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Spectra originating from semi-B-Fredholm theory
and commuting perturbations
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Abstract. Burgos, Kaidi, Mbekhta and Oudghiri [J. Operator Theory 56 (2006)]
provided an affirmative answer to a question of Kaashoek and Lay and proved that an
operator F is of power finite rank if and only if σdsc(T + F ) = σdsc(T ) for every oper-
ator T commuting with F . Later, several authors extended this result to the essential
descent spectrum, left Drazin spectrum and left essential Drazin spectrum. In this paper,
using the theory of operators with eventual topological uniform descent and the tech-
nique used by Burgos et al., we generalize these results to various spectra originating
from semi-B-Fredholm theory. As immediate consequences, we give affirmative answers
to several questions posed by Berkani, Amouch and Zariouh. Moreover, we provide a
general framework which allows us to derive in a unified way perturbation results for
Weyl–Browder type theorems and properties (generalized or not). Our results improve
many recent results by removing certain extra assumptions.

1. Introduction. In 1972, Kaashoek and Lay [32] showed that the de-
scent spectrum is invariant under any commuting power finite rank pertur-
bation F (that is, Fn is of finite rank for some n ∈ N). Also they con-
jectured that this perturbation property characterizes such operators F .
In 2006, Burgos, Kaidi, Mbekhta and Oudghiri [22] confirmed this conjec-
ture: they proved that an operator F is of power finite rank if and only
if σdsc(T + F ) = σdsc(T ) for every operator T commuting with F . Later,
Bel Hadj Fredj [8] generalized this result to the essential descent spectrum.
Bel Hadj Fredj, Burgos and Oudghiri [9] extended this result to the left
Drazin spectrum and left essential Drazin spectrum (in [9], they are called
the ascent spectrum and essential ascent spectrum, respectively).

The present paper is concerned with commuting power finite rank per-
turbations of semi-B-Fredholm operators. As seen in Theorem 2.11 (our
main result), we generalize the previous results to various spectra originat-
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ing from semi-B-Fredholm theory. The proof of our main result is mainly
dependent upon the theory of operators with eventual topological uniform
descent and the technique used in [22].

Spectra originating from semi-B-Fredholm theory include, in particu-
lar, the upper semi-B-Weyl spectrum σUSBW (resp. the B-Weyl spectrum
σBW) which is closely related to generalized a-Weyl’s theorem, generalized
a-Browder’s theorem, property (gw) and property (gb) (resp. generalized
Weyl’s theorem, generalized Browder’s theorem, property (gaw) and prop-
erty (gab)). Concerning the upper semi-B-Weyl spectrum σUSBW, Berkani
and Amouch [13] posed the following question:

Question 1.1. Let T ∈ B(X), and let N ∈ B(X) be a nilpotent operator
commuting with T . Do we always have

σUSBW(T +N) = σUSBW(T ) ?

Similarly, for the B-Weyl spectrum σBW, Berkani and Zariouh [19] posed
the following question:

Question 1.2. Let T ∈ B(X), and let N ∈ B(X) be a nilpotent operator
commuting with T . Do we always have

σBW(T +N) = σBW(T ) ?

Recently, Amouch, Zguitti, Berkani and Zariouh have given partial an-
swers to Question 1.1 in [5, 7, 13, 16]. As immediate consequences of our
main result (see Theorem 2.11), we provide positive answers to Questions
1.1 and 1.2 and some other questions posed by Berkani and Zariouh (see
Corollaries 3.1, 3.3 and 3.8). Moreover, we provide a general framework
which allows us to derive in a unified way commuting perturbations results
for Weyl–Browder type theorems and properties (generalized or not). These
results, in particular, improve many recent results of [13, 16, 19, 20, 39] by
removing certain extra assumptions (see Corollary 3.9 and Remark 3.10).

Throughout this paper, B(X) denotes the Banach algebra of all bounded
linear operators acting on an infinite-dimensional complex Banach space X,
and F(X) denotes the ideal of finite rank operators. For T ∈ B(X), let
T ∗ denote its dual, N (T ) its kernel, α(T ) its nullity, R(T ) its range, β(T )
its defect, σ(T ) its spectrum and σa(T ) its approximate point spectrum.
If R(T ) is closed and α(T ) < ∞ (resp. β(T ) < ∞), then T is said to be
upper semi-Fredholm (resp. lower semi-Fredholm). If T ∈ B(X) is both
upper and lower semi-Fredholm, then it is Fredholm. If T ∈ B(X) is either
upper or lower semi-Fredholm, then it is semi-Fredholm, and its index is
defined by ind(T ) = α(T )− β(T ).

For each n ∈ N, we set cn(T ) = dimR(Tn)/R(Tn+1) and c′n(T ) =
dimN (Tn+1)/N (Tn). It follows from [31, Lemmas 3.1 and 3.2] that, for
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every n ∈ N,

cn(T ) = dimX/(R(T ) +N (Tn)), c′n(T ) = dimN (T ) ∩R(Tn).

Hence, it is easy to see that the sequences {cn(T )}∞n=0 and {c′n(T )}∞n=0 are
decreasing. Recall that the descent and ascent of T ∈ B(X) are dsc(T ) =
inf{n ∈ N : R(Tn) = R(Tn+1)} and asc(T ) = inf{n ∈ N : N (Tn) =
N (Tn+1)}, respectively (the infimum of an empty set is defined to be ∞).
That is,

dsc(T ) = inf{n ∈ N : cn(T ) = 0},
asc(T ) = inf{n ∈ N : c′n(T ) = 0}.

