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Some examples of cocycles with
simple continuous singular spectrum

by

KRrzyszToF FRACZEK (Torun)

Abstract. We study spectral properties of Anzai skew products Ty, : T? — T? defined

by
To(z,w) = (772, p(2) w),

where « is irrational and ¢ : T — T is a measurable cocycle. Precisely, we deal with the case
where ¢ is piecewise absolutely continuous such that the sum of all jumps of ¢ equals zero.
It is shown that the simple continuous singular spectrum of T, on the orthocomplement
of the space of functions depending only on the first variable is a “typical” property in
the above-mentioned class of cocycles, if a admits a sufficiently fast approximation.

1. Introduction. By T we denote the circle group {z € C : |z| = 1}
which will most often be treated as the interval [0,1) with addition mod 1;
A will denote Lebesgue measure on T. A function f : T — R is said to be
piecewise absolutely continuous (PAC for short) if there exist fg,...,0; € T
(0 < Bo < ... < Bk < 1) such that f|s, s,,,) is absolutely continuous
(Bk+1 = Bo). Then we set

f+($)=y£r;1+f(y) and f_(z)= lim f(y).

Yy—x—
Let dj = f+(ﬁj) — f_(,BJ) for j = 0, ce ,k and

k k
S(f) =D dj ==Y _(F-(5) = F+(5;) = = | Df () dA\(x).
§j=0 §j=0 T
We call a function ¢ : T — T piecewise absolutely continuous if there exists
a PAC function @ : T — R such that p(e?™®) = 27%(@)_ Set S(p) = S(§).
Since the number S(¢) is independent of the choice of the function @, the
number S(p) is well defined and will be called the sum of jumps of ¢.
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2 K. Fraczek

Let a € T be irrational. Denote by Tz = e?™®z (Tx = 2 + o mod 1)
the corresponding ergodic rotation on T. We will study spectral properties
of measure preserving automorphisms of T? (called Anzai skew products)
defined by

T@(zaw) - (TZ7 SO(Z) UJ)

where ¢ : T — T is a PAC function.

Consider the Koopman unitary operator Ur, : L*(TxT,A®\) —
L*(T x T,A® \) associated with the Anzai skew product T, and defined by
Ur, = foT,. Let us decompose

L(TxT,A@ ) = Hn
mez
where
Hp, = {g : g(sz) = f(z) w™, f€ L2(T7 /\)}
Observe that H,, is a closed Ug,-invariant subspace of L*(T x T,A ® X).
Moreover the operator Ur, : Hy, — Hyy, is unitarily equivalent to the oper-

ator U;m) : L2(T,\) — L*(T, \) given by
USM ) (2) = (=) f(T2).

This leads to the problem of spectral classification of unitary operators V :
L*(T,\) — L*(T, \) given by V,f(z) = g(2)f(Tz), where g : T — T is a
measurable function.

Let U be a unitary operator on a separable Hilbert space H. For any
f € H we define the cyclic space Z(f) = span{U" f : n € Z}. By the spectral
measure oy of f we mean a Borel measure on T determined by the equalities

Gr(n) = 2" dog(z) = (U"f. f)
T

for n € Z. Let {f,}nen be a sequence in ‘H such that
H = @Z(fn) and oyp >o0p > ...
n=1

The spectral type of o¢, (the equivalence class of measures) will be called
the mazimal spectral type of U. We say that U has Lebesgue (resp. con-
tinuous singular, discrete) spectrum if oy, is equivalent to Lebesgue (resp.
continuous singular, discrete) measure on the circle. A number m € NU{co}
is called the maximal spectral multiplicity of U if o4, # 0 for n < m and
of, = 0 for n > m. We say that U has simple spectrum if the maximal
spectral multiplicity of U equals 1.

The notion of the skew product was introduced in 1951 by Anzai (see
[1]) to give some examples of ergodic transformations with some special
spectral types. Anzai skew products or more generally operators V, have a
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well known property called the purity law. Precisely, each operator V, has
either Lebesgue or continuous singular or discrete spectrum (see [6] and [10]).

