
STUDIA MATHEMATICA 146 (1) (2001)

Some examples of cocycles with
simple continuous singular spectrum

by

Krzysztof Frączek (Toruń)

Abstract. We study spectral properties of Anzai skew products Tϕ : T2 → T2 defined
by

Tϕ(z, ω) = (e2πiαz, ϕ(z)ω),

where α is irrational and ϕ : T→ T is a measurable cocycle. Precisely, we deal with the case
where ϕ is piecewise absolutely continuous such that the sum of all jumps of ϕ equals zero.
It is shown that the simple continuous singular spectrum of Tϕ on the orthocomplement
of the space of functions depending only on the first variable is a “typical” property in
the above-mentioned class of cocycles, if α admits a sufficiently fast approximation.

1. Introduction. By T we denote the circle group {z ∈ C : |z| = 1}
which will most often be treated as the interval [0, 1) with addition mod 1;
λ will denote Lebesgue measure on T. A function f : T → R is said to be
piecewise absolutely continuous (PAC for short) if there exist β0, . . . , βk ∈ T
(0 ≤ β0 < . . . < βk < 1) such that f |(βj ,βj+1) is absolutely continuous
(βk+1 = β0). Then we set

f+(x) = lim
y→x+

f(y) and f−(x) = lim
y→x−

f(y).

Let dj = f+(βj)− f−(βj) for j = 0, . . . , k and

S(f) =
k∑

j=0

dj = −
k∑

j=0

(f−(βj)− f+(βj)) = −
�

T
Df(x) dλ(x).

We call a function ϕ : T→ T piecewise absolutely continuous if there exists
a PAC function ϕ̃ : T→ R such that ϕ(e2πix) = e2πiϕ̃(x). Set S(ϕ) = S(ϕ̃).
Since the number S(ϕ̃) is independent of the choice of the function ϕ̃, the
number S(ϕ) is well defined and will be called the sum of jumps of ϕ.
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Let α ∈ T be irrational. Denote by Tz = e2πiαz (Tx = x + α mod 1)
the corresponding ergodic rotation on T. We will study spectral properties
of measure preserving automorphisms of T2 (called Anzai skew products)
defined by

Tϕ(z, ω) = (Tz, ϕ(z)ω)

where ϕ : T→ T is a PAC function.
Consider the Koopman unitary operator UTϕ : L2(T × T, λ ⊗ λ) →

L2(T×T, λ⊗λ) associated with the Anzai skew product Tϕ and defined by
UTϕ = f ◦ Tϕ. Let us decompose

L2(T× T, λ⊗ λ) =
⊕

m∈Z
Hm

where
Hm = {g : g(z, ω) = f(z)ωm, f ∈ L2(T, λ)}.

Observe that Hm is a closed UTϕ -invariant subspace of L2(T × T, λ ⊗ λ).
Moreover the operator UTϕ : Hm → Hm is unitarily equivalent to the oper-

ator U (m)
ϕ : L2(T, λ)→ L2(T, λ) given by

(U (m)
ϕ f)(z) = ϕ(z)mf(Tz).

This leads to the problem of spectral classification of unitary operators Vg :
L2(T, λ) → L2(T, λ) given by Vgf(z) = g(z)f(Tz), where g : T → T is a
measurable function.

Let U be a unitary operator on a separable Hilbert space H. For any
f ∈ H we define the cyclic space Z(f) = span{Unf : n ∈ Z}. By the spectral
measure σf of f we mean a Borel measure on T determined by the equalities

σ̂f (n) =
�

T
zn dσf (z) = (Unf, f)

for n ∈ Z. Let {fn}n∈N be a sequence in H such that

H =
∞⊕

n=1

Z(fn) and σf1 � σf2 � . . .

The spectral type of σf1 (the equivalence class of measures) will be called
the maximal spectral type of U . We say that U has Lebesgue (resp. con-
tinuous singular , discrete) spectrum if σf1 is equivalent to Lebesgue (resp.
continuous singular, discrete) measure on the circle. A number m ∈ N∪{∞}
is called the maximal spectral multiplicity of U if σfn 6≡ 0 for n ≤ m and
σfn ≡ 0 for n > m. We say that U has simple spectrum if the maximal
spectral multiplicity of U equals 1.