Similarly, the essential descent and essential ascent of T ∈ B(X) are

dsce(T ) = inf{n ∈ N : cn(T ) <∞},
asce(T ) = inf{n ∈ N : c′n(T ) <∞}.

If asc(T ) < ∞ and R(T asc(T )+1) is closed, then T is said to be left Drazin
invertible. If dsc(T ) < ∞ and R(T dsc(T )) is closed, then T is right Drazin
invertible. If asc(T ) = dsc(T ) < ∞, then T is Drazin invertible. Clearly,
T ∈ B(X) is both left and right Drazin invertible if and only if it is Drazin
invertible. If asce(T ) <∞ and R(T asce(T )+1) is closed, then T is said to be
left essentially Drazin invertible. If dsce(T ) < ∞ and R(T dsce(T )) is closed,
then T is right essentially Drazin invertible.

For T ∈ B(X), let us define the left Drazin spectrum, right Drazin spec-
trum, Drazin spectrum, left essential Drazin spectrum, and right essential
Drazin spectrum of T respectively as follows:

σLD(T ) = {λ ∈ C : T − λI is not left Drazin invertible},
σRD(T ) = {λ ∈ C : T − λI is not right Drazin invertible},
σD(T ) = {λ ∈ C : T − λI is not Drazin invertible},
σeLD(T ) = {λ ∈ C : T − λI is not left essentially Drazin invertible},
σeRD(T ) = {λ ∈ C : T − λI is not right essentially Drazin invertible}.

These spectra have been extensively studied (see e.g. [2, 7, 10, 11, 25, 9, 34]).

Recall that T ∈ B(X) is said to be Browder (resp. upper semi-Browder,
lower semi-Browder) if T is Fredholm and asc(T ) = dsc(T ) < ∞ (resp. T
is upper semi-Fredholm and asc(T ) < ∞, T is lower semi-Fredholm and
dsc(T ) <∞).

For each integer n, define Tn to be the restriction of T to R(Tn) viewed
as a map from R(Tn) into R(Tn) (in particular T0 = T ). If there ex-
ists n ∈ N such that R(Tn) is closed and Tn is Fredholm (resp. upper
semi-Fredholm, lower semi-Fredholm, Browder, upper semi-Browder, lower
semi-Browder), then T is called B-Fredholm (resp. upper semi-B-Fredholm,
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lower semi-B-Fredholm, B-Browder, upper semi-B-Browder, lower semi-B-
Browder). If T ∈ B(X) is upper or lower semi-B-Browder, then it is called
semi-B-Browder. If T ∈ B(X) is upper or lower semi-B-Fredholm, then it
is semi-B-Fredholm. It follows from [15, Proposition 2.1] that if there exists
n ∈ N such that R(Tn) is closed and Tn is semi-Fredholm, then R(Tm) is
closed, Tm is semi-Fredholm and ind(Tm) = ind(Tn) for all m ≥ n. This
enables us to define the index of a semi-B-Fredholm operator T as the
index of the semi-Fredholm operator Tn, where n is an integer such that
R(Tn) is closed and Tn is semi-Fredholm. An operator T ∈ B(X) is called
B-Weyl (resp. upper semi-B-Weyl, lower semi-B-Weyl) if T is B-Fredholm
and ind(T ) = 0 (resp. T is upper semi-B-Fredholm and ind(T ) ≤ 0, T is
lower semi-B-Fredholm and ind(T ) ≥ 0). If T ∈ B(X) is upper or lower
semi-B-Weyl, then it is semi-B-Weyl.

For T ∈ B(X), let us define the upper semi-B-Fredholm spectrum, lower
semi-B-Fredholm spectrum, semi-B-Fredholm spectrum, B-Fredholm spec-
trum, upper semi-B-Weyl spectrum, lower semi-B-Weyl spectrum, semi-B-
Weyl spectrum, B-Weyl spectrum, upper semi-B-Browder spectrum, lower
semi-B-Browder spectrum, semi-B-Browder spectrum, and B-Browder spec-
trum of T respectively as follows:

σUSBF(T ) = {λ ∈ C : T − λI is not upper semi-B-Fredholm},
σLSBF(T ) = {λ ∈ C : T − λI is not lower semi-B-Fredholm},
σSBF(T ) = {λ ∈ C : T − λI is not semi-B-Fredholm},
σBF(T ) = {λ ∈ C : T − λI is not B-Fredholm},

σUSBW(T ) = {λ ∈ C : T − λI is not upper semi-B-Weyl},
σLSBW(T ) = {λ ∈ C : T − λI is not lower semi-B-Weyl},
σSBW(T ) = {λ ∈ C : T − λI is not semi-B-Weyl},
σBW(T ) = {λ ∈ C : T − λI is not B-Weyl},

σUSBB(T ) = {λ ∈ C : T − λI is not upper semi-B-Browder},
σLSBB(T ) = {λ ∈ C : T − λI is not lower semi-B-Browder},
σSBB(T ) = {λ ∈ C : T − λI is not semi-B-Browder},
σBB(T ) = {λ ∈ C : T − λI is not B-Browder}.

These spectra originating from semi-B-Fredholm theory have also been ex-
tensively studied (see e.g. [2, 7, 10, 12, 15, 19, 25]).

For any T ∈ B(X), Berkani have found in [10, Theorem 3.6] the following
elegant equalities:

σLD(T ) = σUSBB(T ), σRD(T ) = σLSBB(T ),

σeLD(T ) = σUSBF(T ), σeRD(T ) = σLSBF(T ),

σD(T ) = σBB(T ).
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This paper is organized as follows. In Section 2, by using the theory
of operators with eventual topological uniform descent and the technique
used in [22], we characterize power finite rank operators via various spectra
originating from semi-B-Fredholm theory. In Section 3, as applications, we
provide affirmative answers to some questions of Berkani, Amouch and Zar-
iouh. Moreover, we derive in a unified way several perturbation results for
Weyl–Browder type theorems and properties (generalized or not).

