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Partially defined o-derivations on
semisimple Banach algebras

by

Tsiu-KWEN LEE (Taipei) and CHENG-KAI Liu (Changhua)

Abstract. Let A be a semisimple Banach algebra with a linear automorphism o and
let §: I — A be a o-derivation, where I is an ideal of A. Then @(§)(I No(I)) = 0, where
@(0) is the separating space of d. As a consequence, if I is an essential ideal then the
o-derivation ¢ is closable. In a prime C*-algebra, we show that every o-derivation defined
on a nonzero ideal is continuous. Finally, any linear map on a prime semisimple Banach
algebra with nontrivial idempotents is continuous if it satisfies the o-derivation expansion
formula on zero products.

1. Results. Throughout the paper, A is always a unital Banach alge-
bra over the complex field C and o is a linear endomorphism of A. Let 14
denote the identity automorphism of A. By a o-derivation of A we mean a
linear map 0: A — A such that d(zy) = o(x)d(y) + d(z)y for all z,y € A.
Clearly, the map o — 14 is a o-derivation and 14-derivations are just or-
dinary derivations. Thus the concept of o-derivations can be regarded as a
generalization of both derivations and endomorphisms. Let I be a nonzero
ideal of A. A linear map 6: I — A is called a o-derivation defined on I if
d(zy) = o(x)d(y)+d(x)y for all z,y € I. An ideal I of A is called essential if
I has nontrivial intersection with any nonzero ideal of A. For a semisimple
algebra A, this is equivalent to saying that al = 0 where a € A implies
a = 0. A o-derivation §: I — A is called essentially defined on an ideal I if
I is an essential ideal of A.

Kaplansky conjectured that every derivation on a C*-algebra is con-
tinuous [16] and that every derivation on a semisimple Banach algebra is
continuous [17]. Sakai confirmed Kaplansky’s conjecture for C*-algebras in
[22]. The second conjecture was confirmed by Johnson and Sinclair in [15].
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Many related results have been obtained in the literature (see, for instance,
[3, 4,9, 15, 21, 24, 26, 27]). In [27] Villena proved that every derivation de-
fined on an essential ideal of a semisimple Banach algebra is automatically
closable. As an application, he showed that every derivation defined on a
nonzero ideal of a prime C*-algebra is continuous. Recently, several results
concerning o-derivations of Banach algebras have been studied (see [1, 5, 6,
9,12, 13, 19, 21]). Bresar and Villena [9] proved that if A is a semisimple Ba-
nach algebra and o is a linear automorphism of A, then every o-derivation
on A is automatically continuous. In this paper, instead of essential ideals,
we investigate partially defined o-derivations on any nonzero ideal.

To state our results precisely, we recall the definition of separating spaces.
Let X and Y be normed spaces over the complex field Cand let T: X — Y
be a linear map. The separating space ®(T') of T is defined as follows:

&(T) ={y € Y | there exists a sequence (z,) in X with

lim z, =0 and lim T(z,) =y}
n—oo n—oo

Clearly, ®(T') is a subspace of Y. We say that T is closable if &(T) = {0}.
For Banach spaces X and Y, the closed graph theorem asserts that T is
continuous if and only if it is closable. We are now ready to state the main
theorem of the paper.

THEOREM 1.1. Let A be a semisimple Banach algebra with a linear epi-
morphism o and let §: I — A be a o-derivation, where I is an ideal of A.
Then @(5)(I No(l)) = 0. As a consequence, every essentially defined o-
derivation on A is closable if o is a linear automorphism of A.

As applications of Theorem 1.1, we have the following two results.

COROLLARY 1.2. Let A be a semisimple Banach algebra with a linear
epimorphism o. Then every o-derivation on A is continuous.

COROLLARY 1.3. Let A be a prime C*-algebra with a linear automor-
phism o and let I be a nonzero ideal of A. Then every o-derivation §: I — A
18 continuous.

