊗ 1M(K),

‖aan − ana‖ → 0 as n→∞.

Proof. Firstly, let {ei,j}1≤i,j<∞ be a system of matrix units for K. Hence,
{1A ⊗ ei,j}1≤i,j<∞ is a system of matrix units for 1A ⊗ K. Since there will
be no confusion, we will identify ei,j with 1A⊗ ei,j for all i, j. For all n ≥ 1,
let en :=

∑n
l=1 el,l. Hence, {fn =

⊕n en}∞n=1 is an approximate identity for
A⊗K ⊗K.

Suppose, to the contrary, that {an}∞n=1 is a sequence in A ⊗ K ⊗ K
such that ‖an‖ = 1 for all n ≥ 1 and ‖ana − aan‖ → 0 as n → ∞ for all
a ∈ M(A ⊗ K) ⊗ 1M(K). We may assume that each an is positive, and
that {rn}∞n=1 is an increasing sequence of positive integers such that an ∈
A⊗K ⊗Mrn for every n.

Claim 1. For every n ≥ 1, there exist integers m,m′ with m,m′ ≥ n
such that

‖am′ − fmam′fm‖ ≥ 1/3,

Suppose, to the contrary, that n ≥ 1 is such that for all m,m′ ≥ n,

‖am′ − fmam′fm‖ ≤ 1/3.

Then, for all m′ ≥ n,
‖am′ − fnam′fn‖ ≤ 1/3.

In other words, for all m′ ≥ n,

(∗) ‖fnam′(1M(A⊗K⊗K) − fn) + (1M(A⊗K⊗K) − fn)am′fn

+ (1M(A⊗K⊗K) − fn)am′(1M(A⊗K⊗K) − fn)‖ ≤ 1/3.



138 P. W. Ng

Therefore, since each ak has norm one, we must have, for all m′ ≥ n,

(∗∗) ‖fnam′fn‖ ≥ 2/3.

Let v′ be a partial isometry in A ⊗ K with range projection en and
initial projection contained in 1M(A⊗K) − en. Let v be the partial isometry
in M(A⊗K)⊗ 1M(K) given by v := v′ ⊗ 1M(K) (so v has range projection
en ⊗ 1M(K) and initial projection contained in 1M(A⊗K⊗K) − en ⊗ 1M(K)).
Then we deduce from (∗) that for all m′ ≥ n,

(∗∗∗) ‖vam′‖ = ‖v(1M(A⊗K⊗K) − en ⊗ 1M(K))am′‖ ≤ 1/3.

On the other hand, by (∗∗), for all m′ ≥ n,

‖am′v‖ = ‖am′(en ⊗ 1M(K))‖ ≥ 2/3.

From this and (∗∗∗), we have ‖am′v − vam′‖ ≥ 1/3 for all m′ ≥ n. This
contradicts our assumption that {am}∞m=1 asymptotically commutes with
every element of M(A⊗K)⊗ 1M(K). This ends the proof of Claim 1.

We will use Claim 1 to derive a contradiction and thus prove the nonex-
istence of a sequence {an}∞n=1 (of positive norm one elements of A⊗K⊗K)
which asymptotically commutes with every element of M(A⊗K)⊗ 1M(K).

We now construct a partial isometry b ∈ M(A ⊗ K) ⊗ 1M(K). We do
this by constructing two sequences {bk}∞k=1, {vk}∞k=1 of partial isometries in
A⊗K⊗ 1M(K) such that bk+1 = bk + vk+1 for all k, and bk → b in the strict
topology inM(A⊗K)⊗ 1M(K)

∼=M(A⊗K) as k →∞. In the process, we
also construct four subsequences {lk}∞k=1, {mk}∞k=1, {nk}∞k=1 and {sk}∞k=1 of
positive integers. The construction will be by induction on k (i.e., in the kth
step, we construct vk, bk, lk, mk, nk and sk).

Basis step k = 1. By Claim 1, let l1 and m1 be positive integers such
that

‖al1 − fm1al1fm1‖ ≥ 1/3.

Choose an integer n1 ≥ m1 such that the following hold:

(+)
(1) ‖al1 − fn1al1fn1‖ < 1/100,
(2) ‖(fn1 − fm1)al1‖ = ‖al1(fn1 − fm1)‖ ≥ 1/7,
(3) ‖(fn1 − fm1)al1(fn1 − fm1)‖ ≥ 1/49.

