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What is a Sobolev space for the Laguerre function systems?

by

B. Bongioanni (Santa Fe) and J. L. Torrea (Madrid)

Abstract. We discuss the concept of Sobolev space associated to the Laguerre op-

erator Lα = −y d2

dy2
− d

dy
+ y

4
+ α2

4y
, y ∈ (0,∞). We show that the natural definition

does not agree with the concept of potential space defined via the potentials (Lα)−s. An
appropriate Laguerre–Sobolev space is defined in order to achieve that coincidence. An
application is given to the almost everywhere convergence of solutions of the Schrödinger
equation. Other Laguerre operators are also considered.

1. Introduction. We start with a naive description of our aim in writ-
ing this paper. Let L be a linear second order differential operator, selfadjoint
with respect to a certain measure µ. Different techniques (see for example
(2)) allow us to define the “Riesz potentials” L−s, s > 0. Therefore, we
can consider the “potential space” Lps, 1 < p < ∞, as L−s/2(Lp(µ)), the
collection of functions f such that there exists g ∈ Lp(µ) with f = L−s/2(g).

In general, the second order operator L admits a certain factorization
L =

∑
iD∗iDi, where the Di are first order differential operators with ad-

joints D∗i (with respect to µ). Then it is also usual to define the “Riesz trans-
forms” Ri = Di ◦ L−1/2 and analyze their boundedness on Lp(µ) (see [16],
[20]). Several motivations can be given for the study of these Riesz trans-
forms. For example, the boundedness in Lp of operators like D2

i ◦L−1 (usually
called Riesz transforms of second order) leads rather easily to “a priori” esti-
mates in Lp for the equation Lu = f : just observe that ‖D2

i ◦L−1g‖p ≤ C‖g‖p
can be written in this case as ‖D2

i u‖p ≤ C‖f‖p.
A second motivation (in fact the motivation of this note) is the follow-

ing. Given a natural number k, let us define the (Sobolev) space W k
p as

the collection of functions in Lp such that the kth derivatives Dki f belong
to Lp. Suppose that the Riesz transforms of order k, Dki ◦ L−k/2, satisfy
‖Dki ◦ L−k/2f‖p ∼ ‖f‖p. This last equivalence could be written (at least
formally) as ‖Dki f‖p ∼ ‖Lk/2f‖p. In other words, the spaces W k

p and Lpk
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would coincide. As the spaces Lps have a meaning for all s > 0 (even non-
integer), one could say that the potential space Lps is the space of functions
in Lp whose “sth derivative” is in Lp. We observe that if ϕn is an eigen-
function of L with eigenvalue λn 6= 0 then L−sϕn = λ−sn ϕn. Hence the last
interpretation of the sth derivative is particularly simple to understand.

If the above ideas are directly applied to the Laguerre differential oper-
ator (for Laguerre functions), one finds something that can be considered
a surprise. The expected definition of Sobolev space of order k, that is, the
set of functions in Lp such that the derivatives (according to the natural
factorization of the differential operator) of order k belong to Lp, does not
match the definition of potential spaces (see Definitions 2–4 and Theorems
3 and 2). The main purpose of the paper is to clarify and make precise what
could be the most appropriate definition of Sobolev spaces for the Laguerre
operator. Our work was inspired by [21] and [13].

It is a common fact that if a concept is developed for Laguerre functions
then the analogous concept can be developed in an easier way for Hermite
functions. That happens in this work and so we devote Section 2 to Hermite
functions. A comment about the dimension is in order here. The motivation
of this paper is essentially one-dimensional, but in the case of Hermite func-
tions, the theory has no added difficulty in several variables, so we present
our results for the Hermite operator in that context.

The knowledge of a sharp enough power weighted theory for a Laguerre
function system can be transferred to another Laguerre function system (see
[1]). That is why we develop a weighted theory of Sobolev and potential
spaces for a particular system of Laguerre functions and then we transfer it
in an easy way to other systems (see Section 5).

Finally, in the last section we present a simple application to the point-
wise convergence of solutions of the Schrödinger equation.

We discuss briefly the case of the Hermite operator

(1) H = −∆+ |x|2, x ∈ Rd.

H is self-adjoint on the set C∞c (R) of infinitely differentiable functions with
compact support. The underlying measure will be the Lebesgue measure.

For each s > 0, the Hermite potential, H−s, is defined for f ∈ L2(R, dx),
by the formula

(2) H−sf(x) =
1

Γ (s)

∞�

0

e−tHf(x) ts
dt

t
, x ∈ Rd,

where {e−tH}t≥0 is the heat semigroup associated to H. The corresponding
potential spaces, Lps(w) = H−s/2(Lp(w)), are defined in (6) with respect to
an absolutely continuous measure w(x)dx, w being a weight in Ap. For the
reader’s convenience we recall that a positive function w is said to belong
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to the Muckenhoupt class Ap, 1 < p <∞, if the Hardy–Littlewood maximal
operator is bounded from Lp(w(x)dx) into Lp(w(x)dx), and w is said to
belong to the class A1 if the Hardy–Littlewood maximal operator is bounded
from L1(w(x)dx) into weak-L1(w(x)dx).

The operator H can be factorized as H = 1
2

∑d
j=1(AjA−j +A−jAj) (see

(7)), where Aj and A−j are first order differential operators.

Definition 1. Given k ∈ N, the Hermite–Sobolev space of order k,
denoted by W k,p(w), is the set of functions f ∈ Lp(w) such that

m times︷ ︸︸ ︷
Aj · · ·Aj f = Amj f ∈ Lp(w), 1 ≤ m ≤ k, 1 ≤ j ≤ d,

with the norm

‖f‖Wk,p(w) =
d∑
j=1

∑
1≤m≤k

‖Amj f‖Lp(w) + ‖f‖Lp(w).

The following theorem will be proved in Section 2.

Theorem 1. Let k ∈ N, 1 < p <∞, and w ∈ Ap. Then

W k,p(w) = L
p
k(w),

and the norms ‖ · ‖Wk,p(w) and ‖ · ‖Lpk(w) are equivalent.

Of course, to prove this theorem, we shall need a boundedness result for
higher order Riesz transforms (see Theorem 5).

Regarding the Laguerre operator

(3) Lα = −y d2

dy2
− d

dy
+
y

4
+
α2

4y
, y ∈ (0,∞),

selfadjoint in the set Cc(0,∞), there is a natural domain of power weights yδ

for the boundedness on Lp((0,∞), yδdy) of classical operators associated
to Lα (see [1]), namely for α > −1, 1 < p <∞ and δ ∈ R,

(4) (Cα) − α

2
p− 1 < δ < p− 1 +

α

2
p.

In a parallel way to the Hermite case, we can define appropriate potential
spaces for Laguerre functions.

Definition 2. Given α > −1, 1 < p <∞, s > 0 and δ ∈ R we define

Wp
α,s(y

δ) = (Lα)−s/2[Lp((0,∞), yδdy)]

with the norm ‖f‖Wp
α,s(yδ)

= ‖g‖p,δ, where (Lα)−s/2g = f .

On the other hand, the Laguerre operator can be factorized as Lα =
(δα)∗δα + (α+ 1)/2 (see (11)). Following the ideas we developed for the
Hermite case, one can give the following.
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Definition 3. We denote by Wk,p
α (yδ) the set of functions f in

Lp((0,∞), yδdy) such that (δα)mf ∈ Lp((0,∞), yδdy), 0 ≤ m ≤ k, with
the norm

‖f‖Wk,p
α (yδ)

=
k∑

m=0

‖(δα)mf‖Lp((0,∞),yδdy).

However, even though we shall prove (see Theorem 10) that the higher
order Riesz transforms (δα)k(Lα)−k/2 are bounded in Lp(yδdy) for δ satis-
fying (Cα), the “Sobolev” spaces Wk,p

α (yδ) are different from the potential
spaces W

p
α,k(y

δ). In fact, we have the following

Theorem 2. Let 1 < p <∞.
(i) Let α > −1 and let δ satisfy (Cα). Then W

p
α,k(y

δ) ⊂ Wk,p
α (yδ).