The notion of the skew product was introduced in 1951 by Anzai (see
[1]) to give some examples of ergodic transformations with some special
spectral types. Anzai skew products or more generally operators Vg have a
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well known property called the purity law. Precisely, each operator Vg has
either Lebesgue or continuous singular or discrete spectrum (see [6] and [10]).

In the case where ϕ : T→ T is a smooth cocycle, the spectral properties
of Tϕ depend on the value of the topological degree of ϕ, which equals
−S(ϕ). For example, if ϕ is of class C2 and S(ϕ) 6= 0, then Tϕ has countable
Lebesgue spectrum on H⊥0 (see [2] and [10]). On the other hand, S(ϕ) = 0
implies singular spectrum for absolutely continuous ϕ (see [3]). In this case,
numerous dynamical properties of the skew product depend on properties
of the continued fraction expansion of α. For example, each smooth cocycle
with zero degree is cohomologous to a constant if α admits a sufficiently slow
approximation. It follows that the skew product has pure discrete spectrum.
On the other hand, if α admits a sufficiently fast approximation, then the
skew product associated with a generic Cr-cocycle (r ∈ N ∪ {∞}) with
zero degree has simple continuous singular spectrum of Tϕ on H⊥0 (see [8]).
Generally, we also have some information about multiplicity of U (m)

ϕ . For
every absolutely continuous g : T → T, the multiplicity of Vg is at most
max(1, |S(g)|) (see [5]).

In the case where ϕ : T → T is PAC, the spectral properties of Tϕ
also depend on the value S(ϕ). For example, S(ϕ) 6= 0 implies continuous
spectrum on H⊥0 (see [9]). Moreover, if ϕ has a single discontinuity with
S(ϕ) ∈ R \ Z, then Tϕ has continuous singular spectrum on H⊥0 .

In the paper we deal with the case where S(ϕ) = 0. Generally, it is shown
in [5] that the multiplicity of each operator U (m)

ϕ is at most the number of
discontinuities of ϕ. However, every piecewise constant cocycle such that all
the discontinuities of ϕ are multiples of α is cohomologous to a constant
cocycle, because each cocycle of the form ϕ(e2πix) = e2πia1[0,kα)(x)+b, k ∈ Z,
is cohomologous to a constant cocycle (see [7], p. 82). Then Tϕ has discrete
spectrum. If ϕ has only rational jumps (i.e. d0, . . . , dk ∈ Q), then ϕm is
constant for a nonzero m, hence U (m)

ϕ also has discrete spectrum. On the
other hand, we will show that the simple continuous singular spectrum of
Tϕ on H⊥0 is a “typical” property for PAC cocycles whose sum of jumps
equals zero, if α admits a sufficiently fast approximation.

For every natural k define

Tk+ = {(x1, . . . , xk) ∈ Tk : 0 ≤ x1 < . . . < xk < 1}.

We will prove the following assertion.

Theorem 1.1 [Main Theorem]. Let α ∈ T be an irrational number with
unbounded partial quotients in its continued fraction expansion. For every
k ∈ N, there exists a subset Bk+1 ⊂ Tk+1

+ of full Lebesgue measure such that
if ϕ : T→ T is a PAC function with
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• S(ϕ) = 0;
• at least one of its jumps being irrational ;
• k + 1 discontinuities β0, . . . , βk satisfying (β0, . . . , βk) ∈ Bk+1,

then Tϕ has simple continuous singular spectrum on H⊥0 .

To prove this theorem we will use the idea of δ-weak mixing. Let δ
be a complex number such that |δ| ≤ 1. We say that a unitary operator
U : H → H is δ-weakly mixing along a sequence {qn}n∈N if

lim
n→∞

(U qnf, f) = δ(f, f)

for any f ∈ H.
A simple spectral analysis gives the following well known fact.

Proposition 1. Let Ui : Hi → Hi, i = 1, 2, be a unitary operator on
a separable Hilbert space. Assume that the Ui are δi-weakly mixing along a
common sequence {qn}n∈N. If δ1 6= δ2, then the maximal spectral types of
Ui are mutually singular.

