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Stieltjes moment problem in general Gelfand–Shilov spaces

by

Alberto Lastra and Javier Sanz (Valladolid)

Abstract. The Stieltjes moment problem is studied in the framework of general
Gelfand–Shilov spaces, subspaces of the space of rapidly decreasing smooth complex func-
tions, which are defined by imposing suitable bounds on their elements in terms of a given
sequence M . Necessary and sufficient conditions on M are stated for the problem to have
a solution, sometimes coming with linear continuous right inverses of the moment map,
sending a function to the sequence of its moments. On the way, some results on the ex-
istence of continuous right inverses for the Borel map are obtained for ultraholomorphic
classes in sectors.

1. Introduction. The moment problem, with its many variations and
generalizations, has inspired the work of mathematicians for over a cen-
tury. Moments have been shown to be relevant in diverse areas of classical
analysis, such as quadrature formulae, continued fractions, representation
theory or spectral theory of operators, to name but a few. The book of
N. I. Akhiezer [1] is a standard reference in this respect. Some more subjects,
theoretical and applied, illuminated by this problem are described in [11],
including questions in Fourier analysis, signal processing, inverse problems
or statistics. Also, recent achievements relate this matter to the asymptotic
expansion of generalized functions and the theory of distributional solutions
of singular differential equations, as can be found in the book of R. Estrada
and R. P. Kanwal [7] and the references therein.

In 1989 A. J. Durán [5] obtained the following answer to the so-called
Stieltjes moment problem: there exists a function f in the Schwartz space
S(R) of rapidly decreasing smooth complex functions, with support in [0,∞)
(we write f ∈ S(0,∞)) and with arbitrarily prescribed moments {µn}∞n=0,
i.e., such that

∞�

0

xnf(x) dx = µn, n ∈ N0 = {0, 1, 2, . . .}.
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The integral is called the nth moment of f , µn(f). Regarding subspaces
of S(0,∞), let us consider the so-called (classical) Gelfand–Shilov spaces
Sα(0,∞), with α > 0, consisting of the functions f ∈ S(0,∞) for which
there exists q = q(f) > 0 and, for any m ∈ N0, there exists Cm = Cm(f) > 0
such that

sup
x∈R
|xnf (m)(x)| ≤ Cmqnn!α, n ∈ N0.(1)

It is easy to see that whenever f ∈ Sα(0,∞), there exist C̃0, q0 > 0 such
that

|µn(f)| ≤ C̃0q
n
0n!α, n ∈ N0,

i.e., the sequence of moments is a Gevrey sequence (we write {µn(f)}n∈N0

∈ Λα). As a converse statement, relying heavily on an idea of A. L. Durán
and R. Estrada [6] (who reproved A. J. Durán’s result by the combination
of Fourier transform techniques with the Borel–Ritt theorem), S.-Y. Chung,
D. Kim and Y. Yeom obtained the following result.

Theorem 1.1 ([4, Theorem 3.1]). Let α > 2, then for every sequence
{µn}n∈N0 ∈ Λα there exists f ∈ Sα(0,∞) with µn(f) = µn, n ∈ N0.

One may also consider the Gelfand–Shilov space Sα(0,∞), with α > 0,
consisting of the functions f ∈ S(0,∞) for which there exists q = q(f) > 0
and, for any m ∈ N0, there exists Cm = Cm(f) > 0 such that

sup
x∈R
|xmf (n)(x)| ≤ Cmqnn!α, n ∈ N0.(2)

We note that, if α ≤ 1, these functions are analytic in a strip, and so
Sα(0,∞) = {0}.

With similar arguments to the ones employed for the previous theorem,
J. Chung, S.-Y. Chung and D. Kim proved the following

Theorem 1.2 ([3, Theorem 3.2]). Let α>1. For any sequence {µn}n∈N0

of complex numbers there exists f ∈ Sα(0,∞) such that µn(f) = µn,
n ∈ N0.

Our aim in this paper is to extend these results to the case of generalized
Gelfand–Shilov spaces, SM (0,∞) and SM (0,∞), determined by means of
a sequence M = {Mn}n∈N0 of positive numbers which will play the role
of n!α−1 in the bounds in (1) and (2). In particular, previous work by the
authors in the classical setting (see [12]) will be extended and improved.

Section 2 specifies the hypotheses on the sequence M , needed for work
with these spaces (and the corresponding subspaces of CN0 and related ul-
traholomorphic classes). We will make standard assumptions, such as loga-
rithmic convexity, moderate growth and (strong) non-quasianalyticity. Fol-
lowing V. Thilliez [22], we define the growth index γ(M) of a strongly
regular sequence, crucial in what follows. In Section 3 we recall a theorem of
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V. Thilliez [22] which, under the condition γ(M) > 1, proves the existence
of linear continuous extension operators, right inverses for the Borel map,
f 7→ {f (n)(0)}n∈N0 , for ultraholomorphic classes in sectors of the Riemann
surface of the logarithm. This generalizes corresponding results in [19–21].
As our first statement, we prove that in some cases (specified by condi-
tion (5) below), including the Gevrey one, the condition γ(M) > 1 is also
necessary for such extensions to exist, or for the Borel map to be onto. Also,
these classes turn out to be quasianalytic in wide enough sectors (in other
words, a generalized Watson lemma is obtained).