(ii) Let −1 < α ≤ 0. Then W2
α,2 6=W

2,2
α .

(iii) Let α > 0 and let δ satisfy (Cα−1). Then W
p
α,2(yδ) =W2,p

α (yδ).

This result suggests that the iterations of the operators δα are not good
substitutes for the notion of fractional derivative in this case. Looking at
the actual action of these operators on the set of eigenfunctions of the op-
erator Lα (see (12) and (13)), it seems natural to consider the higher order
Riesz transforms defined as

Rkα = (δα+k−1 ◦ · · · ◦ δα+1 ◦ δα)(Lα)−k/2.

It is proved in Theorem 8 that they are bounded on Lp((0,∞), yδdy) for δ
satisfying (Cα). This would suggest the following alternative concept of the
“Sobolev” space given in Definition 3.

Definition 4. The Laguerre–Sobolev space, which we denote byW k,p
α (yδ),

is the set of functions f in Lp((0,∞), yδdy) such that

δα+m ◦ · · · ◦ δα+1 ◦ δαf ∈ Lp((0,∞), yδdy), 0 ≤ m ≤ k − 1,

with the norm

‖f‖
Wk,p
α (yδ)

= ‖f‖p,δ +
k−1∑
m=0

‖δα+m ◦ · · · ◦ δα+1 ◦ δαf‖p,δ.

These spaces are the right spaces for the problem we are considering and
the following theorem will be proved in Section 3.

Theorem 3. Let k ∈ N, α > −1, and let 1 < p <∞ and δ satisfy (Cα).
Then

W k,p
α (yδ) = W

p
α,k(y

δ),

and the norms are equivalent.

Unweighted Sobolev spaces in the case of Hermite operators were con-
sidered previously by Thangavelu [21] and the authors [3].
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For the case of Laguerre functions, Laguerre potential spaces were intro-
duced by Peetre and Sparr in 1975; they were also studied by Thangavelu
in [21] and by Radha and Thangavelu in [13] and [14]. For some previous
work containing the definition and power weighted Lp-boundedness of the
first order Riesz transforms, see [10] and [9] for the system Lαk , and [12] for
the system ϕαk (see Section 5). Recently, power weighted Lp-boundedness of
the higher order Riesz transforms of the form (Dα)kL−k/2 for the system
ϕαk (see Section 5) has been proved in [2]. From that result one can deduce,
by using the methods in Section 5, our Theorem 10 about operators of the
form (δα)k(Lα)−k/2. However, we present a different proof since we think
that it contains some explanation of the commuting properties of several
operators. Finally, for the case of Laguerre polynomials some results can be
found in [8].

2. Hermite Sobolev spaces with weights. Let Hn, n = 0, 1, . . . ,
be the family of Hermite polynomials. The Hermite function of order n is
defined as

hn(t) =
Hn(t)e−t

2/2

(2nn!π1/2)1/2
, t ∈ R.

Given a multi-index α = (αj)dj=1 ∈ Nd, the Hermite function of order α is
defined as

hα(x) =
d∏
j=1

hαj (xj), x = (x1, . . . , xd) ∈ Rd.

These functions are eigenvectors of the Hermite operator (see (1)). In fact,

Hhα = (2|α|+ d)hα,

where |α| =
∑d

j=1 αj (see [20]).
We shall need the following lemmas. Their proofs can be found respec-

tively in [20], [17] and [3].

Lemma 1. Let M ∈N and f ∈C∞c . Then there exists a constant CM,f > 0
such that ∣∣∣ �

Rd
fhα

∣∣∣ ≤ CM,f (|α|+ 1)−M , α ∈ Nd.

Lemma 2. Let 1 ≤ p < ∞ and w ∈ Ap. Then there exist constants
εp > 0 and Cw such that

‖hα‖Lp(w) ≤ Cw(|α|+ 1)εp .



152 B. Bongioanni and J. L. Torrea

Lemma 3. Let f be a linear combination of Hermite functions. Then the
fractional integral H−s, s > 0 (see (2)), has an integral representation

H−sf(x) =
�

Rd
Ks(x, y)f(y) dy, x ∈ Rd,

where Ks(x, y) is positive and symmetric. Moreover ,

(5) Ks(x, y) ≤ Cφs(|x− y|), x, y ∈ Rd,

where φs(r), for r ≥ 0, is defined by

φs(r) =


χ{r<1}(r)/rd−2s + e−r

2/4χ{r≥1}(r) if s < d/2,
log(e/r)χ{r<1}(r) + e−r

2/4χ{r≥1}(r) if s = d/2,
χ{r<1}(r) + e−r

2/4 χ{r≥1}(r) if s > d/2.

Theorem 4. Let 1 ≤ p < ∞ and s > 0. If w ∈ Ap, then the operator
H−s is bounded on Lp(w).

Proof. If p > 1, we just observe that the function x 7→ φs(|x|) is radial
and decreasing for |x| → ∞; therefore, |H−sf(x)| ≤ M(|f |)(x) where M is
the Hardy–Littlewood maximal operator, and the result follows.

In the case p = 1, we shall prove that
	
Rd Ks(x, y)w(x) dx ≤ Cw(y)

whenever y is a Lebesgue point of w. Then�

Rd
|H−sf(x)|w(x) dx ≤

�

Rd
|f(y)|

�

Rd
Ks(x, y)w(x) dx dy ≤

�

Rd
|f(y)|w(y) dy.

If y is a Lebesgue point of w ∈ A1, then
1

|B(y, r)|

�

B(y,r)

w(x) dx ≤ Cw(y).

Hence, by estimate (5) and splitting into annuli, we have
�

Rd
Ks(x, y)w(x) dx ≤ C

∞∑
k=−∞

�

B(y,2k)\B(y,2k−1)

φs(|y − x|)w(x) dx

≤ C
∞∑

k=−∞
φs(2k)

2dk

|B(y, 2k)|

�

B(y,2k)\B(y,2k−1)

w(x) dx

≤ Cw(y)
( ∞∑
k=−∞

φs(2k)2dk
)
≤ Cw(y).

Given 1 ≤ p <∞, s > 0 and w ∈ Ap, we define the potential spaces

(6) Lps(w) = H−s/2(Lp(w)),

with the norm ‖f‖Lps(w) = ‖g‖Lp(w), where g is such that H−s/2g = f . The
space L

p
s(w) is well defined, since H−s/2 is bounded and one-to-one in Lp(w).
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In fact, suppose g ∈ Lp(w) and H−s/2g = 0. Observe that�

Rd

�

Rd
Ks/2(x, y)|g(x)| |hα(y)| dy dx ≤ ‖H−s/2|g| ‖Lp(w)‖hα‖Lp′ (w−p′/p),

and this expression is finite by Theorem 4 and Lemma 2, since w−p
′/p belongs

to Ap′ . Hence, by Fubini and the symmetry of Ks/2,
�

Rd
ghα = (2n+ 1)s/2

�

Rd
gH−s/2hα = (2n+ 1)s/2

�

Rd
H−s/2ghα = 0,

and this yields g = 0 (see Corollary 2.4 in [17]).

Remark 1. The space F of finite linear combinations of Hermite func-
tions is a dense subspace of L

p
s(w), since F = H−s/2(F) is dense in Lp(w).

The operator H can be factorized as

(7) H =
1
2

d∑
j=1

(AjA−j +A−jAj),

where

Aj =
∂

∂xj
+ xj and A−j = − ∂

∂xj
+ xj .

It is easy to check that

(8) Ajhα =
√

2αj hα−ej , A−jhα =
√

2(αj + 1)hα+ej ,

where ej is the jth coordinate vector in Nd. From these formulas the opera-
tors Aj and A∗j are called annihilation and creation operators respectively.

