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Domination of operators in the non-commutative setting

by

Timur Oikhberg (Urbana, IL) and Eugeniu Spinu (Edmonton)

Abstract. We consider majorization problems in the non-commutative setting. More
specifically, suppose E and F are ordered normed spaces (not necessarily lattices), and
0 ≤ T ≤ S in B(E,F ). If S belongs to a certain ideal (for instance, the ideal of compact
or Dunford–Pettis operators), does it follow that T belongs to that ideal as well? We
concentrate on the case when E and F are C∗-algebras, preduals of von Neumann algebras,
or non-commutative function spaces. In particular, we show that, for C∗-algebras A and B,
the following are equivalent: (1) at least one of the two conditions holds: (i) A is scattered,
(ii) B is compact; (2) if 0 ≤ T ≤ S : A → B, and S is compact, then T is compact.

1. Preliminaries

1.1. Introduction. Following [45, Definition II.1.2], we say that a real
Banach space Z is an ordered Banach space (OBS for short) if it is equipped
with a positive cone Z+, closed in the norm topology. Throughout, we assume
that Z+ is proper (or pointed)—that is, Z+∩(−Z+) = {0}. The positive cone
of an OBS Z is called generating if Z+−Z+ = Z. Equivalently (see [6], [8]),
there exists GZ (the generating constant of Z) such that, for any z ∈ Z,
there exist a, b ∈ Z+ such that z = a − b, and max{‖a‖, ‖b‖} ≤ GZ‖z‖.
Abusing the terminology slightly, we call such OBSs generating. We say
that an OBS Z is normal if there exists NZ (the normality constant of Z)
such that ‖z‖ ≤ NZ(‖a‖ + ‖b‖) whenever a ≤ z ≤ b. By [8, Section 1.1]
or [6], Z is normal iff its dual Z? is generating, and vice versa.

In the current article we consider the following question. Suppose 0 ≤
T ≤ S are operators acting between two ordered Banach spaces, and S be-
longs to a certain class of operators (say, compact or Dunford–Pettis). Does
this imply that T belongs to the same class? This question is usually referred
to as the Domination Problem. For arbitrary ordered normed spaces, the set-
up may be too general to obtain meaningful results. In the (rather restrictive)
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setting of operators between Banach lattices, the Domination Problem has
been widely investigated (see e.g. [2], [3], [18], [47], [25], [31], [51]).

We concentrate on the non-commutative version of the Domination Prob-
lem. More specifically, we consider the case when the domain and/or range
of the operators involved is either a C∗-algebra, its dual or predual, or a
non-commutative function space. We refer the reader to e.g. [17], or to the
survey article [41], for the definition of the latter. Here, we only briefly outline
the basic properties of such spaces.

Suppose a von Neumann algebra A is equipped with a normal faithful
semifinite trace τ . An operator x is called τ -measurable if it is (i) closed and
densely defined; (ii) affiliated with A, in the sense that ux = xu for any
unitary u ∈ A′; and (iii) for some c > 0, the spectral projection χ(c,∞)(|x|)
has finite trace. On the set Ã of τ -measurable operators, we define the gen-
eralized singular value function: for x ∈ A and t ≥ 0, µx(t) = inf{‖xe‖ : e ∈
P(A), τ(e⊥) ≤ t} (see e.g. [41], [23] for other formulae for µx(·)). Here and
below, P(A) stands for the set of all projections in A.

Now suppose E is a linear subset of Ã, complete in its own norm ‖ · ‖E .
We say that E is a non-commutative function space if:

(1) L1(τ) ∩ A ⊂ E ⊂ L1(τ) +A.
(2) For any x ∈ E and a, b ∈ A, we have axb ∈ E , and ‖axb‖E ≤
‖a‖ ‖x‖E‖b‖.

E is called symmetric if, whenever x ∈ E , y ∈ Ã, and µy ≤ µx, then y ∈ E ,
with ‖y‖E ≤ ‖x‖E . Following [22], we say that E is strongly symmetric if, in
addition, for any x, y ∈ E , with y ≺≺ x, we have ‖y‖E ≤ ‖x‖E . Here, ≺≺ refers
to Hardy–Littlewood domination: for any α > 0,

∫ α
0 µy(t) dt ≤

∫ α
0 µx(t) dt.

It is known [16] that, as in the commutative case, y ≺≺ x iff there exists an
operator T , contractive both on A and A? = L1(τ), such that y = Tx. We
say that E is fully symmetric if it is strongly symmetric and, for any x ∈ E
and y ∈ Ã, we have y ∈ E whenever y ≺≺ x.