In Section 4 we define general Gelfand–Shilov spaces, and study how
the Fourier transform acts on them. Section 5 is devoted to the solution
of the Stieltjes moment problem with general real exponents for the spaces
SM (0,∞), where an idea of A. Yu. Popov [15] is fruitful.

Finally, Section 6 contains the results for SM (0,∞). Here, the solution of
the Stieltjes moment problem comes with linear continuous right inverses of
the moment map, f 7→ {µn(f)}n∈N0 , in suitable subclasses. The proof rests
on a careful analysis of the continuity of the different operations involved in
the construction of the solution in [4], and it takes into account the extension
operators for ultraholomorphic classes obtained by V. Thilliez [22]. Again,
the necessity of the conditions imposed on M is studied, in such a way that,
in some cases (which include Sα(0,∞)), a complete answer is provided for
our problem.

2. Strongly regular sequences. Let N = {1, 2, . . .} and N0 = N∪{0}.
In what follows, M = {Mn}n∈N0 will always stand for a sequence of positive
real numbers, and we always assume that M0 = 1.

Definition 2.1. Given a sequence M (as before), we say:

(α0) M is increasing if Mn ≤Mn+1 for every n ∈ N0.
(α1) M is logarithmically convex if M2

n ≤Mn−1Mn+1 for every n ∈ N.
(µ) M is of moderate growth if there exists A > 0 such that

(3) Mn ≤ An inf
k, l∈N0, k+l=n

MkMl, n ∈ N0.

(γ) M satisfies the non-quasianalyticity condition if
∞∑
n=0

Mn

(n+ 1)Mn+1
<∞.

(γ1) M satisfies the strong non-quasianalyticity condition if there exists
B > 0 such that∑

`≥n

M`

(`+ 1)M`+1
≤ B Mn

Mn+1
, n ∈ N0.

It is obvious that (γ1)⇒(γ).



114 A. Lastra and J. Sanz

Definition 2.2. A sequence M is said to be strongly regular if it has
properties (α0), (α1), (µ) and (γ1).

Remark 2.3. Of course, for a strongly regular sequenceM the constants
A and B above may be taken to be equal, and they cannot be less than 1.
It is easy to deduce that (α1) and (γ) together imply

lim
n→∞

Mn+1

Mn
= lim

n→∞
M1/n
n =∞.(4)

We also note that we will mainly work with spaces of C∞ or analytic func-
tions defined by restricting the growth of their derivatives in terms of the
sequence N := {n!Mn}n∈N0 . However, some authors prefer to work directly
in terms of the sequence N , which leads to a reformulation of the conditions
for strong regularity (see, for example, H. Komatsu [9] or J. Bruna [2]). In
particular, if M is logarithmically convex, so is N , but the converse does
not necessarily hold.

Following [22], we next define the growth index of a strongly regular
sequence.

Definition 2.4. Let γ > 0. A strongly regular sequence M is said to
have property (Pγ) if there exist a sequence p = {pn}n∈N0 and a constant
a ≥ 1 such that:

(i) a−1Mn+1 ≤Mnpn ≤ aMn+1 for all n ∈ N0,
(ii) {(n+ 1)−γpn}n∈N0 is increasing.

Proposition 2.5 ([22, Lemma 1.3.2]). Let M be a strongly regular se-
quence. Then:

(i) There exists γ > 0 such that (Pγ) holds, and there exists a1 > 0 such
that

an1n!γ ≤Mn, n ∈ N0.

(ii) There exist δ > 0 and a2 > 0 such that

Mn ≤ an2n!δ, n ∈ N0.

Definition 2.6. The growth index of a strongly regular sequence M is
defined as

γ(M) := sup {γ ∈ R : (Pγ) holds} .

According to Proposition 2.5, we have γ(M) ∈ (0,∞).

Example 2.7. The most outstanding example of strongly regular se-
quences is that of Gevrey sequences, M = {n!α}n∈N0 for α > 0. It is plain
to check that, in this case, γ(M) = α.
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3. Extension results for ultraholomorphic classes. Now we intro-
duce the ultraholomorphic classes we need. For convenience, given d ∈ R
and θ > 0 we consider sectors in the Riemann surface Σ of the logarithm
with bisecting direction d and opening θπ,

Sd,θ = {z ∈ Σ : |arg z − d| < θπ/2}.

