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Partially defined σ-derivations on
semisimple Banach algebras

by

Tsiu-Kwen Lee (Taipei) and Cheng-Kai Liu (Changhua)

Abstract. Let A be a semisimple Banach algebra with a linear automorphism σ and
let δ : I → A be a σ-derivation, where I is an ideal of A. Then Φ(δ)(I ∩ σ(I)) = 0, where
Φ(δ) is the separating space of δ. As a consequence, if I is an essential ideal then the
σ-derivation δ is closable. In a prime C∗-algebra, we show that every σ-derivation defined
on a nonzero ideal is continuous. Finally, any linear map on a prime semisimple Banach
algebra with nontrivial idempotents is continuous if it satisfies the σ-derivation expansion
formula on zero products.

1. Results. Throughout the paper, A is always a unital Banach alge-
bra over the complex field C and σ is a linear endomorphism of A. Let 1A
denote the identity automorphism of A. By a σ-derivation of A we mean a
linear map δ : A → A such that δ(xy) = σ(x)δ(y) + δ(x)y for all x, y ∈ A.
Clearly, the map σ − 1A is a σ-derivation and 1A-derivations are just or-
dinary derivations. Thus the concept of σ-derivations can be regarded as a
generalization of both derivations and endomorphisms. Let I be a nonzero
ideal of A. A linear map δ : I → A is called a σ-derivation defined on I if
δ(xy) = σ(x)δ(y)+δ(x)y for all x, y ∈ I. An ideal I of A is called essential if
I has nontrivial intersection with any nonzero ideal of A. For a semisimple
algebra A, this is equivalent to saying that aI = 0 where a ∈ A implies
a = 0. A σ-derivation δ : I → A is called essentially defined on an ideal I if
I is an essential ideal of A.

Kaplansky conjectured that every derivation on a C∗-algebra is con-
tinuous [16] and that every derivation on a semisimple Banach algebra is
continuous [17]. Sakai confirmed Kaplansky’s conjecture for C∗-algebras in
[22]. The second conjecture was confirmed by Johnson and Sinclair in [15].
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Many related results have been obtained in the literature (see, for instance,
[3, 4, 9, 15, 21, 24, 26, 27]). In [27] Villena proved that every derivation de-
fined on an essential ideal of a semisimple Banach algebra is automatically
closable. As an application, he showed that every derivation defined on a
nonzero ideal of a prime C∗-algebra is continuous. Recently, several results
concerning σ-derivations of Banach algebras have been studied (see [1, 5, 6,
9, 12, 13, 19, 21]). Brešar and Villena [9] proved that if A is a semisimple Ba-
nach algebra and σ is a linear automorphism of A, then every σ-derivation
on A is automatically continuous. In this paper, instead of essential ideals,
we investigate partially defined σ-derivations on any nonzero ideal.

To state our results precisely, we recall the definition of separating spaces.
Let X and Y be normed spaces over the complex field C and let T : X → Y
be a linear map. The separating space Φ(T ) of T is defined as follows:

Φ(T ) = {y ∈ Y | there exists a sequence (xn) in X with
lim
n→∞

xn = 0 and lim
n→∞

T (xn) = y}.

Clearly, Φ(T ) is a subspace of Y . We say that T is closable if Φ(T ) = {0}.
For Banach spaces X and Y , the closed graph theorem asserts that T is
continuous if and only if it is closable. We are now ready to state the main
theorem of the paper.

Theorem 1.1. Let A be a semisimple Banach algebra with a linear epi-
morphism σ and let δ : I → A be a σ-derivation, where I is an ideal of A.
Then Φ(δ)(I ∩ σ(I)) = 0. As a consequence, every essentially defined σ-
derivation on A is closable if σ is a linear automorphism of A.

As applications of Theorem 1.1, we have the following two results.

Corollary 1.2. Let A be a semisimple Banach algebra with a linear
epimorphism σ. Then every σ-derivation on A is continuous.

