Partially defined σ -derivations on semisimple Banach algebras

by

TSIU-KWEN LEE (Taipei) and CHENG-KAI LIU (Changhua)

Abstract. Let A be a semisimple Banach algebra with a linear automorphism σ and let $\delta: I \to A$ be a σ -derivation, where I is an ideal of A. Then $\Phi(\delta)(I \cap \sigma(I)) = 0$, where $\Phi(\delta)$ is the separating space of δ . As a consequence, if I is an essential ideal then the σ -derivation δ is closable. In a prime C^* -algebra, we show that every σ -derivation defined on a nonzero ideal is continuous. Finally, any linear map on a prime semisimple Banach algebra with nontrivial idempotents is continuous if it satisfies the σ -derivation expansion formula on zero products.

1. Results. Throughout the paper, A is always a unital Banach algebra over the complex field \mathbb{C} and σ is a linear endomorphism of A. Let 1_A denote the identity automorphism of A. By a σ -derivation of A we mean a linear map $\delta: A \to A$ such that $\delta(xy) = \sigma(x)\delta(y) + \delta(x)y$ for all $x, y \in A$. Clearly, the map $\sigma - 1_A$ is a σ -derivation and 1_A -derivations are just ordinary derivations. Thus the concept of σ -derivations can be regarded as a generalization of both derivations and endomorphisms. Let I be a nonzero ideal of A. A linear map $\delta: I \to A$ is called a σ -derivation defined on I if $\delta(xy) = \sigma(x)\delta(y) + \delta(x)y$ for all $x, y \in I$. An ideal I of A is called essential if I has nontrivial intersection with any nonzero ideal of A. For a semisimple algebra A, this is equivalent to saying that aI = 0 where $a \in A$ implies a = 0. A σ -derivation $\delta: I \to A$ is called essentially defined on an ideal I if I is an essential ideal of A.

Kaplansky conjectured that every derivation on a C^* -algebra is continuous [16] and that every derivation on a semisimple Banach algebra is continuous [17]. Sakai confirmed Kaplansky's conjecture for C^* -algebras in [22]. The second conjecture was confirmed by Johnson and Sinclair in [15].

[193]

²⁰⁰⁰ Mathematics Subject Classification: 46H40, 47B47, 46H15.

Key words and phrases: Banach algebra, prime C^* -algebra, σ -derivation, closability, continuity.

C.-K. Liu is the corresponding author. T.-K. Lee is a member of the Mathematics Division, NCTS at Taipei.

Many related results have been obtained in the literature (see, for instance, [3, 4, 9, 15, 21, 24, 26, 27]). In [27] Villena proved that every derivation defined on an essential ideal of a semisimple Banach algebra is automatically closable. As an application, he showed that every derivation defined on a nonzero ideal of a prime C^* -algebra is continuous. Recently, several results concerning σ -derivations of Banach algebras have been studied (see [1, 5, 6, 9, 12, 13, 19, 21]). Brešar and Villena [9] proved that if A is a semisimple Banach algebra and σ is a linear automorphism of A, then every σ -derivation on A is automatically continuous. In this paper, instead of essential ideals, we investigate partially defined σ -derivations on any nonzero ideal.

To state our results precisely, we recall the definition of separating spaces. Let X and Y be normed spaces over the complex field \mathbb{C} and let $T: X \to Y$ be a linear map. The *separating space* $\Phi(T)$ of T is defined as follows:

$$\Phi(T) = \{ y \in Y \mid \text{there exists a sequence } (x_n) \text{ in } X \text{ with} \\ \lim_{n \to \infty} x_n = 0 \text{ and } \lim_{n \to \infty} T(x_n) = y \}.$$

Clearly, $\Phi(T)$ is a subspace of Y. We say that T is *closable* if $\Phi(T) = \{0\}$. For Banach spaces X and Y, the closed graph theorem asserts that T is continuous if and only if it is closable. We are now ready to state the main theorem of the paper.

THEOREM 1.1. Let A be a semisimple Banach algebra with a linear epimorphism σ and let $\delta: I \to A$ be a σ -derivation, where I is an ideal of A. Then $\Phi(\delta)(I \cap \sigma(I)) = 0$. As a consequence, every essentially defined σ derivation on A is closable if σ is a linear automorphism of A.

As applications of Theorem 1.1, we have the following two results.

COROLLARY 1.2. Let A be a semisimple Banach algebra with a linear epimorphism σ . Then every σ -derivation on A is continuous.

COROLLARY 1.3. Let A be a prime C^{*}-algebra with a linear automorphism σ and let I be a nonzero ideal of A. Then every σ -derivation $\delta: I \to A$ is continuous.

Recently, there have been much work concerning maps preserving zero products in the literature (see [8, 10, 11, 14, 18, 28]). Applying Theorem 1.1 we obtain the continuity of linear maps which satisfy the σ -derivation expansion formula on zero products.