For a sequence M of positive real numbers and a constant q ∈ N, we define
the class AM ,q(Sd,θ) consisting of the holomorphic functions f : Sd,θ → C
such that

‖f‖M ,q := sup
z∈Sd,θ, n∈N0

|f (n)(z)|
qnn!Mn

<∞,

and the corresponding space of sequences of complex numbers,

ΛM ,q :=
{
µ = {µn}n∈N0 : |µ|M ,q := sup

n∈N0

|µn|
qnn!Mn

<∞
}
.

(ΛM ,q, | |M ,q) and (AM ,q(Sd,θ), ‖ ‖M ,q) are Banach spaces. Since the deriva-
tives of an element f ∈ AM ,q(Sd,θ) are Lipschitzian in Sd,θ, they all extend
continuously to Sd,θ, and in particular to 0, and we put

f (n)(0) := lim
z→0, z∈Sd,θ

f (n)(z), n ∈ N0.

The Borel map B, sending f to {f (n)(0)}n∈N0 , is then easily seen to be linear
and continuous fromAM ,q(Sd,θ) to ΛM ,q. The next result, due to V. Thilliez,
generalizes the Borel–Ritt–Gevrey theorem [16, 17] by the construction of
continuous right inverses for B, and improves previous statements in this
direction by the same author [21], J. Schmets and M. Valdivia [20], and
J. Sanz [19].

Theorem 3.1 ([22, Theorem 3.2.1]). Let M be a strongly regular se-
quence, d ∈ R, and θ be a real number with 0 < θ < γ(M). Then there
exists c ∈ N, depending only on M and θ, such that for every q ∈ N there
exists a linear continuous map

UM ,q,θ : ΛM ,q → AM ,cq(Sd,θ)

with B ◦ UM ,q,θ = IdΛM,q
.

Remark 3.2. Our first result, coming next, shows that the condition
0 < θ < γ(M) is, under a simple assumption, indeed necessary for such
extension operators to exist. The proof is an adaptation of the one supplied
by J. Schmets and M. Valdivia for a similar statement regarding Gevrey
classes [20, Theorem 5.11], which is thus generalized.
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Proposition 3.3. Let M be a strongly regular sequence, d ∈ R and
θ > 0, and suppose

∞∑
n=0

(
Mn

Mn+1

)1/γ(M)

=∞.(5)

If there exists q ∈ N and a function f ∈ AM ,q(Sd,θ) such that f (n)(0) = δ1,n
for every n ∈ N0 (δ1,n is Dirac’s delta), then θ < γ(M).

Proof. Of course, it is enough to reason for d = 0. Since f is bounded on
S0,θ, the function ϕ : S0,θ → C, ϕ(z) = f(z)− z, does not vanish identically
in S0,θ. By Taylor’s formula at 0, there exists A > 0 such that for every
z ∈ S0,θ with |z| ≤ 1,

|ϕ(z)| ≤ AqnMn|z|n, n ∈ N0.

Hence, the holomorphic function ψ : {z ∈ C : <(z) > 0} → C, defined by
ψ(u) = ϕ(1/uθ), is not identically 0 and

|ψ(u)| ≤ AqnMn

|u|θ n
, n ∈ N0, <(u) ≥ 1.

Now, we can apply Theorem 2.4.III of [13] and, taking into account (4), we
deduce that

∞∑
n=0

(
Mn

Mn+1

)1/θ

<∞.

But, according to (5), this would be impossible if we had θ ≥ γ(M).

The previous proposition has two easy consequences. Firstly, if for a
strongly regular sequence M we define

ΛM :=
⋃
q∈N

ΛM ,q, AM (Sd,θ) :=
⋃
q∈N
AM ,q(Sd,θ),

Theorem 3.1 tells us that the Borel map B : AM (Sd,θ) → ΛM is onto
whenever θ < γ(M). We have the following converse.

Corollary 3.4. Let M be a strongly regular sequence satisfying (5),
d ∈ R and θ ≥ γ(M). Then the Borel map B : AM (Sd,θ) → ΛM is not
onto.

Secondly, since {δ1,n}n∈N0 ∈ ΛM ,q for every q ∈ N, we deduce the fol-
lowing.

Corollary 3.5. Let M be a strongly regular sequence satisfying (5),
d ∈ R and θ ≥ γ(M). Then, given arbitrary q, c ∈ N, there does not exist a
linear continuous operator U : ΛM ,q → AM ,cq(Sd,θ) with B ◦ U = IdΛM,q

.
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Example 3.6. For α > 0 and β ∈ R, let us consider the sequence
P = {Pn}n≥2 given by

Pn = n!α
( n∏
k=2

log(k)
)β
, n ≥ 2.

It is not difficult to check that there exists n0 ≥ 2 such that the sequence
M = {Mn}n∈N0 , where

Mn =
Pn+n0

Pn0

, n ∈ N0,

is strongly regular and γ(M) = α. Moreover, it is plain to see that the
condition (5) holds for M if, and only if, β ≤ α (which, in particular, is true
for Gevrey sequences, arising when β = 0).