We will apply the concept of the δ-weak mixing to the family of unitary
operators (U (m)

ϕ ). We say that an increasing sequence {qn}n∈N of natural
numbers is a rigid time for T if

lim
n→∞

‖qnα‖ = 0

where ‖t‖ is the distance of t from the set of integers. For given ϕ : T → T
and q ∈ N let

ϕ(q)(z) = ϕ(z)ϕ(Tz) . . . ϕ(T q−1z).

Proposition 2 (see [4]). Assume that

lim
n→∞

�

T
(ϕ(qn)(z))mdz = δm

where {qn}n∈N is a rigid time for T . Then the operator U (m)
ϕ is δm-weakly

mixing along {qn}n∈N.

2. The definition of the set Bk. Assume that α ∈ [0, 1) is irrational
with continued fraction expansion

α = [0; a1, a2, . . .].

Let (pn/qn) be the convergents of α; then

‖αqn‖ = |qnα− pn| < 1/qn+1

and (T j [0, ‖αqn−1‖))0≤j<qn is a tower (i.e. a family of pairwise disjoint sets).
We also have

‖αqn+1‖ = an+1‖αqn‖+ ‖αqn−1‖ and ‖αqn−1‖qn + ‖αqn‖qn−1 = 1.
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We shall consider α with unbounded partial quotients, i.e. we can choose a
subsequence, still denoted by n, such that limn→∞ an+1 = ∞. Then, with
the previous relations, qn‖qnα‖ → 0 and qn‖qn−1α‖ → 1.

Lemma 2.1. Let 0 < τ < 1 and let W =
∏k
i=1[vi, wi] be a closed cube

in Tk with λk(W ) > 0. For almost every (β1, . . . , βk) ∈ Tk there exists a
subsequence {qnj}j∈N such that

lim
j→∞

qnj‖qnjα‖ = 0, lim
j→∞

({qnjβ1}, . . . , {qnjβk}) = (γ1, . . . , γk) ∈W

and
β1, . . . , βk ∈

⋃

τqnj<t<qnj

T t[0, ‖qnj−1α‖)

for every natural j.

Proof. Assume that {Ξn}n∈N is a sequence of towers for the rotation T
for which lim infn→∞ λ(Ξn) > 0 and height(Ξn)→∞. Then

(1) λ(B ∩ Ξn)− λ(B)λ(Ξn)→ 0

for any measurable B ⊂ T (see King [11], Lemma 3.4). It follows that for
almost all β ∈ T there exist infinitely many n such that β ∈ Ξn.

Applying this fact for subsequences of the towers

{(T j [vi‖αqn−1‖, wi‖αqn−1‖))τqn<j<qn}n∈N
successively for i = 1, . . . , k, we conclude that for λk-a.e. (β1, . . . , βk) ∈ Tk
there exist sequences {nj}j∈N, {t(j)i }j∈N, i = 1, . . . , k, of natural numbers
such that τqnj < t

(j)
i < qnj and

βi ∈ T t
(j)
i [vi‖αqnj−1‖, wi‖αqnj−1‖)

= [vi‖αqnj−1‖+ t
(j)
i α,wi‖αqnj−1‖+ t

(j)
i α).

We can assume that ({qnjβ1}, . . . , {qnjβk})→ (γ1, . . . , γk) ∈ T. Then

{qnjβi} ∈ [viqnj‖qnj−1α‖+ t
(j)
i ‖qnjα‖, wiqnj‖qnj−1α‖+ t

(j)
i ‖qnjlα‖).

Since
t
(j)
i ‖qnjα‖ ≤ qnj‖qnjα‖ → 0 and qnj‖qnj−1α‖ → 1,

as j → ∞, we have vi ≤ γi ≤ wi for i = 1, . . . , k and finally (γ1, . . . , γk)
∈W .

Let Γ ⊂ Tk denote the set of all (γ1, . . . , γk) ∈ Tk such that

∀m1,...,mk∈{0,±1,±2} m1γ1 + . . .+mkγk ∈ Z ⇒ m1, . . . ,mk = 0.