THEOREM 1.4. Let A be a prime semisimple Banach algebra with nontrivial idempotents and let σ be a linear automorphism of A. Suppose that $\delta: A \to A$ is a linear map such that $\sigma(x)\delta(y) + \delta(x)y = 0$ for all $x, y \in A$ with xy = 0. Then δ is continuous. 2. Preliminaries. We fix some notation and terminology. Let A be a semisimple Banach algebra. Recall that $\operatorname{soc}(A)$, the *socle* of A, is defined as the sum of all minimal left ideals of A. Therefore, each element in $\operatorname{soc}(A)$ lies in a sum of finitely many minimal left ideals of A. The socle $\operatorname{soc}(A)$ also coincides with the sum of all minimal right ideals of A. An element $a \in A$ is said to be of *rank one* if aA is a minimal right ideal of A. This is equivalent to saying that Aa is a minimal left ideal of A. Moreover, $a \in \operatorname{soc}(A)$ has rank one if and only if $aAa = \mathbb{C}a$. Thus, if $a \in \operatorname{soc}(A)$ has rank one, then Aa is a minimal left ideal and aA is a minimal right ideal of A. Let P be a primitive ideal of A and let π be a continuous irreducible representation of A with ker $\pi = P$. Then $a + P \in \operatorname{soc}(A/P)$ if and only if $\pi(a)$ is a finite rank operator (see [7] for details).

We begin with several lemmas.

LEMMA 2.1. Let A be a semisimple Banach algebra. If $a, b \in \text{soc}(A)$ then aAb is finite-dimensional over \mathbb{C} .

Proof. Obviously, we may assume $aAb \neq 0$. Suppose first that both a and b have rank one. Thus $aAa = \mathbb{C}a$ and Ab is a minimal left ideal of A. Choose $x \in A$ such that $axb \neq 0$. Then Ab = Aaxb by minimality of Ab. Thus $aAb = aAaxb = (aAa)xb = \mathbb{C}axb$, implying dim_{$\mathbb{C}} <math>aAb = 1$, as desired.</sub>

Let $a, b \in \text{soc}(A)$. There are finitely many elements $a_1, \ldots, a_m, b_1, \ldots, b_n$ in A of rank one such that $a = \sum_{i=1}^m a_i$ and $b = \sum_{j=1}^n b_j$. Note that $\dim_{\mathbb{C}} a_i A b_j \leq 1$ for all i, j. Then $aAb \subseteq \sum_{i=1}^m \sum_{j=1}^n a_i A b_j$, implying $\dim_{\mathbb{C}} aAb \leq mn$. This proves the lemma.

We also need the gliding hump argument due to Thomas [25, Proposition 1.3] and Johnson and Sinclair's lemma [25, Lemma 1.5], which are essential to our proofs.

LEMMA 2.2 (Gliding hump argument). Let X, Y and $\{Y_i\}_{i=1}^{\infty}$ be Banach spaces. Let $\{T_i\}_{i=1}^{\infty}$ be a sequence of continuous linear operators from X into itself and let $\{U_i\}_{i=1}^{\infty}$ be a sequence of continuous linear operators, where each $U_i: Y \to Y_i$. If S is a linear operator from X to Y such that $U_nST_1T_2\cdots T_m$ is continuous for m > n, then $U_nST_1T_2\cdots T_n$ is continuous for sufficiently large n.

LEMMA 2.3 (Johnson and Sinclair). Let A be a Banach algebra and let π be a continuous irreducible representation of A on an infinite-dimensional normed complex linear space X. Let $\{x_i\}_{i=0}^{\infty}$ be a linearly independent subset of X. Then there exists a sequence $\{a_i\}_{i=1}^{\infty}$ in A such that $\pi(a_m \cdots a_1)x_n = 0$ for all $m > n \ge 0$ and $\{\pi(a_n \cdots a_1)x_l\}_{l=n}^{\infty}$ is a linearly independent subset of X for all $n \ge 1$.

LEMMA 2.4. Let A be a Banach algebra and let σ be a continuous epimorphism of A. Let π_i be a continuous irreducible representation of A on the Banach space X_i with ker $\pi_i = P_i$ for $i = 1, 2, \ldots$ Suppose that $\delta: I \to A$ is a σ -derivation, where I is a nonzero ideal of A. Suppose that there exist a sequence $\{c_i\}_{i=1}^{\infty}$ in I, a sequence $\{b_i\}_{i=0}^{\infty}$ in A with $b_0 \in I$, and a sequence $\{x_i\}_{i=1}^{\infty}$, where $x_i \in X_i$ for $i \geq 1$, such that

- $\sigma(c_n) \notin P_n$ for all $n \ge 1$,
- $\pi_n(b_n\cdots b_1b_0)x_n\neq 0,$
- $\pi_n(b_m \cdots b_1 b_0) x_n = 0$ for all $m > n \ge 1$.

