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What is a Sobolev space for the Laguerre function systems?
by

B. BONGIOANNI (Santa Fe) and J. L. TORREA (Madrid)

Abstract. We discuss the concept of Sobolev space associated to the Laguerre op-

erator Lo = fy(f—; — % + 4+ %, y € (0,00). We show that the natural definition

does not agree with the concept of potential space defined via the potentials (L) ™°. An
appropriate Laguerre-Sobolev space is defined in order to achieve that coincidence. An
application is given to the almost everywhere convergence of solutions of the Schrodinger
equation. Other Laguerre operators are also considered.

1. Introduction. We start with a naive description of our aim in writ-
ing this paper. Let L be a linear second order differential operator, selfadjoint
with respect to a certain measure u. Different techniques (see for example
(2)) allow us to define the “Riesz potentials” L% s > 0. Therefore, we
can consider the “potential space” L, 1 < p < oo, as L=%/2(LP(y)), the
collection of functions f such that there exists g € LP(u) with f = L=%/2(g).

In general, the second order operator L admits a certain factorization
L = ), D;D;, where the D; are first order differential operators with ad-
joints D} (with respect to pt). Then it is also usual to define the “Riesz trans-
forms” R; = D; o L='/2 and analyze their boundedness on LP(u) (see [16],
[20]). Several motivations can be given for the study of these Riesz trans-
forms. For example, the boundedness in L? of operators like DZ-QOL_l (usually
called Riesz transforms of second order) leads rather easily to “a priori” esti-
mates in LP for the equation Lu = f: just observe that | D?oL~1g||, < C||gll,
can be written in this case as ||D2ull, < C| fl,-

A second motivation (in fact the motivation of this note) is the follow-
ing. Given a natural number k, let us define the (Sobolev) space W]f as
the collection of functions in LP such that the kth derivatives DZ’? f belong
to LP. Suppose that the Riesz transforms of order k, Df o L7F/2 satisfy
|DF o L=*/2f||, ~ || f|l,- This last equivalence could be written (at least
formally) as ||DFf|, ~ |[L¥2f]||,. In other words, the spaces W} and Lj
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would coincide. As the spaces LY have a meaning for all s > 0 (even non-
integer), one could say that the potential space L% is the space of functions
in LP whose “sth derivative” is in LP. We observe that if ¢, is an eigen-
function of L with eigenvalue \,, # 0 then L™%p,, = A, °¢,,. Hence the last
interpretation of the sth derivative is particularly simple to understand.

If the above ideas are directly applied to the Laguerre differential oper-
ator (for Laguerre functions), one finds something that can be considered
a surprise. The expected definition of Sobolev space of order k, that is, the
set of functions in LP such that the derivatives (according to the natural
factorization of the differential operator) of order k belong to LP, does not
match the definition of potential spaces (see Definitions 2-4 and Theorems
3 and 2). The main purpose of the paper is to clarify and make precise what
could be the most appropriate definition of Sobolev spaces for the Laguerre
operator. Our work was inspired by [21] and [13].

It is a common fact that if a concept is developed for Laguerre functions
then the analogous concept can be developed in an easier way for Hermite
functions. That happens in this work and so we devote Section 2 to Hermite
functions. A comment about the dimension is in order here. The motivation
of this paper is essentially one-dimensional, but in the case of Hermite func-
tions, the theory has no added difficulty in several variables, so we present
our results for the Hermite operator in that context.

The knowledge of a sharp enough power weighted theory for a Laguerre
function system can be transferred to another Laguerre function system (see
[1]). That is why we develop a weighted theory of Sobolev and potential
spaces for a particular system of Laguerre functions and then we transfer it
in an easy way to other systems (see Section 5).

Finally, in the last section we present a simple application to the point-
wise convergence of solutions of the Schrédinger equation.

We discuss briefly the case of the Hermite operator
(1) H=-A+z)?, zeR%L
H is self-adjoint on the set C°(R) of infinitely differentiable functions with
compact support. The underlying measure will be the Lebesgue measure.

For each s > 0, the Hermite potential, H %, is defined for f € L?(R, dx),
by the formula

1T dt
(2) H Sf(ff)zp(s)ée tHf(yﬁ)ts?a z e R,
where {e7*H};5¢ is the heat semigroup associated to H. The corresponding
potential spaces, £5(w) = H~*/?(LP(w)), are defined in (6) with respect to
an absolutely continuous measure w(z)dx, w being a weight in A,. For the
reader’s convenience we recall that a positive function w is said to belong
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to the Muckenhoupt class A4,,1 < p < oo, if the Hardy-Littlewood maximal
operator is bounded from LP(w(x)dz) into LP(w(x)dz), and w is said to
belong to the class A; if the Hardy—Littlewood maximal operator is bounded
from L!(w(x)dz) into weak-L!(w(z)dx).

The operator H can be factorized as H = %E?Zl(AjA,j +A_jA;j) (see
(7)), where A; and A_; are first order differential operators.

DEFINITION 1. Given k € N, the Hermite—Sobolev space of order k,
denoted by W¥P(w), is the set of functions f € LP(w) such that
m times

———
A A f=ATfelP(w), 1<m<k 1<j<d,

with the norm

d
I llweoey =D D IAT o) + 1] Logw)-

j=11<m<k
The following theorem will be proved in Section 2.
THEOREM 1. Letk € N, 1 <p < oo, and w € A,. Then
WP (w) = £7 (w),
and the norms || - [lywkp(w) and | - Hﬂﬁ(w) are equivalent.
Of course, to prove this theorem, we shall need a boundedness result for

higher order Riesz transforms (see Theorem 5).
Regarding the Laguerre operator

d? d y a?
Lo=—y———+Z+—,
(3) ” +4+4y

selfadjoint in the set C,(0, 00), there is a natural domain of power weights 7°
for the boundedness on LP((0,00),4°dy) of classical operators associated
to Ly (see [1]), namely for a > —1, 1 < p < oo and § € R,

« @
(4) (Ca) —gp—1<5<p—1+§p.
In a parallel way to the Hermite case, we can define appropriate potential
spaces for Laguerre functions.

y € (0,00),

DEFINITION 2. Given a > —1, 1 < p < o0, s > 0 and J € R we define
WE () = (La)~*/2[LP((0, 00), y dy)]
with the norm | fllagp, (o) = 9llp.s, Where (La)~*/2g = f.