2. Main result. We begin with some lemmas.

Lemma 2.1. Let F ∈ B(X) with Fn ∈ F(X) for some n ∈ N. If
T ∈ B(X) is upper semi-B-Fredholm and commutes with F , then T + F is
also upper semi-B-Fredholm.

Proof. Since T is upper semi-B-Fredholm, by [10, Theorem 3.6], T is
left essentially Drazin invertible. Hence by [9, Proposition 3.1], T + F is
left essentially Drazin invertible. By [10, Theorem 3.6] again, T is upper
semi-B-Fredholm.

Lemma 2.2. Let F ∈ B(X) with Fn ∈ F(X) for some n ∈ N. If
T ∈ B(X) is lower semi-B-Fredholm and commutes with F , then T + F is
also lower semi-B-Fredholm.

Proof. Since Fn ∈ F(X) for some n ∈ N, R(Fn) is a closed and finite-
dimensional subspace, and hence dimR(F ∗n) = dimN (Fn)⊥ = dimR(Fn),
thus R(F ∗n) is finite-dimensional, which implies that F ∗n ∈ F(X∗). It is
obvious that T ∗ commutes with F ∗. Since T is lower semi-B-Fredholm, by
[10, Theorem 3.6], T is right essentially Drazin invertible. Then from the
observations preceding Section IV of [34], T ∗ is left essentially Drazin in-
vertible. Hence by [9, Proposition 3.1], (T +F )∗ = T ∗+F ∗ is left essentially
Drazin invertible. From the observations in [34] again, T +F is right essen-
tially Drazin invertible. Consequently, by [10, Theorem 3.6], T + F is lower
semi-B-Fredholm.

It follows from [10, Corollary 3.7 and Theorem 3.6] that T is B-Fredholm
if and only if T is both upper and lower semi-B-Fredholm.

Corollary 2.3. Let T ∈ B(X), and let F ∈ B(X) with Fn ∈ F(X)
for some n ∈ N. If T commutes with F , then

(1) σUSBF(T + F ) = σUSBF(T );
(2) σLSBF(T + F ) = σLSBF(T );
(3) σSBF(T + F ) = σSBF(T );
(4) σBF(T + F ) = σBF(T ).

Proof. The first equation follows easily from Lemma 2.1, and the second
from Lemma 2.2. The third equation is true because σSBF(T ) = σUSBF(T )∩
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σLSBF(T ), and the fourth because σBF(T ) = σUSBF(T )∪σLSBF(T ), for every
T ∈ B(X).

We now recall some classical definitions.Using the isomorphismX/N (T d)
≈ R(T d) and following [28], a topology on R(T d) is defined as follows.

Definition 2.4. Let T ∈ B(X). For every d ∈ N, the operator range
topology on R(T d) is defined by the norm ‖·‖R(T d) such that for all y ∈
R(T d),

‖y‖R(T d) = inf{‖x‖ : x ∈ X, y = T dx}.
For a detailed discussion of operator ranges and their topologies, we refer

the reader to [26] and [27]. If T ∈ B(X), for each n ∈ N, T induces a linear
transformation from R(Tn)/R(Tn+1) to R(Tn+1)/R(Tn+2). We let kn(T )
be the dimension of its null space. From [28, Lemma 2.3] it follows that, for
every n ∈ N,

kn(T ) = dim (N (T ) ∩R(Tn))/(N (T ) ∩R(Tn+1))

= dim (R(T ) +N (Tn+1))/(R(T ) +N (Tn)).

Definition 2.5. Let T ∈ B(X) and d ∈ N. Then T has uniform descent
for n ≥ d if kn(T ) = 0 for all n ≥ d. If in addition R(Tn) is closed in
the operator range topology of R(T d) for all n ≥ d, then we say that T
has eventual topological uniform descent, and, more precisely, that T has
topological uniform descent for n ≥ d.

Operators with eventual topological uniform descent were introduced
by Grabiner [28]. This class includes all classes of operators introduced in
the Introduction. It also includes many other classes, such as operators of
Kato type, quasi-Fredholm operators, operators with finite descent, opera-
tors with finite essential descent, and so on. A very detailed and far-reaching
account of these notions can be seen in [1, 10, 34]. Especially, the operators
with topological uniform descent for n ≥ 0 are precisely the semi-regular
operators studied by Mbekhta [33]. Discussions of operators with eventual
topological uniform descent may be found in [14, 23, 28, 29, 30, 41].

An operator T ∈ B(X) is said to be essentially semi-regular if R(T )
is closed and k(T ) :=

∑∞
n=0 kn(T ) <∞. The hyperrange and hyperkernel

of T ∈ B(X) are the subspaces of X defined by R(T∞) =
⋂∞

n=1R(Tn) and
N (T∞) =

⋃∞
n=1N (Tn), respectively. From [28, Theorem 3.7] it follows that

k(T ) = dimN (T )/(N (T ) ∩R(T∞)) = dim (R(T ) +N (T∞))/R(T ).

Hence, being an essentially semi-regular operator can be characterized by:
R(T ) is closed and there exists a finite-dimensional subspace F ⊆ X such
that N (T ) ⊆ R(T∞) + F. In addition, if T is essentially semi-regular, then
Tn is essentially semi-regular, and hence R(Tn) is closed for all n ∈ N (see
[1, Theorem 1.51]). Hence it is easy to verify that if T ∈ B(X) is essentially
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semi-regular, then there exists p ∈ N such that T has topological uniform
descent for n ≥ p.