Now let s1 ≥ n1 be a positive integer and b′1 ∈ A⊗K be a partial isometry
such that b′1 has initial projection en1 − em1 and range projection contained
in es1 − en1 . Take v1 = b1 := b′1 ⊗ 1M(K).

Induction step: Suppose that bk, vk, lk, mk, nk and sk have been con-
structed for k ≤ K. We now construct the corresponding quantities for
k = K + 1. Firstly, by Claim 1, choose positive integers lK+1, mK+1 with
mK+1, lK+1 ≥ 1 + sK such that

‖alK+1
− fmK+1alK+1

fmK+1‖ ≥ 1/3,
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Next choose an integer nK+1 ≥ mK+1 such that the following hold:

(++)
(1) ‖alk − fnK+1alkfnK+1‖ < 1/(100)K+1 for all k ≤ K + 1,
(2) ‖(fnK+1 − fmK+1)alK+1

‖ = ‖alK+1
(fnK+1 − fmK+1)‖ ≥ 1/7,

(3) ‖(fnK+1 − fmK+1)alK+1
(fnK+1 − fmK+1)‖ ≥ 1/49.

Now let sK+1 ≥ nK+1 be a positive integer and v′K+1 ∈ A⊗K a partial
isometry with initial projection enK+1 − emK+1 and range projection con-
tained in esK+1−enK+1 . Let vK+1 := v′K+1⊗1M(K) and bK+1 := bK +vK+1.
Note that bK and vK+1 are orthogonal (i.e., have orthogonal initial projec-
tions and orthogonal range projections). Hence, as bK and vK+1 are partial
isometries, bK+1 is a partial isometry. This completes the inductive con-
struction.

We have thus constructed a sequence {bk}∞k=1. By construction, {bk}∞k=1
converges in the strict topology to an element b ∈M(A⊗K).

Claim 2. For all k ≥ 1, ‖balk − alkb‖ ≥ 1/100.

To prove Claim 2, it suffices to prove that for all k ≥ 1 and k′ ≥ k,

(V) ‖bk′alk − alkbk′‖ ≥ 1/100.

To prove (V), fix k≥1 and k′≥k. Let t be the projection inA⊗K⊗1M(K)

given by t := (esk
− emk

)⊗ 1M(K). Then

‖bk′alk − alkbk′‖ ≥ ‖t(bk′alk − alkbk′)t‖ = ‖vkalkt− talkvk‖(VV)
≥ ‖vkalkt‖ − ‖talkvk‖.

By the definition of vk and (++)(3), we have ‖vkalkt‖ ≥ 1/49. But by
the definition of vk and (++)(1), we have ‖talkvk‖ < 1/100k. From this
and (VV), we see that

‖bk′alk − alkbk′‖ ≥ 1/49− 1/100 ≥ 1/100.

Since k and k′ ≥ k are arbitrary, we have proven statement (V) and hence
Claim 2.

Claim 2 implies that {an}∞n=1 does not asymptotically commute with ev-
ery element ofM(A⊗K), which contradicts our assumption at the beginning
of the proof. This proves Lemma 2.1.

We note that the above lemma implies the same statement, but with
A⊗K replacing A⊗K⊗K and withM(A⊗K) replacingM(A⊗K)⊗1M(K).
However, the proof of our main result involves reducing to the case of the
Calkin algebra B(H)/K and the stronger statement of the above lemma is
required.

For a unital C∗-algebra A, we let π :M(A⊗K)→M(A⊗K)/(A⊗K)
denote the natural quotient map. Also, for a C∗-algebra D and for subsets
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S ⊆ D and T ⊆ D, we define dist(S, T ) := inf{‖s − t‖ : s ∈ S, t ∈ T}. For
a ∈ D, we set dist(a, T ) := dist({a}, T ).

Lemma 2.2. Let A be a unital simple separable C∗-algebra such that
M(A⊗K) has real rank zero. Suppose that c ∈M(A⊗K) is such that π(c)
commutes with every element of M(A⊗K)/(A⊗K). Then c ∈ C1M(A⊗K)+
A⊗K.