Corollary 1.3. Let A be a prime C∗-algebra with a linear automor-
phism σ and let I be a nonzero ideal of A. Then every σ-derivation δ : I → A
is continuous.

Recently, there have been much work concerning maps preserving zero
products in the literature (see [8, 10, 11, 14, 18, 28]). Applying Theorem
1.1 we obtain the continuity of linear maps which satisfy the σ-derivation
expansion formula on zero products.

Theorem 1.4. Let A be a prime semisimple Banach algebra with non-
trivial idempotents and let σ be a linear automorphism of A. Suppose that
δ : A → A is a linear map such that σ(x)δ(y) + δ(x)y = 0 for all x, y ∈ A
with xy = 0. Then δ is continuous.
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2. Preliminaries. We fix some notation and terminology. Let A be a
semisimple Banach algebra. Recall that soc(A), the socle of A, is defined as
the sum of all minimal left ideals of A. Therefore, each element in soc(A)
lies in a sum of finitely many minimal left ideals of A. The socle soc(A) also
coincides with the sum of all minimal right ideals of A. An element a ∈ A is
said to be of rank one if aA is a minimal right ideal of A. This is equivalent
to saying that Aa is a minimal left ideal of A. Moreover, a ∈ soc(A) has
rank one if and only if aAa = Ca. Thus, if a ∈ soc(A) has rank one, then
Aa is a minimal left ideal and aA is a minimal right ideal of A. Let P be
a primitive ideal of A and let π be a continuous irreducible representation
of A with kerπ = P . Then a + P ∈ soc(A/P ) if and only if π(a) is a finite
rank operator (see [7] for details).

We begin with several lemmas.

Lemma 2.1. Let A be a semisimple Banach algebra. If a, b ∈ soc(A)
then aAb is finite-dimensional over C.

Proof. Obviously, we may assume aAb 6= 0. Suppose first that both a
and b have rank one. Thus aAa = Ca and Ab is a minimal left ideal of A.
Choose x ∈ A such that axb 6= 0. Then Ab = Aaxb by minimality of Ab.
Thus aAb = aAaxb = (aAa)xb = Caxb, implying dimC aAb = 1, as desired.

Let a, b ∈ soc(A). There are finitely many elements a1, . . . , am, b1, . . . , bn
in A of rank one such that a =

∑m
i=1 ai and b =

∑n
j=1 bj . Note that

dimC aiAbj ≤ 1 for all i, j. Then aAb ⊆
∑m

i=1

∑n
j=1 aiAbj , implying

dimC aAb ≤ mn. This proves the lemma.

We also need the gliding hump argument due to Thomas [25, Proposition
1.3] and Johnson and Sinclair’s lemma [25, Lemma 1.5], which are essential
to our proofs.

Lemma 2.2 (Gliding hump argument). Let X, Y and {Yi}∞i=1 be Banach
spaces. Let {Ti}∞i=1 be a sequence of continuous linear operators from X into
itself and let {Ui}∞i=1 be a sequence of continuous linear operators, where each
Ui : Y → Yi. If S is a linear operator from X to Y such that UnST1T2 · · ·Tm
is continuous for m > n, then UnST1T2 · · ·Tn is continuous for sufficiently
large n.

Lemma 2.3 (Johnson and Sinclair). Let A be a Banach algebra and let
π be a continuous irreducible representation of A on an infinite-dimensional
normed complex linear space X. Let {xi}∞i=0 be a linearly independent subset
of X. Then there exists a sequence {ai}∞i=1 in A such that π(am · · · a1)xn = 0
for all m > n ≥ 0 and {π(an · · · a1)xl}∞l=n is a linearly independent subset
of X for all n ≥ 1.