Recently, there have been much work concerning maps preserving zero
products in the literature (see [8, 10, 11, 14, 18, 28]). Applying Theorem
1.1 we obtain the continuity of linear maps which satisfy the o-derivation
expansion formula on zero products.

THEOREM 1.4. Let A be a prime semisimple Banach algebra with non-
trivial idempotents and let o be a linear automorphism of A. Suppose that
0: A — A is a linear map such that o(x)é(y) + é(x)y = 0 for all z,y € A
with xy = 0. Then J§ is continuous.
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2. Preliminaries. We fix some notation and terminology. Let A be a
semisimple Banach algebra. Recall that soc(A), the socle of A, is defined as
the sum of all minimal left ideals of A. Therefore, each element in soc(A)
lies in a sum of finitely many minimal left ideals of A. The socle soc(A) also
coincides with the sum of all minimal right ideals of A. An element a € A is
said to be of rank one if aA is a minimal right ideal of A. This is equivalent
to saying that Aa is a minimal left ideal of A. Moreover, a € soc(A) has
rank one if and only if aAa = Ca. Thus, if a € soc(A) has rank one, then
Aa is a minimal left ideal and aA is a minimal right ideal of A. Let P be
a primitive ideal of A and let m be a continuous irreducible representation
of A with kerm = P. Then a + P € soc(A/P) if and only if 7(a) is a finite
rank operator (see [7] for details).

We begin with several lemmas.

LEMMA 2.1. Let A be a semisimple Banach algebra. If a,b € soc(A)
then aAb is finite-dimensional over C.

Proof. Obviously, we may assume aAb # 0. Suppose first that both a
and b have rank one. Thus aAa = Ca and Ab is a minimal left ideal of A.
Choose = € A such that axb # 0. Then Ab = Aazb by minimality of Ab.
Thus aAb = aAazxb = (aAa)xb = Caxb, implying dimc aAb = 1, as desired.

Let a,b € soc(A). There are finitely many elements ay, ..., am, b1, ..., by
in A of rank one such that a = 3", a; and b = 37 ; b;. Note that
dimc a;Ab; < 1 for all 4,j. Then adb C 37, >0 a;Ab;, implying
dim¢ aAb < mn. This proves the lemma.

We also need the gliding hump argument due to Thomas [25, Proposition
1.3] and Johnson and Sinclair’s lemma [25, Lemma 1.5], which are essential
to our proofs.

LEMMA 2.2 (Gliding hump argument). Let X, Y and {Y;}:°, be Banach
spaces. Let {T;}5°, be a sequence of continuous linear operators from X into
itself and let {U;}32, be a sequence of continuous linear operators, where each
U;: Y =Y, If S is a linear operator from X toY such that U,ST T ---T,,
is continuous for m > n, then U,ST\Ty---T,, is continuous for sufficiently
large n.

LEMMA 2.3 (Johnson and Sinclair). Let A be a Banach algebra and let
7 be a continuous irreducible representation of A on an infinite-dimensional
normed complex linear space X . Let {x;}32, be a linearly independent subset
of X. Then there exists a sequence {a;};°, in A such that w(ap, - - - a1)xy, =0
for allm > n >0 and {m(a,---a1)x;};°,, is a linearly independent subset
of X for allmn > 1.

LEMMA 2.4. Let A be a Banach algebra and let o be a continuous epi-
morphism of A. Let m; be a continuous irreducible representation of A on
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the Banach space X; with kerm; = P; fori=1,2,.... Suppose that§: I — A
is a o-derivation, where I is a nonzero ideal of A. Suppose that there exist
a sequence {c;}22, in I, a sequence {b;}5°, in A with by € I, and a sequence
{xi}2,, where x; € X; fori > 1, such that

e o(cy) ¢ P, foralln > 1,

o T (by - b1bg)xy # 0,

o (b, -+ - b1bg)xy, = 0 for allm >n > 1.
Then ®(6) C Py for some k > 1.