Proof. Case 1: Suppose that c is positive. Since M(A ⊗ K) has real
rank zero, it follows by [15] that there exists a sequence {pn}∞n=1 of pairwise
orthogonal projections of A ⊗ K and a sequence {λn}∞n=1 of positive real
numbers such that the following statements hold:

(1)
∑∞

n=1 pn converges in the strict topology in M(A⊗K).
(2)

∑∞
n=1 λnpn converges in the strict topology in M(A⊗K).

(3) b := c−
∑∞

n=1 λnpn is an element of A⊗K.

Suppose, to the contrary, that c 6∈ C1M(A⊗K) +A⊗K. Let r > 0 be such
that dist(π(c), π(C1M(A⊗K))) > r. Then dist(c,C1M(A⊗K)+A⊗K) > r > 0.
Choose an ε > 0 such that r > 100ε. It follows, then, that for all n, there
exist integers n′, n′′ ≥ n such that |λn′ − λn′′ | > r − ε.

So let {Nn}∞n=1 and {Mn}∞n=1 be two subsequences of positive integers
such that for all n,

n ≤Mn < Nn < Mn+1 and |λMn − λNn | ≥ r − ε.

SinceM(A⊗K) has real rank zero, A⊗K has real rank zero. Hence, for
all n ≥ 1, choose nonzero projections rn, sn ∈ A ⊗ K such that rn ≤ pMn ,
sn ≤ pNn and rn is Murray–von Neumann equivalent to qn in A⊗K.

For each n ≥ 1, let wn ∈ A ⊗ K be a partial isometry with initial
projection rn and range projection sn. Let vn := wn + (wn)∗. Let v ∈
M(A ⊗ K) be the partial isometry given by v :=

∑∞
n=1 vn where the

sum converges in the strict topology in M(A ⊗ K). One can check that
‖π(v)π(c)−π(c)π(v)‖ ≥ r−2ε > 0. Hence, π(v) does not commute with π(c),
which contradicts our hypothesis on c.

Case 2: Suppose now that c is an arbitrary element of M(A ⊗ K).
Then using [15] and the polar decomposition of c, we can represent c as
c =

∑∞
n=1 λnxn + b′ where {λn}∞n=1 is a sequence of positive real numbers,

{xn}∞n=1 is a sequence of partial isometries with pairwise orthogonal initial
projections and pairwise orthogonal range projections, b′ ∈ A ⊗ K and the
sum converges in the strict topology inM(A⊗K). The proof is a technical
modification of the proof of Case 1.

Let A be a unital C∗-algebra. Let {ei,j}1≤i,j<∞ be a system of matrix
units for K. Since no confusion will occur, for each i, j we will use ei,j to
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denote both the element in K and 1M(A⊗K) ⊗ ei,j ∈ M(A ⊗ K ⊗ K). For
each c ∈M(A⊗K ⊗K) and any i, j, we let ci,j denote ei,icej,j .

Lemma 2.3. Let A be a unital separable simple C∗-algebra such that
M(A ⊗ K ⊗ K) has real rank zero. Suppose that c ∈ M(A ⊗ K ⊗ K) is
such that π(c) commutes with π(a ⊗ 1M(K)) for all a ∈ M(A ⊗ K). Then
ci,j ∈ C1M(A⊗K) ⊗ ei,j +A⊗K ⊗ ei,j for 1 ≤ i, j <∞.

Proof. Fix i, j with 1 ≤ i, j < ∞. Note that ci,j ∈ M(A ⊗ K) ⊗ ei,j ,
and also π is a ∗-homomorphism. Let di,j := e1,ici,jej,1 ∈M(A⊗K)⊗ e1,1.
Hence, for all a ∈M(A⊗K),

π((a⊗ e1,1)di,j)
= π((a⊗ e1,1)e1,icej,1) = π((a⊗ 1M(K))e1,icej,1)

= π(e1,i(a⊗ 1M(K))cej,1) = π(e1,i)π(a⊗ 1M(K))π(c)π(ej,1)

= π(e1,i)π(c)π(a⊗ 1M(K))π(ej,1) = π(e1,i)π(c(a⊗ 1M(K)))π(ej,1)

= π(e1,ic(a⊗ 1M(K))ej,1) = π(e1,icej,1(a⊗ e1,1)) = π(di,j(a⊗ e1,1)).

(Here, we are using es,t to mean both an element of K and 1M(A⊗K) ⊗ es,t,
for all s, t.)