On the other hand, the Laguerre operator can be factorized as L, =
(0%)*0% + (v +1)/2 (see (11)). Following the ideas we developed for the
Hermite case, one can give the following.
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DEFINITION 3. We denote by Wf.‘i”’(yé) the set of functions f in
LP((0,00),4°dy) such that (6*)™f € LP((0,00),%°dy), 0 < m < k, with
the norm N
1 llyper oy = S NG ™ Fll 2 (0,00 5 )
m=0
However, even though we shall prove (see Theorem 10) that the higher
order Riesz transforms (6%)*(L,)~*/? are bounded in LP(y°dy) for § satis-
fying (C,), the “Sobolev” spaces whp (y°) are different from the potential
spaces 207 , (y°). In fact, we have the following
THEOREM 2. Let 1 < p < oo.
(1) Let o> —1 and let § satisfy (Co). Then 2, (y°) C WEP (y9).
(ii) Let —1 < a < 0. Then QB?%Q #* w22,
(i) Let o > 0 and let § satisfy (Co—1). Then mﬁ72(y6) = WaP ().
This result suggests that the iterations of the operators 6% are not good
substitutes for the notion of fractional derivative in this case. Looking at
the actual action of these operators on the set of eigenfunctions of the op-
erator L, (see (12) and (13)), it seems natural to consider the higher order
Riesz transforms defined as
Rl; — (5a+k71 0---08%Tl o 5&)([/&)7]{/2.

It is proved in Theorem 8 that they are bounded on LP((0, c0),y’dy) for &
satisfying (C,). This would suggest the following alternative concept of the
“Sobolev” space given in Definition 3.

DEFINITION 4. The Laguerre-Sobolev space, which we denote by WaP (y5),
is the set of functions f in LP((0,00),3%dy) such that

§9FM oo § T o 5o f € LP((0,00),4°dy), 0<m<k—1,

with the norm

k—1
”f”w(f’?’(yé) = ”f P06 + Z H504+m 0-++-0 5oz+1 o (5af”p75'
m=0

These spaces are the right spaces for the problem we are considering and
the following theorem will be proved in Section 3.

THEOREM 3. Letk € N, a > —1, and let 1 < p < oo and ¢ satisfy (Cy).

Then
WhP(y’) =7, (4°),

and the norms are equivalent.

Unweighted Sobolev spaces in the case of Hermite operators were con-
sidered previously by Thangavelu [21] and the authors [3].
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For the case of Laguerre functions, Laguerre potential spaces were intro-
duced by Peetre and Sparr in 1975; they were also studied by Thangavelu
in [21] and by Radha and Thangavelu in [13] and [14]. For some previous
work containing the definition and power weighted LP-boundedness of the
first order Riesz transforms, see [10] and [9] for the system Lf, and [12] for
the system ¢f (see Section 5). Recently, power weighted LP-boundedness of
the higher order Riesz transforms of the form (D®)*L~*/2 for the system
% (see Section 5) has been proved in [2]. From that result one can deduce,
by using the methods in Section 5, our Theorem 10 about operators of the
form (6%)%(Ly)~%/2. However, we present a different proof since we think
that it contains some explanation of the commuting properties of several
operators. Finally, for the case of Laguerre polynomials some results can be
found in [8].

2. Hermite Sobolev spaces with weights. Let H,,n = 0,1,...,
be the family of Hermite polynomials. The Hermite function of order n is
defined as

H,(t)e /2

Given a multi-index o = (aj)?zl € N%, the Hermite function of order « is
defined as

d
ha(x) = [ hoy(xs), 2= (z1,...,24) € R%
j=1

These functions are eigenvectors of the Hermite operator (see (1)). In fact,
Hho = (2|la| + d)ha,

where |a] = Z;-lzl a; (see [20]).
We shall need the following lemmas. Their proofs can be found respec-
tively in [20], [17] and [3].
LEMMA 1. Let M €N and f€Cg°. Then there exists a constant Cyr,p >0
such that
| § fha| < Cargllal + )7, ae N

R4

LEMMA 2. Let 1 < p < oo and w € Ap. Then there exist constants
ep > 0 and Cy, such that

1hallze(w) < Cu(lal +1)7.
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LEMMA 3. Let f be a linear combination of Hermite functions. Then the
fractional integral H=%, s > 0 (see (2)), has an integral representation

H™f(x) = | Ky(z,9)f(y)dy, z€R%
R4
where Kq(z,y) is positive and symmetric. Moreover,
(5) Ky(z,y) < Cosllz —yl),  z,y R,
where ¢s(r), for v >0, is defined by
X{r<1}(r)/rd_28 + €_r2/4X{7‘21} (T) Zf s < d/27
2 .
¢s(r) = { log(e/r)x ey (r) + e M xpany () if s=d/2,
2 .
X{r<1}(r) +e " /4 X{rzl}(r> ’LfS > d/2

THEOREM 4. Let 1 < p < oo and s > 0. If w € Ap, then the operator
H~* is bounded on LP(w).

Proof. If p > 1, we just observe that the function z — ¢4(|x|) is radial
and decreasing for |z| — oo; therefore, |H*f(z)| < M(|f|)(z) where M is
the Hardy—Littlewood maximal operator, and the result follows.

In the case p = 1, we shall prove that {3, K(z,y)w(z)dr < Cw(y)
whenever y is a Lebesgue point of w. Then

VIH f(@)|w(x)de < | [f(y)] | K@, y)w()dedy < | | f(y)lw(y) dy.
R4 Rd Rd Rd
If y is a Lebesgue point of w € Ay, then

1
Blyr)| B(?S”) w(z)dr < Cw(y).

Hence, by estimate (5) and splitting into annuli, we have

| K(aypo(@)de < Y I oy - ohw()de

Rd k=—o0 B(y,2F)\B(y, 2’“‘1)

< Z os( 2k By, 2k)’ S w(z) dr

k=—co B(y,2*)\B(y,2k~1)
< Cu(y ( Z 65(2)2%) < Cu(y). =

Given 1 <p < oo, s>0and w € Ap7 we define the potential spaces
(6) £8(w) = H*/*(LP (w)),
with the norm || f|| gz () = 19/l zr(w), Where g is such that H—3/?2g = f. The
—s/2

space £5 (w) is well defined, since H is bounded and one-to-one in LP(w).