Then $\Phi(\delta) \subseteq P_k$ for some $k \ge 1$.

Proof. Let $U_n: A \to X_n$, $T_n: A \to A$ and $R_{b_0}: A \to I$ be continuous linear operators given by

$$U_n(a) = \pi_n(\sigma(c_n)a)x_n, \quad T_n(a) = ab_n \quad \text{and} \quad R_{b_0}(a) = ab_0$$

for $a \in A$ and for $n \ge 1$. Notice that δR_{b_0} is a linear operator from A into itself. Then if m > n, we have

$$U_n(\delta R_{b_0})T_1\cdots T_m(a)$$

$$= \pi_n(\sigma(c_n)\delta(ab_m\cdots b_1b_0))x_n$$

$$= \pi_n(\delta(c_nab_m\cdots b_1b_0) - \delta(c_n)ab_m\cdots b_1b_0)x_n$$

$$= \pi_n(\sigma(c_na)\delta(b_m\cdots b_1b_0) + \delta(c_na)b_m\cdots b_1b_0 - \delta(c_n)ab_m\cdots b_1b_0)x_n$$

$$= \pi_n(\sigma(c_n)\sigma(a)\delta(b_m\cdots b_1b_0))x_n.$$

Thus $U_n(\delta R_{b_0})T_1\cdots T_m$ is continuous for all m > n. By Lemma 2.2, there exists an integer $n \ge 1$ such that $U_n(\delta R_{b_0})T_1\cdots T_n$ is continuous. Let $b, c \in I$ and let $\{a_k\}_{k=1}^{\infty}$ be a sequence in I with $\lim_{k\to\infty} a_k = 0$ and $\lim_{k\to\infty} \delta(a_k) = a \in \Phi(\delta)$. Then $\lim_{k\to\infty} ca_k b = 0$. Since

$$U_{n}(\delta R_{b_{0}})T_{1}\cdots T_{n}(ca_{k}b)$$

$$=\pi_{n}(\sigma(c_{n})\delta(ca_{k}bb_{n}\cdots b_{1}b_{0}))x_{n}$$

$$=\pi_{n}(\sigma(c_{n}))\pi_{n}(\sigma(ca_{k})\delta(bb_{n}\cdots b_{1}b_{0})$$

$$+\sigma(c)\delta(a_{k})bb_{n}\cdots b_{1}b_{0}+\delta(c)a_{k}bb_{n}\cdots b_{1}b_{0})x_{n}$$

$$=\pi_{n}(\sigma(c_{n}))\pi_{n}(\sigma(c))\pi_{n}(\sigma(a_{k}))\pi_{n}(\delta(bb_{n}\cdots b_{1}b_{0}))x_{n}$$

$$+\pi_{n}(\sigma(c_{n}))\pi_{n}(\sigma(c))\pi_{n}(\delta(a_{k}))\pi_{n}(b)\pi_{n}(b_{n}\cdots b_{1}b_{0})x_{n}$$

$$+\pi_{n}(\sigma(c_{n}))\pi_{n}(\delta(c))\pi_{n}(a_{k})\pi_{n}(b)\pi_{n}(b_{n}\cdots b_{1}b_{0})x_{n},$$

it is easy to see that

$$0 = \lim_{k \to \infty} U_n \delta R_{b_0} T_1 \cdots T_n (ca_k b)$$

= $\pi_n (\sigma(c_n)) \pi_n (\sigma(c)) \pi_n (a) \pi_n (b) \pi_n (b_n \cdots b_1 b_0) x_n$.

196

Thus

(1)
$$\pi_n(\sigma(c_n))\pi_n(\sigma(I))\pi_n(a)\pi_n(I)\pi_n(b_n\cdots b_1b_0)x_n=0.$$

Recall that $\sigma(c_n) \notin P_n$ and $b_0 \notin P_n$. So $\sigma(I) \nsubseteq P_n$ and $I \nsubseteq P_n$. In particular, we have $\pi_n(I)\pi_n(b_n\cdots b_1b_0)x_n = X_n$. It follows from (1) that $\sigma(c_n)\sigma(I)a \subseteq \ker \pi_n = P_n$. Recall that $\sigma(I)$ is an ideal of A and $\sigma(I) \nsubseteq P_n$. This implies $a \in P_n$, as desired.

LEMMA 2.5. Let A be a Banach algebra and let σ be a continuous epimorphism of A. Suppose that $\delta: I \to A$ is a σ -derivation, where I is a nonzero ideal of A. If P is a primitive ideal of A satisfying $I \nsubseteq P$ and $\sigma(I) \nsubseteq P$, then either $\Phi(\delta) \subseteq P$ or $(I+P)/P = \operatorname{soc}(A/P)$.