Hence, by Lemma 2.2, di,j ∈ C1M(A⊗K) ⊗ e1,1 +A⊗K⊗ e1,1. So, ci,j =
ei,1di,je1,j ∈ C1M(A⊗K) ⊗ ei,j +A⊗K ⊗ ei,j as required.

Lemma 2.4. Let A be a unital separable simple C∗-algebra such that
M(A⊗K⊗K) has real rank zero. Suppose that c ∈M(A⊗K⊗K) is such
that π(c) commutes with every element of π(M(A ⊗ K) ⊗ 1M(K)), so (by
Lemma 2.3)

ci,j = αi,j1M(A⊗K) ⊗ ei,j + fi,j ⊗ ei,j
for all i, j, where αi,j ∈ C and fi,j ∈ A⊗K. Then

g :=
∑

1≤i,j<∞
αi,j1M(A⊗K) ⊗ ei,j ∈ 1M(A⊗K) ⊗ B(H).

(In particular , the infinite sum, viewed as being the limit of the net of
all sums over finitely many terms, converges in the strict topology on
M(A⊗K ⊗K).)

Proof. Let M = ‖c‖ > 0. It suffices to prove that for all N ≥ 1,
‖
∑

1≤i,j≤N αi,j1M(A⊗K) ⊗ ei,j‖ ≤ 2M .
Let ε > 0 be given. Decreasing ε > 0 if necessary, we may assume that

M > 100ε. Since the fi,js are all elements of A ⊗ K, choose a nonzero
projection p ∈M(A⊗K) such that for 1 ≤ i, j ≤ N ,

(∗) pfi,j and fi,jp have norm strictly less than ε/(2N2).
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Now let P∈M(A⊗K⊗K) be the projection given by P :=
∑

1≤i≤N p⊗ei,i.
Since ‖c‖ ≤M , we have ‖PcP‖ ≤M . Hence,∥∥∥ ∑

1≤i,j≤N

αi,jp⊗ ei,j + (pfi,jp)⊗ ei,j
∥∥∥ ≤M.

By (∗), ∥∥∥ ∑
1≤i,j≤N

(pfi,jp)⊗ ei,j
∥∥∥ ≤ ε/2.

Hence, ∥∥∥ ∑
1≤i,j≤N

αi,jp⊗ ei,j
∥∥∥ ≤M + ε ≤ 2M.

From this, it follows that∥∥∥ ∑
1≤i,j≤N

αi,j1M(A⊗K) ⊗ ei,j
∥∥∥ ≤ 2M

as required.

Lemma 2.5. Let A be a unital separable simple C∗-algebra such that
M(A⊗K⊗K) has real rank zero. Let c ∈M(A⊗K⊗K) be such that π(c)
commutes with every element of π(M(A⊗K)⊗ 1M(K)), so by Lemma 2.3

ci,j = αi,j1M(A⊗K) ⊗ ei,j + fi,j ⊗ ei,j
for all i, j, where αi,j ∈ C and fi,j ∈ A ⊗ K. Then

∑
1≤i,j<∞ fi,j ⊗ ei,j ∈

A⊗K⊗K. (In particular , the infinite sum converges in the norm topology ,
as a limit over the net of finite sums.)

Proof. By Lemma 2.4, g :=
∑

1≤i,j<∞ αi,j1M(A⊗K) ⊗ ei,j is an element
of 1M(A⊗K) ⊗ B(H). Hence,

f := c− g =
∑

1≤i,j<∞
fi,j ⊗ ei,j

is an element ofM(A⊗K⊗K) and has norm less than or equal to ‖c‖+‖g‖.
(Here, as in Lemma 2.4, we view the sums as being the limits of (nets of)
finite sums in the strict topology on M(A⊗K ⊗K).)

Moreover, since π(c) and π(g) both commute with every element of
π(M(A⊗K)⊗ 1M(K)),

(∗) π(f) = π(c)− π(g)
commutes with every element of π(M(A⊗K)⊗ 1M(K)).