Since the set Γ is open and dense, we can choose a cube W =
∏k
i=1[vi, wi]



6 K. Frączek

(with 0 < wi < vi+1 < 1 for i = 1, . . . , k − 1) such that W ⊂ Γ and
λk(W ) > 0. Fix 1/2 < τ < 1. Let B′ denote the set of all (β1, . . . , βk) ∈ Tk
such that there exists a subsequence {qnj}j∈N such that

lim
j→∞

qnj‖qnjα‖ = 0, lim
j→∞

({qnjβ1}, . . . , {qnjβk}) = (γ1, . . . , γk) ∈W

and

β1, . . . , βk ∈
⋃

τqnj<t<qnj

T t[0, ‖qnj−1α‖)

for any natural j. Then 0 = γ0 < γ1 < . . . < γk < γk+1 = 1. By Lemma 2.1,
λk(B′) = 1. Define Bk = B′ ∩ Tk+.

3. Proof of the Main Theorem. For given f : T→ R and q ∈ N let

f (q)(x) = f(x) + f(x+ α) + . . .+ f(x+ (q − 1)α).

Proof of Theorem 1.1. Let ϕ : T→ T be a PAC cocycle and let 0 = β0 <
β1 < . . . < βk < βk+1 = 1 be all of the points of discontinuity of ϕ. Assume
that S(ϕ) = 0, ϕ has at least one irrational jump and (β1, . . . , βk) ∈ Bk.
Choose a PAC function ϕ̃ : T → R such that ϕ(x) = e2πiϕ̃(x) and 0 =
β0 < β1 < . . . < βk < βk+1 = 1 are all of the points of discontinuity of ϕ̃.
Let {qn}n∈N be a subsequence of denominators of α with the properties of
Lemma 2.1.

As will be shown in Lemma 3.2 (see §3.2), for all m ∈ Z and r ∈ N there
exists δ(m)

r ∈ C such that

lim
n→∞

�

T
e2πimϕ̃(rqn)(x) dx = δ(m)

r .

This leads to the following statement: each unitary operator U (m)
ϕ is δ(m)

r -
weakly mixing along {rqn}n∈N, by Proposition 2. Moreover, it will be proved
in Lemma 3.3 (see §3.2) that for every m ∈ Z \ {0} there exists r ∈ N such
that 0 < |δ(m)

r | < 1 and for all distinct m1,m2 ∈ Z \ {0}, there exists r ∈ N
such that δ(m1)

r 6= δ
(m2)
r . It follows that the maximal spectral types of the

operators U (m)
ϕ (for m 6= 0) are continuous singular and they are mutually

singular, by Proposition 1. The simplicity of the spectrum of U (m)
ϕ will be

proved in Lemma 3.1 (see §3.1).
Hence each of the operators UTϕ : Hm → Hm for m 6= 0 has simple

singular continuous spectrum and their maximal spectral types are pairwise
orthogonal. It follows that Tϕ has simple singular continuous spectrum on
H⊥0 .
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3.1. Simplicity of spectrum. Let Vg : L2(T, λ)→ L2(T, λ) be the unitary
operator given by

Vgf(e2πix) = e2πig(x)f(Te2πix),

where g : T→ R is a measurable function. We need the following:

Lemma 3.1. Let g : T → R be a PAC function with S(g) = 0. Let
0 = β0 < β1 < . . . < βk < βk+1 = 1 be all of the points of discontinuity of g.
If (β1, . . . , βk) ∈ Bk, then Vg has simple spectrum.

To prove this lemma we apply the following proposition proved in [5].

Proposition 3. Let {Ξn}n∈N be a sequence of towers for the rotation
T . Let Cn denote the base of Ξn. Suppose that hn = height(Ξn)→∞ and
λ(
⋃hn−1
j=0 T jCn) → ν. If there exists c < ν such that for any f ∈ L2(T, λ)

with ‖f‖L2 = 1 we have

lim sup
n→∞

2π
hn−1∑

j=0

�

T jCn

|f |2 dλ
� �

C2
n

|g(j)(x)− g(j)(y)| dx dy
λ(Cn)2 ≤ c,

then the maximal spectral multiplicity of Vg is at most 1/(ν − c).