Definition 5. The Hermite–Riesz transforms of order m, m ∈ N, asso-
ciated to H are defined by

RmJ =Aj1 . . . AjmH
−m/2, where J = (j1, . . . , jm), 1 ≤ |ji| ≤ d, 1 ≤ i ≤ m.

In the case j1 = · · · = jm = j, these operators will be denoted by Rmj .
The case m = 1 was considered by S. Thangavelu (see [20]). He proved
that these operators are bounded in Lp(Rd). Also in [17] and [18], it was
shown that the operators RmJ are Calderón–Zygmund operators and as a
consequence they are bounded in Lp(w) for w ∈ Ap, 1 < p <∞.

We now present a structural theorem for the spaces L
p
s(w). Unweighted

versions of this result can be found in [3, Theorems 2, 6 and 7].

Theorem 5. Let w ∈ Ap, 1 < p <∞, and s > 0.

(i) If t > s, then L
p
t (w) ⊂ L

p
s(w) ⊂ Lp(w) with continuous inclusions.

Moreover , L
p
s(w) and L

p
t (w) are isometrically isomorphic.

(ii) If t > 0, then H−t/2 maps L
p
s(w) into L

p
s+t(w).
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(iii) If s > 1 and 1 ≤ |j| ≤ d, then Aj is bounded from L
p
s(w) into

L
p
s−1(w).

(iv) The operators RmJ are bounded on L
p
s(w).

Proof. Observe that H−t/2 = H−s/2 ◦H−r with r = (t− s)/2. Then (i)
follows from Theorem 4; (ii) also follows from Theorem 4 and the definition
of the spaces L

p
s(w).

In order to prove (iii) we shall need the following two results. They can
be found respectively in [7] and [3]. For further reference, we state them as
Proposition 1 and Lemma 4.

Proposition 1. Let 1 < p <∞ and m ∈ `∞(Nd) be such that

|∆`m(α)| ≤ C(1 + |α|)−|`|, α ∈ Nd, |`| ≤ d+ 1.

Consider the operator Tmf =
∑

αm(α)〈f, hα〉hα, defined at least for f ∈
L2(R). Then Tm admits a bounded extension to Lp(w) whenever the weight
w belongs to the Muckenhoupt class Ap.

Remark 2. Observe that as Hhα = (2|α| + d)hα, any operator of
the type F (H)f =

∑
α F (2α + d)〈f, hα〉hα can be written as Tmf =∑

αm(α)〈f, hα〉hα with m(α) = F (2α+ d) = F (2(α1, . . . , αd) + d).

Lemma 4. Let b ∈ R. Then for all f in F, we have

AjH
bf = (H + 2)bAjf, 1 ≤ j ≤ d,

AjH
bf = (H − 2)bAjf, −d ≤ j ≤ −1,

HbAjf = Aj(H − 2)bf, 1 ≤ j ≤ d,
HbAjf = Aj(H + 2)bf, −d ≤ j ≤ −1,

where Hbhα = (2|α| + d)bhn and (H + 2)bhα = (2|α| + d + 2)bhα for all
α ∈ Nd

0, and (H − 2)bhα = (2|α|+ d− 2)bhα for all α with |α| ≥ 1.

We continue the proof of Theorem 5. Let 1 ≤ j ≤ d (the case −d ≤ j ≤
−1 is similar). Let f ∈ F. By Lemma 4 we have

Ajf = H−(s−1)/2

(
H

H + 2

)(s−1)/2

RjH
s/2f.

As the function

m(α) =
(

2|α|+ d

2|α|+ d+ 2

)(s−1)/2

satisfies the hypotheses of Proposition 1 (see also Remark 2), the operator(
H
H+2

)(s−1)/2 is bounded on Lp(w). Hence by using the boundedness in Lp(w)
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of the Riesz transforms, we have

‖Ajf‖Lps−1(w) =
∥∥∥∥( H

H + 2

)(s−1)/2

RjH
s/2f

∥∥∥∥
Lp(w)

≤ C‖Hs/2f‖Lp(w) = ‖f‖Lps(w).

Finally, (iv) follows from (ii) and (iii).

The following technical result will be needed later.

Proposition 2. Let 1 < p <∞ and w ∈ Ap. For k ∈ N the set W k,p(w)
(see Definition 1) is a Banach space. Moreover , the sets F and C∞c are dense
in W k,p(w).

Proof. Observe that if {fn}n≥1 is a Cauchy sequence in W k,p(w), the
completeness of Lp(w) implies that fn converges to some f and Amj fn con-
verges to some gm,j in Lp(w), 1 ≤ m ≤ k, 1 ≤ j ≤ d. If ψ belongs to C∞c ,
also (Amj )∗ψ belongs to C∞c , and if B is a ball containing the support of
(Amj )∗ψ, then∣∣∣ �

Rd
f(Amj )∗ψ −

�

Rd
fn(Amj )∗ψ

∣∣∣ ≤ C �

B

|f − fn|

≤ C
( �

Rd
|f − fn|pw

)1/p( �

B

w−p
′/p
)1/p′

,

where the last integral is finite since w ∈ Ap. Hence

lim
n→∞

�

Rd
fn (Amj )∗ψ =

�

Rd
f (Amj )∗ψ.

In the same way, limn→∞
	
Rd A

m
j fnψ =

	
Rd gm,jψ. Therefore

	
Rd A

m
j fψ =	

Rd gm,jψ for all ψ in C∞c , and thus Amj f = gm,j almost everywhere. This
completes the proof that W k,p(w) is complete.

Now we will see that C∞c is a dense set in W k,p(w) (we follow the ideas
in [15, p. 123]). Let ψ ∈ C∞c be such that

	
Rd ψ = 1. For every ε > 0,

consider ψε(x) = (1/εd)ψ(x/ε). Given f in W 1,p(w), the function f ∗ ψε
belongs to C∞ and approximates f in the W 1,p(w)-norm. In fact, it is easy
to see that for all m ≥ 1 and 1 ≤ j ≤ d,

Aj(f ∗ψε) = Ajf ∗ψε + εf ∗ (xjψ)ε, Amj (f ∗ψε) =
m∑
n=0

εnAm−nj f ∗ (xnj ψ)ε.

Since Am−nj f belongs to Lp(w) and xnj ψ belongs to C∞c , 0 ≤ n ≤ m, we
have

Amj (f ∗ ψε)→ Amj f



156 B. Bongioanni and J. L. Torrea

in Lp(w) as ε goes to 0. The functions f ∗ψε do not necessarily have compact
support, but they can be modified as in the classical case (see [15, p. 123]).

It remains to prove that any function in C∞c can be approximated in the
W k,p(w)-norm by a function in F. We will show that any f ∈ C∞c is the
limit, in the W k,p(w)-norm, of a subsequence of partial sums

SNf =
∑
|α|≤N

〈f, hα〉hα, N ≥ 1,

where 〈f, hα〉 =
	
fhα. In [17, Lemma 2.3], it is proved that there exists a

subsequence of the previous sequence converging to f in the Lp(w)-norm.
Hence, it is enough to show that there exists a subsequence of

{Amj (SN (f))}N≥1 = {SN (Amj f)}N≥1

converging to Amj f in the Lp(w)-norm, where 1 ≤ j ≤ d and 1 ≤ m ≤ k.
Fix j and m such that 1 ≤ j ≤ d and 1 ≤ m ≤ k. Following the

argument of [17], the sequence {SN (Amj f)}N≥1 converges to Amj f in the
L2-norm. Hence we can take a subsequence {SNk(Amj f)}k≥1 converging to
Amj f almost everywhere. By using (8), we have

SN (Amj f) =
∑
|α|≤N

〈Amj f, hα〉hα =
∑
|α|≤N

〈f, (A∗j )mhα〉hα

=
∑
|α|≤N

m∏
l=1

√
2(αi + l) 〈f, hα+mei〉hα.