Proof. By assumption, there exists $c \in I$ such that $\sigma(c) \notin P$. Suppose that $(I+P)/P \neq \operatorname{soc}(A/P)$. Let π be a continuous irreducible representation of A on an infinite-dimensional Banach space X with ker $\pi = P$. Then $\dim_{\mathbb{C}} \pi(b_0)X = \infty$ for some $b_0 \in I$. Hence $\{\pi(b_0)x_i\}_{i=0}^{\infty}$ is a linearly independent subset of X for some $x_i \in X$, $i \geq 0$. By Lemma 2.3, there exists a sequence $\{b_i\}_{i=1}^{\infty}$ in A such that $\pi(b_n \cdots b_1)\pi(b_0)x_n \neq 0$ and $\pi(b_m \cdots b_1)\pi(b_0)x_n = 0$ for all m > n. Now we let $c_i = c$, $\pi_i = \pi$ and $P_i = P$ for all $i \geq 1$. In view of Lemma 2.4, we obtain $\Phi(\delta) \subseteq P$, proving the lemma.

LEMMA 2.6. Let A be a Banach algebra, P a primitive ideal of A and σ a continuous epimorphism of A. Suppose that $\delta: I \to A$ is a σ -derivation defined on a nonzero ideal I of A. If there exist $c, b \in I$ such that $\sigma(c) \notin P$, $b \notin P$ and $\dim_{\mathbb{C}} cAb < \infty$, then $\Phi(\delta) \subseteq P$.

Proof. Since dim_C $cAb < \infty$, the map $a \in A \mapsto \delta(cab)$ is continuous. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence in I, $\lim_{n\to\infty} a_n = 0$ and $\lim_{n\to\infty} \delta(a_n) = a \in \Phi(\delta)$. Let $x, y \in I$. Since $\delta(cxa_nyb) = \sigma(cx)\sigma(a_n)\delta(yb) + \sigma(cx)\delta(a_n)yb + \delta(cx)a_nyb$, it is easy to see that $\lim_{n\to\infty} \delta(cxa_nyb) = \sigma(cx)ayb = 0$. This implies that $\sigma(c)\sigma(I)aIb = 0$. From $\sigma(c), b \notin P$ and $\sigma(I), I \notin P$, it follows that $a \in P$. Thus $\Phi(\delta) \subseteq P$, as desired.

3. Proofs

Proof of Theorem 1.1. By [23, Corollary 6.12], σ is continuous on A. Let Σ denote the set of all primitive ideals of A. Since A is semisimple, $\bigcap_{P \in \Sigma} P = 0$. Set

$$\Sigma_N = \{ P \in \Sigma \mid I \nsubseteq P \text{ and } \sigma(I) \nsubseteq P \}.$$

For $P \in \Sigma$ and $P \notin \Sigma_N$, we have $I \cap \sigma(I) \subseteq P$. Thus $(I \cap \sigma(I)) \cap \bigcap_{P \in \Sigma_N} P = 0$. Next we set $\Sigma_I = \{P \in \Sigma_N \mid \Phi(\delta) \nsubseteq P\}$. So $\Phi(\delta) \subseteq P$ if $P \in \Sigma_N \setminus \Sigma_I$. Suppose first that $\Sigma_I = \emptyset$. Then $\Phi(\delta) \subseteq \bigcap_{P \in \Sigma_N} P$. This implies that

$$\Phi(\delta)(I \cap \sigma(I)) \subseteq \Big(\bigcap_{P \in \Sigma_N} P\Big) \cap (I \cap \sigma(I)) = 0,$$

proving the theorem. Assume on the contrary that $\Sigma_I \neq \emptyset$. Let $K = \bigcap_{P \in \Sigma_N \setminus \Sigma_I} P$ and $J = (I \cap \sigma(I)) \cap K$. Then J is an ideal of A contained in I and $J \subseteq \bigcap_{P \in \Sigma \setminus \Sigma_I} P$.

If $J \subseteq P$ for some $P \in \Sigma_I$, then $I\sigma(I)K \subseteq J \subseteq P$. Since $I \notin P$ and $\sigma(I) \notin P$, we have $K \subseteq P$. Thus $\Phi(\delta) \subseteq K \subseteq P$, a contradiction. Hence we may choose $P_0 \in \Sigma_I$ such that $J \notin P_0$. By Lemma 2.5, $0 \neq (J + P_0)/P_0 \subseteq (I + P_0)/P_0 = \operatorname{soc}(A/P_0)$. Let π_0 be a continuous irreducible representation of A on a Banach space X_0 with ker $\pi_0 = P_0$. So there exist $c_0 \in I$, $b_0 \in J$, $0 \neq x_0 \in X_0$ such that $\sigma(c_0) \notin P_0$, $0 \neq b_0 + P_0 \in \operatorname{soc}(A/P_0)$ and $\pi_0(b_0)x_0 = x_0$. By Lemma 2.1, $\dim_{\mathbb{C}} \overline{c_0}(A/P_0)\overline{b_0} = n_0 < \infty$, where $\overline{x} = x + P_0$ for $x \in A$. Then there exist maps $\lambda_{0i} \colon A \to \mathbb{C}, i = 1, \ldots, n_0$, and $a_{01}, \ldots, a_{0n_0} \in A$ such that $c_0ab_0 - \sum_{i=1}^{n_0} \lambda_{0i}(a)c_0a_{0i}b_0 \in P_0$ for all $a \in A$.