Also, an operator T ∈ B(X) is called Riesz if its essential spectrum
σe(T ) := {λ ∈ C : T − λI is not Fredholm} is {0}.

Lemma 2.6. Suppose that T ∈ B(X) has topological uniform descent for
m ≥ d. If S ∈ B(X) is a Riesz operator commuting with T , and V = S+T
has topological uniform descent for n ≥ l, then:

(a) dim (R(T∞) +R(V∞))/(R(T∞) ∩R(V∞)) <∞;

(b) dim (N (T∞) +N (V∞))/(N (T∞) ∩N (V∞)) <∞;

(c) dimR(V n)/R(V n+1) = dimR(Tm)/R(Tm+1) for sufficiently large
m and n;

(d) dimN (V n+1)/N (V n) = dimN (Tm+1)/N (Tm) for sufficiently large
m and n.

Proof. Parts (c) and (d) follow directly from [41, Theorems 3.8 and 3.12
and Remark 4.5]; so do (a) and (b) when d 6= 0 (that is, T is not semi-
regular).

When d = 0 (that is, T is semi-regular), then by [41, Theorem 3.8] we
find that V = T + S is essentially semi-regular. So, there exists p ∈ N such
that V has topological uniform descent for n ≥ p. If p 6= 0 (that is, V is not
semi-regular), then (a) and (b) follow directly from [41, Theorem 3.12 and
Remark 4.5]. If p = 0 (that is, V is semi-regular), noting that (M+N)/N ≈
M/(M ∩N) for any subspaces M and N of X (see [31, Lemma 2.2]), then
(a) and (b) follow from [41, Theorem 3.8 and Remark 4.5].

Theorem 2.7. Let F ∈ B(X) with Fn ∈ F(X) for some n ∈ N.

(1) If T ∈ B(X) is semi-B-Fredholm and commutes with F , then

(a) dim(R(T∞) +R((T + F )∞))/(R(T∞) ∩R((T + F )∞)) <∞;

(b) dim(N (T∞) +N ((T + F )∞))/(N (T∞) ∩N ((T + F )∞)) <∞.
(2) If T ∈ B(X) is upper (resp. lower) semi-B-Fredholm and commutes

with F , then T +F is also upper (resp. lower) semi-B-Fredholm and
ind(T + F ) = ind(T ).

Proof. Since Fn∈F(X), it follows that Fn is Riesz, that is, σe(F
n) = {0}.

By the spectral mapping theorem for the essential spectrum, we get σe(F )
= {0}, so F is Riesz.

(1) Since T is semi-B-Fredholm and commutes with F , by Lemmas 2.1
and 2.2, T + F is also semi-B-Fredholm. Since every semi-B-Fredholm op-
erator has eventual topological uniform descent, by Lemma 2.6(a) & (b),
parts (a) and (b) follow immediately.
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(2) By Lemmas 2.1 and 2.2, it remains to prove that ind(T+F ) = ind(T ).
Since every semi-B-Fredholm operator has eventual topological uniform de-
scent, 2.6(c) & (d) and [15, Proposition 2.1] imply that ind(T + F ) =
ind(T ).

Theorem 2.8. Let T ∈ B(X), and let F ∈ B(X) with Fn ∈ F(X) for
some n ∈ N. If T commutes with F , then

(1) σUSBW(T + F ) = σUSBW(T );
(2) σLSBW(T + F ) = σLSBW(T );
(3) σSBW(T + F ) = σSBW(T );
(4) σBW(T + F ) = σBW(T ).

Proof. This follows directly from Theorem 2.7(2).

Next, we turn to characterizations of power finite rank operators via
various spectra originating from semi-B-Fredholm theory. For that, some
notations are needed.

For T ∈ B(X), let us define the descent spectrum, essential descent spec-
trum and eventual topological uniform descent spectrum of T respectively as
follows:

σdsc(T ) = {λ ∈ C : dsc(T − λI) =∞},
σedsc(T ) = {λ ∈ C : dsce(T − λI) =∞},
σud(T ) = {λ ∈ C : T − λI does not have

eventual topological uniform descent}.
Several authors discussed the emptiness of various spectra, for example,

the descent spectrum [22], essential descent spectrum [8], left Drazin spec-
trum and left essential Drazin spectrum [9], Drazin spectrum [21]. In [30],
Jiang, Zhong and Zhang obtained a classification of the components of even-
tual topological uniform descent resolvent set ρud(T ) := C\σud(T ). As an
application, they generalized the corresponding results of [21, 22, 8, 9].

Lemma 2.9 ([30, Corollary 4.5]). Let T ∈ B(X) and let σ∗ ∈ {σud, σdsc,
σedsc, σUSBF = σeLD, σUSBB = σLD, σBB = σD}. Then the following statements
are equivalent:

(1) σ∗(T ) = ∅;
(2) T is algebraic (that is, there exists a non-zero complex polynomial p

for which p(T ) = 0).

Corollary 2.10. Let T ∈ B(X) and let σ∗ ∈ {σud, σdsc, σedsc, σUSBF =
σeLD, σLSBF = σeRD, σSBF, σBF, σUSBW, σLSBW, σSBW, σBW, σUSBB = σLD,
σLSBB = σRD, σSBB, σBB = σD}. Then the following statements are
equivalent:

(1) σ∗(T ) = ∅;
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(2) T is algebraic.