Hence, by Lemma 1 (with M ≥ m) and Hölder’s inequality, we have

|SN (Amj f)|p ≤ C
( ∑
|α|≤N

m∏
l=1

√
2(αj + l) (|α|+m+ 1)−M |hα|

)p
≤ C

( ∑
|α|≤N

(|α|+m+ 1)−M/2|hα|
)p

≤ C
(∑

α

(|α|+ 1)−M/2
)p/p′∑

α

(|α|+ 1)−M/2|hα|p

≤ C
∑
α

(|α|+ 1)−M/2|hα|p.

From Lemma 2, for M large enough, the function∑
α

(α+ 1)−M/2|hα|p

belongs to L1(w). The dominated convergence theorem implies that

{SNk(Amj f)}k≥1 → Amj f
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in the Lp(w)-norm. Now we can repeat the lines above for every j and m,
taking a subsequence of the previous subsequence in each step.

Proof of Theorem 1. Since F is dense in both spaces, it is enough to show
the equivalence of the norms for functions in F.

Let f ∈ F, and f = H−k/2g. For 1 ≤ j ≤ d and 1 ≤ m ≤ k, from the
boundedness of Rmj and H−k+m (see the comments after Definition 5 and
Theorem 4) we have

‖(Aj)mf‖Lp(w) ≤ ‖Rmj H(−k+m/2)g‖Lp(w) ≤ ‖g‖Lp(w),

so
‖f‖Wk,p(w) ≤ C‖g‖Lp(w) = C‖f‖Lpk(w).

Now we shall prove the reverse inequality. By using Lemma 4, the fol-
lowing identities can be proved for each integer k ≥ 1:

Tk =
d∑
j=1

Rk−j R
k
j =

d∑
j=1

(A∗j )
kH−k/2(Aj)kH−k/2

= (H − 2k)−k/2
( d∑
j=1

(A∗j )
k(Aj)k

)
H−k/2

= (H − 2k)−k/2
{ d∑
j=1

(
(Hj−1)(Hj−1−2) · · · (Hj−1−2(k−1))

)}
H−k/2,

where Hj = −∂2/∂x2
j +x2

j . Observe that H =
∑

j Hj . Consider the function

mk(α) =
(2|α|+ d− 2k)k/2(2|α|+ d)k/2∑d

j=1(2αj)(2αj − 2) . . . (2αj − 2(k − 1))
χ[dk,∞)(|α|).

An appropriate smooth extension of mk can be considered in order to apply
Proposition 1. Hence the operator Smk

defined as Smk
f=

∑
αmk(α)〈f, hα〉hα

is bounded in Lp(w).
Denote by Fk the finite-dimensional space of linear combinations of Her-

mite functions hα with |α| < k. Given a function g in F \ Fk, we observe
that Smk

◦ Tkg = g and therefore

‖g‖Lp(w) = ‖Smk
Tkg‖Lp(w) ≤ Ck‖Tkg‖Lp(w) = Ck

d∑
j=1

‖Rk−jRkj g‖Lp(w)

≤ Ck
d∑
j=1

‖Rkj g‖Lp(w) = Ck

d∑
j=1

‖(Aj)kH−k/2g‖Lp(w)

for some constant Ck independent of g. Therefore for f ∈ F \ Fk with f =
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H−k/2g, we have

‖f‖Lpk(w) = ‖g‖Lp(w) ≤ Ck‖f‖Wk,p(w).

For the general case g ∈ F, we write g = g1+g2 with g1 ∈ Fk and g2 ∈ F\Fk.
We observe (one can use Lemma 2) that Hk/2 is a bounded linear operator
on the finite-dimensional space Fk (with the Lp(w)-norm). The same lemma
also ensures that the projection g 7→ g1 is bounded in Lp(w), hence

‖g‖Lp(w) ≤ ‖Hk/2H−k/2g1‖Lp(w) + ‖g2‖Lp(w)

≤ Ck‖H−k/2g1‖Lp(w) + Ck

d∑
j=1

‖(Aj)kH−k/2g2‖Lp(w)

≤ C‖H−k/2g‖Lp(w) + Ck

d∑
j=1

‖(Aj)kH−k/2g‖Lp(w),

where in the last inequality we have used (Aj)kHk/2g1 = 0 and the fact that
the projection of the function H−k/2g from F into Fk is H−k/2g1.

3. Laguerre setting. Let Lαn, n = 0, 1, . . . , be the Laguerre polynomi-
als of type α > −1. Consider the family of Laguerre functions Lαn defined as

Lαn(y) =
(

Γ (n+ 1)
Γ (n+ α+ 1)

)1/2

e−y/2yα/2Lαn(y), y ∈ R+, n ∈ N0.(9)

For each α > −1, {Lαn}∞n=0 is an orthonormal system in L2((0,∞)) and
satisfies

LαLαn =
(
n+

α+ 1
2

)
Lαn, n ∈ N0,

where Lα is defined in (3). It is known (and probably belongs to the folklore,
see for example [19, Theorem 5.7.1]) that if α > −1, and 1 < p < ∞ and
δ ∈ R satisfy (Cα) (see (4)), then the set Sα of finite linear combinations of
Laguerre functions is dense in Lp((0,∞), yδdy). The condition (Cα) will be
crucial along this note.

Remark 3. Observe that if a pair (δ, p) satisfies (Cα) then it satisfies
(Cβ) for every β > α.

Given α > −1 and s > 0, we can define the operator (Lα)−s analogously
to (2) just by replacing {e−tH}t>0 by {e−tLα}t>0. We need the following two
results that can be found in [7] and that we state as a unified theorem for
further reference.

Theorem 6. Let α > −1, and let 1 < p <∞ and δ ∈ R satisfy condition
(Cα). Let µ ∈ C∞([0,∞)) be such that

(10) |µ(k)(t)| ≤ Ck(1 + t)−k, k = 0, 1, 2, . . . ,
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for all t > 0 and k ∈ N0. Then the operator

Tµf =
∞∑
n=0

µ(n)〈f,Lαn〉Lαn,

defined at least for f ∈L2(R), admits a bounded extension to Lp((0,∞), yδdy).

A consequence of this result is the following theorem.

Theorem 7. Let α > −1, and let 1 < p <∞ and δ ∈ R satisfy condition
(Cα). Then the operator (Lα)−s, s > 0, is bounded from Lp((0,∞), yδdy)
into itself.

Proof. The multiplier µ(n) = (n+ (α+ 1)/2)−s satisfies (10).

Now that we see that the spaces in Definition 2 are well defined, we
proceed as in the Hermite context. It is not difficult to prove that (Lα)−s/2 is
one-to-one in Lp((0,∞), yδdy), using the fact that Sα is contained and dense
in Lp

′
((0,∞), y−p

′δ/pdy) whenever δ satisfies (Cα). Moreover, since Sα =
(Lα)−s/2(Sα) and Sα is dense in Lp((0,∞), yδdy), it is dense in W

p
α,s(yδ).

The operator Lα can be written as

Lα = (δα)∗δα + (α+ 1)/2,

where

(11) δα =
√
x
d

dx
+

1
2

(√
x− α√

x

)
, (δα)∗ = −

√
x
d

dx
+

1
2

(√
x− α+ 1√

x

)
.

The action of these operators on Laguerre functions is given by

δα(Lα0 ) = 0, δα(Lαn) = −
√
nLα+1

n−1, for n ≥ 1,(12)

(δα)∗(Lα+1
n ) = −

√
n+ 1Lαn+1 for n ≥ 0.(13)

The Riesz transforms were defined in [10] for α > −1 by

Rα = δα(Lα)−1/2 and R̃α = (δα)∗(Lα+1)−1/2.