Let $J_0 = J \cap P_0$. We claim that there exists $P_1 \in \Sigma_I \setminus \{P_0\}$ such that $J_0 \notin P_1$ and $b_0 \notin P_1$. Otherwise, $c_0 a b_0 - \sum_{i=1}^{n_0} \lambda_{0i}(a) c_0 a_{0i} b_0 \in (J \cap P_0) \cap \bigcap_{P \in \Sigma_I \setminus \{P_0\}} P = 0$ for all $a \in A$. This implies $\dim_{\mathbb{C}} c_0 A b_0 = n_0 < \infty$. By Lemma 2.6, $\Phi(\delta) \subseteq P_0$, a contradiction. This proves the claim. By Lemma 2.5,

$$0 \neq (J_0 + P_1)/P_1 \subseteq (I + P_1)/P_1 = \operatorname{soc}(A/P_1).$$

Let π_1 be a continuous irreducible representation of A on a Banach space X_1 with ker $\pi_1 = P_1$. So there exist $c_1 \in I$, $b_1 \in J_0$, $0 \neq x_1 \in X_1$ such that

 $\sigma(c_1) \notin P_1, \quad 0 \neq b_1 + P_1 \in \operatorname{soc}(A/P_1), \quad \pi_1(b_1)\pi_1(b_0)x_1 = x_1.$

By Lemma 2.1, $\dim_{\mathbb{C}} \overline{c}_1(A/P_1)\overline{b}_1\overline{b}_0 = n_1 < \infty$. Notice that $\pi_0(b_1b_0)x_0 = 0$ since $b_1 \in P_0$.

Suppose now that we have primitive ideals $P_0, P_1, \ldots, P_k \in \Sigma_I$ and elements $b_0, b_1, \ldots, b_k \in I$ and $c_1, \ldots, c_k \in I$ such that

- $b_i \in J_{i-1} = J \cap P_0 \cap P_1 \cap \cdots \cap P_{i-1}$ for all $1 \le i \le k$,
- dim_{$\mathbb{C}} <math>\overline{c}_i(A/P_i)\overline{b}_i\cdots\overline{b}_0 = n_i < \infty$ for all $1 \le i \le k$,</sub>
- $\sigma(c_i) \notin P_i$ for all $1 \le i \le k$.

Further, for each $i \ge 1$, there exist a continuous irreducible representation π_i of A on a Banach space X_i with ker $\pi_i = P_i$ and $x_i \in X_i$ satisfying

 $\pi_j(b_j \cdots b_1 b_0) x_j \neq 0 \quad \text{and} \quad \pi_i(b_j \cdots b_1 b_0) x_i = 0 \quad \text{for all } 0 \leq i < j \leq k.$ Since $\dim_{\mathbb{C}} \overline{c}_k(A/P_k) \overline{b}_k \cdots \overline{b}_1 \overline{b}_0 = n_k$, there exist maps $\lambda_{ki} \colon A \to \mathbb{C}, i = 1, \ldots, n_k$ and $a_{k1}, \ldots, a_{kn_k} \in A$ such that $c_k a b_k \cdots b_1 b_0 - \sum_{i=1}^{n_k} \lambda_{ki}(a) c_k a_{ki} b_k$ $\cdots b_1 b_0 \in P_k$ for all $a \in A$. Let $J_k = J_{k-1} \cap P_k = J \cap P_0 \cap P_1 \cap \cdots \cap P_k$. We claim that there exists $P_{k+1} \in \Sigma_I \setminus \{P_0, P_1, \dots, P_k\}$ such that $J_k \not\subseteq P_{k+1}$ and $b_k \cdots b_1 b_0 \notin P_{k+1}$. Otherwise,

n.