In the case where ¢ : T — T is a smooth cocycle, the spectral properties
of T, depend on the value of the topological degree of ¢, which equals
—S(¢). For example, if ¢ is of class C? and S(y) # 0, then T, has countable
Lebesgue spectrum on Hg- (see [2] and [10]). On the other hand, S(p) = 0
implies singular spectrum for absolutely continuous ¢ (see [3]). In this case,
numerous dynamical properties of the skew product depend on properties
of the continued fraction expansion of a. For example, each smooth cocycle
with zero degree is cohomologous to a constant if & admits a sufficiently slow
approximation. It follows that the skew product has pure discrete spectrum.
On the other hand, if o admits a sufficiently fast approximation, then the
skew product associated with a generic C"-cocycle (r € N U {oo}) with
zero degree has simple continuous singular spectrum of T, on Hy- (see [8]).

Generally, we also have some information about multiplicity of Uq(;m). For
every absolutely continuous g : T — T, the multiplicity of V; is at most
max(1,[S(g)) (see [5]).

In the case where ¢ : T — T is PAC, the spectral properties of T},
also depend on the value S(y). For example, S(¢) # 0 implies continuous
spectrum on Hy (see [9]). Moreover, if ¢ has a single discontinuity with
S(p) € R\ Z, then T, has continuous singular spectrum on Hg.

In the paper we deal with the case where S(¢) = 0. Generally, it is shown
in [5] that the multiplicity of each operator Uém) is at most the number of
discontinuities of . However, every piecewise constant cocycle such that all
the discontinuities of ¢ are multiples of a is cohomologous to a constant
cocycle, because each cocycle of the form ¢(e?™*) = e2mialo ke (B)+0 L € 7,
is cohomologous to a constant cocycle (see [7], p. 82). Then T, has discrete
spectrum. If ¢ has only rational jumps (i.e. do,...,dr € Q), then ¢™ is
constant for a nonzero m, hence Uém) also has discrete spectrum. On the
other hand, we will show that the simple continuous singular spectrum of
T, on Hy is a “typical” property for PAC cocycles whose sum of jumps
equals zero, if o admits a sufficiently fast approximation.

For every natural k define
T = {(z1,...,21) €ETF: 0 <2y < ... < < 1}.
We will prove the following assertion.

THEOREM 1.1 [Main Theorem|. Let o € T be an irrational number with
unbounded partial quotients in its continued fraction expansion. For every
k € N, there exists a subset By41 C T’fﬁl of full Lebesgue measure such that
if o: T — T is a PAC function with
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e S(p) =0;
e at least one of its jumps being irrational,;
e k+ 1 discontinuities P, ..., Bk satisfying (Bo, ..., Bk) € Bit1,

then T, has simple continuous singular spectrum on Hy .

To prove this theorem we will use the idea of §-weak mixing. Let §
be a complex number such that |§| < 1. We say that a unitary operator
U:H — H is §-weakly mizing along a sequence {qy }nen if

lim (U £, f) = 8(/. )
for any f € H.
A simple spectral analysis gives the following well known fact.

ProrosiTiON 1. Let U; : H; — H;, @ = 1,2, be a unitary operator on
a separable Hilbert space. Assume that the U; are d;-weakly mizing along a
common sequence {qntnen. If 01 # 2, then the mazximal spectral types of
U; are mutually singular.