Remark 3.7. Using a result of B. I. Korenblyum [10], V. Thilliez [22]
states that the class AM (Sd,θ) is quasianalytic (i.e., a function f in the class
such that B(f) = 0 must identically vanish) if, and only if,

∞∑
n=0

(
Mn

(n+ 1)Mn+1

)1/(θ+1)

=∞.(6)

Thanks to [22, Lemma 2.2.1], he deduces that if θ < γ(M), then the class is
non-quasianalytic. We point out that the converse also holds whenever the
condition (5) is satisfied. Indeed, if the class is non-quasianalytic, it suffices
to choose a function f0 in this class, not identically 0 and with B(f0) = 0,
and then repeat the proof of Proposition 3.3 starting from the consideration
of the function ϕ, which must be set equal to f0.

In particular, we have obtained the following result, which, according to
the previous example, extends the classical Watson lemma, valid for Gevrey
classes.

Proposition 3.8 (Generalized Watson lemma). Let M be a strongly
regular sequence satisfying (5), and θ ≥ γ(M). Then AM (Sd,θ) is quasian-
alytic, or , in other words, (6) holds.

4. General Gelfand–Shilov spaces. We begin by defining some sub-
spaces of the Schwartz space S(R) of rapidly decreasing smooth functions.
Let M be a sequence of positive real numbers, and q ∈ N.

Definition 4.1. The space SM ,q consists of those f ∈ S(R) such that
for each n ∈ N0,

sup
x∈R,m∈N0

|xmf (n)(x)|
qmm!Mm

<∞.

We set SM :=
⋃
q∈N SM ,q.
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SM ,q becomes a Fréchet space when endowed with the topology gener-
ated by the family (pn)n∈N0 of seminorms, defined as

pn(f) = sup
x∈R,m∈N0

|xmf (n)(x)|
qmm!Mm

, f ∈ SM ,q.

Of course, SM ,q(0,∞) := {f ∈ SM ,q : supp(f) ⊂ [0,∞)} is also a Fréchet
space.

Definition 4.2. The space SM ,q consists of the functions f ∈ S(R)
such that for each m ∈ N0,

sup
x∈R, n∈N0

|xmf (n)(x)|
qnn!Mn

<∞.

We put SM :=
⋃
q>0 SM ,q.

SM ,q is again a Fréchet space with the topology generated by the family
(pm)m∈N0 , where

pm(f) = sup
x∈R, n∈N0

|xmf (n)(x)|
qnn!Mn

.

The space SM ,q(0,∞) is defined accordingly.

Remark 4.3. The spaces SM and SM are named (general) Gelfand–
Shilov spaces [8] (although our notation slightly differs from the original
one). In caseM = {n!α−1}n∈N0 with α > 1, we obtain the classical Gelfand–
Shilov spaces, usually denoted by Sα and Sα, respectively.

The following results, needed later, describe how the Fourier transform

f̂(w) = F(f)(w) =
∞�

−∞
f(t)e−iwt dt, w ∈ R,

and its inverse

F−1(g)(x) =
1

2π

∞�

−∞
g(w)eiwx dw =

1
2π
F(g)(−x),(7)

act on the subspaces of S(R) we have just introduced. Although a proof of
Propositions 4.4 and 4.5 can be obtained by suitably modifying the argu-
ments in [8, Section IV.6], for the convenience of the reader we will sketch
them. In each of them, we impose the simplest hypotheses onM , all satisfied
by a strongly regular sequence.

Proposition 4.4. Let M be an increasing sequence of positive real num-
bers, and q ∈ N. Then F(SM ,q) ⊆ SM ,q, F−1(SM ,q) ⊆ SM ,q, and the maps

F ,F−1 : SM ,q → SM ,q

are linear and continuous.
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Proof. In view of (7), it suffices to prove the assertion for F . Let
φ ∈ SM ,q, w ∈ R, and m,n ∈ N0 be given. By differentiating under the
integral sign and applying integration by parts m times, we see that

|wmφ̂(n)(w)| =
∣∣∣ ∞�
−∞

(tnφ(t))(m)e−iwt dt

∣∣∣∣(8)

≤
min {m,n}∑

k=0

(
m

k

)
n!

(n− k)!

[ 1�

−1

|tn−kφ(m−k)(t)| dt

+
∞�

1

|tn+2−kφ(m−k)(t)| dt
t2

+
−1�

−∞
|tn+2−kφ(m−k)(t)| dt

t2

]
.

Since

|tνφ(m−k)(t)| ≤ qm−k(m− k)!Mm−kp
ν(φ), t ∈ R, m, k, ν ∈ N0, k ≤ m,

we deduce that

|wmφ̂(n)(w)| ≤
min {m,n}∑

k=0

(
m

k

)
2n!qm−k(m− k)!Mm−k

(n− k)!
(pn−k(φ)+pn+2−k(φ)).