$$c_k a b_k \cdots b_1 b_0 - \sum_{i=1}^{n_k} \lambda_{ki}(a) c_k a_{ki} b_k \cdots b_1 b_0 \in J_k \cap \left(\bigcap_{P \in \Sigma_I \setminus \{P_0, P_1, \dots, P_k\}} P\right) = 0$$

for all $a \in A$. Then we conclude that $\dim_{\mathbb{C}} c_k A b_k \cdots b_1 b_0 \leq n_k < \infty$. By Lemma 2.6, $\Phi(\delta) \subseteq P_k$, a contradiction. This proves the claim. By Lemma 2.5, $0 \neq (J_k + P_{k+1})/P_{k+1} \subseteq (I + P_{k+1})/P_{k+1} = \operatorname{soc}(A/P_{k+1})$. Let π_{k+1} be a continuous irreducible representation of A on a Banach space X_{k+1} with ker $\pi_{k+1} = P_{k+1}$. So there exist $c_{k+1} \in I$, $b_{k+1} \in J_k$, $0 \neq x_{k+1} \in X_{k+1}$ such that $\sigma(c_{k+1}) \notin P_{k+1}$, $0 \neq b_{k+1} + P_{k+1} \in \operatorname{soc}(A/P_{k+1})$, $\pi_{k+1}(b_{k+1})\pi_{k+1}(b_k \cdots b_1 b_0)x_{k+1} = x_{k+1}$. By Lemma 2.1, $\dim_{\mathbb{C}} \overline{c}_{k+1}(A/P_1)$ $\overline{b}_{k+1}\overline{b}_k \cdots \overline{b}_1\overline{b}_0 = n_{k+1} < \infty$. Moreover, $\pi_i(b_{k+1} \cdots b_1 b_0)x_i = 0$ for all $1 \leq i \leq k$ since $b_{k+1} \in P_0 \cap \cdots \cap P_k$.

Proceeding in the same way as above, we may obtain a sequence $\{b_i\}_{i=0}^{\infty}$ in I, a sequence $\{c_i\}_{i=1}^{\infty}$ in I and a sequence $\{P_i\}_{i=1}^{\infty}$ of primitive ideals in Σ_I such that $\sigma(c_n) \notin P_n$, $\pi_n(b_n \cdots b_1 b_0) x_n \neq 0$ and $\pi_n(b_m \cdots b_1 b_0) x_n = 0$ for all $m > n \ge 1$, where π_n is a continuous irreducible representation of Aon the Banach space X_n with ker $\pi_n = P_n$. In view of Lemma 2.4, $\Phi(\delta) \subseteq P_i$ for some $i \ge 1$, a contradiction. This forces $\Sigma_I = \emptyset$, as desired. Finally, if Iis an essential ideal of A and σ is a linear automorphism of A, then $\sigma(I)$ is an essential ideal of A. In particular, $I \cap \sigma(I)$ is also an essential ideal of A. Then from $\Phi(\delta)(I \cap \sigma(I)) = 0$, it follows that $\Phi(\delta) = 0$. The proof is now complete.

Clearly, Corollary 1.2 follows directly from Theorem 1.1. Also, we have

COROLLARY 3.1. Let A be a semisimple Banach algebra with a linear automorphism σ and let I be a closed essential ideal of A. Suppose that $\delta: I \to A$ is a σ -derivation defined on I. Then δ is continuous.

Recall that an automorphism σ of a unital algebra A is called *inner* if there exists an invertible element $u \in A$ such that $\sigma(a) = uau^{-1}$ for all $a \in A$. Given any derivation d of A and an invertible element $u \in A$, the map defined by $a \in A \mapsto ud(a)$ is a σ_u -derivation, where $\sigma_u : a \in A \mapsto uau^{-1}$ is an inner automorphism. Obviously, every inner automorphism is continuous. Moreover, if P is a primitive ideal of A and σ is inner, then $I \subseteq P$ if and only if $\sigma(I) \subseteq P$. The next result can be regarded as an extension of the corresponding theorem for derivations and is an immediate consequence of Theorem 1.1.

COROLLARY 3.2. Let A be a semisimple Banach algebra, σ an inner automorphism of A and $\delta: I \to A$ a σ -derivation, where I is a nonzero ideal of A. Then $\Phi(\delta)I = 0$. A Banach algebra A is called *ultraprime* if there exists K > 0 such that $K||a|| ||b|| \leq ||M_{a,b}||$ for all $a, b \in A$, where $M_{a,b}$ denotes the two-sided multiplication operator on A defined by $M_{a,b}(x) = axb$ for $x \in A$. Obviously, every ultraprime Banach algebra is a prime algebra. By [20, Proposition 2.3], every prime C^* -algebra is ultraprime and semisimple.

THEOREM 3.3. Let A be an ultraprime Banach algebra with a linear automorphism σ and let I be a nonzero ideal of A. If $\delta: I \to A$ is a nonzero closable σ -derivation, then both δ and σ are continuous.

It is clear that every nonzero ideal in a prime algebra is essential. Applying Theorem 1.1 and 3.3, we have

COROLLARY 3.4. Let A be an ultraprime semisimple Banach algebra with a linear automorphism σ and let I be an ideal of A. Then every σ derivation defined on I is continuous.