Laguerre function systems 153

In fact, suppose g € LP(w) and H~*/2g = 0. Observe that

V V| Kol 9)lg@)] 1ha()l dy de < | H™*2|g| | o) | hall 1o’ -5y

Rd R4
and this expression is finite by Theorem 4 and Lemma 2, since w™?/? belongs
to A,. Hence, by Fubini and the symmetry of Ky s,

S Ghe = (2n+ 1)3/2 S ngs/2ha _ (2n+ 1)3/2 S Hfs/Zgha =0,
Rd R4 Rd
and this yields g = 0 (see Corollary 2.4 in [17]).

REMARK 1. The space § of finite linear combinations of Hermite func-
tions is a dense subspace of £8(w), since § = H~%/%(F) is dense in LP(w).

The operator H can be factorized as

d
1
(7) H=2) (4A 5+ 44,
j=1
where

Aj= +x; and A_j=-— + ;.

0 9
axj a%j
It is easy to check that

(8) Ajha = \/QCV]' ha_ej, A_jha = \/Q(Ctj + 1) ha_;,_ej,

where ¢e; is the jth coordinate vector in N?. From these formulas the opera-
tors A; and A7 are called annihilation and creation operators respectively.

DEFINITION 5. The Hermite—Riesz transforms of order m, m € N, asso-
ciated to H are defined by

M= Ay . A HT™2 ) where = (41,0 0m), 1< i < d, 1 <i<m.

In the case j1 = -+ = jm = j, these operators will be denoted by R’".
The case m = 1 was considered by S. Thangavelu (see [20]). He proved
that these operators are bounded in LP(R?). Also in [17] and [18], it was
shown that the operators R’} are Calderén-Zygmund operators and as a
consequence they are bounded in LP(w) for w € Ap, 1 < p < 0.

We now present a structural theorem for the spaces £5(w). Unweighted
versions of this result can be found in [3, Theorems 2, 6 and 7].

THEOREM 5. Letw € Ay, 1 < p < oo, and s > 0.

(i) If t > s, then £)(w) C £5(w) C LP(w) with continuous inclusions.
Moreover, £5(w) and £Y(w) are isometrically isomorphic.
(ii) Ift > 0, then H='/2 maps £&(w) into £, ,(w).
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(iii) If s > 1 and 1 < [j] < d, then A; is bounded from £&(w) into
Loy (w).
(iv) The operators R’} are bounded on £5(w).

Proof. Observe that H—%/2 = H=5/2 0 H™" with r = (t — s)/2. Then (i)
follows from Theorem 4; (ii) also follows from Theorem 4 and the definition
of the spaces £5(w).

In order to prove (iii) we shall need the following two results. They can
be found respectively in [7] and [3]. For further reference, we state them as
Proposition 1 and Lemma 4.

PROPOSITION 1. Let 1 < p < oo and m € £>°(N%) be such that
A'm(a)] < CA+ o)™, aeN |0 <d+1.

Consider the operator Tp,f = > m(a)(f, ha)ha, defined at least for f €
L?(R). Then T, admits a bounded extension to LP(w) whenever the weight
w belongs to the Muckenhoupt class A,.

REMARK 2. Observe that as Hh, = (2|a| + d)hs, any operator of
the type F(H)f = >, FQ2a + d){(f, ha)ha can be written as 7, f =
Yoo m(a)(f, ha)hq with m(a) = F(2a+d) = F(2(ou,...,0q) +d).

LEMMA 4. Let b € R. Then for all f in §, we have
AjHf = (H +2)°A;f, 1<j<d,
AH'f = (H=2)"4;f,  —d<j<-1,
HA;f = Aj(H =2)’f, 1<j<d,
HA;f = Aj(H +2)f,  —d<j<-,
where Hhy = (2|a| + d)°hy, and (H + 2)°h = (2]a| + d + 2)°h, for all
a € N4, and (H — 2)°hy = (2|a| +d — 2)°hy for all a with |af > 1.

We continue the proof of Theorem 5. Let 1 < j < d (the case —d < j <
—1 is similar). Let f € §. By Lemma 4 we have

—(s—1)/2 H (s=D/2 /2
Aif=H < n 2) R;H**f.
As the function

m(a) = 2lal +d (s=1)/2
V=2 +d+2

satisfies the hypotheses of Proposition 1 (see also Remark 2), the operator

(HLH) (=172 is bounded on LP (w). Hence by using the boundedness in L (w)
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of the Riesz transforms, we have

HO\CD2
1458 0= (75) R

< CIH £l o) = 11l 62 w)
Finally, (iv) follows from (ii) and (iii). =

LP(w)

The following technical result will be needed later.

PROPOSITION 2. Let1 < p < 0o andw € A,. Fork € N the set WFP(w)

(see Definition 1) is a Banach space. Moreover, the sets § and CS° are dense
in WHP(w).

Proof. Observe that if {f,},>1 is a Cauchy sequence in W¥P(w), the
completeness of LP(w) implies that f,, converges to some f and A;.” fn con-
verges to some gp, ; in LP(w), 1 <m <k, 1 < j < d. If ¥ belongs to C°,
also (AT)*w belongs to C¢°, and if B is a ball containing the support of
(AT')*¢, then

| § sy = el < fir- gl
B

Rd Rd
1/ r\ /P
<c(§17 = papw) " (Jur)
Rd B
where the last integral is finite since w € A,. Hence
lim | fu (A7) = | f(AF)" .
n—oo 4 Rd
In the same way, limy,co §pa AT fnt) = (pa gm,j1. Therefore §p, AT fih =
SRd 9m,;¥ for all ¥ in C2°, and thus A;” f = gm,; almost everywhere. This
completes the proof that WP (w) is complete.
Now we will see that C2° is a dense set in W*P(w) (we follow the ideas
in (15, p. 123]). Let ¥ € C° be such that {p,¢ = 1. For every ¢ > 0,
consider ¥.(x) = (1/e?)y(z/e). Given f in W'P(w), the function f 1.
belongs to C*° and approximates f in the WP (w)-norm. In fact, it is easy
to see that for all m > 1and 1 < j <d,

Aj(fxibe) = Ajf sibetef* (wj))e,  AT(f #0e) = Za”Am " ().
n=0

Since AT"" f belongs to LP(w) and z}1 belongs to C°, 0 < n < m, we

have

AT(f #ihe) — AT
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in LP(w) as € goes to 0. The functions f . do not necessarily have compact
support, but they can be modified as in the classical case (see [15, p. 123]).