Proof. Let U,: A — X,,, T;,: A — A and Rp,: A — I be continuous
linear operators given by

Un(a) = mp(o(cn)a)zn, Th(a) =ab, and Ry, (a)= aby

for a € A and for n > 1. Notice that d Ry, is a linear operator from A into
itself. Then if m > n, we have

Un(0Ryy)T1 - - - Tin(a)
= mp(o(cn)d(aby, - - - bibo))xn

= 7 (8(Cn@bp, - - - brbo) — 8(cn)aby, - - - brbo)ay
= (0 (cna)d(by, - - b1bo) + d(cna)by, - - - biby — d(cpn)aby, - - - bibg)xy,
= Tn(0(cn)o(a)d(by, - - - brbo))

Thus Uy (0Rp, )11 - - - Ty, is continuous for all m > n. By Lemma 2.2, there
exists an integer n > 1 such that U, (0 Ry, )11 - - - T}, is continuous. Let b, ¢ € 1
and let {a;}72, be a sequence in I with limy_,o a = 0 and limy . 6(ag) =
a € &(9). Then limg_.o carb = 0. Since

Un(0Rpy)T1 - - - Ty (cagd)
—7rn( (cn)d(cagbby, - - - biby))
—Wn( (¢n)) (0 (car)d(bby - - - bibo)
+ o(c)d(ag)bby, - - - bibg + 0(c)agbby, - - - biby)xy,
= mn(0(cn))mn(o(c))mn (o (ar))mn(6(bbn - - - bibo))zn
+ T (0 (cn))mn(0(€))mn (6 (ar))mn (b) T (bn - - b1bo)n
+ 7 (0/(n)) 0 (3(€)) 0 (ak) n (b)7n (by - - - b1bo) 2,
it is easy to see that

0= khm Un5Rb0T1 co Tn(cakb)

= mp(0(cn))mn(o(c))mp(a)mn (b)mn (by -+ - bibo)xy
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Thus
(1) Tn(o(en))mn(o(I))mp(a)mn ()7 (by - - - bibo)zy, = 0.

Recall that o(c,) ¢ P, and by ¢ P,. So o(I) € P, and I ¢ P,. In particular,
we have 7, (1), (by - - - b1bo)zn, = X,y It follows from (1) that o(c,)o(1)a C
ker r, = P,. Recall that o(I) is an ideal of A and o(I) € P,. This implies
a € P,, as desired.

LEMMA 2.5. Let A be a Banach algebra and let o be a continuous epi-
morphism of A. Suppose that §: I — A is a o-derivation, where I is a
nonzero ideal of A. If P is a primitive ideal of A satisfying I ¢ P and
o(I) ¢ P, then either &(5) C P or (I + P)/P = soc(A/P).

Proof. By assumption, there exists ¢ € I such that o(c) ¢ P. Suppose
that (I + P)/P # soc(A/P). Let m be a continuous irreducible represen-
tation of A on an infinite-dimensional Banach space X with kerm = P.
Then dimc m(bg)X = oo for some by € I. Hence {m(by)z;}2, is a lin-
early independent subset of X for some z; € X, ¢ > 0. By Lemma 2.3,
there exists a sequence {b;};°, in A such that 7(by, ---b1)m(bg)x, # 0 and
T (b - - b1)w(bo)xy, = 0 for all m > n. Now we let ¢; = ¢, m; = m and
P, = P for all i > 1. In view of Lemma 2.4, we obtain ¢(6) C P, proving
the lemma.

LEMMA 2.6. Let A be a Banach algebra, P a primitive ideal of A and
o a continuous epimorphism of A. Suppose that 6: I — A is a o-derivation
defined on a nonzero ideal I of A. If there exist ¢,b € I such that o(c) ¢ P,
b ¢ P and dimc cAb < oo, then @(6) C P.

Proof. Since dim¢ cAb < oo, the map a € A +— §(cab) is continuous. Let
{an}22, be a sequence in I, lim,_. a, = 0 and lim,_. d(a,) = a € D(9).
Let x,y € I. Since 0(cxa,yb) = o(cx)o(an)d(yb)+o(cx)d(an)yb+d(cx)anybd,
it is easy to see that lim,,_,o 0(cza,yb) = o(cx)ayb = 0. This implies that
o(c)o(I)alb = 0. From o(c),b ¢ P and o(I),I ¢ P, it follows that a € P.
Thus &(9) C P, as desired.