Hence, as M is increasing,

sup
w∈R,m∈N0

|wmφ̂(n)(w)|
qmm!Mm

≤ sup
m∈N0

min {m,n}∑
k=0

(
n

k

)
Mm−k
Mm

2
qk

(pn−k(φ) + pn+2−k(φ))

≤
n∑
k=0

(
n

k

)
2
qk

(pn−k(φ) + pn+2−k(φ)) <∞,

and we conclude that φ̂ ∈ SM ,q and F : SM ,q → SM ,q is continuous.

Proposition 4.5. Let M be an increasing sequence of moderate growth.
Then there exists c ∈ N (depending on M) such that for every q ∈ N we
have F(SM ,q) ⊆ SM ,cq, F−1(SM ,q) ⊆ SM ,cq, and the maps

F ,F−1 : SM ,q → SM ,cq

are linear and continuous.

Proof. It is again enough to work with F . Given φ ∈ SM ,q, we have

|tνφ(m−k)(t)| ≤ qνν!Mνpm−k(φ), t ∈ R, ν, k,m ∈ N0, k ≤ m,

Consequently, if one starts from the inequality (8), for w ∈ R and m,n ∈ N0
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one gets

|wmφ̂(n)(w)| ≤
min {m,n}∑

k=0

(
m

k

)
2pm−k(φ)n!

(n− k)!

× [qn−k(n− k)!Mn−k + qn−k+2(n− k + 2)!Mn−k+2].

Then, for a constant c ∈ N, with c > 1, to be determined, one can write

sup
w∈R, n∈N0

|wmφ̂(n)(w)|
(cq)nn!Mn

≤ sup
n∈N0

min {m,n}∑
k=0

2
(
m

k

)
pm−k(φ)

[
Mn−k
Mncnqk

+ ηk,n

]
,

where

ηk,n =
Mn−k+2(n− k + 2)!
cnqk−2Mn(n− k)!

.

On the one hand, as M is increasing and c > 1, it is clear that
Mn−k
Mncnqk

≤ 1
(cq)k

.

On the other hand, if A ≥ 1 is the constant involved in the moderate growth
of M and we choose c > A, it is not difficult to check that

sup{ηk,n : n ∈ N0, 0 ≤ k ≤ min {m,n}} = C <∞.
Hence, one finds

sup
w∈R, n∈N0

|wmφ̂(n)(w)|
(cq)nn!Mn

≤
m∑
k=0

2
(
m

k

)
pm−k(φ)

(
1

(cq)k
+ C

)
,

and the conclusions easily follow.

Remark 4.6. The previous two propositions allow us to assert that, if
M is an increasing sequence of moderate growth, then

F(SM ) = SM and F(SM ) = SM .

Another consequence of these results is the following characterization for
the Fourier transforms of the elements of SM (0,∞), generalizing a similar
statement for classical Gelfand–Shilov spaces (see [4, Lemma 2.4]).

Proposition 4.7. Let M be an increasing sequence of moderate growth,
q ∈ N, and ψ be a complex function defined in R. The following statements
are equivalent :

(i) ψ is the Fourier transform of a function φ ∈ SM ,c1q(0,∞) (for a
certain c1 ∈ N).

(ii) ψ ∈ SM ,c2q (for a certain c2 ∈ N), and ψ may be extended to a
function Ψ , continuous in U = {z ∈ C :=(z) ≤ 0}, analytic in U =
S−π/2,1, and such that Ψ → 0 as z →∞ in U .
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5. Stieltjes moment problem in SM (0,∞). In this section we will
generalize Theorem 1.2 in two respects: the exponents of t in the integrals
defining the moments may be a sequence more general than just {n}n∈N0 ,
and the function f may be chosen in the space SM (0,∞), for a sequence M
subject to some mild conditions. In the authors’ opinion, it is not possible
to obtain any of these two enhancements by following the same argument
as in [3].

We will make use of the following result of Denjoy–Carleman–Mandel-
brojt, whose proof may be found in [9, Theorem 4.2].

Lemma 5.1. Suppose M = {Mn}n∈N0 is a sequence which satisfies (γ)
and such that {n!Mn}n∈N0 satisfies (α1). Then there exists a C∞ function
ϕ : R → [0,∞), not identically 0, such that supp(ϕ) ⊂ [0, 1], and such that
there exists q ∈ N with

sup
x∈[0,1], n∈N0

|ϕ(n)(x)|
qnn!Mn

<∞.

Remark 5.2. By the very definition of the Gelfand–Shilov spaces, it is
clear that the function ϕ in the above lemma belongs to SM (0,∞).

Also, we note that for every α ∈ R and every f ∈ SM (0,∞), the integral
∞�

0

tαf(t) dt

makes sense, since for every ν ∈ N we have

lim
t→0

f(t)
tν

= 0, lim
t→∞

tνf(t) = 0.