Suppose, to the contrary, that f ∈ A⊗K⊗K. Then there exists an r > 0
such that for every positive integer N ≥ 1,∥∥∥f − ∑

1≤i,j≤N

fi,j ⊗ ei,j
∥∥∥ > r.
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Hence, we can choose a subsequence {Nn}∞n=1 of positive integers such that
for all n ≥ 1, Nn + 1 ≤ Nn+1 and fn :=

∑
Nn+1≤max{i,j}≤Nn+1

fi,j ⊗ ei,j
has norm greater than r. But since π(f) commutes with every element of
π(M(A⊗K)⊗ 1M(K)) (see (∗)), for all a ∈M(A⊗K) we have

‖(a⊗ 1M(K))fn − fn(a⊗ 1M(K))‖ → 0

as n→∞. This contradicts Lemma 2.1.

Lemma 2.6. Let A be a unital simple separable C∗-algebra such that
M(A⊗K ⊗K) has real rank zero. Then

π(M(A⊗K)⊗ 1M(K))
′ ⊆ π(1M(A⊗K) ⊗ B(H)).

Proof. This follows from Lemmas 2.4 and 2.5.

We note that the above lemma would not be true if we replaced
π(M(A ⊗ K) ⊗ 1M(K))′ by π(A ⊗ 1M(K⊗K))′. A counterexample can
be found where A is a unital simple separable infinite-dimensional AF -
algebra.

Theorem 2.7. Let A be a unital separable simple nuclear C∗-algebra
such that M(A⊗K) has real rank zero. Suppose that C is a simple liftable
and purely large unital C∗-subalgebra of M(A⊗K)/(A⊗K). Then C′′ = C.

Proof. Note that A⊗K ∼= A⊗K⊗K andM(A⊗K) ∼=M(A⊗K⊗K).
So we may assume that we are working in M(A⊗K ⊗K).

Let i : C →M(A⊗K ⊗K)/(A⊗K ⊗K) be the natural inclusion map.
Since C is a liftable and purely large C∗-subalgebra, there exists a unital
∗-homomorphism φ : C → M(A ⊗ K ⊗ K) such that φ(C) is a purely large
C∗-subalgebra of M(A⊗K ⊗K) and i = π ◦ φ.

Let ψ′ : C → B(H) be any unital ∗-homomorphism (which is automati-
cally faithful since C is simple). Let ψ : C → M(A ⊗ K ⊗ K) be the unital
∗-homomorphism given by ψ := 1M(A⊗K)⊗ψ′. Then by [2, Theorem 15.12.4]
and [4], ψ also has the purely large property. Hence, as A is nuclear, it fol-
lows, by [4], that there is a unitary u ∈M(A⊗K⊗K) such that π(u)cπ(u)∗ =
π(u)π ◦φ(c)π(u)∗ = π ◦ψ(c) for all c ∈ C. Therefore, π(u)Cπ(u)∗ = π ◦ψ(C).
Hence, π(u)C′π(u)∗ = π ◦ψ(C)′ and π(u)C′′π(u)∗ = π ◦ψ(C)′′. Thus, to show
that C′′ = C, it suffices to prove that π ◦ ψ(C)′′ = π ◦ ψ(C).

Since π ◦ψ(C) ⊆ π(1M(A⊗K)⊗B(H)), we have π(M(A⊗K)⊗ 1M(K)) ⊆
π ◦ ψ(C)′. Hence, by Lemma 2.6,

π ◦ ψ(C)′′ ⊆ π(M(A⊗K)⊗ 1M(K))
′ ⊆ π(1M(A⊗K) ⊗ B(H)).

Consequently, by Voiculescu’s theorem ([13], [14] and [1]), we have π ◦ψ(C)′′
= π ◦ ψ(C) as required.
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Theorem 2.8. Suppose that A is a unital simple separable nuclear C∗-
algebra with K1(A) = 0 such that either

(1) A has real rank zero, stable rank one and weak unperforation, or
(2) A is purely infinite.

Suppose that C ⊆ M(A ⊗ K)/(A ⊗ K) is a simple separable unital C∗-
subalgebra such that there exists a unital ∗-homomorphism φ : C →
M(A ⊗ K) with π ◦ φ = i, where i : C → M(A ⊗ K)/(A ⊗ K) is the
natural inclusion map. Then C′′ = C.

Proof. By [8], [9] and [16], the real rank of M(A ⊗ K) is zero. By [7],
every simple unital separable C∗-subalgebra of M(A ⊗ K) is purely large.
Hence, the result follows from Theorem 2.7.
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