Proof of Lemma 3.1. Since (β1, . . . , βk) ∈ Bk, we can choose a subse-
quence {qn}n∈N of denominators of α with the properties of Lemma 2.1,
i.e.

(2) lim
n→∞

qn‖qnα‖ = 0 and β1, . . . , βk ∈
⋃

τqn<t<qn

T t[0, ‖qn−1α‖).

We apply Proposition 3 for the tower Ξn = (T j [0, ‖qn−1α‖))0≤j<τqn . Then
λ(
⋃hn−1
j=0 T jCn) → τ . Represent g as the sum of an absolutely continuous

function g1 : T → R and a piecewise constant g2 : T → R. From (2), the
function g(j)

2 is constant on Cn for 0 ≤ j < τqn. Therefore,
∑

0≤j<τqn

�

T jCn

|f |2 dλ
� �

C2
n

|g(j)(x)− g(j)(y)| dx dy
λ(Cn)2

=
∑

0≤j<τqn

�

T jCn

|f |2 dλ
� �

C2
n

|g(j)
1 (x)− g(j)

1 (y)| dx dy
λ(Cn)2 .

Applying Lemma 4.1 of [5], we can assert that for any ε > 0 there exists a
subsequence {Ξnl}l∈N such that

lim sup
j→∞

2π
∑

0≤j<τqnl

�

T jCnl

|f |2 dλ
� �

C2
nl

|g(j)
1 (x)− g(j)

1 (y)| dx dy

λ(Cnl)2 ≤ ε.

Since τ > 1/2, we can take ε < τ − 1/2. Applying Proposition 3 for the
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sequence {Ξnl}l∈N, we conclude that the maximal spectral multiplicity of
Vg is at most 1/(τ − ε) < 2.

3.2. δ(m)
r -weak mixing

Lemma 3.2. There exists a real number a such that for all natural m
and r we have

lim
n→∞

�

T
e2πimϕ̃(rqn)(x) dx = δ(m)

r = e2πimra
k∑

u=0

(γu+1 − γu)e2πimr
∑u
i=1 di .

Proof. Set

φ(x) =
x�

0

ϕ̃(y) dy −
1�

0

z�

0

ϕ̃(y) dy dz

and ψ = ϕ̃− φ. Then φ : T→ R is absolutely continuous with zero integral.
Moreover ψ : T → R is constant on each interval (βi, βi+1) and ψ−(βi) −
ψ+(βi) = ϕ̃−(βi) − ϕ̃+(βi) = di for i = 0, . . . , k. Of course, we can assume
that ϕ̃ is right continuous. Then

ψ = ψ(0) +
k+1∑

i=1

di1[βi,1),

where dk+1 = d0. Since φ(rqn) converges uniformly to 0 (see for instance [7],
p. 189), and ϕ̃(rqn) = φ(rqn) +ψ(rqn), we see that it suffices to find the limit
of the sequence �

T
e2πimψ(rqn)(x) dx.

Since for any a, b, x ∈ T,

1[b,1)(x+ a)− 1[b,1)(a) = 1[b−a,1)(x)− 1[1−a,1)(x)

we have

ψ(x+ a)− ψ(a) =
k+1∑

i=1

di(1[βi,1)(x+ a)− 1[βi,1)(x))

=
k+1∑

i=1

di(1[βi−a,1)(x)− 1[1−a,1)(x))

=
k+1∑

i=1

di1[βi−a,1)(x).

Therefore for any r, q ∈ N we have

(3) ψ(rq) = ψ(rq)(0) +
q−1∑

h=0

r−1∑

s=0

k+1∑

i=1

di1[βi−(sq+h)α,1).
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Let %r,q : T→ R be defined by

%r,q = ψ(rq)(0) + r

q−1∑

j=0

k+1∑

i=1

di1[(j+γi)/q,1).

For given 1 ≤ i ≤ k + 1 and 0 ≤ j < qn let h(j)
i be the unique integer with

0 ≤ h(j)
i < qn such that

h
(j)
i pn + j = [qnβi] mod qn.