Lemma 2.4. Let A be a Banach algebra and let σ be a continuous epi-
morphism of A. Let πi be a continuous irreducible representation of A on
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the Banach space Xi with kerπi = Pi for i = 1, 2, . . . . Suppose that δ : I → A
is a σ-derivation, where I is a nonzero ideal of A. Suppose that there exist
a sequence {ci}∞i=1 in I, a sequence {bi}∞i=0 in A with b0 ∈ I, and a sequence
{xi}∞i=1, where xi ∈ Xi for i ≥ 1, such that

• σ(cn) /∈ Pn for all n ≥ 1,
• πn(bn · · · b1b0)xn 6= 0,
• πn(bm · · · b1b0)xn = 0 for all m > n ≥ 1.

Then Φ(δ) ⊆ Pk for some k ≥ 1.

Proof. Let Un : A → Xn, Tn : A → A and Rb0 : A → I be continuous
linear operators given by

Un(a) = πn(σ(cn)a)xn, Tn(a) = abn and Rb0(a) = ab0

for a ∈ A and for n ≥ 1. Notice that δRb0 is a linear operator from A into
itself. Then if m > n, we have

Un(δRb0)T1 · · ·Tm(a)
= πn(σ(cn)δ(abm · · · b1b0))xn

= πn(δ(cnabm · · · b1b0)− δ(cn)abm · · · b1b0)xn

= πn(σ(cna)δ(bm · · · b1b0) + δ(cna)bm · · · b1b0 − δ(cn)abm · · · b1b0)xn

= πn(σ(cn)σ(a)δ(bm · · · b1b0))xn.

Thus Un(δRb0)T1 · · ·Tm is continuous for all m > n. By Lemma 2.2, there
exists an integer n ≥ 1 such that Un(δRb0)T1 · · ·Tn is continuous. Let b, c ∈ I
and let {ak}∞k=1 be a sequence in I with limk→∞ ak = 0 and limk→∞ δ(ak) =
a ∈ Φ(δ). Then limk→∞ cakb = 0. Since

Un(δRb0)T1 · · ·Tn(cakb)
= πn(σ(cn)δ(cakbbn · · · b1b0))xn

= πn(σ(cn))πn(σ(cak)δ(bbn · · · b1b0)

+ σ(c)δ(ak)bbn · · · b1b0 + δ(c)akbbn · · · b1b0)xn

= πn(σ(cn))πn(σ(c))πn(σ(ak))πn(δ(bbn · · · b1b0))xn

+ πn(σ(cn))πn(σ(c))πn(δ(ak))πn(b)πn(bn · · · b1b0)xn

+ πn(σ(cn))πn(δ(c))πn(ak)πn(b)πn(bn · · · b1b0
)
xn,

it is easy to see that

0 = lim
k→∞

UnδRb0T1 · · ·Tn(cakb)

= πn(σ(cn))πn(σ(c))πn(a)πn(b)πn(bn · · · b1b0)xn.
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Thus

(1) πn(σ(cn))πn(σ(I))πn(a)πn(I)πn(bn · · · b1b0)xn = 0.

Recall that σ(cn) /∈ Pn and b0 /∈ Pn. So σ(I) * Pn and I * Pn. In particular,
we have πn(I)πn(bn · · · b1b0)xn = Xn. It follows from (1) that σ(cn)σ(I)a ⊆
kerπn = Pn. Recall that σ(I) is an ideal of A and σ(I) * Pn. This implies
a ∈ Pn, as desired.

Lemma 2.5. Let A be a Banach algebra and let σ be a continuous epi-
morphism of A. Suppose that δ : I → A is a σ-derivation, where I is a
nonzero ideal of A. If P is a primitive ideal of A satisfying I * P and
σ(I) * P , then either Φ(δ) ⊆ P or (I + P )/P = soc(A/P ).