We will apply the concept of the J-weak mixing to the family of unitary

operators (Uf,m)). We say that an increasing sequence {¢,}nen of natural
numbers is a rigid time for T if

lim {|gn o =0
n—oo

where |[t|| is the distance of ¢ from the set of integers. For given ¢ : T — T
and g € N let

0D (2) = p(2)p(T2) ... p(TT2).
PROPOSITION 2 (see [4]). Assume that

lim S (') (2))™dz = b,
T

where {qn }nen is a rigid time for T. Then the operator Ufom) 18 O -weakly
mizing along {qn }nen-

2. The definition of the set By. Assume that o € [0, 1) is irrational
with continued fraction expansion

a=1[0;a1,as,...].
Let (pn/qn) be the convergents of a; then
loagnll = |gna = pn| < 1/¢n+1

and (T7]0, [|agn—1]))o<j<q, is a tower (i.e. a family of pairwise disjoint sets).
We also have

lagniall = ansillagnll + lagnll  and  [lagn-1lgn + [agnllgn-1 = 1.
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We shall consider o with unbounded partial quotients, i.e. we can choose a
subsequence, still denoted by n, such that lim, . a,+1 = oo. Then, with
the previous relations, ¢,||g,c| — 0 and ¢, ||gn—1¢| — 1.

LEMMA 2.1. Let 0 <7 <1 and let W = Hle[vi,wi] be a closed cube
in TF with A\*(W) > 0. For almost every (B1,...,0k) € TF there exists a
subsequence {qn, }jen such that

jll)rgo qn; anJaH =0, jll)rgo({%l]/gl}v SRR {QTLjﬁk‘}) = (’71’ s aryk) ew

and

Bi,..bee  |J T0, llgn,—1el))

Tqn; <t<an
for every natural j.

Proof. Assume that {Z, },en is a sequence of towers for the rotation T’
for which liminf, . A(Z},) > 0 and height(=,,) — oco. Then

(1) MBNE,) = AB)A(E,) — 0

for any measurable B C T (see King [11], Lemma 3.4). It follows that for
almost all 3 € T there exist infinitely many n such that g € =),.
Applying this fact for subsequences of the towers

{(T7 [villagn—1]l; willagn-111))rgn<j<an }nen
successively for i = 1,...,k, we conclude that for \*-a.e. (3y,...,0;) € T*
there exist sequences {n;} en, {tl(»j)}jeN, 1 = 1,...,k, of natural numbers
such that 7¢,, < tgj ) < qn; and

)
B € T [vil| agn, 1], wil|agn, —1])
= [villagn, 1] + ¥ @, wil|agn, 1 || + P ).
We can assume that ({gn; 51}, ..., {qn,;Bc}) = (71,--.,7%) € T. Then
{an, B} € [0ittn, lan; —10]l + 7 g, s Wi, 1gn; 10| + 87 [l ).

Since '
tz('])HanO‘H < ananjaH — 0 and q”Janj_laH -1

as j — oo, we have v; < ; < w; for i = 1,...,k and finally (v1,...,7)
eW. n

Let I' C T* denote the set of all (y1,...,7%) € T* such that
Vingmee{0, 41,42} M1+ Mk €Z = my,...,my =0,

Since the set I' is open and dense, we can choose a cube W = Hle[v,;, w;]
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(with 0 < w; < viy1 < 1fori =1,...,k —1) such that W C I" and
Me(W) > 0. Fix 1/2 < 7 < 1. Let B’ denote the set of all (31,...,0k) € T*
such that there exists a subsequence {gn, }jen such that

]ll{go qn; an]aH =0, Jll{glo({qnj/gl}v SRR {anﬁk}) = (717 s aryk) ew

and

Brootoe U T, lan,—ral)

Tqn; <t<gn;

for any natural j. Then 0 =y < 11 < ... <7V < Yk+1 = 1. By Lemma 2.1,
A¥(B') = 1. Define B, = B'NTk.

3. Proof of the Main Theorem. For given f: T — R and ¢ € N let
F (@)= fx)+ flx+a)+...+ f(z+ (g — Da).

Proof of Theorem 1.1. Let ¢ : T — T be a PAC cocycle and let 0 = £y <
01 < ...< Bk < Bry1 =1 be all of the points of discontinuity of ¢. Assume
that S(¢) = 0, ¢ has at least one irrational jump and (81,...,0k) € Bk.
Choose a PAC function $ : T — R such that ¢(z) = €27 and 0 =
Bo < P1 < ...< Pk < Pr+1 = 1 are all of the points of discontinuity of @.
Let {gn }nen be a subsequence of denominators of « with the properties of
Lemma 2.1.