In [9] it was proved that those operators are bounded on Lp((0,∞), yδdy)
for δ satisfying (Cα). Given a positive integer k and α > −1 we define the
higher order Riesz transforms of order k as

Rkα = (δα+k−1 ◦ · · · ◦ δα+1 ◦ δα)(Lα)−k/2

and
R̃kα = ((δα)∗ ◦ (δα+1)∗ ◦ · · · ◦ (δα+k−1)∗)(Lα+k)−k/2.

Observe that R1
α = Rα and R̃1

α = R̃α.

Theorem 8. Let k ∈ N, α > −1 and let 1 < p <∞ and δ satisfy (Cα).
Then the operators Rkα and R̃kα are bounded on Lp((0,∞), yδdy).

In order to prove this theorem we shall need the following lemma, whose
proof is left to the reader.



160 B. Bongioanni and J. L. Torrea

Lemma 5. Let Φ be a continuous function and α > −1. For every f in
Sα, we have

(1) δαΦ(Lα)f = Φ
(
Lα+1 + 1

2I
)
δαf.

(2) (δα)∗Φ(Lα+1)f = Φ
(
Lα − 1

2I
)
(δα)∗f.

Now we can prove Theorem 8 by induction on k.

Proof of Theorem 8. As mentioned above, the result is true for k = 1
(see [9]). Let k > 1. For a function f in Sα, we have

Rkα = (δα+k−1 ◦ · · · ◦ δα+1 ◦ δα)(Lα)−k/2

= (δα+k−1 ◦ · · · ◦ δα+1) ◦ δα ◦ (Lα)−(k−1)/2(Lα)−1/2

= (δα+k−1 ◦ · · · ◦ δα+1) ◦ (Lα+1 + 1
2I)−(k−1)/2 ◦ δα ◦ (Lα)−k/2

= (δα+k−1 ◦ · · · ◦ δα+1) ◦ (Lα+1)−(k−1)/2 ◦ Tµ ◦ δα ◦ (Lα)−k/2

= Rk−1
α+1 ◦ Tµ ◦Rα,

where Tµ is the operator given by the multiplier (in the system {Lα+1
k }∞k=0)

µ(n) =
[

n+ (α+ 1)/2
n+ (α+ 2)/2 + 1/2

](k−1)/2

.

The function µ satisfies (10). Hence, by Theorem 6, Tµ is bounded from
Lp((0,∞), yδdy) into Lp((0,∞), yδdy) for δ satisfying (Cα+1). On the
other hand, the induction hypothesis says that Rk−1

α+1 is bounded from
Lp((0,∞), yδdy) into Lp((0,∞), yδdy) for δ satisfying (Cα+1). As we no-
ticed, this range is bigger than the range (Cα) (see Remark 3).

To prove the boundedness of R̃kα, we again use Lemma 5. We write R̃kα =
R̃k−1
α ◦ Tν ◦ R̃α+k−1, where Tν is given by the multiplier

ν(n) =
(
n+

α+ k

2

)/(
n+

α+ k − 1
2

)
.

The proof continues along the same lines as for Rkα, by using the boundedness
of the operators R̃kα and Tν .

Parallel to the Hermite setting we have the following structural theorem
for the spaces W

p
α,s(yδ).

Theorem 9. Let s > 0, α > −1, and let 1 < p <∞ and δ satisfy (Cα).

(i) If t>s, then W
p
α,s(yδ)⊂W

p
α,t(y

δ)⊂Lp(yδ) with continuous inclusions.
Moreover , W

p
α,s(yδ) and W

p
α,t(y

δ) are isometrically isomorphic.
(ii) If t > 0, then (Lα)−t/2 maps W

p
α,s(yδ) into W

p
α,s+t(y

δ).
(iii) If s > 1, then δα is bounded from W

p
α,s(yδ) into W

p
α+1,s−1(yδ).

(iv) The operators Rkα are bounded from W
p
α,s(yδ) into W

p
α+k,s(y

δ).
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Proof. The statements (i) and (ii) follow from the boundedness of (Lα)−s/2

established in Theorem 7. On the other hand, given f ∈ W
p
α,s(yδ), there

exists g ∈ Lp(yδ) such that L−s/2α g = f . Set

h =
(
Lα+1 + 1

2I

Lα+1

)−(s−1)/2

Rαg.

Then
δαf = δαL−s/2α g = (Lα+1 + 1

2I)−(s−1)/2δαL−1/2
α g

= (Lα+1 + 1
2I)−(s−1)/2Rαg = (Lα+1)−(s−1)/2h.

By Theorems 6 and 8, we have

‖δαf‖Wp
α+1,s−1(yδ) = ‖h‖Lp(yδ) ≤ C‖g‖Lp(yδ) = ‖δαf‖Wp

α,s(yδ)
.

In order to prove (iv) we use (ii) and (iii).

Given a function f, consider the Cesàro sums of g of order r > 0, that is,

CrN,α(g) =
1

arN

N∑
n=0

arN−n〈f,Lαn〉Lαn

for N ∈ N, with

arn =

∏n
j=1(j + r)
n!

, 0 ≤ n ≤ N.

The following proposition is an easy consequence of Theorem 1.13 in [11] and
it will be the key to proving a density result in W k,p

α (yδ) (see Definition 4).

Proposition 3. Let α > −1, and let 1 < p < ∞ and δ satisfy (Cα).
Then there exists r ≥ 1 (possibly depending on α) such that the Cesàro
sums of order r of a function f converge to f in the Lp(yδdy)-norm as N
goes to infinity.

Proposition 4. Let k ∈ N, α > −1, and let 1 < p < ∞ and δ satisfy
(Cα). Then Sα is a dense subspace of W k,p

α (yδ).

Proof. By using (12) and (13), we have

δαCrN,α(f) =
1

arN

N∑
n=1

arN−n〈f,Lαn〉(−
√
n)Lα+1

n−1

=
1

arN

N∑
n=1

arN−n〈f, (δα)∗Lα+1
n−1〉L

α+1
n−1

=
arN−1

arN

1
arN−1

N−1∑
n=0

ar(N−1)−n〈δ
αf,Lα+1

n 〉Lα+1
n

=
arN−1

arN
CrN−1,α+1(δαf),
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and inductively, if m ∈ N0 and N > m,

(14) (δα+m−1 ◦ . . . ◦ δα+1 ◦ δα)CrN,α(f)

=
arN−m
arN

CrN−m,α+m(δα+m−1 ◦ · · · ◦ δα+1 ◦ δαf).

By Proposition 3, we choose r large enough so that the sequence in Sα given
by fN = CrN,αf converges to f in the Lp(yδdy)-norm. Observe that the
functions δα+m−1 ◦ · · · ◦ δα+1 ◦ δαf , where 1 ≤ m ≤ k − 1, also belong
to Lp((0,∞), yδdy). Thus formula (14), Proposition 3 and the fact that
limN→∞ arN−m/a

r
N = 1 imply that the sequence δα+m−1 ◦ · · · ◦ δα+1 ◦ δα ◦

CrN,α(f) converges to δα+m−1 ◦ · · · ◦ δα+1 ◦ δαf in the Lp(yδdy)-norm for
1 ≤ m ≤ k − 1.

Proof of Theorem 3. As Sα is a dense subspace of W
p
α,k(y

δ) andW k,p
α (yδ),

it is enough to show the equivalence of the norms for functions f ∈ Sα. Let
g be such that (Lα)−k/2g = f . For 0 ≤ m ≤ k − 1, we have

‖f‖
Wk,p
α (yδ)

= ‖f‖p,δ +
k−1∑
m=1

‖δα+m ◦ · · · ◦ δα+1 ◦ δαf‖p,δ

= ‖(Lα)−k/2g‖p,δ +
k−1∑
m=1

‖δα+m ◦ · · · ◦ δα+1 ◦ δα(Lα)−k/2g‖p,δ

= ‖(Lα)−k/2g‖p,δ +
k−1∑
m=1

‖Rmα (Lα)−(k−m)/2g‖p,δ

≤ C‖g‖p,δ = C‖f‖Wp
α,k(y

δ).