Proof. By assumption, there exists c ∈ I such that σ(c) /∈ P . Suppose
that (I + P )/P 6= soc(A/P ). Let π be a continuous irreducible represen-
tation of A on an infinite-dimensional Banach space X with kerπ = P .
Then dimC π(b0)X = ∞ for some b0 ∈ I. Hence {π(b0)xi}∞i=0 is a lin-
early independent subset of X for some xi ∈ X, i ≥ 0. By Lemma 2.3,
there exists a sequence {bi}∞i=1 in A such that π(bn · · · b1)π(b0)xn 6= 0 and
π(bm · · · b1)π(b0)xn = 0 for all m > n. Now we let ci = c, πi = π and
Pi = P for all i ≥ 1. In view of Lemma 2.4, we obtain Φ(δ) ⊆ P , proving
the lemma.

Lemma 2.6. Let A be a Banach algebra, P a primitive ideal of A and
σ a continuous epimorphism of A. Suppose that δ : I → A is a σ-derivation
defined on a nonzero ideal I of A. If there exist c, b ∈ I such that σ(c) /∈ P ,
b /∈ P and dimC cAb <∞, then Φ(δ) ⊆ P .

Proof. Since dimC cAb <∞, the map a ∈ A 7→ δ(cab) is continuous. Let
{an}∞n=1 be a sequence in I, limn→∞ an = 0 and limn→∞ δ(an) = a ∈ Φ(δ).
Let x, y ∈ I. Since δ(cxanyb) = σ(cx)σ(an)δ(yb)+σ(cx)δ(an)yb+δ(cx)anyb,
it is easy to see that limn→∞ δ(cxanyb) = σ(cx)ayb = 0. This implies that
σ(c)σ(I)aIb = 0. From σ(c), b /∈ P and σ(I), I * P , it follows that a ∈ P .
Thus Φ(δ) ⊆ P , as desired.

3. Proofs

Proof of Theorem 1.1. By [23, Corollary 6.12], σ is continuous on A.
Let Σ denote the set of all primitive ideals of A. Since A is semisimple,⋂
P∈Σ P = 0. Set

ΣN = {P ∈ Σ | I * P and σ(I) * P}.

For P ∈Σ and P /∈ΣN , we have I∩σ(I)⊆P . Thus (I∩σ(I))∩
⋂
P∈ΣN

P =0.
Next we set ΣI = {P ∈ ΣN | Φ(δ) * P}. So Φ(δ) ⊆ P if P ∈ ΣN \ΣI .
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Suppose first that ΣI = ∅. Then Φ(δ) ⊆
⋂
P∈ΣN

P . This implies that

Φ(δ)(I ∩ σ(I)) ⊆
( ⋂
P∈ΣN

P
)
∩ (I ∩ σ(I)) = 0,

proving the theorem. Assume on the contrary that ΣI 6= ∅. Let K =⋂
P∈ΣN\ΣI

P and J = (I ∩ σ(I)) ∩K. Then J is an ideal of A contained in
I and J ⊆

⋂
P∈Σ\ΣI

P .
If J ⊆ P for some P ∈ ΣI , then Iσ(I)K ⊆ J ⊆ P . Since I * P and

σ(I) * P , we have K ⊆ P . Thus Φ(δ) ⊆ K ⊆ P , a contradiction. Hence we
may choose P0 ∈ ΣI such that J * P0. By Lemma 2.5, 0 6= (J + P0)/P0 ⊆
(I + P0)/P0 = soc(A/P0). Let π0 be a continuous irreducible representa-
tion of A on a Banach space X0 with kerπ0 = P0. So there exist c0 ∈ I,
b0 ∈ J , 0 6= x0 ∈ X0 such that σ(c0) /∈ P0, 0 6= b0 + P0 ∈ soc(A/P0)
and π0(b0)x0 = x0. By Lemma 2.1, dimC c0(A/P0)b0 = n0 < ∞, where
x = x + P0 for x ∈ A. Then there exist maps λ0i : A → C, i = 1, . . . , n0,
and a01, . . . , a0n0 ∈ A such that c0ab0 −