As will be shown in Lemma 3.2 (see §3.2), for all m € Z and r € N there

exists 67(«m) € C such that

lim Semm‘ﬁw")(“ﬂ) dr = 5™,

n—oo

This leads to the following statement: each unitary operator Ug(pm) is 5£m)—
weakly mixing along {r¢y, }nen, by Proposition 2. Moreover, it will be proved
in Lemma 3.3 (see §3.2) that for every m € Z \ {0} there exists » € N such
that 0 < \5£m)\ < 1 and for all distinct mq,mg € Z \ {0}, there exists r € N
such that 6™ + 5™2) Tt follows that the maximal spectral types of the
operators Uém) (for m # 0) are continuous singular and they are mutually
singular, by Proposition 1. The simplicity of the spectrum of U;m) will be
proved in Lemma 3.1 (see §3.1).

Hence each of the operators Ur, : Hy,, — H,, for m # 0 has simple
singular continuous spectrum and their maximal spectral types are pairwise

orthogonal. It follows that T\, has simple singular continuous spectrum on
HOL. [
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3.1. Simplicity of spectrum. Let Vy : L*(T,X\) — L?*(T, \) be the unitary
operator given by

ng(e%rim) _ eQm’g(az)f(TeQWim)’
where g : T — R is a measurable function. We need the following:
LEMMA 3.1. Let g : T — R be a PAC function with S(g) = 0. Let

0=00<pP1<...<Pr<Brs1 =1 be all of the points of discontinuity of g.
If (Bi,...,B%) € By, then V, has simple spectrum.

To prove this lemma we apply the following proposition proved in [5].

PROPOSITION 3. Let {Z), }nen be a sequence of towers for the rotation
T. Let C,, denote the base of =,. Suppose that h, = height(=,) — oo and
)\(U?;al T7C,) — v. If there exists ¢ < v such that for any f € L*(T,\)
with || f||2 = 1 we have

hp—1
. n , . dx dy
lim sup 27 Z S \f\Qd)\ SS ’9(])(@ —9(3)@)‘ )\(C )2 <¢
n—oo j=0 TiC,, c2 "

then the maximal spectral multiplicity of Vy is at most 1/(v — c).

Proof of Lemma 3.1. Since (f1,...,Bk) € B, we can choose a subse-
quence {g,}nen of denominators of o with the properties of Lemma 2.1,
i.e.

(2)  lim gullgnall =0 and Bi,....8x€ |J T'0,llgn-1cl).
n—oo
Tn <t<gn
We apply Proposition 3 for the tower =, = (770, ||gn—1¢))o<j<rq, - Then
)\(U?;a Lri C)) — 7. Represent g as the sum of an absolutely continuous
function g; : T — R and a piecewise constant go : T — R. From (2), the

function géj ) is constant on C, for 0 < j < 7¢q,. Therefore,

9 j e dz dy
>V Pax {199 @) g()(y)\k(cn)2

0<j<Tqn TIC,, c2

SN R (] @) — o) 2

2
0<j<7qn TICh, c2 A(Cn)

Applying Lemma 4.1 of [5], we can assert that for any £ > 0 there exists a
subsequence {=,, };en such that

lim sup 27 Z S |fI2 dX “ ]g%j)(m) —ggj)(y)‘

I 0<<rgn, TICy, cz,

dx dy <
A(Cny)?