3. Proofs

Proof of Theorem 1.1. By [23, Corollary 6.12], o is continuous on A.
Let X' denote the set of all primitive ideals of A. Since A is semisimple,
Npex P =0. Set

Sy={PeX|I¢Pando(l)¢ P}

For P€ X and P¢ X, we have INo(I) C P. Thus (INa(1))Npes, P=0.
Next we set 2]:{P62N|¢<5) gp} SO@((;) gPIfPGEN\E]
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Suppose first that X = ). Then &(6) C (\pcyx, P This implies that

B(8)(INa(l)) C ( N P) N(INo(l)) =0,
PeXy
proving the theorem. Assume on the contrary that X; # 0. Let K =
Npesy\x, P and J = (INo(I)) N K. Then J is an ideal of A contained in
I'and J C Npesy s, P.

If J C P for some P € Xy, then Io(I)K C J C P. Since I ¢ P and
o(I) ¢ P, we have K C P. Thus ¢(§) C K C P, a contradiction. Hence we
may choose Py € X such that J ¢ Py. By Lemma 2.5, 0 # (J + Py)/Py C
(I + Py)/Py = soc(A/Py). Let myp be a continuous irreducible representa-
tion of A on a Banach space Xy with ker mg = Py. So there exist ¢y € I,
bp € J, 0 # x9 € Xy such that o(co) ¢ FPo, 0 # by + Py € soc(A/Py)
and mo(bg)ro = o. By Lemma 2.1, dimc¢y(A/Py)by = ng < oo, where
I =x+ Py for x € A. Then there exist maps A\g;: A — C, i = 1,...,ng,
and ao1,...,a0m, € A such that coaby — Y 12 Aoi(a)coaniby € Py for all
a € A.

Let Jy = J N Py. We claim that there exists P; € X7\ {Py} such that
Jo SZ P, and by ¢ P;. Otherwise, coaby — Z?ﬁl )\Oi(a)c()a()ibg S (J N P()) N
mPeEI\{Po}P = 0 for all a € A. This implies dim¢ coAby = ng < co. By
Lemma 2.6, ¢(6) C Py, a contradiction. This proves the claim. By Lemma
2.5,

0+# (Jo + Pl)/Pl - (I + Pl)/Pl = SOC(A/Pl).

Let m; be a continuous irreducible representation of A on a Banach space
X1 with kerm; = P;. So there exist ¢y € I, by € Jy, 0 # 1 € X3 such that

O’(Cl) ¢ Pl, 0 7& b+ P, € SOC(A/Pl), Wl(bl)’iﬁ(bo)wl =2x.

By Lemma 2.1, dim¢ El(A/PﬂBlEO = n1 < oo. Notice that Wo(blbg)l’o =0
since by € Py.

Suppose now that we have primitive ideals Py, Py,..., P, € X and ele-
ments by, b1,...,br € I and ¢q,...,c; € I such that

0biGJiflzjijoOPlﬂ'“ﬂPifl forall 1 <i <k,

. dim@Ei(A/Pi)bi cvbgp=mn; <ooforalll <i<k,

eo(c) ¢ P foralll <i<k.
Further, for each ¢ > 1, there exist a continuous irreducible representation
m; of A on a Banach space X; with ker m; = P; and z; € X; satisfying

7Tj(bj ce blbo)l‘j 75 0 and Wi(bj <o blbo)xi =0 forall0<i< j < k.
Since dim(cék(A/Pk)Ek . '-Blgo = ny, there exist maps Ag;: A — C, i =

1,...,ng and ag1, ..., agn, € A such that cgaby - --bibg — 1% Agi(a)cragiby
ceobibgp e Poforallac A. Let Jp,=Jp,_1NP.=JNEP NP N---NP,. We
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claim that there exists Pyy1 € X7\ {Po, P1,..., Py} such that Ji € Pryq
and by, - - - b1bg ¢ Pr11. Otherwise,