It remains to prove that any function in Cg° can be approximated in the
WHP(w)-norm by a function in §. We will show that any f € O is the
limit, in the W*P(w)-norm, of a subsequence of partial sums

SNF= > (f haha, N >1,

|| <N

where (f,hq) = § fhq. In [17, Lemma 2.3], it is proved that there exists a
subsequence of the previous sequence converging to f in the LP(w)-norm.
Hence, it is enough to show that there exists a subsequence of

{AT (SN (N)Iv=1 = {Sn (AT [)In=1
converging to A7 f in the LP(w)-norm, where 1 <j <dand 1 <m <k.
Fix 7 and m such that 1 < j < d and 1 < m < k. Following the
argument of [17], the sequence {Sn(AT'f)}n>1 converges to AT'f in the
L?-norm. Hence we can take a subsequence {S Ny (AT ) }i>1 converging to
AT'f almost everywhere. By using (8), we have

SN(ATS) = Y (AP foha)ha = Y (f,(A3) " ha)ha

la|<N lo] <N
= Z H\/W(fa hoz+m6i>ha'
|a|<N I=1

Hence, by Lemma 1 (with M > m) and Hélder’s inequality, we have

sy <c( S T2 +0 (ol +m+ 1))’

|| <N I=1
_ p
<0 (al+m+ 1),
la|<N

< o( X Mlod+ D7) S o] 4+ 1) 2 g

[} «

<Y (ol +1)7M2 kg

From Lemma 2, for M large enough, the function

> (a+ 1) Mol

«

belongs to L'(w). The dominated convergence theorem implies that
{SN, (A7 =1 — AT f
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in the LP(w)-norm. Now we can repeat the lines above for every j and m,
taking a subsequence of the previous subsequence in each step. m

Proof of Theorem 1. Since § is dense in both spaces, it is enough to show
the equivalence of the norms for functions in §.

Let f€§ and f = H*2g For1<j<dand1<m <k, from the
boundedness of RT" and H —k+m (see the comments after Definition 5 and
Theorem 4) we have

1A Flliogy < IBTHTD gl < lgllivw):
SO

Now we shall prove the reverse inequality. By using Lemma 4, the fol-
lowing identities can be proved for each integer k > 1:

d d
T =Y RN, RF = "(ANFH M2 (A)kH+?
j=1 j=1
d
= (H _ Qk,)—k/2<Z(A;)k(Aj)k>H—k/2
j=1
d
= (H = 28) 237 (B = )(Hy = 1-2) -+ (Hy =1 =2k = 1)) JH 2,
j=1

where H; = —92/ 83;? —i—x?. Observe that H =} H;. Consider the function
(2lal +d — 2k)*?(2]a| + d)*/?
d

> i-1(205) (205 = 2) ... (205 — 2(k — 1))
An appropriate smooth extension of my can be considered in order to apply
Proposition 1. Hence the operator Sy, defined as Sm, f =), mg()(f, ha)ha
is bounded in LP(w).

Denote by §j the finite-dimensional space of linear combinations of Her-

mite functions h, with |a| < k. Given a function ¢ in § \ §x, we observe
that Sm, o Tig = g and therefore

mk(a) = X[dk,oo)(|a’)'

d
191l o (w) = ISy Tegll Lo w) < CrllThgll Loy = Cr > IIRE ;RE gll 1o )
=1

d d
< Cr Y IR gll oy = Ce Y I(A) H 29| 1)
j=1 j=1

for some constant Cy independent of g. Therefore for f € §\ § with f =



158 B. Bongioanni and J. L. Torrea

H*2g we have

1f1le2 ) = N9l o) < Crllf llwrep uw)-

For the general case g € §, we write g = g1+ g2 with g1 € F and g2 € F\ Fk-
We observe (one can use Lemma 2) that H*/2 is a bounded linear operator
on the finite-dimensional space §j (with the LP(w)-norm). The same lemma
also ensures that the projection g — ¢; is bounded in LP(w), hence

190l 2oy < I 2H 21| 1) + 192]l 10 )

d
< ChllH ™2 g1| Lo (w) + Ci Z (A7) H %2 g0l Loy
=

d
< CIH gl o) + Cr > I ADH*2g] o),
j=1

where in the last inequality we have used (A4;)*H k/2g, = 0 and the fact that
the projection of the function H*/2¢g from § into Fj is H */2g;. m

3. Laguerre setting. Let LS, n =0,1,..., be the Laguerre polynomi-
als of type o > —1. Consider the family of Laguerre functions £ defined as

Cn+1) \'? —y/2, a/2
“y) = ELY Rt No.
For each o > —1, {£2}5°, is an orthonormal system in L?((0,00)) and

satisfies
a+1

Laﬁg = <’I’L + >£g, n € Ny,

where L, is defined in (3). It is known (and probably belongs to the folklore,
see for example [19, Theorem 5.7.1]) that if @« > —1, and 1 < p < oo and
) € R satisty (C,) (see (4)), then the set S, of finite linear combinations of
Laguerre functions is dense in LP((0, 00),4°dy). The condition (Cy) will be
crucial along this note.

REMARK 3. Observe that if a pair (d,p) satisfies (C,) then it satisfies
(Cp) for every > a.

Given o« > —1 and s > 0, we can define the operator (L,)~*® analogously
to (2) just by replacing {e 7 };~q by {e7"*},~0. We need the following two
results that can be found in [7] and that we state as a unified theorem for
further reference.

THEOREM 6. Leta > —1, and let1 < p < oo and § € R satisfy condition
(Cq). Let p € C*([0,00)) be such that

(10) P @) < Cd+6)7F k=012,
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for allt >0 and k € Ng. Then the operator
TS = Y £

defined at least for f € L*(R), admits a bounded extension to LP((0, 00),y’dy).
A consequence of this result is the following theorem.

THEOREM 7. Leta > —1, andlet 1 < p < oo and § € R satisfy condition
(Co). Then the operator (Ly)™*, s > 0, is bounded from LP((0,00),y°dy)
into itself.