∑n0
i=1 λ0i(a)c0a0ib0 ∈ P0 for all

a ∈ A.
Let J0 = J ∩ P0. We claim that there exists P1 ∈ ΣI \ {P0} such that

J0 * P1 and b0 /∈ P1. Otherwise, c0ab0 −
∑n0

i=1 λ0i(a)c0a0ib0 ∈ (J ∩ P0) ∩⋂
P∈ΣI\{P0} P = 0 for all a ∈ A. This implies dimC c0Ab0 = n0 < ∞. By

Lemma 2.6, Φ(δ) ⊆ P0, a contradiction. This proves the claim. By Lemma
2.5,

0 6= (J0 + P1)/P1 ⊆ (I + P1)/P1 = soc(A/P1).

Let π1 be a continuous irreducible representation of A on a Banach space
X1 with kerπ1 = P1. So there exist c1 ∈ I, b1 ∈ J0, 0 6= x1 ∈ X1 such that

σ(c1) /∈ P1, 0 6= b1 + P1 ∈ soc(A/P1), π1(b1)π1(b0)x1 = x1.

By Lemma 2.1, dimC c1(A/P1)b1b0 = n1 < ∞. Notice that π0(b1b0)x0 = 0
since b1 ∈ P0.

Suppose now that we have primitive ideals P0, P1, . . . , Pk ∈ ΣI and ele-
ments b0, b1, . . . , bk ∈ I and c1, . . . , ck ∈ I such that

• bi ∈ Ji−1 = J ∩ P0 ∩ P1 ∩ · · · ∩ Pi−1 for all 1 ≤ i ≤ k,
• dimC ci(A/Pi)bi · · · b0 = ni <∞ for all 1 ≤ i ≤ k,
• σ(ci) /∈ Pi for all 1 ≤ i ≤ k.

Further, for each i ≥ 1, there exist a continuous irreducible representation
πi of A on a Banach space Xi with kerπi = Pi and xi ∈ Xi satisfying

πj(bj · · · b1b0)xj 6= 0 and πi(bj · · · b1b0)xi = 0 for all 0 ≤ i < j ≤ k.
Since dimC ck(A/Pk)bk · · · b1b0 = nk, there exist maps λki : A → C, i =
1, . . . , nk and ak1, . . . , aknk

∈ A such that ckabk · · · b1b0−
∑nk

i=1 λki(a)ckakibk
· · · b1b0 ∈ Pk for all a ∈ A. Let Jk = Jk−1 ∩ Pk = J ∩ P0 ∩ P1 ∩ · · · ∩ Pk. We
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claim that there exists Pk+1 ∈ ΣI \ {P0, P1, . . . , Pk} such that Jk * Pk+1

and bk · · · b1b0 /∈ Pk+1. Otherwise,

ckabk · · · b1b0 −
nk∑
i=1

λki(a)ckakibk · · · b1b0 ∈ Jk ∩
( ⋂
P∈ΣI\{P0,P1,...,Pk}

P
)

= 0

for all a ∈ A. Then we conclude that dimC ckAbk · · · b1b0 ≤ nk < ∞.
By Lemma 2.6, Φ(δ) ⊆ Pk, a contradiction. This proves the claim. By
Lemma 2.5, 0 6= (Jk + Pk+1)/Pk+1 ⊆ (I + Pk+1)/Pk+1 = soc(A/Pk+1).
Let πk+1 be a continuous irreducible representation of A on a Banach
space Xk+1 with kerπk+1 = Pk+1. So there exist ck+1 ∈ I, bk+1 ∈ Jk,
0 6= xk+1 ∈ Xk+1 such that σ(ck+1) /∈ Pk+1, 0 6= bk+1+Pk+1 ∈ soc(A/Pk+1),
πk+1(bk+1)πk+1(bk · · · b1b0)xk+1 = xk+1. By Lemma 2.1, dimC ck+1(A/P1)
bk+1bk · · · b1b0 = nk+1 < ∞. Moreover, πi(bk+1 · · · b1b0)xi = 0 for all 1 ≤
i ≤ k since bk+1 ∈ P0 ∩ · · · ∩ Pk.