Proof. If σ∗ ∈ {σud, σdsc, σedsc, σUSBF = σeLD, σUSBB = σLD, σBB = σD},
the conclusion is given by Lemma 2.9. Note that

σud(·) ⊆ σSBF(·) ⊆
{
σSBW(·)
σUSBF(·) = σeLD(·)

⊆ σUSBW(·) ⊆
{
σBW(·)
σUSBB(·) = σLD(·)

⊆ σBB(·) = σD(·)
and

σud(·) ⊆ σSBF(·) ⊆
{
σSBW(·)
σLSBF(·) = σeRD(·)

⊆ σLSBW(·) ⊆
{
σBW(·)
σLSBB(·) = σRD(·)

⊆ σBB(·) = σD(·).
By Lemma 2.9, if σ∗ ∈ {σLSBF = σeRD, σSBF, σUSBW, σLSBW, σSBW, σBW,
σLSBB = σRD}, the conclusion follows easily. Note that

σud(·) ⊆ σSBB(·) ⊆ σBB(·) = σD(·)
and

σud(·) ⊆ σBF(·) ⊆ σBB(·) = σD(·).
Again by Lemma 2.9, if σ∗ ∈ {σSBB, σBF}, the conclusion follows easily.

In [9, Theorem 3.2], O. Bel Hadj Fredj et al. proved that F ∈ B(X) with
Fn ∈ F(X) for some n ∈ N if and only if σeLD(T+F ) = σeLD(T ) (equivalently,
σLD(T + F ) = σLD(T )) for every operator T in the commutant of F .

We are now in a position to give the proof of the following main result.

Theorem 2.11. Let F ∈ B(X) and σ∗ ∈ {σdsc, σedsc, σUSBF = σeLD,
σLSBF = σeRD, σSBF, σBF, σUSBW, σLSBW, σSBW, σBW, σUSBB = σLD, σLSBB

= σRD, σSBB, σBB = σD}. Then the following statements are equivalent:

(1) Fn ∈ F(X) for some n ∈ N;
(2) σ∗(T + F ) = σ∗(T ) for all T ∈ B(X) commuting with F .

Proof. For σ∗ ∈ {σdsc, σedsc, σUSBB = σLD, σUSBF = σeLD}, the conclusion
can be found in [22, Theorem 3.1], [8, Theorem 3.1] and [9, Theorem 3.2].
In the following, we prove the conclusion for the other spectra.

(1)⇒(2). For σ∗∈{σLSBF = σeRD, σSBF, σBF, σUSBW, σLSBW, σSBW, σBW},
the conclusion follows directly from Corollary 2.3 and Theorem 2.8.

For σ∗ ∈ {σLSBB = σRD}, suppose that F ∈ B(X) with Fn ∈ F(X)
for some n ∈ N and that T ∈ B(X) commutes with F . It is clear that
F ∗ ∈ B(X∗) with F ∗n ∈ F(X∗) and that T ∗ ∈ B(X∗) commutes with F ∗.
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From the observation before this theorem, we get σLD(T ∗+F ∗) = σLD(T ∗),
hence dually, σRD(T + F ) = σRD(T ).

For σ∗ ∈ {σSBB, σBB = σD}, noting that σSBB(·) = σUSBB(·) ∩ σLSBB(·)
and σBB(·) = σUSBB(·) ∪ σLSBB(·), the conclusion follows.

(2)⇒(1). Apply the proof of [22, Theorem 3.1(i)⇒(ii)] to the spectra
under consideration, using in particular Corollary 2.10.

Remark 2.12. By [13, Lemma 2.3], [34, pp. 135–136] and a similar
argument of [12, Proposition 3.3], we know that σ∗(T + F ) = σ∗(T ) for
all finite rank operator F not necessarily commuting with T , where σ∗ ∈
{σedsc, σUSBF = σeLD, σLSBF = σeRD, σSBF, σBF, σUSBW, σLSBW, σSBW, σBW}.
By [34, Observation 5, p. 136], σ∗ is not stable under non-commuting finite
rank perturbations, where σ∗∈{σdsc, σUSBB = σLD, σLSBB = σRD, σSBB, σBB

= σD}.

3. Some applications. Rashid claimed in [38, Theorem 3.15] that if
T ∈ B(X) and Q is a quasi-nilpotent operator that commutes with T , then
(in [38], σUSBW is denoted as σSBF−

+
)

σUSBW(T +Q) = σUSBW(T ).

In [42, Example 2.13], the authors showed that this equality does not hold
in general.

As an immediate consequence of our main Theorem 2.11, we obtain
the following corollary which, in particular, is a corrected version of [38,
Theorem 3.15] and also provides positive answers to Questions 1.1 and 1.2.

Corollary 3.1. Let T ∈ B(X), and let N ∈ B(X) be a nilpotent
operator commuting with T . Then

(1) σUSBW(T +N) = σUSBW(T );
(2) σLSBW(T +N) = σLSBW(T );
(3) σSBW(T +N) = σSBW(T );
(4) σBW(T +N) = σBW(T ).

Besides Question 1.2, Berkani and Zariouh [19] also posed the following
question:

Question 3.2. Let T ∈ B(X), and let N ∈ B(X) be a nilpotent operator
commuting with T . Under which conditions

σBF(T +N) = σBF(T ) ?

As an immediate consequence of Theorem 2.11, we obtain the following
corollary which, in particular, provides an answer to Question 3.2.

Corollary 3.3. Let T ∈ B(X), and let N ∈ B(X) be a nilpotent
operator commuting with T . Then
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(1) σUSBF(T +N) = σUSBF(T );
(2) σLSBF(T +N) = σLSBF(T );
(3) σSBF(T +N) = σSBF(T );
(4) σBF(T +N) = σBF(T ).