A non-commutative function space is said to be order continuous if, for
any sequence xn ↓ 0, we have limn ‖xn‖ = 0. Emulating the proof of [37,
Proposition 1.a.8], one shows that this is equivalent to requiring that, for
any net xα ↓ 0, limα ‖xα‖ = 0.

Note that, if −a ≤ b ≤ a for a, b ∈ Ã, then µb ≤ µa. Indeed, pick
t ∈ R and λ > µa(t). Set e = χ[0,λ](a). Then τ(e⊥) ≤ t. Furthermore,
eae ≥ ebe ≥ −eae, hence µb(t) ≤ ‖ebe‖ ≤ ‖eae‖ ≤ λ. Taking the infimum
over λ, we obtain µb ≤ µa.

Consequently, if a, b ∈ E satisfy −a ≤ b ≤ a, then ‖b‖ ≤ ‖a‖. Therefore,
E is normal with constant 2. It is also easy to see that E is generating with
constant 2. Consequently, the duals of E of all orders are both generating
and normal.
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Many symmetric non-commutative function spaces arise from their com-
mutative analogues. Indeed, suppose τ is a normal faithful semifinite trace
on a von Neumann algebra A. It is known that if A has no atomic projec-
tions, then the range of τ (denoted by Ω = Ωτ ) is [0, τ(1)] (with τ(1) <∞),
or [0,∞). On the other hand, if A is atomic (that is, any projection has a
minimal subprojection), then Ωτ is either {0, 1, . . . , n} or Z+ = {0, 1, 2, . . .}.
Suppose E is a symmetric function space (in the sense of e.g. [35]) on Ω. We
can define the corresponding non-commutative function space E(τ), consist-
ing of those x ∈ Ã for which the norm ‖x‖E(τ) = ‖µx‖E is finite. By [32], this
procedure yields a Banach space. It is well known (see e.g. [17], [22], [41])
that many properties of the function space E (for instance, being reflexive
or order continuous) pass to the non-commutative space E(τ).

In the discrete case (E is a symmetric sequence space on N, and τ is the
canonical trace onB(H)), the construction above produces anon-commutative
symmetric sequence space (often referred to as a Schatten space), denoted
by SE(H) (instead of E(τ)). When H = `2 (H = `n2 ), we write SE (resp. SnE )
instead of SE(H). For properties of Schatten spaces, the reader is referred to
e.g. [27], [46]. We must note that any separable symmetric non-commutative
sequence space arises from a sequence space [27, Section III.6].

Observe that a symmetric function (or sequence) space is separable iff it
is order continuous. Indeed, symmetric function spaces are order complete,
and, for such spaces, separability implies order continuity [37, Proposition
1.a.7]. On the other hand, it is well known that any non-negative function
is a limit (a.e.) of an increasing sequence of simple functions. Thus, by [35,
Theorem II.4.8], any order continuous symmetric function space is separable.
Furthermore, by [35, Theorem II.4.10 and its Corollary], such spaces are fully
symmetric (equivalently, they are interpolation spaces between L1 and L∞).
Some non-commutative generalizations of these results are contained in [21].

Surprisingly, the non-commutative Domination Problem has attracted
little attention so far. The connections between domination and irreducibility
(for maps between von Neumann algebras) were studied in [24]. In [40],
domination of linear functionals on Banach ∗-algebras was used to obtain
automatic continuity results. Domination of completely positive compact
operators has recently been investigated in [20].

The paper is structured as follows. First (Section 1), we prove some pre-
liminary results about the properties of positive operators, order intervals,
and positive solids. In Subsection 1.2, we establish some basic facts about
non-commutative function spaces. In Subsection 1.3, we investigate compact
C∗-algebras, characterizing them in terms of compactness of order inter-
vals. We also show that a C∗-algebra is compact iff it is hereditary in its
enveloping algebra. Subsection 1.4 deals with the positive analogues of the



38 T. Oikhberg and E. Spinu

Schur Property. In Subsection 1.5, we study compactness of order intervals
in preduals of von Neumann algebras.

Our main results are contained in Section 2. In Subsection 2.1, we inves-
tigate whether an operator to or from a non-commutative function space,
dominated by a compact operator, must itself be compact. Subsection 2.2 is
devoted to the same question for C∗-algebras. In Subsection 2.3, we consider
domination by compact multiplication operators on C∗-algebras. In Sub-
section 2.4, we tackle domination properties of Dunford–Pettis Schur mul-
tipliers. Subsection 2.5 is devoted to the domination properties of weakly
compact operators.