Proof. The multiplier p(n) = (n+ (a4 1)/2)7° satisfies (10). =

Now that we see that the spaces in Definition 2 are well defined, we
proceed as in the Hermite context. It is not difficult to prove that (Lg)~*/? is
one-to-one in LP((0, 00), y°dy), using the fact that S, is contained and dense
in L¥ ((0,00), y*'"9/Pdy) whenever § satisfies (Cy). Moreover, since Sq =
(La)/?(S,) and S, is dense in LP((0, 00),3%dy), it is dense in 205 s(y?).

The operator L, can be written as

Lo = (6%)%0% + (a +1)/2,

where

(1) 50‘—\/5;;+;<\/§_\;%>7 =iy ( _a;)

The action of these operators on Laguerre functions is given by

(12) §ULE) =0, L) = —/n L, for n > 1,
(13) (6 (L) = —vn+1L2,, forn>0.

The Riesz transforms were defined in [10] for o > —1 by
Ry = 6%(Lo) % and Ry = (6%)*(Las1)” V2

In [9] it was proved that those operators are bounded on LP((0, 00),y’dy)
for 0 satisfying (C,). Given a positive integer k and o > —1 we define the
higher order Riesz transforms of order k as

Rk (6a+k Lo...ogatt Oéa)(La)—kﬂ
and B
BE = ((5)" 0 (5°1) 0+ 0 (7HE 1)) (L) M2
Observe that RL = R, and R = R,,.

THEOREM 8. Letk € N, > —1 and let 1 < p < oo and ¢ satisfy (Cq).
Then the operators RE and RE are bounded on LP((0,00),y°dy).

In order to prove this theorem we shall need the following lemma, whose
proof is left to the reader.
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LEMMA 5. Let @ be a continuous function and o > —1. For every f in
Se, we have

(1) 0°®(La)f = D(Lay1 + 31)5%f.
(2) (6%)D(Lat1)f = P(La — 5I)(6°)* f.
Now we can prove Theorem 8 by induction on k.

Proof of Theorem 8. As mentioned above, the result is true for £k = 1
(see [9]). Let k > 1. For a function f in S,, we have

RE = (69F 1 o0 69T 0 §%)(Lg) F/?

(57 o 0 5% 0 5% o (L)~ RD/2(L,) /2

= (69 1o 082 ) o (Lagy + A1) R 1/2 6 6% 0 (L) /2

= (0o 069 ) o (Layr) F /20T, 06% 0 (Ly)7F/?

= RF 10T, 0 R,,
where T}, is the operator given by the multiplier (in the system {£11}1% )
B n+(a+1)/2 (k=1)/2

H) = a1

The function p satisfies (10). Hence, by Theorem 6, 7}, is bounded from

LP((0,00),4°dy) into LP((0,00),4°dy) for § satisfying (Cas1). On the

other hand, the induction hypothesis says that Rerll is bounded from

LP((0,00),y°dy) into LP((0,00),3°dy) for & satisfying (Cay1). As we no-
ticed, this range is bigger than the range (C,) (see Remark 3).

To prove the boundedness of Ei, we again use Lemma 5. We write ]Aég =
Rfjfl oT, o Rytk—1, where T}, is given by the multiplier

o= (1 Z2E) /s 24570,

The proof continues along the same lines as for R, by using the boundedness
of the operators R and T,,. m

Parallel to the Hermite setting we have the following structural theorem
for the spaces 205 <(1°).

THEOREM 9. Let s >0, a > —1, and let 1 < p < oo and 0 satisfy (Cy).
(i) Ift>s, then20h s(y°) C QUZ,t(y‘;) C LP(y%) with continuous inclusions.

Moreover, 2h s(y°) and Qﬁivt(y‘s) are isometrically isomorphic.
(i) Ift > 0, then (La) %2 maps 205 <(y°) into Qﬁi,s+t(y6).
(iii) If s > 1, then 8% is bounded from 2% s(y°) into QﬂngLs_l(y‘s).
(iv) The operators RE are bounded from 20h (y°) into QI]ZJrk’s(y‘S).
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Proof. The statements (i) and (ii) follow from the boundedness of (Lq) /2
established in Theorem 7. On the other hand, given f € QB&S(M), there

exists g € LP(y%) such that L;S/Zg = f. Set

Lo, L\ —(s=1)/2
B — <+1+2> Rug.
La-‘rl

Then
0°f = 8°Lo*%g = (Lass + 31)" /267 L g
= (Lo+1 + %I)_(S_l)/zRag _ (La+1)_(s_1)/2h.
By Theorems 6 and 8, we have

||5af”m]&+ls (o) = ||h||Lp(y6) < CHQHLP(yé) = ||5afHQU£,S(y5)

In order to prove (iv) we use (ii) and (iii). m

Given a function f, consider the Cesaro sums of g of order r > 0, that is,

N
1
C}"V,a(g) = ClT Z a?\f—n<f7 £g>£z
N n=0

for N € N, with )
. I G+r)
4, =———>—— 0<n<N.
n!
The following proposition is an easy consequence of Theorem 1.13 in [11] and

it will be the key to proving a density result in Wa®(y°) (see Definition 4).

PROPOSITION 3. Let a > —1, and let 1 < p < 0o and & satisfy (Cq).
Then there exists r > 1 (possibly depending on «) such that the Cesaro
sums of order v of a function f converge to f in the LP(y°dy)-norm as N
goes to infinity.

PROPOSITION 4. Letk € N, o > —1, and let 1 < p < 0o and § satisfy
(Co). Then Sy is a dense subspace of Wh™P(y°).

Proof. By using (12) and (13), we have

N
5" Chalf) = 3 ahv -l LI

7ZaN " f, 504 £a+1>

N-1

ay_; 1 1 1
N N-1 ,—o

On_1
= a” C]Q/fl,aJrl((Saf)v
N
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and inductively, if m € Ny and N > m,

(14) (6%t o 06 0 6™ Ch o (f)

a’l”
= = O maym (0T o0 69T 0 5% ).