Proceeding in the same way as above, we may obtain a sequence {bi}∞i=0

in I, a sequence {ci}∞i=1 in I and a sequence {Pi}∞i=1 of primitive ideals in
ΣI such that σ(cn) /∈ Pn, πn(bn · · · b1b0)xn 6= 0 and πn(bm · · · b1b0)xn = 0
for all m > n ≥ 1, where πn is a continuous irreducible representation of A
on the Banach space Xn with kerπn = Pn. In view of Lemma 2.4, Φ(δ) ⊆ Pi
for some i ≥ 1, a contradiction. This forces ΣI = ∅, as desired. Finally, if I
is an essential ideal of A and σ is a linear automorphism of A, then σ(I) is
an essential ideal of A. In particular, I ∩ σ(I) is also an essential ideal of A.
Then from Φ(δ)(I ∩ σ(I)) = 0, it follows that Φ(δ) = 0. The proof is now
complete.

Clearly, Corollary 1.2 follows directly from Theorem 1.1. Also, we have

Corollary 3.1. Let A be a semisimple Banach algebra with a linear
automorphism σ and let I be a closed essential ideal of A. Suppose that
δ : I → A is a σ-derivation defined on I. Then δ is continuous.

Recall that an automorphism σ of a unital algebra A is called inner
if there exists an invertible element u ∈ A such that σ(a) = uau−1 for all
a ∈ A. Given any derivation d of A and an invertible element u ∈ A, the map
defined by a ∈ A 7→ ud(a) is a σu-derivation, where σu : a ∈ A 7→ uau−1 is
an inner automorphism. Obviously, every inner automorphism is continuous.
Moreover, if P is a primitive ideal of A and σ is inner, then I ⊆ P if and
only if σ(I) ⊆ P . The next result can be regarded as an extension of the
corresponding theorem for derivations and is an immediate consequence of
Theorem 1.1.

Corollary 3.2. Let A be a semisimple Banach algebra, σ an inner
automorphism of A and δ : I → A a σ-derivation, where I is a nonzero
ideal of A. Then Φ(δ)I = 0.
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A Banach algebra A is called ultraprime if there exists K > 0 such
that K‖a‖ ‖b‖ ≤ ‖Ma,b‖ for all a, b ∈ A, where Ma,b denotes the two-sided
multiplication operator on A defined by Ma,b(x) = axb for x ∈ A. Obviously,
every ultraprime Banach algebra is a prime algebra. By [20, Proposition 2.3],
every prime C∗-algebra is ultraprime and semisimple.

Theorem 3.3. Let A be an ultraprime Banach algebra with a linear
automorphism σ and let I be a nonzero ideal of A. If δ : I → A is a nonzero
closable σ-derivation, then both δ and σ are continuous.

It is clear that every nonzero ideal in a prime algebra is essential. Ap-
plying Theorem 1.1 and 3.3, we have

Corollary 3.4. Let A be an ultraprime semisimple Banach algebra
with a linear automorphism σ and let I be an ideal of A. Then every σ-
derivation defined on I is continuous.

Since every prime C∗-algebra is ultraprime [20, Proposition 2.3], Corol-
lary 1.3 follows directly from Corollary 3.4. We now turn to the

Proof of Theorem 3.3. For b ∈ I, let Lb : A → I and Rb : A → I be the
linear operators given by Lb(x) = bx and Rb(x) = xb for x ∈ A. We claim
that the operator δRb : A→ A is continuous. Let {xn}∞n=1 be a sequence in
A with

lim
n→∞

xn = 0 and lim
n→∞

δRb(xn) = lim
n→∞

δ(xnb) = x.

Since δ is closable and limn→∞ xnb = 0, xnb ∈ I, we have x = 0. That is,
Φ(δRb) = 0. By the closed graph theorem, δRb is continuous. Similarly, δLb
is also continuous.