Other classes of operators are considered in Section 3. In Subsection 3.1,
we show that complete positivity and decomposability are not preserved
under domination. Subsection 3.2 demonstrates that operator systems have
too little structure to meaningfully consider domination.

Throughout the paper, we use standard Banach space results and nota-
tion. If a is a (closed densely defined) operator, a∗ refers to the adjoint of a.
The same notation is used in preduals of von Neumann algebras. If E is a
Banach space, E? refers to its dual. Similar notation is used for the predual,
and for the conjugate of an operator between Banach spaces. B(E) stands
for the unit ball of E. If S is a subset of an ordered Banach space, we denote
by S+ the intersection of S with the positive cone. We denote by E× the
Köthe dual of a non-commutative symmetric function space E (see e.g. [17],
[41] for the definition and basic properties of Köthe duals).

1.2. Compactness and positivity in Schatten spaces. To work with
Schatten spaces, we need to introduce some notation. Denote the canonical
basis in `2 by (ek). Let Pn be the orthogonal projection onto span[e1, . . . , en],
and P⊥n = 1 − Pn. For convenience, set P0 = 0. If E is a non-commutative
symmetric sequence space, let Qn be the projection on E , defined via Qnx =
PnxPn. Similarly, let Rnx = P⊥n xP

⊥
n .

Lemma 1.2.1. Suppose E is a non-commutative symmetric sequence space
on B(`2), Z is an ordered normed space, and T : E → Z is a positive operator.
Then, for any x ∈ E+, ‖T (x− Rnx−Qnx)‖2 ≤ 16NZ‖T (Qnx)‖ ‖T (Rnx)‖,
whereNZ is the normality constant ofZ. IfZ is a non-commutative symmetric
function space, then ‖T (x−Rnx−Qnx)‖2 ≤ 4‖T (Qnx)‖ ‖T (Rnx)‖.

Proof. For t ∈ R \ {0}, consider U(t) = tPn + t−1P⊥n and V (t) =
tPn − t−1P⊥n . These operators are self-adjoint and invertible, hence x(t) =
U(t)xU(t) and y(t) = V (t)xV (t) are positive elements of E . An elementary
calculation shows that x(t) = t2Qnx + t−2Rnx + (x − Qnx − Rnx), and
y(t) = t2Qnx+ t−2Rnx− (x−Qnx−Rnx). Let a(t) = t2Qnx+ t−2Rnx and
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b = x−Qnx−Rnx. By the above, −a(t) ≤ b ≤ a(t). Therefore, for any t,
1

2NZ
‖Tb‖ ≤ ‖Ta(t)‖ ≤ t2‖TQnx‖+ t−2‖TRnx‖.

Taking t = ‖TRnx‖1/4/‖TQnx‖1/4, we obtain the desired inequality. If, in
addition, Z is a non-commutative symmetric function space, then ‖Tb‖ ≤
‖Ta(t)‖.

Corollary 1.2.2. Suppose E is a non-commutative symmetric sequence
space on B(`2), Z is a normal OBS, and T : E → Z is a positive operator.
Then

‖T (I −Qn)‖ ≤ ‖TRn‖+ 16N
1/2
Z ‖TRn‖

1/2‖TQn‖1/2.
If Z is a non-commutative symmetric function space, then ‖T (I − Qn)‖ ≤
‖TRn‖+ 8N

1/2
Z ‖TRn‖1/2‖TQn‖1/2.

Proof. We prove the corollary for general Z (the case of Z being a non-
commutative function space follows with minor modifications). Lemma 1.2.1
shows that, for x ≥ 0,

‖T (I −Rn −Qn)x‖ ≤ 4N
1/2
Z ‖TRn‖

1/2‖TQn‖1/2‖x‖.
A polarization argument implies

‖T (I −Rn −Qn)‖ ≤ 16N
1/2
Z ‖TRn‖

1/2‖TQn‖1/2.
By the triangle inequality, ‖T (I −Qn)‖ ≤ ‖TRn‖+ ‖T (I −Rn −Qn)‖.

For future use, we need to quote a result from [12, Section 2].

Lemma 1.2.3. Suppose τ is a normal faithful semifinite trace on a von
Neumann algebra A, and a strongly symmetric non-commutative function
space E is order continuous. Suppose, furthermore, that x is an element of A,
and a sequence of projections pn ∈ A decreases to 0 in the strong operator
topology. Then limn ‖xpn‖ = limn ‖pnx‖ = limn ‖pnxpn‖ = 0.