T

N

By Proposition 3, we choose r large enough so that the sequence in S, given
by fn = Cy,f converges to f in the LP(3°dy)-norm. Observe that the
functions 6*t™ 1 o ... 0 6@ 0 §@f, where 1 < m < k — 1, also belong
to LP((0,00),y°dy). Thus formula (14), Proposition 3 and the fact that
limy oo aly_,,,/a% = 1 imply that the sequence 6™ 1o ... 0§ o §¥o
Cy.o(f) converges to setm=lo... 0§l 6 5% in the LP(y%dy)-norm for
1<m<k—-1um

Proof of Theorem 3. As S, is a dense subspace of Qﬁgk (y) and W(f’p(gﬁ),
it is enough to show the equivalence of the norms for functions f € S,. Let
g be such that (L) %/2g = f. For 0 < m < k — 1, we have

k—1
1 llyogys) = 1 Fllps + 3 18 0 08 0 57 £l 5

m=1
k—1
= [(La) ™ 2gllps + Y 1697 0+ 06%T 0 6(La) ™ ?gllps
m=1
k—1
= [(La) " gllps + Y IIRZ (L)~ ™ 2g] |5
m=1

<Clg

po = Cllf e, wo)-

In the last inequality we have used Theorems 7 and 8.

For the reverse inequality it is clearly enough to prove that there exists
a constant C' such that for all f € S,

(15)  [I(Za)**fllps < CIf Ips + 8% o062 052 f

‘p75)'

Let @ > —1 and k € N. We let IT¥ be the set of linear combinations of
Laguerre functions of type « up to order k. If f € S, we split f = f1 + fo
with fi € IT¥ and fo € S, \ IIk. Since (L,)¥ is a linear operator on a
finite-dimensional space Uéf, there exists a constant C' that depends on k
such that

1(La)*"2 fillps < Cllfallp.s-
On the other hand, since (Lo)~*/? is bounded on LP((0, oc),y’dy) (Theo-

rem 7), we have
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f1llps = 1 = follps < I1fllps + 1 (Za) ™ (La)"2 fol
< N fllps + Cll(La)*? follps,

p,0

thus

1(Za)*"2 Fllp.s < IEa)*? fillps + 1 (La)* follp.s CUFllps+ 1l (L) ¥ follps)-
Therefore, it is enough to prove (15) for fo. By using Lemma 5 we can easily
show the following identity for each integer k:

Tk:§§OR§

—k/2
:<La—k> o<La—a+1—k:—1>o(La—a+1—k—2>--~
2 2 2

-.o(La—a;1—1>O<La—a;1>(La)k/2

and consider the function
k/2 k/2
(t+250) "+ 25— 5)
k-1 .
Hj:() (t—J)
which satisfies (10). Then the proof follows the same lines as in the Hermite

case in Theorem 3 using the multiplier Theorem 6 and Theorem 8 in order
to control the operator RE. u

pi(t) = X[k,00) (1)

4. Alternative definitions of Riesz transforms. Consequences
for Sobolev spaces. In this section we analyse the role of the “natural”
Riesz transforms

(5a)k<La)_k/2,
relating to Sobolev spaces. Some commutation properties of the operators
6* with the operator of multiplication by z%/? will be essential. We shall
write 6"‘# and x%/26% as shorthand for the action 5a(()+/2f())(a:) and

.’EE/2(5 ). We state the following lemma whose proof (usin 11)) is left
to the reader.

LEMMA 6. Let B,a > —1, and £ € N.

N B _ s a—p
(i) ¢ 0% + NG
1 1
.. B _ B+L
(ii) ¢ = s o7
(iif) If B3> € — 1, then B

24/2 Topt/2 p+1)/2°
(iv) If B> £ — 1, then §%2%/? = 4*/2§5~¢,

) @ =04 g (va- )+ 5(ve-TE).
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LEMMA 7. Let « > —1 and k € N. Then
(6°)* = > e opn

xp/2
0<p<m+1, p+m=k—1

Proof. Let p < m+ 1. By using Lemma 6 we have

« 1 a-+m a _ 1 a+p a+m fo
5<$p/25 O"'O(S)_xp/?é 04 0---00

X T
_ 1 5a+m+105a+mo_'.05a+ 1 m+1_p

xp/2 .Z‘p/2 2\/5
If p=m+ 1 we have

§OT™M 5 Lo 5%,

1 1
(e at+m a | _ a+m+1 at+m (e
J <3:P/25 o 0(5> xp/26 00 o---00%

Then
« o Cm a+m «
() =5 < E a}p/25+ o~--o<5>

0<p<m+1,p+m=k—1

C,
_ Z 2:72 5a+m+1 o 5a+m 0. 08%
0<p<m+1,p+m=k—1 x
em m+1—
+ Z ;72 NG p5a+mo...o5a
x
0<p<m+1, p+m=k—1 x
1
+ Z 7 6o¢+m+1 08aTM 6. ..o 6%
xX

0<p=m+1, p+m=k—1
@
- Z p725a+mo'”05a
€T

0<p<m, p+m=k

LY Do

0<g<m+1, g+m=k v

b e
T

0<p=m, p+m=k

— m_satm oo s
= Z xp/26 o o <.

0<p<m+1, p+m=k
The standard induction argument completes the proof. m
LEMMA 8. Let Py, (u,v) be a polynomial of degree m in variables u,v, i.e.

Py (u,v) = apu™ + au™ 4+ ae™.
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Assume that B > m — 1. Then

o) ()

where P} and P%_H are polynomials of degrees m and m + 1.
Proof. Observe that
PolV/E.1/VE)

Let 0 < £ < m. Then by using Lemma 6 we have

{—m
B 0/2y _ /258~ _ £/2( s8—m
07 (2%7) = a=4 x <5 + 2\/E>

_ gb2shm Z*Tm L(E-1/2)

Let £ = —q < 0. Again by Lemma 6 we have

1 1
B( 412y — 58 _ p—q 4
@) =00 = 2@ 1)/2
1 _ 1 fg—m q
_ B—m _
o /2 6 + 1d/2 < rl/2 > r(g+1)/2
1 m
_ B—m _ A)258-m (—-1)/2
_7‘1/25 ETSYYD = g4 mx . m

LEMMA 9. Let £, m be natural numbers such that 0 < £ < m. Fora > —1
and (8, p) satisfying (Cy), the operators M%(Lwrm)_g/z and z?(Loqm)~?
are bounded on LP((0,00),ydy).