We say that λ ∈ σa(T ) is a left pole of T if T−λI is left Drazin invertible.
Let Πa(T ) denote the set of all left poles of T . An operator T ∈ B(X) is
called a-polaroid if isoσa(T ) = Πa(T ). Henceforth, for A ⊆ C, isoA is
the set of isolated points of A. Besides Questions 1.2 and 3.2, Berkani and
Zariouh [20] also posed the following three questions:

Question 3.4. Let T ∈ B(X), and let N ∈ B(X) be a nilpotent operator
commuting with T . Under which conditions

asc(T +N) <∞ ⇔ asc(T ) <∞ ?

Question 3.5. Let T ∈ B(X), and let N ∈ B(X) be a nilpotent operator
commuting with T . Under which conditions, R((T + N)m) is closed for m
large enough if and only if R(Tm) is closed for m large enough?

Question 3.6. Let T ∈ B(X), and let N ∈ B(X) be a nilpotent operator
commuting with T . Under which conditions

Πa(T +N) = Πa(T ) ?

We mention that Question 3.4 is, in fact, an immediate consequence of
an earlier result of Kaashoek and Lay [32, Theorem 2.2]. As for Question 3.5,
suppose that T ∈ B(X) and that N ∈ B(X) is a nilpotent operator commut-
ing with T . As a direct consequence of Theorem 2.11, if there exists n ∈ N
such that cn(T ) <∞ or c′n(T ) <∞, then R((T +N)m) is closed for m large
enough if and only if R(Tm) is closed for m large enough.

As regards Question 3.6, we first recall a classical result.

Lemma 3.7 (34). If T ∈ B(X), and Q ∈ B(X) is a quasi-nilpotent
operator commuting with T , then

(3.1) σ(T +Q) = σ(T ) and σa(T +Q) = σa(T ).

As an immediate consequence of Theorem 2.11 and Lemma 3.7, we obtain
the following corollary which provides an answer to Question 3.6.

Corollary 3.8. Let T ∈ B(X), and let N ∈ B(X) be a nilpotent
operator commuting with T . Then

(3.2) Πa(T +N) = Πa(T ).

Let Π(T ) denote the set of all poles of T . It is proved in [16, Lemma 2.2]
that if T ∈ B(X) and N ∈ B(X) is a nilpotent operator commuting with T ,
then

(3.3) Π(T +N) = Π(T ).
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Let E(T ) and Ea(T ) denote the set of all isolated eigenvalues of T and
the set of all eigenvalues of T that are isolated in σa(T ), respectively. That is,

E(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI)},
Ea(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI)}.

An operator T ∈ B(X) is called a-isoloid if isoσa(T ) = Ea(T ).

We set Π0(T ) = {λ ∈ Π(T ) : α(T − λI) < ∞}, Π0
a (T ) = {λ ∈ Πa(T ) :

α(T − λI) <∞}, E0(T ) = {λ ∈ E(T ) : α(T − λI) <∞} and E0
a(T ) = {λ ∈

Ea(T ) : α(T − λI) <∞}.
Suppose that T ∈ B(X) and that N ∈ B(X) is a nilpotent operator

commuting with T . Then from the proof of [19, Theorem 3.5],

α(T +N) > 0 ⇔ α(T ) > 0, α(T +N) <∞ ⇔ α(T ) <∞.

Hence by (3.1), we have

E(T +N) = E(T ),(3.4)

Ea(T +N) = Ea(T ),(3.5)

E0(T +N) = E0(T ),(3.6)

E0
a(T +N) = E0

a(T ).(3.7)

An operator T ∈ B(X) is said to be upper semi-Weyl if T is upper
semi-Fredholm and ind(T ) ≤ 0, and Weyl if T is Fredholm and ind(T ) = 0.
For T ∈ B(X), let us define the upper semi-Browder spectrum, Browder
spectrum, upper semi-Weyl spectrum and Weyl spectrum of T respectively
as follows:

σUSB(T ) = {λ ∈ C : T − λI is not upper semi-Browder},
σB(T ) = {λ ∈ C : T − λI is not Browder},

σUSW(T ) = {λ ∈ C : T − λI is not upper semi-Weyl},
σW(T ) = {λ ∈ C : T − λI is not Weyl}.

Suppose that T ∈ B(X) and that R ∈ B(X) is a Riesz operator com-
muting with T . Then it follows from [40, Proposition 5] and [37, Theorem 1]
that

σUSW(T +R) = σUSW(T ),(3.8)

σW(T +R) = σW(T ),(3.9)

σUSB(T +R) = σUSB(T ),(3.10)

σB(T +R) = σB(T ).(3.11)

Suppose that T ∈ B(X) and that Q ∈ B(X) is a quasi-nilpotent operator
commuting with T . Then, noting that Π0(T ) = σ(T )\σB(T ) and Π0

a (T ) =
σa(T )\σUSB(T ) for any T ∈ B(X), it follows from (3.1), (3.10) and (3.11)
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that

Π0(T +Q) = Π0(T ),(3.12)

Π0
a (T +Q) = Π0

a (T ).(3.13)

In the following table, we use the abbreviations gaW , aW , gW , W , (gw),
(w), (gaw) and (aw) to signify that an operator T ∈ B(X) obeys generalized
a-Weyl’s theorem, a-Weyl’s theorem, generalized Weyl’s theorem, Weyl’s
theorem, property (gw), property (w), property (gaw) and property (aw).
For example, an operator T ∈ B(X) is said to obey generalized a-Weyl’s
theorem (in symbols T ∈ gaW ) if σa(T )\σUSBW(T ) = Ea(T ). Similarly,
the abbreviations gaB, aB, gB, B, (gb), (b), (gab) and (ab) have analogous
meanings with respect to Browder type theorems and properties.