We proceed to the statement of our result, whose proof is based on an idea
of A. Yu. Popov [15].

Theorem 5.3. Let M = {Mn}n∈N0 be a sequence as in Lemma 5.1.
Let {αn}n∈N0 be a sequence of real numbers such that αm 6= αn whenever
m 6= n, and limn→∞ αn = +∞. Then for any sequence {µn}n∈N0 of complex
numbers there exists f ∈ SM (0,∞) such that

∞�

0

tαnf(t) dt = µn, n ∈ N0.

Proof. We fix the function ϕ and the natural number q provided by the
lemma, and put

ϕn :=
1�

0

tαnϕ(t) dt > 0, n ∈ N0.

We choose a real number r > 1. Then rαn 6= rαm for n 6= m, and limn→∞ r
αn

= ∞. So, by a standard consequence of the theorem of Mittag-Leffler
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(see [18, p. 134]), there exists an entire function g(z) =
∑∞

k=0 akz
k such

that

g(rαn) = µn/ϕn, n ∈ N0.

We set, at least formally,

f(t) =
∞∑
k=0

akr
−kϕ(r−kt), t ∈ R.(9)

Given m,n ∈ N0, on the one hand we know there exists C = C(ϕ) > 0 such
that

|tmϕ(n)(t)| ≤ Cqnn!Mn, t ∈ R.

On the other hand, since g is entire, cm :=
∑∞

k=0 |ak|rmk < ∞. Then we
can estimate the product of tm times the nth formal derivative of the series
in (9) as follows:∣∣∣tm ∞∑

k=0

akr
−k(r−k)nϕ(n)(r−kt)

∣∣∣ ≤ ∞∑
k=0

|ak|r(m−n−1)k|(r−kt)mϕ(n)(r−kt)|

≤ Cqnn!Mn

∞∑
k=0

|ak|rmk = Ccmq
nn!Mn.

This estimate shows that f is well defined and belongs to SM (0,∞); more-
over, we can apply the Lebesgue convergence theorem to deduce that, for
every n ∈ N0,

∞�

0

tαnf(t) dt =
∞∑
k=0

akr
−k
∞�

0

tαnϕ(r−kt) dt

=
∞∑
k=0

akr
αnk

∞�

0

uαnϕ(u) du = g(rαn)ϕn = µn,

as desired.

6. Stieltjes moment problem in SM ,q(0,∞). Regarding the mo-
ments of an element in SM , we have the following result.

Proposition 6.1. Let M be a sequence of moderate growth. Then there
exists c ∈ N, c > 1, such that whenever f ∈ SM ,q(0,∞) for some q ∈ N,
one has M(f) := {µn(f)}n∈N0 ∈ ΛM ,cq, and the moment map M :
SM ,q(0,∞)→ ΛM ,cq is continuous.

Proof. Let A ≥ 1 be the constant appearing in (3), and fix c ∈ N with
c > A. Choose C > 0 such that

An(n+ 2)(n+ 1) ≤ Ccn, n ∈ N0.



Stieltjes moment problem 123

For q ∈ N, f ∈ SM ,q(0,∞) and n ∈ N0 one has

|µn(f)| ≤
1�

0

|xnf(x)| dx+
∞�

1

|xn+2f(x)| dx
x2

≤ qnn!Mnp0(f) + qn+2(n+ 2)!Mn+2p0(f)
≤ qnn!Mnp0(f)[1 + q2(n+ 2)(n+ 1)An+2M2]
≤ 2q2A2M2Cp0(f)(cq)nn!Mn,

so

|M(f)|M ,cq = sup
n∈N0

|µn(f)|
(cq)nn!Mn

≤ 2q2A2M2Cp0(f),

from which the conclusion follows.

Our main goal in this section is to obtain a converse of the last statement,
as follows.

Theorem 6.2. Let M be a strongly regular sequence with γ(M) > 1.
Then there exists c ∈ N (depending on M) such that for every q ∈ N there
is a linear continuous map

TM ,q : ΛM ,q → SM ,cq(0,∞)

such that M◦ TM ,q = IdΛM,q
.

This result generalizes a previous result by the authors, where only the
spaces Sα(0,∞), with α > 2, were considered (see Remark 4.3).

Remark 6.3. We briefly outline the proof in order to clarify the steps
to follow. Given µ = {µn}n∈N0 ∈ ΛM ,q, we are searching for a function
TM ,q(µ) ∈ SM ,cq(0,∞) (for some c ∈ N) such that

∞�

0

tn · TM ,q(µ)(t) dt = µn, n ∈ N0.