Nk
craby - - - bi1bg —Z)\ki(a)ckakibk~~blbg e JynN ( m P) =0
i=1 prPeX\{Po,Pi,....,P}

for all @ € A. Then we conclude that dimgcipAby---b1bg < np < oo.
By Lemma 2.6, ¢(§) C Py, a contradiction. This proves the claim. By
Lemma 2.5, 0 # (Jx + Piy1)/Pri1 © (I + Pey1)/Prr1 = soc(A/Pyy1).
Let m;11 be a continuous irreducible representation of A on a Banach
space Xgy1 with kermpy1 = Pgy1. So there exist cpy1 € I, b1 € Jg,
0 # xp11 € Xgyq such that o(ckr1) & Prt1, 0 # b1+ Pryq € soc(A/Pyyq),
777k+17(bk+127rlc+1(bk . "blbo)karl = Tk+41- By Lemma 2.1, dim(cEkJrl(A/Pl)
biy1by -+ - b1bg = ng11 < oo. Moreover, Wi(karl .- -blbo):(}i =0forall<
¢ < k since b1 € ByN---N Py

Proceeding in the same way as above, we may obtain a sequence {b;}3°,
in I, a sequence {¢;}?°, in I and a sequence {P;}9°; of primitive ideals in
X1 such that o(cy) € P, mn(by -+ bibo)xy # 0 and my(by, - - - bibo)x, = 0
for all m > n > 1, where 7, is a continuous irreducible representation of A
on the Banach space X,, with ker 7,, = P,,. In view of Lemma 2.4, ¢(§) C P,
for some 7 > 1, a contradiction. This forces X7 = (3, as desired. Finally, if I
is an essential ideal of A and o is a linear automorphism of A, then o(I) is
an essential ideal of A. In particular, I No () is also an essential ideal of A.
Then from ¢(§)(I No(I)) = 0, it follows that ¢(6) = 0. The proof is now
complete.

Clearly, Corollary 1.2 follows directly from Theorem 1.1. Also, we have

COROLLARY 3.1. Let A be a semisimple Banach algebra with a linear
automorphism o and let I be a closed essential ideal of A. Suppose that
0: I — A is a o-derivation defined on I. Then § is continuous.

Recall that an automorphism o of a unital algebra A is called inner
if there exists an invertible element u € A such that o(a) = uau™! for all
a € A. Given any derivation d of A and an invertible element u € A, the map
defined by a € A + ud(a) is a o,-derivation, where 0y: a € A +— uau~" is
an inner automorphism. Obviously, every inner automorphism is continuous.
Moreover, if P is a primitive ideal of A and o is inner, then I C P if and
only if o(I) € P. The next result can be regarded as an extension of the
corresponding theorem for derivations and is an immediate consequence of

Theorem 1.1.

COROLLARY 3.2. Let A be a semisimple Banach algebra, o an inner

automorphism of A and §: I — A a o-derivation, where I is a nonzero
ideal of A. Then ()1 = 0.
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A Banach algebra A is called wltraprime if there exists K > 0 such
that K||a|| ||b]| < ||Mgpl| for all a,b € A, where M, denotes the two-sided
multiplication operator on A defined by M, ;(x) = axb for z € A. Obviously,
every ultraprime Banach algebra is a prime algebra. By [20, Proposition 2.3],
every prime C*-algebra is ultraprime and semisimple.

THEOREM 3.3. Let A be an ultraprime Banach algebra with a linear
automorphism o and let I be a nonzero ideal of A. If §: I — A is a nonzero
closable o-derivation, then both 6 and o are continuous.

It is clear that every nonzero ideal in a prime algebra is essential. Ap-
plying Theorem 1.1 and 3.3, we have

COROLLARY 3.4. Let A be an ultraprime semisimple Banach algebra
with a linear automorphism o and let I be an ideal of A. Then every o-
derivation defined on I is continuous.