gaW σa(T )\σUSBW(T ) = Ea(T ) gaB σa(T )\σUSBW(T ) = Πa(T )

aW σa(T )\σUSW(T ) = E0
a(T ) aB σa(T )\σUSW(T ) = Π0

a (T )

gW σ(T )\σBW(T ) = E(T ) gB σ(T )\σBW(T ) = Π(T )

W σ(T )\σW(T ) = E0(T ) B σ(T )\σW(T ) = Π0(T )

(gw) σa(T )\σUSBW(T ) = E(T ) (gb) σa(T )\σUSBW(T ) = Π(T )

(w) σa(T )\σUSW(T ) = E0(T ) (b) σa(T )\σUSW(T ) = Π0(T )

(gaw) σ(T )\σBW(T ) = Ea(T ) (gab) σ(T )\σBW(T ) = Πa(T )

(aw) σ(T )\σW(T ) = E0
a(T ) (ab) σ(T )\σW(T ) = Π0

a (T )

Weyl–Browder type theorems and properties, in their classical and more
recent generalized form, have been studied by a large number of authors.
Theorem 2.11 and equations (3.1)–(3.13) give us a unifying framework for
establishing perturbation results for Weyl–Browder type theorems and prop-
erties (generalized or not).

Corollary 3.9.

(1) If T ∈ B(X) obeys gaW (resp. aW, gW, W, (gw), (w), (gaw), (aw),
(gb), (gab)) and N ∈ B(X) is a nilpotent operator commuting with
T , then T +N also obeys gaW (resp. aW, gW, W, (gw), (w), (gaw),
(aw), (gb), (gab)).

(2) If T ∈ B(X) obeys gaB (resp. aB, gB, B) and R ∈ B(X) is a Riesz
operator commuting with T , then T + R also obeys gaB (resp. aB,
gB, B).

(3) If T ∈ B(X) obeys (b) (resp. (ab)) and Q ∈ B(X) is a quasi-nilpotent
operator commuting with T , then T +Q also obeys (b) (resp. (ab)).

Proof. (1) follows directly from Theorem 2.11 and (3.1)–(3.9).

(2) By [6], we know that T obeys gB (resp. gaB) if and only if T obeys
B (resp. aB) for any T ∈ B(X). Note that T obeys B (resp. aB) if and only
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if σW(T ) = σB(T ) (resp. σUSW(T ) = σUSB(T )). Hence by (3.8)–(3.11), the
conclusion follows immediately.

(3) follows directly from (3.1), (3.8), (3.9), (3.12) and (3.13).

Corollary 3.9, in particular, improves many recent results of [13, 16, 19,
20, 39] by removing certain extra assumptions.

Remark 3.10. (1) For generalized a-Weyl’s theorem, part (1) of Corol-
lary 3.9 improves [20, Theorem 3.3] by removing the extra assumption that
Ea(T ) ⊆ isoσ(T ), and extends [20, Theorem 3.2]. For property (gw), on
one hand, part (1) of Corollary 3.9 improves [39, Theorem 2.16] (resp. [13,
Theorem 3.6]) by removing the extra assumption that T is a-isoloid (resp. T
is a-polaroid) and extends [19, Theorem 3.8]; on the other hand, our proof
corrects the proof of [39, Theorem 2.16]. For property (gab), part (1) of
Corollary 3.9 improves [19, Theorem 3.2] by removing the extra assumption
that T is a-polaroid, and extends [19, Theorem 3.4].

For generalized Weyl’s theorem (resp. property (w), property (gaw)),
part (1) of Corollary 3.9 has been proved in [13, Theorem 3.4] (resp. [3,
Theorem 3.8] and [13, Theorem 3.1], [19, Theorem 3.6]) by using a different
method.

Fora-Weyl’s theorem, some otherperturbationtheorems have beenproved
in [20, 24, 36].

For Weyl’s theorem (resp. property (aw), property (gb)), part (1) of
Corollary 3.9 has been proved in [35, Theorem 3] (resp. [19, Theorem 3.5],
[42, Theorem 2.6]).

(2) It has been shown in [4] that Browder’s theorem and a-Browder’s
theorem are stable under commuting Riesz perturbations.

(3) For property (b) (resp. (ab)), part (3) of Corollary 3.9 extends [16,
Theorem 2.1] (resp. [19, Theorem 3.1]) to commuting quasi-nilpotent per-
turbations.

We conclude this paper by some examples to illustrate our perturbation
results for Weyl–Browder type theorems and properties (generalized or not).

The following simple example shows that gaW , aW, gW, W, (gw), (w),
(gaw) and (aw) are not stable under commuting quasi-nilpotent perturba-
tions.

Example 3.11. Let Q : l2(N) → l2(N) be a quasi-nilpotent operator
defined by

Q(x1, x2, . . .) = (x2/2, x3/3, . . .) for all (xn) ∈ l2(N).

Then Q is quasi-nilpotent, σ(Q) = σa(Q) = σW(Q) = σUSW(Q) = σBW(Q)
= σUSBW(Q) = {0} and Ea(Q) = E0

a(Q) = E(Q) = E0(Q) = {0}. Take
T = 0. Clearly, T satisfies gaW (resp. aW, gW, W, (gw), (w), (gaw), (aw)),
but T +Q = Q fails gaW (resp. aW, gW, W, (gw), (w), (gaw), (aw)).
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The following example was given in [42, Example 2.14] to show that prop-
erty (gb) is not stable under commuting quasi-nilpotent perturbations. Now,
we use it to illustrate that property (gab) is also unstable under commuting
quasi-nilpotent perturbations.