Since 7 > 1/2, we can take ¢ < 7 — 1/2. Applying Proposition 3 for the
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sequence {=), hien, we conclude that the maximal spectral multiplicity of
Vyisat most 1/(7—¢) <2. m

3.2. &Em)—weak: mixing

LEMMA 3.2. There exists a real number a such that for all natural m
and r we have

k
lim S 2mim@" ™ (@) g 5{m) = g2mimra Z<’Yu+1 — )€ iz i
n—oo u:()
Proof. Set
T 1z
é(x) = @(y) dy — | B(y) dy dz
0 00

and ¥ = @ — ¢. Then ¢ : T — R is absolutely continuous with zero integral.
Moreover ¢ : T — R is constant on each interval (f3;, 5i1+1) and ¥_(3;) —
Vi (Bi) = o—(Bi) — ¢+ (B:) = d; for i = 0,...,k. Of course, we can assume
that ¢ is right continuous. Then

k+1

¥ =9(0)+ Y dilps, 1),
i=1

where dj 1 = dp. Since ¢("%) converges uniformly to 0 (see for instance [7],
p. 189), and $(7n) = ¢(ran) 4 4)(ran) e see that it suffices to find the limit
of the sequence

SeQﬂimw(rq")(a:) dur.

T
Since for any a,b,xz € T,

1pn(z+a) —1py(a) = 1p_g1)(2) — Lp—a1)(®)

we have
k+1

o +a)—a) = D di(lipn (@ +a) = 1s,1(@)
k+1

= Z di(Lig,—a1)(x) = 1p_a1)(2))
=1

k+1

= diljan(@).
i=1

Therefore for any r,q¢ € N we have
q—1r—1k+1

(3) D =pUrD0) + > N " dil i, (agrhyan)-

h=0s=0 i=1
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Let g, 4 : T — R be defined by

g—1k+1

Org = VUD0) + 7Y D diliim /00

§=0 i=1

For given 1 <i<k+1and 0 <j < g, let hgj) be the unique integer with
0< hgj) < @n such that

h9pn + j = [gaB;] mod gy,
Then
(4) B — B = (05i] | Aanbi} P _ ) lqnal]
dn qn Gn Gn
] ()
- q_ + — q ({Qnﬁz} h HQnaH)
Therefore

qn—17r—1k+1

plre) — Or,qn = Z szi(l[m—(sanrhﬁj))a,l) = L(tvi)/an,1))s

=0 s=0 i=1
and
gn—1r—1k+1

[0 = 0r gl DD D318 — (sqn + b )a = (G + 1) /anl,

j=0 s=0 i=1
k+1 |di]. We conclude from (4) that

)
qn i i h;
nfi) =i } i —»(s+-7;—)uqnau

n

where D = max;—1

-----

gn—1r—1k+1

") = gl <D YN H"

]05011

< DrZ {gnB:} — il + DEr?q,|gnall,

i=1

and hence that
(5) Tim [lp(79) = g, |2 = 0.

On the other hand

q—1k+1 k

0ra = ¥U0) + 13 S di (D Liguy /o + Lt/ )
7=01=1 u=1
q— u

— Q)Z)(TQ)( _|_ r

M?r

Z dll [(G+vu)/a;(G+Yut1)/9)

j=0u=11=1
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and consequently

-1 k
(6) SeQWimgnq(a:) dr = 627rim1/)<rq)(0 qz l 7u+1 6271’1"m/r‘ S d;
T i=0u=11
k
— 627rim1/)<rq)(0) Z fqurl o ,yu)627rim'r Yo di
u=0

Without loss of generality we can assume that

. i) (dn) ;
lim e27rml) n(0) 627”0’.
n— 00
Then
. iy (Tdn) ;
(7) lim eQmU; (0) eera‘

n—0o0

Indeed, since {¢,0;} — vi > 71 > 0 and ¢,||gna| — 0, we have
ulgnall < min {g.5}/r

for sufficiently large n. Then for any i =1,...,k, j =0,...,q,, we have

. )
anBi anBi h,; gn ]
w-w%W<i—iwuw§i—i+i——%—izm—wh
It follows that () (0) = @) (g,a) = ... = @) ((r — 1)gna), by (3).