Proof. First, let1 = £ = m. We have already mentioned that the operator

d 1 a+1
Qo * La —1/2 — _ . - _ La —1/2
(09)"(Lat1) Vi + 5| Ve Tz (Lat1)
is bounded in LP((0,00),y°dy) for p,d satisfying (C,) (see (4)). Also the
operator

d 1 a+1
a+1 L —1/2 — Il - _ L —1/2
6 Lo = {E 4 5 (vE- ) bEan)
is bounded in LP((0, 00), y°dy) for p,d satisfying (Co.1). Hence both opera-
tors are bounded in LP((0,00),4°dy) for p,§ satisfying (Cy). Consequently,
the operator (v/z — (a4 1)/v/Z)(Las1) /2 is also bounded.
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If 2(a + 1) < x then 0 < /z < 2(y/x — (o + 1)/y/z). We already know

that (Lg)_l/ 2 has positive kernel, hence for positive functions f we have

Va(Lay1) 2 f (@) € Va(Las1) 2 () (@)X 020041 ()
a+1

(f -2 )(Lam1/2<f><x>><p<a+1>,oo><w>

<V2(a+ 1)(La+1)_1/2(f)(l‘)X[o,z(aH)] (z)
a+1

(\F - f) (Las1) ™2 (F)(@) X2 (041),00) ()

The cases ¢ =1 and ¢ < m can be proved as the previous one by using
(6™ (Loin) /2 and 6%T™(Laym)~ /2. Thus we obtain boundedness
in LP((0,00),y’dy) for &,p satistying (Caym_1). By Remark 3 we obtain
boundedness for §, p satisfying (C,).

In the case 1 < ¢ < m we apply an induction argument. The operators

Y4
Ra—l—m

are bounded in LP((0,00),y°dy) for 4, p satisfying (Coim). On the other
hand, the operators

Bl e = (850 0 (54 0 o (8 ) (L) 12

are bounded in LP((0,00),y°dy) for 6,p satisfying (Caqm—¢) (see Theo-
rem 8). In particular, both operators are bounded in LP((0,00),%dy)
for §, p satisfying (Cy).

(60TmH oo gartmtl o sockmy(L /2

We observe that due to Lemma 6 we have, for j =0,...,4,
(5a+mfj)* _ _5o¢+m+(jfl)
1 a+m+(j—1) 1 (a+m—j)+1
rg(va- ) g (e
j +m
_ _6oc+m+(j 1) <f o )

f
Therefore
(5o¢+m—£)* ° (5o¢+m—€+1)* . (5a+m—1)*

) (n-52)
(e 22)

— (_5a+m+€fl + Pl(\/g, 1/\/‘%)) o (_5a+m+872 + Pl(\/g7 1/ﬁ)) o
o (=0T + P1(Va, 1/v%)),
where Pj(y/z,1/+/x) is the polynomial of first degree /z — (oo +m)//x.
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Hence, by using Lemma 8 and an induction argument we get
(5a+mf€)* ° (5a+m75+1)* 0---0 (5a+m71)*
— (_1)€5a+m+€—1 ° 5a+m+€—2 0.0 dYTM

—|—P1(\/5, 1/\/5)5a+m+€—2 0--.0fATM
_'_P2(\/§71/\/§>50Hrm+f73o”_Oéoﬂrm_i__”_’_PZ(\/§71/\/§>7

where as usual Pj(y/z,1/y/x) denotes a polynomial of degree j. Now by
using Lemma 5 we get

Ra+m L — ( )ZRZ

a+m

+ Pi(v2,1/V@) o (Lagmte—1) "2 0 T amat—1 0 R&;ﬁzﬂ
+ Pf—l(\/E7 1/\/5) © (La+m+1) (=172 4 Tm,a+m+1 © Ra+m
+oeee Pg(\/E, 1/\/5) o (Laer)_é/Qa

where T}, n+m+¢—1 are multipliers analogous to those in Theorem 8. By
Theorem 8 Theorem 6 and the induction hypothesis on ¢, the operators

RﬁH—m 0 oc+m? Py(y/x, 1/[) (L a+m+€—l)71/2 © Timat+m+e—1 © R((f;rln)/Q
and Py_1 (v, 1/3/) © (Latmt1) " D/% 0 Ty apmi1 © Ry, are bounded
for 6, p satisfying (Cq), hence Py(v/z,1/1/%) o (Lagm) /% is bounded in the
same range. Therefore by using the induction hypothesis on ¢ again, we see
that an operator of the type (az’/? 4+ bx=%?) o (Laym)~%? is bounded. By
an argument similar to the beginning of this proof we get the assertion. =

THEOREM 10. Let a > —1. Then the “Riesz” transforms (6%)F(Ly)~*/?
are bounded in LP((0,00),3°dy) for 6,p satisfying (Cq).

Proof. Let 0 <p<m+41and p+m =k — 1. By Lemma 5 we have
1 _ 1 _
<mp/2 %Moo 5a> (La) b2 = /2 (Latm+1) p/QTyRZLH:
where T}, is a multiplier defined on the system {£2T™ %1}, - which satisfies
the hypothesis in Theorem 6. Now Lemmas 9 and 7 and Theorem 8 give the
result. =

In order to analyze the possible coincidence for certain «, d and p of the
spaces WEP(y9) (see Definition 3) with the spaces considered in Section 3
we shall need the following reformulation of Lemma 9.

LEMMA 10. Let £, m be natural numbers such that 0 < £ <m+1. For any
a >0 and 0,p satisfying (Co—1), the operators m (Lagm)~t? are bounded

on LP((0,00),y°dy).
Proof of Theorem 2. By using Theorem 10 and the same arguments

as at the beginning of the proof of Theorem 3, it is easy to prove (i). To
see (ii), consider a function f with support in [0, 1] such that f(y) = y(@+1/2
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for 0 <y < 1/2, f(1) = 0 and f is smooth in [1/3,1]. It is easy to see
that f, 6%f and 6 o §*f belong to L?((0,00),dy). However, for y ~ 0,
50t 0 5% f ~ 9y @=1/2 that is, 6%t 0 6% f is not in L2((0,00), dy).