Then

βi − h(j)
i α =

[qnβi]
qn

+
{qnβi}
qn

− h(j)
i

pn
qn
− h(j)

i

‖qnα‖
qn

(4)

=
j

qn
+

1
qn

({qnβi} − h(j)
i ‖qnα‖).

Therefore

ψ(rqn) − %r,qn =
qn−1∑

j=0

r−1∑

s=0

k+1∑

i=1

di(1[βi−(sqn+h(j)
i )α,1) − 1[(j+γi)/qn,1)),

and

‖ψ(rqn) − %r,qn‖L1 ≤ D
qn−1∑

j=0

r−1∑

s=0

k+1∑

i=1

|βi − (sqn + h
(j)
i )α− (j + γi)/qn|,

where D = maxi=1,...,k+1 |di|. We conclude from (4) that

‖ψ(rqn) − %r,qn‖L1 ≤ D
qn−1∑

j=0

r−1∑

s=0

k+1∑

i=1

∣∣∣∣
{qnβi} − γi

qn
−
(
s+

h
(j)
i

qn

)
‖qnα‖

∣∣∣∣

≤ Dr
k∑

i=1

|{qnβi} − γi|+Dkr2qn‖qnα‖,

and hence that

(5) lim
n→∞

‖ψ(rqn) − %r,qn‖L1 = 0.

On the other hand

%r,q = ψ(rq)(0) + r

q−1∑

j=0

k+1∑

i=1

di

( k∑

u=i

1[(j+γu)/q,(j+γu+1)/q) + 1[(j+1)/q,1)

)

= ψ(rq)(0) + r

q−1∑

j=0

k∑

u=1

u∑

i=1

di1[(j+γu)/q,(j+γu+1)/q)
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and consequently

�

T
e2πim%r,q(x) dx = e2πimψ(rq)(0)

q−1∑

j=0

k∑

u=1

1
q

(γu+1 − γu)e2πimr
∑u
i=1 di(6)

= e2πimψ(rq)(0)
k∑

u=0

(γu+1 − γu)e2πimr
∑u
i=1 di .

Without loss of generality we can assume that

lim
n→∞

e2πiψ(qn)(0) = e2πia.

Then

(7) lim
n→∞

e2πiψ(rqn)(0) = e2πira.

Indeed, since {qnβi} → γi > γ1 > 0 and qn‖qnα‖ → 0, we have

qn‖qnα‖ < min
i=1,...,k

{qnβi}/r

for sufficiently large n. Then for any i = 1, . . . , k, j = 0, . . . , qn, we have

(r − 1)‖qnα‖ <
{qnβi}
qn

− ‖qnα‖ ≤
{qnβi}
qn

+
j

qn
− h

(j)
i ‖qnα‖
qn

= βi − h(j)
i α.

It follows that ψ(qn)(0) = ψ(qn)(qnα) = . . . = ψ(qn)((r − 1)qnα), by (3).
Since

ψ(rqn)(0) = ψ(qn)(0) + ψ(qn)(qnα) + . . .+ ψ(qn)((r − 1)qnα),

we have ψ(rqn)(0) = rψ(qn)(0). From (5)–(7), we obtain

lim
n→∞

�

T
e2πimψ(rqn)(x) dx = e2πimra

k∑

u=0

(γu+1 − γu)e2πimr
∑u
i=1 di .

Lemma 3.3. For every m ∈ Z \ {0} there exists r ∈ N such that 0 <

|δ(m)
r | < 1 and for all distinct m1,m2 ∈ Z \ {0} there exists r ∈ N such that

δ
(m1)
r 6= δ

(m2)
r .

Proof. Let G ⊂ T be the subgroup generated by 1, e2πid1 , e2πi(d1+d2),
. . . , e2πi(d1+...+dk). Let us decompose

G = e2πiα1Z ⊕ . . .⊕ e2πiαgZ ⊕G1,

where G1 is a finite group (c = cardG1) and α1, . . . , αg, 1 are indepen-
dent over Q. As some of dj is irrational, we have g = rank(G) > 0. Let
[aij ]i=1,...,g;j=1,...,k be an integer matrix such that

e2πic(d1+...+dj) = e2πi(aj1α1+...+ajgαg)
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for j = 1, . . . , k. Define ωj = e2πiαj for j = 1, . . . , g and ω0 = e2πica. Set
λj = γj+1 − γj for j = 0, . . . , k. Then λ0, . . . , λk > 0 and λ0 + . . .+ λk = 1.
Let Q denote the trigonometric polynomial on Tg given by

Q(z1, . . . , zg) = λ0 + λ1z
a11
1 . . . za1g

g + . . .+ λkz
ak1
1 . . . z

akg
g .