We claim that σ is continuous. Let {xn}∞n=1 be a sequence in A with
limn→∞ xn = 0 and limn→∞ σ(xn) = x. For b, c ∈ I, since δRbc and δRb are
continuous, we have

0 = lim
n→∞

δRbc(xn) = lim
n→∞

δ(xnbc) = lim
n→∞

(σ(xnb)δ(c) + δ(xnb)c)

= lim
n→∞

(σ(xn)σ(b)δ(c) + δRb(xn)c) = xσ(b)δ(c).

This implies that xσ(b)δ(c) = 0 for all b, c ∈ I. Hence xσ(I)δ(I) = 0. By
primeness of A and δ 6= 0, we see that δ(I) 6= 0 and so x = 0, implying the
continuity of σ.

For a, b ∈ I and x ∈ A, we have δ(axb) = σ(a)δ(xb) + δ(a)xb. That is,

Mδ(a),b(x) = δRbLa(x)− Lσ(a)δRb(x).

Note that δRbLa and Lσ(a)δRb are continuous. Thus

‖Mδ(a),b‖ ≤ ‖δRbLa‖+ ‖Lσ(a)δRb‖ ≤ ‖a‖(1 + ‖σ‖)‖δRb‖ for all a, b ∈ I.
By assumption, there exists K > 0 such that K‖δ(a)‖ ‖b‖ ≤ ‖Mδ(a),b‖ for
all a, b ∈ I. So ‖δ(a)‖ ≤ K ′‖a‖ for some K ′ > 0. This proves the theorem.
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Before proving our last result, we refer the reader to [2, Chapter 2] for
the notion of the symmetric algebra of quotients of a semisimple algebra.
Theorem 1.4 is an immediate consequence of Theorem 3.5 below.

Theorem 3.5. Let A be a prime semisimple Banach algebra and let Q be
the symmetric algebra of quotients of A. Suppose that Q contains a nontrivial
idempotent and δ : A → A is a linear map. If σ(x)δ(y) + δ(x)y = 0 for all
x, y ∈ A with xy = 0, where σ is a linear automorphism of A, then there
exists a nonzero ideal J of A such that δ : J → A is closable. In addition, if
eA ∪Ae ⊆ A for some nontrivial idempotent e ∈ Q, then δ is continuous.

Proof. In view of [18, Theorem 1.1], there exist a, b ∈ Q, a nonzero ideal
J of A and a σ-derivation d : A → Q such that δ(x) = d(x) + σ(x)b =
d(x) + ax for all x ∈ J . Moreover, J = A if eA∪Ae ⊆ A for some nontrivial
idempotent e ∈ Q. Choose a nonzero ideal K of A such that K ⊆ J and
bK ∪Kb ⊆ A. Set I = K ∩ σ−1(K). Then K is a nonzero ideal of A such
that I ⊆ J and σ(I)b ∪ bI ⊆ A. Since d(x) = δ(x)− σ(x)b for x ∈ I, we see
that d(I) ⊆ A.

Let x ∈ J and y ∈ I. Then δ(x)y = d(x)y+σ(x)by = d(xy)−σ(x)d(y)+
σ(x)(by). That is, Ryδ(x) = dRy(x)−Rd(y)σ(x)+Rbyσ(x). By Theorem 1.1,
d : I → A is closable. By the same proof given in Theorem 3.3, dRy : A →
A is continuous. Let {xn}∞n=1 be a sequence in J , limn→∞ xn = 0 and
limn→∞ δ(xn) = x ∈ Φ(δ). Since σ is continuous [23, Corollary 6.12], it
is easy to see that 0 = limn→∞Ryδ(xn) = xy. Hence xI = 0 and then
xAI = 0. By primeness of A, x = 0. Thus Φ(δ) = 0. This proves the theo-
rem.
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