In the last inequality we have used Theorems 7 and 8.
For the reverse inequality it is clearly enough to prove that there exists

a constant C such that for all f ∈ Sα,

(15) ‖(Lα)k/2f‖p,δ ≤ C(‖f‖p,δ + ‖δα+k−1 ◦ · · · ◦ δα+1 ◦ δαf‖p,δ).

Let α > −1 and k ∈ N. We let Πk
α be the set of linear combinations of

Laguerre functions of type α up to order k. If f ∈ Sα, we split f = f1 + f2

with f1 ∈ Πk
α and f2 ∈ Sα \ Πk

α. Since (Lα)k is a linear operator on a
finite-dimensional space Πk

α, there exists a constant C that depends on k
such that

‖(Lα)k/2f1‖p,δ ≤ C‖f1‖p,δ.

On the other hand, since (Lα)−k/2 is bounded on Lp((0,∞), yδdy) (Theo-
rem 7), we have
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‖f1‖p,δ = ‖f − f2‖p,δ ≤ ‖f‖p,δ + ‖(Lα)−k/2(Lα)k/2f2‖p,δ
≤ ‖f‖p,δ + C‖(Lα)k/2f2‖p,δ,

thus

‖(Lα)k/2f‖p,δ≤‖(Lα)k/2f1‖p,δ+‖(Lα)k/2f2‖p,δ≤C(‖f‖p,δ+‖(Lα)k/2f2‖p,δ).
Therefore, it is enough to prove (15) for f2. By using Lemma 5 we can easily
show the following identity for each integer k:

Tk = R̃kα ◦Rkα

=
(
Lα −

k

2

)−k/2
◦
(
Lα −

α+ 1
2
− k − 1

)
◦
(
Lα −

α+ 1
2
− k − 2

)
· · ·

· · · ◦
(
Lα −

α+ 1
2
− 1
)
◦
(
Lα −

α+ 1
2

)
(Lα)−k/2

and consider the function

µk(t) =

(
t+ α+1

2

)k/2(
t+ α+1

2 −
k
2

)k/2∏k−1
j=0(t− j)

χ[k,∞)(t),

which satisfies (10). Then the proof follows the same lines as in the Hermite
case in Theorem 3 using the multiplier Theorem 6 and Theorem 8 in order
to control the operator R̃kα.

4. Alternative definitions of Riesz transforms. Consequences
for Sobolev spaces. In this section we analyse the role of the “natural”
Riesz transforms

(δα)k(Lα)−k/2,

relating to Sobolev spaces. Some commutation properties of the operators
δα with the operator of multiplication by x`/2 will be essential. We shall
write δα 1

x`/2
and x`/2δα as shorthand for the action δα

(
1

(·)`/2 f(·)
)
(x) and

x`/2δα(f)(x). We state the following lemma whose proof (using (11)) is left
to the reader.

Lemma 6. Let β, α > −1, and ` ∈ N.

(i) δβ = δα +
α− β
2
√
x
.

(ii) δβ
1
x`/2

=
1
x`/2

δβ+`.

(iii) If β > `− 1, then
1
x`/2

δβ+` =
1
x`/2

δβ−` − `

x(`+1)/2
.

(iv) If β > `− 1, then δβx`/2 = x`/2δβ−`.

(v) (δβ)∗ = −δα +
1
2

(√
x− α√

x

)
+

1
2

(√
x− β + 1√

x

)
.
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Lemma 7. Let α > −1 and k ∈ N. Then

(δα)k =
∑

0≤p≤m+1, p+m=k−1

cm

xp/2
δα+m ◦ · · · ◦ δα.

Proof. Let p < m+ 1. By using Lemma 6 we have

δα
(

1
xp/2

δα+m ◦ · · · ◦ δα
)

=
1
xp/2

δα+p ◦ δα+m ◦ · · · ◦ δα

=
1
xp/2

(
δα+m+1 +

m+ 1− p
2
√
x

)
◦ δα+m ◦ · · · ◦ δα

=
1
xp/2

δα+m+1 ◦ δα+m ◦ · · · ◦ δα +
1
xp/2

m+ 1− p
2
√
x

δα+m ◦ · · · ◦ δα.

If p = m+ 1 we have

δα
(

1
xp/2

δα+m ◦ · · · ◦ δα
)

=
1
xp/2

δα+m+1 ◦ δα+m ◦ · · · ◦ δα.

Then

(δα)k+1 = δα
( ∑

0≤p≤m+1, p+m=k−1

cm

xp/2
δα+m ◦ · · · ◦ δα

)
=

∑
0≤p<m+1, p+m=k−1

cm

xp/2
δα+m+1 ◦ δα+m ◦ · · · ◦ δα

+
∑

0≤p<m+1, p+m=k−1

cm

xp/2
m+ 1− p

2
√
x

δα+m ◦ · · · ◦ δα

+
∑

0≤p=m+1, p+m=k−1

1
xp/2

δα+m+1 ◦ δα+m ◦ · · · ◦ δα

=
∑

0≤p<m, p+m=k

cm

xp/2
δα+m ◦ · · · ◦ δα

+
∑

0≤q<m+1, q+m=k

cm

xq/2
δα+m ◦ · · · ◦ δα

+
∑

0≤p=m, p+m=k

1
xp/2

δα+m ◦ · · · ◦ δα

=
∑

0≤p≤m+1, p+m=k

cm

xp/2
δα+m ◦ · · · ◦ δα.

The standard induction argument completes the proof.

Lemma 8. Let Pm(u, v) be a polynomial of degree m in variables u, v, i.e.

Pm(u, v) = a0u
m + a1u

m−1v + · · ·+ amv
m.
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Assume that β > m− 1. Then

δβPm

(√
x,

1√
x

)
= P 1

m

(√
x,

1√
x

)
δβ−m + P 2

m+1

(√
x,

1√
x

)
where P 1

m and P 2
m+1 are polynomials of degrees m and m+ 1.

Proof. Observe that

Pm(
√
x, 1/

√
x)

= a0x
m/2 + a1x

(m−2)/2 + · · ·+ am−1x
−(m−2)/2 + amx

−m/2.

Let 0 < ` ≤ m. Then by using Lemma 6 we have

δβ(x`/2) = x`/2δβ−` = x`/2
(
δβ−m +

`−m
2
√
x

)
= x`/2δβ−m +

`−m
2

x(`−1)/2.

Let ` = −q < 0. Again by Lemma 6 we have

δβ(x`/2) = δβ
1
xq/2

=
1
xq/2

δβ−q − q

x(q+1)/2

=
1
xq/2

δβ−m +
1
xq/2

(
q −m
x1/2

)
− q

x(q+1)/2

=
1
xq/2

δβ−m − m

x(q+1)/2
= x`/2δβ−m −mx(`−1)/2.

Lemma 9. Let `,m be natural numbers such that 0 < ` ≤ m. For α > −1
and (δ, p) satisfying (Cα), the operators 1

x`/2
(Lα+m)−`/2 and x`/2(Lα+m)−`/2

are bounded on Lp((0,∞), yδdy).