Since

$Ure) (0) = $11(0) + @) (gna) + ..+ 1 ((r = 1)gna),
we have (") (0) = r¢)(9)(0). From (5)—(7), we obtain

k
lim {27 dg = 2T T (4 )T
u=0
LEMMA 3.3. For every m € Z \ {0} there exists r € N such that 0 <
|5£m)| < 1 and for all distinct my,mq € Z\ {0} there exists r € N such that
s 2 52

Proof. Let G C T be the subgroup generated by 1, e27id1 ¢2mi(ditdz)
e2mildit.+dr) Tet us decompose

G = 627ma12 D... 0 627r7,agZ D Gl)

where Gy is a finite group (¢ = cardG;) and ai,...,a4,1 are indepen-
dent over Q. As some of d; is irrational, we have g = rank(G) > 0. Let
[@ijli=1,...,g:j=1,...k be an integer matrix such that

eQﬂ"iC(d1+...+dj) — 627ri(aj1a1+...+ajgag)
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for j = 1,...,k. Define w; = €*™® for j = 1,...,g and wy = €*™°®. Set
Aj =741 —j for j=0,...,k Then Ag,...,A\xy >0and Ao+ ...+ A = 1.
Let @@ denote the trigonometric polynomial on TY given by

Q21,5 29) = Ao+ Az 20t 4 A o2ge.
Then
50 = W QW W, L wiT).
Since some of d; + ...+ d; for j = 1,...,k are irrational, it is easy to see

that |5((;:1)| < 1 for all m,r # 0.
We now show that for any m # 0 there exists r € N such that

0 <[Q(wi", ... ,wy")| < 1.

Suppose that for all » € N, we have Q(w{"", ..., wy"") = 0. Since a1, .. ., ay, 1
are independent over Q, Q(z1,...,24) = 0 for any (z1,...,2,) € T9. Hence

0=@Q(,...,1) =1, a contradiction.
Let us show that if |m| # |m'|, m,m’ # 0, then there exists r € N such
that

(8) Q™™ ..., W) # Q... W T)].

Suppose, contrary to our claim, that equality occurs in (8) for any r € N.
Then

Q21" 24| = Q7. .. ,z;n/)| for any (21,...,24) € TY.
Let P denote the trigonometric polynomial on T given by
P(z)=|Q(z™1,..., D> =|Q(="",1,..., 1)
Since

max |m(a;1 —aj1)| = max |m'(a;1 —aj1)| = deg P > 0,
§,j=0,..,k §,j=0,. K

where ag; = 0, we obtain |m| = |m’|, a contradiction.
Let us show that for any m # 0 there exists r € N such that

9) WPTQWT, W) A Wy QW™ wy ™).

Suppose that equality occurs in (9) for all » € N. Then

wo" Q" wy) €R - forall r € Z.

Set Go = {(w],...,wy) : 7 € Z}. Let F' : Gy — T be the group homomor-
phism given by
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Qo™ wy ™)
F(wT. . Ty — ,2mr _ g9
W) =0 = o )
Then (wi™,...,wi") — (1,...,1) implies
w—mrn,“.’w_mrn 1.....1
F(w{n,...,w;n):Q< ! o) Qs ):F(l,...,l).

Qwi"™,...,wg'"™) Q(1,...,1)

Since F' is a continuous group homomorphism and Go = TY, there exists a
continuous group homomorphism F : T9 — T such that F' |G0 = F and

_ Cc1 C
F(z1,...,24) = 2§ a2yt
where ¢, ..., ¢, € Z. Therefore
2m __ __c1 c
wo = Flwr, . wg) = witwg?
and consequently
cir wesT 2mr 2m7“
wi' o wg? QW™ )ER

for all r € Z. It follows that the trigonometric polynomial

2t CgQ( zgm)
has only real values. Hence there exist mg,...,m; € {0,1,—1} such that
Zf oMmjA; =0 and there exist j;,j2 such that mj, = 1 and m;, = —1,

contrary to (y1,...,7) € . m
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