Then

δ(m)
cr = ωmr0 Q(ωmr1 , ωmr2 , . . . , ωmrg ).

Since some of d1 + . . . + dj for j = 1, . . . , k are irrational, it is easy to see
that |δ(m)

cr | < 1 for all m, r 6= 0.
We now show that for any m 6= 0 there exists r ∈ N such that

0 < |Q(ωmr1 , . . . , ωmrg )| < 1.

Suppose that for all r ∈ N, we have Q(ωmr1 , . . . , ωmrg ) = 0. Since α1, . . . , αg, 1
are independent over Q, Q(z1, . . . , zg) = 0 for any (z1, . . . , zg) ∈ Tg. Hence
0 = Q(1, . . . , 1) = 1, a contradiction.

Let us show that if |m| 6= |m′|, m,m′ 6= 0, then there exists r ∈ N such
that

(8) |Q(ωmr1 , . . . , ωmrg )| 6= |Q(ωm
′r

1 , . . . , ωm
′r

g )|.

Suppose, contrary to our claim, that equality occurs in (8) for any r ∈ N.
Then

|Q(zm1 , . . . , z
m
g )| = |Q(zm

′
1 , . . . , zm

′
g )| for any (z1, . . . , zg) ∈ Tg.

Let P denote the trigonometric polynomial on T given by

P (z) = |Q(zm, 1, . . . , 1)|2 = |Q(zm
′
, 1, . . . , 1)|2.

Since

max
i,j=0,...,k

|m(ai1 − aj1)| = max
i,j=0,...,k

|m′(ai1 − aj1)| = degP > 0,

where a01 = 0, we obtain |m| = |m′|, a contradiction.
Let us show that for any m 6= 0 there exists r ∈ N such that

(9) ωmr0 Q(ωmr1 , . . . , ωmrg ) 6= ω−mr0 Q(ω−mr1 , . . . , ω−mrg ).

Suppose that equality occurs in (9) for all r ∈ N. Then

ωmr0 Q(ωmr1 , . . . , ωmrg ) ∈ R for all r ∈ Z.

Set G0 = {(ωr1, . . . , ωrg) : r ∈ Z}. Let F : G0 → T be the group homomor-
phism given by
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F (ωr1, . . . , ω
r
g) = ω2mr

0 =
Q(ω−mr1 , . . . , ω−mrg )

Q(ωmr1 , . . . , ωmrg )
.

Then (ωrn1 , . . . , ωrng )→ (1, . . . , 1) implies

F (ωrn1 , . . . , ωrng ) =
Q(ω−mrn1 , . . . , ω−mrng )

Q(ωmrn1 , . . . , ωmrng )
→ Q(1, . . . , 1)

Q(1, . . . , 1)
= F (1, . . . , 1).

Since F is a continuous group homomorphism and G0 = Tg, there exists a
continuous group homomorphism F : Tg → T such that F |G0 = F and

F (z1, . . . , zg) = zc11 . . . zcgg ,

where c1, . . . , cg ∈ Z. Therefore

ω2m
0 = F (ω1, . . . , ωg) = ωc11 . . . ωcgg

and consequently

ωc1r1 . . . ωcgrg Q(ω2mr
1 , . . . , ω2mr

g ) ∈ R
for all r ∈ Z. It follows that the trigonometric polynomial

zc11 . . . zcgg Q(z2m
1 , . . . , z2m

g )

has only real values. Hence there exist m0, . . . ,mk ∈ {0, 1,−1} such that∑k
j=0 mjλj = 0 and there exist j1, j2 such that mj1 = 1 and mj2 = −1,

contrary to (γ1, . . . , γk) ∈ Γ .
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