Hence, if we put ψ = F(TM ,q(µ)), we easily deduce that

ψ(n)(0) = (−i)n
∞�

0

tn · TM ,q(µ)(t) dt = (−i)nµn, n ∈ N0.(10)

We will build a function satisfying (10), and this will be done in such a way
that its inverse Fourier transform belongs to SM ,cq(0,∞). Indeed, ψ will be
the restriction to the real axis of the product of two other functions, both
holomorphic in suitable sectors containing R \ {0}. The first one will be an
auxiliary function, say G, tending to 0 as |z| tends to infinity, and the second
one will be a function F , in some ultraholomorphic class AM ,c̃q(S−π/2,θ)
(where c̃ ∈ N and θ > 1), whose derivatives at 0 are determined according



124 A. Lastra and J. Sanz

to Leibniz’s rule in order to satisfy the equality of the first and last terms
in (10): indeed, if (1/G)(n)(0) = an, n ∈ N0, one must require

F (n)(0) =
n∑
k=0

(
n

k

)
(−i)kµkan−k, n ∈ N0.(11)

Since this last sequence {F (n)(0)}n∈N0 turns out to belong to ΛM ,c1q for
suitable c1 ∈ N (see Proposition 6.4), such an F will be obtained thanks to
the operators UM ,q,θ in Theorem 3.1.

We next describe the auxiliary function to be used later on. For τ > 1
and H = C− {iy : y ≥ 1} we define the function

hτ (z) = eπi(1+1/(2τ))(z − i)1/τ , z ∈ H,

where the determination of the logarithm is specified by

arg(z − i) ∈ (−3π/2, π/2).

The function Gτ : H → C given by

Gτ (z) = exp(hτ (z)), z ∈ H,(12)

is holomorphic in H and does not vanish, so that 1/Gτ is analytic in H (and,
in particular, at 0). The relevant feature (see [12, Lemma 4.10]) is that, if ε
is such that 0 < ε < min{π(τ − 1)/2, π/2}, then Gτ (z) tends to 0 as z tends
to ∞ in the sector

Vε = {z ∈ H : arg(z − i) ∈ (−π − ε, ε)}.(13)

The following result regards the map, defined between sequence spaces,
given by the relations in (11).

Proposition 6.4. Let M be an increasing sequence, and let {an}n∈N0

be the sequence of derivatives at 0 of a function g, holomorphic at that point.
Then there exists c ∈ N such that for every q ∈ N, the map

T1 : ΛM ,q → ΛM ,cq,

µ = {µn}n∈N0 7→ b = {bn}n∈N0 , bn =
n∑
k=0

(
n

k

)
(−i)kµkan−k,

is well defined , linear and continuous.

Proof. Let % ∈ (0,∞] be the radius of convergence of the Taylor series
of g at 0, and choose c ∈ N such that 1/(cq) < % if % is finite; otherwise, c
may be any integer greater than 1. Since M is increasing, for every n ∈ N0
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we have

|bn|
(cq)nn!Mn

≤
n∑
k=0

(
n

k

)
|µ|M ,qq

kk!Mk|an−k|
cn−kqnn!Mn

≤ |µ|M ,q

n∑
k=0

|an−k|
(n− k)!(cq)n−k

≤ |µ|M ,q

∞∑
k=0

|ak|
k!(cq)k

<∞.

Hence b ∈ ΓM ,cq, and the continuity of T1 follows.

Next we deal, firstly, with the product of an element in some class
AM ,q(S−π/2,θ) and a holomorphic function bounded at infinity, and secondly,
with its restriction to the real axis when this bounded function is Gτ . Simi-
lar results were proven in [12, 4.11 and 4.13] for the case M = {n!α−1}n∈N0 ,
with α > 1. Since the arguments are essentially the same, we just state
the following two results under the least restrictive assumptions on the se-
quence M .

Lemma 6.5. Let M be an increasing sequence. Suppose θ > 1 and ε > 0
are such that the sector Vε, defined in (13), contains the sector S−π/2,θ, and
suppose G is a holomorphic function in Vε such that for suitable M,R > 0
we have

|G(z)| ≤M for all z ∈ Vε with |z| ≥ R.

Then there exists c ∈ N such that for every q ∈ N and f ∈ AM ,q(S−π/2,θ)
one has fG ∈ AM ,cq(S−π/2,θ).

Proposition 6.6. Let M , θ > 1 and ε > 0 be as in the previous result.
For τ > 1, let Gτ : Vε → C be the function defined in (12). Then there exists
c ∈ N such that for every q ∈ N:

(i) For every F ∈ AM ,q(S−π/2,θ) one has FGτ |R ∈ SM ,cq.
(ii) The map

T2 : AM ,q(S−π/2,θ)→ SM ,cq, F → T2F = (FGτ )|R,

is linear and continuous.

Remark 6.7. In the conditions of the previous result, U = S−π/2,1 sat-
isfies U ⊆ S−π/2,θ. So, given F ∈ AM ,q(S−π/2,θ), the function (FGτ )|U is
continuous in U , analytic in U , extends T2F , and

lim
z→∞, z∈U

(FGτ )|U (z) = 0.

In view of Proposition 4.7, T2F is the Fourier transform of a function in
SM ,cq(0,∞), with suitable c ∈ N.