Since every prime C*-algebra is ultraprime [20, Proposition 2.3], Corol-
lary 1.3 follows directly from Corollary 3.4. We now turn to the

Proof of Theorem 3.3. For b € I, let Ly: A — I and Ry: A — I be the
linear operators given by Ly(x) = bx and Ry(z) = xb for z € A. We claim
that the operator dRy: A — A is continuous. Let {z,,}72; be a sequence in
A with

lim z, =0 and lim dRy(z,) = lim o(zpb) = x.

n—oo n—oo n—oo
Since ¢ is closable and lim,, .o z,b = 0, x,b € I, we have x = 0. That is,
®(0Rp) = 0. By the closed graph theorem, d Ry, is continuous. Similarly, 6 L
is also continuous.

We claim that ¢ is continuous. Let {z,} 2, be a sequence in A with
lim;, 00 , = 0 and lim,, o o(x,) = x. For b, c € I, since §Ry. and 0 Ry, are
continuous, we have

0= nh—{go IRpc(Tn) = nango d(zpbc) = T}LH;O(U(x"b)é(C) + d(xpb)e)
= ?}Lngo(a(xn)a(b)é(c) + dRy(zp)c) = zo(b)d(c).

This implies that zo(b)d(c) = 0 for all b,¢ € I. Hence zo(I)d(I) = 0. By
primeness of A and 0 # 0, we see that §(I) # 0 and so x = 0, implying the
continuity of o.

For a,b € I and = € A, we have §(axb) = o(a)d(zb) + d(a)xb. That is,

Ms(a)p(x) = 6Ry Lo () — Ly (q)d Ry ().
Note that d Ry L, and L,(q)d Ry are continuous. Thus
[Msay sl < I6RpLall + || Lo@yd Boll < [lal|(1 + [lo|) |0 R[]  for all a,b € I.

By assumption, there exists K > 0 such that K||d(a)| [|b]] < [[Msq)sll for
all a,b e I. So ||§(a)|| < K'||a]| for some K’ > 0. This proves the theorem.
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Before proving our last result, we refer the reader to [2, Chapter 2] for
the notion of the symmetric algebra of quotients of a semisimple algebra.
Theorem 1.4 is an immediate consequence of Theorem 3.5 below.

THEOREM 3.5. Let A be a prime semisimple Banach algebra and let ) be
the symmetric algebra of quotients of A. Suppose that Q contains a nontrivial
idempotent and §: A — A is a linear map. If o(x)é(y) + 6(x)y = 0 for all
x,y € A with xy = 0, where o is a linear automorphism of A, then there
erists a nonzero ideal J of A such that §: J — A is closable. In addition, if
eAU Ae C A for some nontrivial idempotent e € Q, then § is continuous.

Proof. In view of [18, Theorem 1.1], there exist a,b € @, a nonzero ideal
J of A and a o-derivation d: A — @ such that §(z) = d(z) + o(x)b =
d(x) + ax for all z € J. Moreover, J = A if eAU Ae C A for some nontrivial
idempotent e € Q). Choose a nonzero ideal K of A such that K C J and
K UKbC A. Set I = KNo '(K). Then K is a nonzero ideal of A such
that I C J and o(1)bUbI C A. Since d(z) = §(z) — o(z)b for x € I, we see
that d(I) C A.

Let z € Jand y € I. Then 6(z)y = d(z)y + o(x)by = d(zy) —o(x)d(y) +
o(z)(by). That is, R,0(x) = dRy(x) — Rg0(x)+ Rpyo(z). By Theorem 1.1,
d: I — A is closable. By the same proof given in Theorem 3.3, dR,: A —
A is continuous. Let {z,}>°; be a sequence in J, lim, ..z, = 0 and
lim, 00 6(xy) = x € P(§). Since o is continuous [23, Corollary 6.12], it
is easy to see that 0 = lim, . Ryd(z,) = xy. Hence I = 0 and then
xAI = 0. By primeness of A, x = 0. Thus &(§) = 0. This proves the theo-
rem.
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