Proof. First, let1 = ` = m. We have already mentioned that the operator

(δα)∗(Lα+1)−1/2 =
{
−
√
x
d

dx
+

1
2

(√
x− α+ 1√

x

)}
(Lα+1)−1/2

is bounded in Lp((0,∞), yδdy) for p, δ satisfying (Cα) (see (4)). Also the
operator

(δα+1)(Lα+1)−1/2 =
{√

x
d

dx
+

1
2

(√
x− α+ 1√

x

)}
(Lα+1)−1/2

is bounded in Lp((0,∞), yδdy) for p, δ satisfying (Cα+1). Hence both opera-
tors are bounded in Lp((0,∞), yδdy) for p, δ satisfying (Cα). Consequently,
the operator (

√
x− (α+ 1)/

√
x)(Lα+1)−1/2 is also bounded.
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If 2(α + 1) < x then 0 <
√
x ≤ 2(

√
x − (α+ 1)/

√
x). We already know

that (Lβ)−1/2 has positive kernel, hence for positive functions f we have
√
x(Lα+1)−1/2f(x) ≤

√
x(Lα+1)−1/2(f)(x)χ[0,2(α+1)](x)

+
(√

x− α+ 1√
x

)
(Lα+1)−1/2(f)(x)χ[2(α+1),∞)(x)

≤
√

2(α+ 1)(Lα+1)−1/2(f)(x)χ[0,2(α+1)](x)

+
(√

x− α+ 1√
x

)
(Lα+1)−1/2(f)(x)χ[2(α+1),∞)(x)

The cases ` = 1 and ` < m can be proved as the previous one by using
(δα+m−1)∗(Lα+m)−1/2 and δα+m(Lα+m)−1/2. Thus we obtain boundedness
in Lp((0,∞), yδdy) for δ, p satisfying (Cα+m−1). By Remark 3 we obtain
boundedness for δ, p satisfying (Cα).

In the case 1 < ` ≤ m we apply an induction argument. The operators

R`α+m = (δα+m+`−1 ◦ · · · ◦ δα+m+1 ◦ δα+m)(Lα+m)`/2

are bounded in Lp((0,∞), yδdy) for δ, p satisfying (Cα+m). On the other
hand, the operators

R̃`α+m−` = ((δα+m−`)∗ ◦ (δα+m−`+1)∗ ◦ · · · ◦ (δα+m−1)∗)(Lα+m)−`/2

are bounded in Lp((0,∞), yδdy) for δ, p satisfying (Cα+m−`) (see Theo-
rem 8). In particular, both operators are bounded in Lp((0,∞), yδdy)
for δ, p satisfying (Cα).

We observe that due to Lemma 6 we have, for j = 0, . . . , `,

(δα+m−j)∗ = −δα+m+(j−1)

+
1
2

(√
x− α+m+ (j − 1)√

x

)
+

1
2

(√
x− (α+m− j) + 1√

x

)
= −δα+m+(j−1) +

(√
x− α+m√

x

)
.

Therefore

(δα+m−`)∗ ◦ (δα+m−`+1)∗ ◦ · · · ◦ (δα+m−1)∗

=
(
−δα+m+`−1+

(√
x− α+m√

x

))
◦
(
−δα+m+`−2+

(√
x− α+m√

x

))
◦ · · ·

· · · ◦
(
−δα+m +

(√
x− α+m√

x

))
= (−δα+m+`−1 + P1(

√
x, 1/

√
x)) ◦ (−δα+m+`−2 + P1(

√
x, 1/

√
x)) ◦ · · ·

· · · ◦ (−δα+m + P1(
√
x, 1/

√
x)),

where P1(
√
x, 1/

√
x) is the polynomial of first degree

√
x − (α+m)/

√
x.
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Hence, by using Lemma 8 and an induction argument we get

(δα+m−`)∗ ◦ (δα+m−`+1)∗ ◦ · · · ◦ (δα+m−1)∗

= (−1)`δα+m+`−1 ◦ δα+m+`−2 ◦ · · · ◦ δα+m

+ P1(
√
x, 1/

√
x)δα+m+`−2 ◦ · · · ◦ δα+m

+ P2(
√
x, 1/

√
x)δα+m+`−3 ◦ · · · ◦ δα+m + · · ·+ P`(

√
x, 1/

√
x),

where as usual Pj(
√
x, 1/

√
x) denotes a polynomial of degree j. Now by

using Lemma 5 we get
R̃`α+m−` = (−1)`R`α+m

+ P1(
√
x, 1/

√
x) ◦ (Lα+m+`−1)−1/2 ◦ Tm,α+m+`−1 ◦R

(`−1)/2
α+m

+ P`−1(
√
x, 1/

√
x) ◦ (Lα+m+1)−(`−1)/2 ◦ Tm,α+m+1 ◦R1

α+m

+ · · ·+ P`(
√
x, 1/

√
x) ◦ (Lα+m)−`/2,

where Tm,α+m+`−1 are multipliers analogous to those in Theorem 8. By
Theorem 8, Theorem 6 and the induction hypothesis on `, the operators
R̃`α+m−`, R

`
α+m, P1(

√
x, 1/

√
x) ◦ (Lα+m+`−1)−1/2 ◦ Tm,α+m+`−1 ◦ R

(`−1)/2
α+m

and P`−1(
√
x, 1/

√
x) ◦ (Lα+m+1)−(`−1)/2 ◦ Tm,α+m+1 ◦ R1

α+m are bounded
for δ, p satisfying (Cα), hence P`(

√
x, 1/

√
x) ◦ (Lα+m)−`/2 is bounded in the

same range. Therefore by using the induction hypothesis on ` again, we see
that an operator of the type (ax`/2 + bx−`/2) ◦ (Lα+m)−`/2 is bounded. By
an argument similar to the beginning of this proof we get the assertion.

Theorem 10. Let α > −1. Then the “Riesz” transforms (δα)k(Lα)−k/2

are bounded in Lp((0,∞), yδdy) for δ, p satisfying (Cα).

Proof. Let 0 ≤ p ≤ m+ 1 and p+m = k − 1. By Lemma 5 we have(
1
xp/2

δα+m ◦ · · · ◦ δα
)

(Lα)−k/2 =
1
xp/2

(Lα+m+1)−p/2TµRm+1
α ,

where Tµ is a multiplier defined on the system {Lα+m+1
n }n≥0 which satisfies

the hypothesis in Theorem 6. Now Lemmas 9 and 7 and Theorem 8 give the
result.

In order to analyze the possible coincidence for certain α, δ and p of the
spaces Wk,p

α (yδ) (see Definition 3) with the spaces considered in Section 3
we shall need the following reformulation of Lemma 9.

Lemma 10. Let `,m be natural numbers such that 0 < ` ≤ m+1. For any
α > 0 and δ, p satisfying (Cα−1), the operators 1

x`/2
(Lα+m)−`/2 are bounded

on Lp((0,∞), yδdy).

Proof of Theorem 2. By using Theorem 10 and the same arguments
as at the beginning of the proof of Theorem 3, it is easy to prove (i). To
see (ii), consider a function f with support in [0, 1] such that f(y) = y(α+1)/2
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for 0 < y < 1/2, f(1) = 0 and f is smooth in [1/3, 1]. It is easy to see
that f, δαf and δα ◦ δαf belong to L2((0,∞), dy). However, for y ∼ 0,
δα+1 ◦ δαf ∼ y(α−1)/2, that is, δα+1 ◦ δαf is not in L2((0,∞), dy).

Finally, let f ∈ W2,p
α (yδ). Then δαf, (δα)2f ∈ Lp((0,∞), yδdy), therefore

(by Theorem 3) there exists h ∈ Lp such that (δα)f = (Lα)−1/2h. Hence,
by Lemma 6,

δα+1 ◦ δαf = δα ◦ δαf − 1
2
√
x
δαf = δα ◦ δαf − 1

2
√
x

(Lα)−1/2h.

Now Lemma 10 gives (iii).

5. Other Laguerre systems. We consider the orthonormal system
in L2((0,∞), dy) given by the Laguerre functions ϕαk (y) = Lαk (y2)(2y)1/2,
α > −1, where the Lαk are defined in (9). The functions ϕαk are eigenfunctions
of the operator

Lα =
1
4

{
− d2

dy2
+ y2 +

1
y2

(
α2 − 1

4

)}
.

In fact,

Lα(ϕαk ) =
(
k +

α+ 1
2

)
ϕαk .