Finally, we end up with the proof of our main result.
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Proof of Theorem 6.2. Fix τ > 1, and let an := (1/Gτ )(n)(0), n ∈ N0.
Proposition 6.4 gives us c1 ∈ N and the linear continuous map T1 de-
fined by means of {an}n∈N0 . Choose θ ∈ (1, γ(M)). According to Theo-
rem 3.1, there exist c2 ∈ N and a linear continuous map UM ,c1q,θ such that
B ◦ UM ,c1q,θ = IdΛM,c1q

. Then Proposition 6.6 gives a constant c3 ∈ N and
a linear continuous map

T2 : AM ,c2c1q(S−π/2,θ)→ SM ,c3c2c1q.

By Proposition 4.4 we know that F−1 sends SM ,c3c2c1q into SM ,c3c2c1q con-
tinuously. Setting c = c3c2c1 ∈ N, it is easy to check (see Remarks 6.3
and 6.7) that

TM ,q := F−1 ◦ T2 ◦ UM ,c1q,θ ◦ T1 : ΛM ,q → SM ,cq(0,∞)

solves the problem.

We now turn our attention to the necessity of the conditions in Theo-
rem 6.2.

Proposition 6.8. Let M be a strongly regular sequence satisfying (5).
If there exists q ∈ N and a function f ∈ SM ,q(0,∞) such that µn(f) =
(−1)nδ1,n for every n ∈ N0, then γ(M) > 1.

Proof. We consider the Laplace transform of f ,

g(z) =
∞�

0

e−ztf(t) dt.

The function g is clearly defined for <(z) ≥ 0, where it is continuous, and it
is holomorphic in H = {z ∈ C : <(z) > 0}. Moreover, since for any n ∈ N0

we have
|tnf(t)| ≤ p0(f)qnn!Mn, t ∈ (0,∞),

for every z with <(z) ≥ 0 we deduce that

|g(n)(z)| ≤
∞�

0

|(−1)ne−zttnf(t)| dt ≤
1�

0

|tnf(t)| dt+
∞�

1

|tn+2f(t)| dt
t2

≤ p0(f)qnn!Mn + p0(f)qn+2(n+ 2)!Mn+2.

As in the proof of Proposition 6.1, we see there exists c ∈ N, c > 1, such
that g ∈ AM ,cq(S0,1). But we also have

g(n)(0) =
∞�

0

(−1)ntnf(t) dt = (−1)nµn(f) = δ1,n, n ∈ N0.

Then Proposition 3.3 ensures that 1 < γ(M).

For a strongly regular sequence M with γ(M) > 1, Theorem 6.2 allows
us to assert that M : SM (0,∞)→ ΛM is onto. Conversely, we have
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Corollary 6.9. Let M be a strongly regular sequence satisfying (5)
and with γ(M) ≤ 1. Then:

(i) The map M : SM (0,∞)→ ΛM is not onto.
(ii) For arbitrary q, c ∈ N, there does not exist a linear continuous oper-

ator
T : ΛM ,q → SM ,cq(0,∞)

with M◦ T = IdΛM,q
.

Remark 6.10. The previous results give a complete solution of the
Stieltjes moment problem in the general Gelfand–Shilov spaces SM (0,∞)
under condition (5). This includes the case of the classical spaces Sα(0,∞).

Finally, we obtain a result on the necessity of condition (γ1).

Proposition 6.11. Suppose M = {Mn}n∈N0 is a sequence which satis-
fies (γ) and such that {n!Mn}n∈N0 satisfies (α1). If there exist q, c ∈ N and
a linear continuous operator T : ΛM ,q → SM ,cq(0,∞) such that M ◦ T =
IdΛM,q

, then the sequence M satisfies (γ1).

Proof. The map {µn}n∈N0 → {µn/(−i)n}n∈N0 is an isomorphism, say ρ,
in ΛM ,q. For r ∈ N, consider the space EM,r[−1, 1] consisting of the functions
f ∈ C∞[−1, 1] such that |f |[−1,1],r <∞, where

|f |[−1,1],r = sup
n∈N0, x∈[−1,1]

|f (n)(x)|
rnn!Mn

.

(EM,r[−1, 1], | |[−1,1],r) is a Banach space, and the restriction map j : SM,r →
EM,r[−1, 1] is well-defined, linear and continuous, since

|f |[−1,1],r = sup
x∈[−1,1], n∈N

|f (n)(x)|
rnn!Mn

≤ p0(f), f ∈ SM,r.

Now, applying Proposition 4.5, it is easy to check that there exists c1 ∈ N
such that the map T1 := j ◦ F ◦ T ◦ ρ is linear continuous from ΛM ,q to
EM,c1q[−1, 1] and satisfies B ◦ T1 = IdΛM,q

. It suffices to take into account
Theorem 3.6 in the paper of H.-J. Petzsche [14] to conclude.
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