Since every prime C^* -algebra is ultraprime [20, Proposition 2.3], Corollary 1.3 follows directly from Corollary 3.4. We now turn to the

Proof of Theorem 3.3. For $b \in I$, let $L_b: A \to I$ and $R_b: A \to I$ be the linear operators given by $L_b(x) = bx$ and $R_b(x) = xb$ for $x \in A$. We claim that the operator $\delta R_b: A \to A$ is continuous. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in A with

 $\lim_{n \to \infty} x_n = 0 \quad \text{and} \quad \lim_{n \to \infty} \delta R_b(x_n) = \lim_{n \to \infty} \delta(x_n b) = x.$

Since δ is closable and $\lim_{n\to\infty} x_n b = 0$, $x_n b \in I$, we have x = 0. That is, $\Phi(\delta R_b) = 0$. By the closed graph theorem, δR_b is continuous. Similarly, δL_b is also continuous.

We claim that σ is continuous. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in A with $\lim_{n\to\infty} x_n = 0$ and $\lim_{n\to\infty} \sigma(x_n) = x$. For $b, c \in I$, since δR_{bc} and δR_b are continuous, we have

$$0 = \lim_{n \to \infty} \delta R_{bc}(x_n) = \lim_{n \to \infty} \delta(x_n bc) = \lim_{n \to \infty} (\sigma(x_n b)\delta(c) + \delta(x_n b)c)$$
$$= \lim_{n \to \infty} (\sigma(x_n)\sigma(b)\delta(c) + \delta R_b(x_n)c) = x\sigma(b)\delta(c).$$

This implies that $x\sigma(b)\delta(c) = 0$ for all $b, c \in I$. Hence $x\sigma(I)\delta(I) = 0$. By primeness of A and $\delta \neq 0$, we see that $\delta(I) \neq 0$ and so x = 0, implying the continuity of σ .

For $a, b \in I$ and $x \in A$, we have $\delta(axb) = \sigma(a)\delta(xb) + \delta(a)xb$. That is, $M_{\delta(a),b}(x) = \delta R_b L_a(x) - L_{\sigma(a)}\delta R_b(x).$

Note that $\delta R_b L_a$ and $L_{\sigma(a)} \delta R_b$ are continuous. Thus

 $\|M_{\delta(a),b}\| \leq \|\delta R_b L_a\| + \|L_{\sigma(a)} \delta R_b\| \leq \|a\| (1 + \|\sigma\|) \|\delta R_b\| \quad \text{for all } a, b \in I.$ By assumption, there exists K > 0 such that $K\|\delta(a)\| \|b\| \leq \|M_{\delta(a),b}\|$ for all $a, b \in I.$ So $\|\delta(a)\| \leq K' \|a\|$ for some K' > 0. This proves the theorem. Before proving our last result, we refer the reader to [2, Chapter 2] for the notion of the symmetric algebra of quotients of a semisimple algebra. Theorem 1.4 is an immediate consequence of Theorem 3.5 below.

THEOREM 3.5. Let A be a prime semisimple Banach algebra and let Q be the symmetric algebra of quotients of A. Suppose that Q contains a nontrivial idempotent and $\delta: A \to A$ is a linear map. If $\sigma(x)\delta(y) + \delta(x)y = 0$ for all $x, y \in A$ with xy = 0, where σ is a linear automorphism of A, then there exists a nonzero ideal J of A such that $\delta: J \to A$ is closable. In addition, if $eA \cup Ae \subseteq A$ for some nontrivial idempotent $e \in Q$, then δ is continuous.

Proof. In view of [18, Theorem 1.1], there exist $a, b \in Q$, a nonzero ideal J of A and a σ -derivation $d: A \to Q$ such that $\delta(x) = d(x) + \sigma(x)b = d(x) + ax$ for all $x \in J$. Moreover, J = A if $eA \cup Ae \subseteq A$ for some nontrivial idempotent $e \in Q$. Choose a nonzero ideal K of A such that $K \subseteq J$ and $bK \cup Kb \subseteq A$. Set $I = K \cap \sigma^{-1}(K)$. Then K is a nonzero ideal of A such that $I \subseteq J$ and $\sigma(I)b \cup bI \subseteq A$. Since $d(x) = \delta(x) - \sigma(x)b$ for $x \in I$, we see that $d(I) \subseteq A$.