Example 3.12. Let U : l2(N) → l2(N) be the unilateral right shift
operator defined by

U(x1, x2, . . .) = (0, x1, x2, . . .) for (xn) ∈ l2(N).

Let V : l2(N) −→ l2(N) be the quasi-nilpotent operator defined by

V (x1, x2, . . .) = (0, x1, 0, x3/3, x4/4, . . .) for (xn) ∈ l2(N).

Let N : l2(N)→ l2(N) be the quasi-nilpotent operator defined by

N(x1, x2, . . .) = (0, 0, 0,−x3/3,−x4/4, . . .) for (xn) ∈ l2(N).

It is easy to verify that V N = NV . We consider the operators T and Q
defined by T = U⊕V and Q = 0⊕N , respectively. Then Q is quasi-nilpotent
and TQ = QT . Moreover,

σ(T ) = σ(U) ∪ σ(V ) = {λ ∈ C : 0 ≤ |λ| ≤ 1},
σa(T ) = σa(U) ∪ σa(V ) = {λ ∈ C : |λ| = 1} ∪ {0},

σ(T +Q) = σ(U) ∪ σ(V +N) = {λ ∈ C : 0 ≤ |λ| ≤ 1},
σa(T +Q) = σa(U) ∪ σa(V +N) = {λ ∈ C : |λ| = 1} ∪ {0}.

It follows that Πa(T ) = Π(T ) = ∅ and {0} = Πa(T +Q) 6= Π(T +Q) = ∅.
Hence by [18, Corollary 2.7], T + Q fails property (gab). But since T has
SVEP, it satisfies Browder’s theorem or equivalently, by [6, Theorem 2.1],
generalized Browder’s theorem. Therefore by [18, Corollary 2.7] again, T has
property (gab).

The following example was given in [42, Example 2.12] to show that
property (gb) is not preserved under commuting finite rank perturbations.
Now, we use it to illustrate that properties (b) and (ab) are also unstable
under commuting finite rank (hence compact) perturbations.

Example 3.13. Let U : l2(N) → l2(N) be the unilateral right shift
operator defined by

U(x1, x2, . . .) = (0, x1, x2, . . .) for (xn) ∈ l2(N).

For fixed 0 < ε < 1, let Fε : l2(N) → l2(N) be the finite rank operator
defined by

Fε(x1, x2, . . .) = (−εx1, 0, 0, . . .) for (xn) ∈ l2(N).

We consider the operators T and F defined by T = U ⊕ I and F = 0⊕ Fε,
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respectively. Then F is a finite rank operator and TF = FT . Moreover,

σ(T ) = σ(U) ∪ σ(I) = {λ ∈ C : 0 ≤ |λ| ≤ 1},
σa(T ) = σa(U) ∪ σa(I) = {λ ∈ C : |λ| = 1},

σ(T + F ) = σ(U) ∪ σ(I + Fε) = {λ ∈ C : 0 ≤ |λ| ≤ 1},
σa(T + F ) = σa(U) ∪ σa(I + Fε) = {λ ∈ C : |λ| = 1} ∪ {1− ε}.

It follows that Π0
a (T ) = Π0(T ) = ∅ and {1− ε} = Π0

a (T +F ) 6= Π0(T + F )
= ∅. Hence by [17, Corollary 2.7] (resp. [18, Corollary 2.6]), T + F fails
property (b) (resp. (ab)). But since T has SVEP, T satisfies a-Browder’s
theorem (resp. Browder’s theorem), therefore by [17, Corollary 2.7] (resp.
[18, Corollary 2.6]) again, T has property (b) (resp. (ab)).

Acknowledgements. The authors would like to express their indebt-
edness to the referee for suggestions that improved the presentation.

This work has been supported by National Natural Science Foundation
of China (11171066, 11201071, 11226113), Specialized Research Fund for the
Doctoral Program of Higher Education (20103503110001, 20113503120003),
Natural Science Foundation of Fujian Province (2011J05002, 2012J05003)
and Foundation of the Education Department of Fujian Province (JA12074).

References

[1] P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers,
Kluwer, Dordrecht, 2004.

[2] P. Aiena, M. T. Biondi and C. Carpintero, On Drazin invertibility, Proc. Amer.
Math. Soc. 136 (2008), 2839–2848.
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mer (Timişoara, 2010), Theta Foundation, Bucureşti, 21–28.
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[25] C. R. Carpintero, O. Garćıa, E. R. Rosas and J. E. Sanabria, B-Browder spectra
and localized SVEP, Rend. Circ. Mat. Palermo (2) 57 (2008), 239–254.

[26] P. A. Fillmore and J. P. Williams, On operator ranges, Adv. Math. 7 (1971), 254–
281.

[27] S. Grabiner, Ranges of products of operators, Canad. J. Math. 26 (1974), 1430–1441.
[28] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan

34 (1982), 317–337.
[29] Q. F. Jiang, H. J. Zhong and Q. P. Zeng, Topological uniform descent and localized

SVEP, J. Math. Anal. Appl. 390 (2012), 355–361.
[30] Q. F. Jiang, H. J. Zhong and S. F. Zhang, Components of topological uniform descent

resolvent set and local spectral theory, Linear Algebra Appl. 438 (2013), 1149–1158.
[31] M. A. Kaashoek, Ascent, descent, nullity and defect, a note on a paper by A. E.

Taylor, Math. Ann. 172 (1967), 105–115.
[32] M. A. Kaashoek and D. C. Lay, Ascent, descent, and commuting perturbations,

Trans. Amer. Math. Soc. 169 (1972), 35–47.
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