The operator Lα can be “factorized” as

Lα −
α+ 1

2
= (Dα)∗Dα

with

Dα =
1
2

{
d

dy
+y− 1

y

(
α+

1
2

)}
and (Dα)∗ =

1
2

{
− d

dy
+y− 1

y

(
α+

1
2

)}
,

where (Dα)∗ is the formal adjoint of Dα with respect to the Lebesgue mea-
sure. Then

Dα(ϕαk ) = −
√
k ϕα+1

k−1 and (Dβ−1)∗(ϕβk) = −
√
k + 1ϕβ−1

k+1 .

As in Sections 3 and 4, the Riesz transforms can be defined as

Rk
α = Dα+k−1 ◦ · · · ◦Dα(Lα)−k/2, alternatively (Dα)k(Lα)−k/2, α > −1.

Let V be the operator defined by V f(y) = (2y)1/2f(y2). Let 2δ = γ +
p/2− 1. Then ‖V f‖Lp((0,∞),yγdy) = 21/2−1/p‖f‖Lp((0,∞),yδdy).

Proposition 1. Let 1 < p < ∞, and δ, γ be real numbers. Let T be
an operator defined over the set of finite linear combinations of Laguerre
functions {Lαk}k. Then T has a bounded extension from Lp((0,∞), yδdy)
into Lp((0,∞), yδdy) if and only if T = V T V −1 has a bounded extension
from Lp((0,∞), yγdy) into Lp((0,∞), yγdy), where 2δ = γ + p/2− 1.
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An easy consequence of the above proposition and Theorems 8 and 10
is the following.

Theorem 11. Let α > −1 and let f be a finite linear combination of
Laguerre functions {Lαk}k. Then

(i) e−tLαf = V −1e−tLαV f,
(ii) (Lα)−sf = V −1(Lα)−sV f for s > 0,

(iii) δαf = V −1DαV f ,
(iv) Rkαf = V −1Rk

α V f.

Proposition 2. Let α > −1, 1 < p < ∞, and γ be a real number. Let
S be any one of the operators L−s, s > 0, Rk

α, (Dα)kL−k/2, s > 0. Then S
has a bounded extension from Lp((0,∞), yγdy) into itself for γ satisfying

(Cα) −1− αp− p/2 < γ < αp+ 3p/2− 1.(16)

Now in a parallel way to we did in Sections 3 and 4, we can define
potential spaces and Sobolev spaces for the class of Laguerre functions
{ϕαk}k, α > −1. Thus, given α > −1, 1 < p < ∞, s > 0 and γ satisfy-
ing (Cα) (see (16)), we define

Upα,s(y
γ) = (Lα)−s/2[Lp((0,∞), yγdy)]

with the norm ‖f‖Upα,s(yγ) = ‖g‖p,γ , where (Lα)−s/2g = f .

We denote by Uk,pα (yδ) the set of functions f in Lp((0,∞), yγdy) such that

Dα+m ◦ · · · ◦Dα+1 ◦Dαf ∈ Lp((0,∞), yγdy), 0 ≤ m ≤ k − 1,

with the norm

‖f‖
Uk,pα (yγ)

= ‖f‖p,γ +
k−1∑
m=0

‖Dα+m ◦ · · · ◦Dα+1 ◦Dαf‖p,γ .

Finally, let Uk,pα (yδ) denote the set of functions f in Lp((0,∞), yγdy) such
that (Dα)mf ∈ Lp((0,∞), yγdy), 0 ≤ m ≤ k, with the norm

‖f‖Uk,pα (yγ)
=

k∑
m=0

‖(Dα)mf‖p,γ .

The following theorems are direct consequences of Theorems 3, 2 and
Propositions 2 and 11.

Theorem 12. Let α > −1, 1 < p <∞, k ∈ N and γ ∈ R. Then:

(i) Uk,pα (yγ) = U
p
α,k(y

γ), and the norms are equivalent.

(ii) Let γ satisfy (Cα). Then U
p
α,k(y

γ) ⊂ Uk,pα (yγ).
(iii) Let −1 < α ≤ 0. Then U2

α,2 6= U
2,2
α .

(iv) Let γ satisfy (Cα−1). Then U
p
α,2(yγ) = U2,p

α (yγ).
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Analogous results could be obtained for the systems of Laguerre func-
tions `αk (y) = Lαk (y)y−α/2 and ψαk (y) =

√
2 y−αLαk (y2), α > −1. These

systems are eigenfunctions of the differential operators

Lα = −y d2

dy2
− (α+ 1)

d

dy
+
y

4
and

Lα = −1
4

{
d2

dy2
+

2α+ 1
y

d

dy
− y2

}
.

We leave to the interested reader the easy work, but boring unless the
statements are needed for some application, of establishing a version of The-
orem 12 for these systems.

6. Schrödinger equation. Consider the equation

(17)

 i
∂u(y, t)
∂t

= Lαu(y, t),

u(y, 0) = f(y), y ∈ (0,∞), t ∈ R,
for some initial data f. Consider its solution

u(y, t) = eitLαf(y),

for f in the space L2((0,∞), dy). From a general result in [5] one can see
that if f ∈ W2

α,s with s > 1, then limt→0 e
itLαf(y) = f(y) a.e. y. On the

other hand, it is known (see [4] and [6]) that limt→0 e
it∆f(y) = f(y) for f

such that ∆1/8f ∈ L2. We give the following intermediate result.

Theorem 13. If f ∈W2
α,s with s > 1/2 then

(18) lim
t→0

eitLαf(y) = f(y)

for almost every y ∈ (0,∞).

Proof. It is enough to prove that the maximal function

T ∗f = sup
t∈R
|eitLαf |

satisfies the inequality �

I

T ∗f ≤ C‖f‖W2
α,s

for all compact intervals I of the real line not containing the origin, and C
a constant that may depend on the interval I but not on f .

From [19, Theorem 8.91.2, p. 241] and (9), if I is an interval that does
not contain the origin, then there exist constants C and n0 such that

(19) Lαn(x) ≤ C

n1/4
for all x ∈ I and n ≥ n0.
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Now, if f belongs to W2
α,s we can write

f(y) =
∞∑
n=0

anLαn(y),

and thus

‖f‖W2
α,s

=
( ∞∑
n=0

|an|2
(
n+

α+ 1
2

)s)1/2

.

By Tonelli’s theorem, estimate (19) and Hölder’s inequality, we get
�

I

|T ∗f(y)| dy≤
�

I

sup
t>0

∣∣∣ ∞∑
n=0

an e
it(n+(α+1)/2)Ln(y)

∣∣∣ dy ≤ ∞∑
n=0

|an|
�

I

|Lαn(y)| dy

≤ C
(
C+

∞∑
n=n0

1
n1/2(n+(α+1)/2)s

)1/2( ∞∑
n=0

|an|2
(
n+

α+1
2

)s)1/2

≤ C
(
C +

∞∑
n=n0

1
n1/2+s

)1/2

‖f‖W2
α,s
.

Since s > 1/2, we have 1/2 + s > 1 and the last series is convergent.
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[8] P. Graczyk, J. Loeb, I. A. López, A. Nowak and W. O. Urbina, Higher order
Riesz transforms, fractional derivatives, and Sobolev spaces for Laguerre expansions,
J. Math. Pures Appl. (9) 84 (2005), 375–405.



172 B. Bongioanni and J. L. Torrea

[9] E. Harboure, C. Segovia, J. L. Torrea and B. Viviani, Power weighted Lp-inequalities
for Laguerre–Riesz transforms, Ark. Mat. 46 (2008), 285–313.

[10] E. Harboure, J. L. Torrea and B. Viviani, Riesz transforms for Laguerre expansions,
Indiana Univ. Math. J. 55 (2006), 999–1014.

[11] B. Muckenhoupt and D. W. Webb, Two-weight norm inequalities for the Cesàro
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