Let $x \in J$ and $y \in I$. Then $\delta(x)y = d(x)y + \sigma(x)by = d(xy) - \sigma(x)d(y) + \sigma(x)(by)$. That is, $R_y\delta(x) = dR_y(x) - R_{d(y)}\sigma(x) + R_{by}\sigma(x)$. By Theorem 1.1, $d: I \to A$ is closable. By the same proof given in Theorem 3.3, $dR_y: A \to A$ is continuous. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in J, $\lim_{n\to\infty} x_n = 0$ and $\lim_{n\to\infty} \delta(x_n) = x \in \Phi(\delta)$. Since σ is continuous [23, Corollary 6.12], it is easy to see that $0 = \lim_{n\to\infty} R_y\delta(x_n) = xy$. Hence xI = 0 and then xAI = 0. By primeness of A, x = 0. Thus $\Phi(\delta) = 0$. This proves the theorem.

Acknowledgements. The authors are thankful to the referee for the very thorough reading of the paper and for valuable suggestions.

References

- Z. Abdelali, On Φ-derivation in Banach algebras, Comm. Algebra 34 (2006), 2437– 2452.
- [2] P. Ara and M. Mathieu, Local Multipliers of C^{*}-algebras, Springer, London, 2003.
- [3] M. I. Berenguer and A. R. Villena, Continuity of Lie mappings of the skew elements of Banach algebras with involution, Proc. Amer. Math. Soc. 126 (1998), 2717–2720.
- [4] —, —, Continuity of Lie derivations on Banach algebras, Proc. Edinburgh Math. Soc. 41 (1998), 625–630.
- [5] M. Brešar, On automorphisms of Banach algebras, Arch. Math. (Basel) 78 (2002), 297–302.
- [6] M. Brešar, A. Fošner and M. Fošner, A Kleinecke-Shirokov type condition with Jordan automorphisms, Studia Math. 147 (2001), 237–242.
- M. Brešar and P. Šemrl, Finite rank elements in semisimple Banach algebras, ibid. 128 (1998), 287–298.

- [8] M. Brešar and P. Šemrl, Commutativity preserving linear maps on central simple algebras, J. Algebra 284 (2005), 102–110.
- [9] M. Brešar and A. R. Villena, The noncommutative Singer-Wermer conjecture and φ-derivations, J. London Math. Soc. 66 (2002), 710-720.
- [10] M. A. Chebotar, W.-F. Ke and P.-H. Lee, Maps characterized by actions on zero products, Pacific J. Math. 216 (2004), 217–228.
- [11] M. A. Chebotar, W.-F. Ke, P.-H. Lee and N.-C. Wong, *Mappings preserving zero products*, Studia Math. 155 (2003), 77–94.
- [12] C.-L. Chuang and C.-K. Liu, Extended Jacobson density theorem for rings with skew derivations, Comm. Algebra 35 (2007), 1391–1413.
- [13] —, —, Skew derivations mapping into the socle, manuscript.
- W. Jing, S. Lu and P. Li, Characterizations of derivations on some operator algebras, Bull. Austral. Math. Soc. 66 (2002), 227–232.
- [15] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067–1073.
- [16] I. Kaplansky, Functional Analysis. Some Aspects of Analysis and Probability, Surveys Appl. Math. 4, Wiley, New York, and Chapman & Hall, London, 1958.
- [17] —, Derivations of Banach algebras, in: Seminars on Analytic Functions, Vol. II, Institute for Advanced Study, Princeton, 1958, 254–258.
- [18] T.-K. Lee, Generalized skew derivations characterized by acting on zero products, Pacific J. Math. 216 (2004), 293–301.
- [19] T.-K. Lee and C.-K. Liu, Spectrally bounded \u03c6-derivations on Banach algebras, Proc. Amer. Math. Soc. 133 (2005), 1427–1435.
- [20] M. Mathieu, Elementary operators on prime C*-algebras I, Math. Ann. 284 (1989), 223–244.
- [21] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ -derivations on C^* algebras, Proc. Amer. Math. Soc. 134 (2006), 3319–3327.
- [22] S. Sakai, On a conjecture of Kaplansky, Tôhoku Math. J. 12 (1960), 31–33.
- [23] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, Cambridge, 1976.
- [24] —, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209–214.
- [25] M. P. Thomas, Primitive ideals and derivations on noncommutative Banach algebras, Pacific J. Math. 159 (1993), 139–152.
- [26] A. R. Villena, Derivations on Jordan–Banach algebras, Studia Math. 118 (1996), 205–229.
- [27] —, Essentially defined derivations on semisimple Banach algebras, Proc. Edinburgh Math. Soc. 40 (1997), 175–179.
- [28] W. J. Wong, Maps on simple algebras preserving zero products. I. The associative case, Pacific J. Math. 89 (1980), 229–247.

Department of Mathematics	Department of Mathematics
National Taiwan University	National Changhua University of Education
Taipei 106, Taiwan	Changhua 500, Taiwan
E-mail: tklee@math.ntu.edu.tw	E-mail: ckliu@cc.ncue.edu.tw

Received March 4, 2008 Revised version June 13, 2008 (6314)