Finally, let [ € Wo%’p(y‘s). Then 6 f, (6*)%f € LP((0, 00),y’dy), therefore
(by Theorem 3) there exists h € LP such that (6%)f = (La)~"/2h. Hence,
by Lemma 6,

1 1

5= 80 - =

7 (La) ™%,

504-1—1 oéo‘fzé‘”oéaf—
Now Lemma 10 gives (iii). =
5. Other Laguerre systems. We consider the orthonormal system

in L2((0,00),dy) given by the Laguerre functions ¢(y) = L% (y?)(2y)"/?,
a > —1, where the L3 are defined in (9). The functions ¢ are eigenfunctions

of the operator
1 d? 1 1
L, =-{_— 2 - 2 - )
¢ 4{ ayp Y +y2<a 4>}

(67 05—1_1 (0%
La(¢)) = <k‘+ >90k-

The operator L, can be “factorized” as
at+l
5 =

In fact,

L, - (Do)"Dy

with

1(d 1 1 1( d 1 1
a__ ) - - ok . — ) 7 = -
P _2{dy+y y<a+2>} and D% 2{ ay " y<a+2>}’

where (D®)* is the formal adjoint of D® with respect to the Lebesgue mea-
sure. Then

D(pf) = —Vkept] and (D) (@) = —VEk+ 1.

As in Sections 3 and 4, the Riesz transforms can be defined as
RF =D 1o ..o D¥(Ly) 72, alternatively (D%)*(La) "2, a > —1.

Let V be the operator defined by Vf(y) = (2y)'/2f(3?). Let 26 = v +
p/2 = L. Then ||V £l 1o((0,00)57dy) = 27 VPUF1l 1o ((0.00) o) -

PROPOSITION 1. Let 1 < p < oo, and 3,y be real numbers. Let T be
an operator defined over the set of finite linear combinations of Laguerre
functions {L{}x. Then T has a bounded extension from LP((0,00),y’dy)

into LP((0,00),y°dy) if and only if T = VTV~ has a bounded extension
from LP((0,00),y"dy) into LP((0,00),y dy), where 2§ =~ + p/2 — 1.
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An easy consequence of the above proposition and Theorems 8 and 10
is the following.

THEOREM 11. Let o > —1 and let f be a finite linear combination of
Laguerre functions {L{}. Then

(i) e7thaf =Vl thay f
(it) (La)~f =V~ 1 (La) "V f for s >0,
(iii) 09f = VIDV £,
(iv) REf =V 'REV Y.
PROPOSITION 2. Let a > —1, 1 < p < 0o, and y be a real number. Let
S be any one of the operators L=%, s > 0, RE, (D*)*L=%/2 s > 0. Then S
has a bounded extension from LP((0,00),y"dy) into itself for v satisfying

(16) (Co) —l—ap—p/2<~vy<ap+3p/2—1.

Now in a parallel way to we did in Sections 3 and 4, we can define
potential spaces and Sobolev spaces for the class of Laguerre functions
{2k, @« > —1. Thus, given a > —1, 1 < p < oo, s > 0 and ~ satisfy-
ing (C,) (see (16)), we define

U (") = (La)"[LP((0, 00), 5" dy)]
with the norm || fllye  (,7) = [l9lp,y, where (La)~%%g = f.
We denote by USP (3?) the set of functions f in LP((0, 00), y7dy) such that
D> o...o D oD € LP((0,00),y7dy), 0<m<k—1,
with the norm 1
1l = 1l + 3 D0 0 D= o DA, .
m=0

Finally, let U~ (y) denote the set of functions f in LP((0,00),y"dy) such
that (D)™ f € LP((0,00),y"dy), 0 < m < k, with the norm

k
£y = S D™ s
m=0

The following theorems are direct consequences of Theorems 3, 2 and
Propositions 2 and 11.

THEOREM 12. Leta> —1,1 <p < oo, k € N and v € R. Then:
(i) URFP(y) = 8 1.(y7), and the norms are equivalent.

(ii) Let ~y satisfy (Cy). Then uﬁ,kz(?ﬂ) C UEP ().

(ifi) Let —1 < a < 0. Then 42 , # Ux>.

(iv) Let v satisfy (Ca-1). Then &, 5(y7) = UZP ().
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Analogous results could be obtained for the systems of Laguerre func-
tions £2(y) = L3 (y)y~*/? and ¥ (y) = V2y LY (y?), a > —1. These
systems are eigenfunctions of the differential operators
@ v
dy? 4

1(d® 20+1d
R Cr A e

We leave to the interested reader the easy work, but boring unless the

statements are needed for some application, of establishing a version of The-
orem 12 for these systems.

—(a+1) d

a

La:_y

and

6. Schrodinger equation. Consider the equation

_Ou(y,t)
(17) 1 T = Lau(y) t);

u(y,O)zf(y), yE(O,oo),tE]R,
for some initial data f. Consider its solution

uly, t) = e f(y),
for f in the space L?((0,00),dy). From a general result in [5] one can see
that if f € 207, with s > 1, then lim;_o L f(y) = f(y) a.e. y. On the
other hand, it is known (see [4] and [6]) that lim; .o e f(y) = f(y) for f
such that AY®f e L2. We give the following intermediate result.

THEOREM 13. If f € 202 , with s > 1/2 then

a,s
(18) lim e f(y) = /()
for almost every y € (0, 00).
Proof. It is enough to prove that the maximal function
T*f = sup |’ f|
teR
satisfies the inequality
VT f < Clifllam.
I
for all compact intervals I of the real line not containing the origin, and C
a constant that may depend on the interval I but not on f.
From [19, Theorem 8.91.2, p. 241] and (9), if [ is an interval that does
not contain the origin, then there exist constants C' and ng such that

(19) Lo(z) < for all x € I and n > ny.

nl/4
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Now, if f belongs to Qﬂi s We can write

) =" anly(y),
n=0

00 a+1\° 1/2
I, = (S leal? (n+ 552 ) )

n=0

and thus

By Tonelli’s theorem, estimate (19) and Holder’s inequality, we get

V17" £ ()| dy < | sup ‘ > an 6it(”+(a+1)/2)£n(y)‘ dy <> lan| | 1£5 ()] dy
1 170 o n=0 I

= C<C+n§;0 nl/?(n+(1ov+1>/2)8>1/2<i‘a"’2 <”+Oj1>s>l/2

n=0
0 1 1/2
<o+ Y ) Il

n=ng

Since s > 1/2, we have 1/2 4+ s > 1 and the last series is convergent. m
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