Specializing to Schatten spaces, we obtain:

Corollary 1.2.4. Suppose E is an order continuous symmetric sequence
space. Then, for every x ∈ SE , limn ‖x−Qnx‖ = 0.

Proof. By [17, Section 3], SE is order continuous iff E is order continuous.
It suffices to show that, for x ∈ B(SE)+ and ε ∈ (0, 1), ‖x − Qnx‖ < ε for
n sufficiently large. This follows from the estimate ‖x−Qnx‖ = ‖P⊥n xPn +
xP⊥n ‖ ≤ ‖P⊥n x‖+ ‖xP⊥n ‖ and Lemma 1.2.3.

Lemma 1.2.5. Suppose E is an order continuous symmetric sequence
space not containing `1, and S : SE → Z is compact (Z is a Banach space).
Then limn ‖S|Rn(SE)‖ = 0.
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Proof. Suppose not. By Corollary 1.2.4, we have limn ‖(I − Qn)x‖ = 0.
A standard approximation argument yields a sequence 0 = n0 < n2 < · · ·
with the property that for each k there exists xk ∈ SE such that ‖xk‖ = 1,
(Pnk

− Pnk−1
)xk(Pnk

− Pnk−1
) = xk, and ‖Sxk‖ > c > 0. By compact-

ness, the sequence (Sxk) must have a convergent subsequence (Sxki). Then
limN N

−1‖
∑N

i=1 Sxki‖ > 0, while limN N
−1‖

∑N
i=1 xki‖ = 0.

Next we describe the Schatten spaces not containing `1.

Proposition 1.2.6. Let E be a separable symmetric sequence space. For
any infinite-dimensional Hilbert space H, the following are equivalent:

(1) E contains a copy of `1.
(2) E contains a lattice copy of `1 positively complemented.
(3) SE(H) contains a positively complemented copy of `1 spanned by a

disjoint positive sequence.
(4) SE(H) contains a copy of `1.

Proof. The implications (2)⇒(1) and (3)⇒(4) are trivial. To show
(2)⇒(3), observe that SE(H) contains E as a diagonal subspace, which is
positively complemented. (4)⇒(1) follows directly from [7, Corollary 3.2].
To prove (1)⇒(2), apply a “gliding hump” argument to show that E con-
tains disjoint vectors (xi), equivalent to the canonical basis of `1. Then
X = span[|xi| : i ∈ N] is a sublattice of E , lattice isomorphic to `1. By
[39, Theorem 2.3.11], X is positively complemented.

For a subset M ⊂ X+ (X is an OBS), define the positive solid of M :

PSol(M) = {x ∈ X+ : 0 ≤ x ≤ y and y ∈M}.

Lemma 1.2.7. If E is an order continuous non-commutative symmetric
sequence space, and M ⊂ E is relatively compact, then PSol(M) is rel-
atively compact. In particular, any order interval in an order continuous
non-commutative symmetric sequence space is compact.

For the proof, we need two technical results.

Lemma 1.2.8. Suppose E and M are as in Lemma 1.2.7. Then there
exists a projection p with separable range such that M = pMp.

Proof. The setM must contain a countable dense subset S. The elements
of M are compact operators, hence, for any x ∈ S, there exists a projection
px with separable range such that pxxpx = x. Then p =

∨
x∈S px has the

desired properties.

Lemma 1.2.9. Suppose E is an order continuous non-commutative sym-
metric sequence space on B(`2), and M is a relatively compact subset of E.
Then limn ‖Rn|M‖ = 0.
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Proof. For every ε > 0 there are x1, . . . , xk in M such that for every
x ∈ M there is an 1 ≤ i ≤ k such that ‖x − xi‖ < ε/2. Pick N ∈ N
such that ‖Rnxi‖ < ε/2 for every n > N and 1 ≤ i ≤ k. Hence, ‖Rnx‖ ≤
‖Rnxi‖+ ‖Rn‖ ‖x− xi‖ < ε for every x ∈M and n > N .

Proof of Lemma 1.2.7. By Lemma 1.2.8, we can restrict ourselves to
spaces on B(`2). As Qn is a finite rank projection, it suffices to show that,
for any ε ∈ (0, 1), there exists n ∈ N such that ‖(I − Qn)x‖ < ε for any
x ∈ PSol(M). To this end, write (I − Qn)x = (x − Qnx − Rnx) + Rnx.
Reasoning as in the proof of Lemma 1.2.1, we observe that

−(t2Qnx+ t−2Rnx) ≤ x−Qnx−Rnx ≤ t2Qnx+ t−2Rnx

for any t > 0, hence ‖x − Qnx − Rnx‖ ≤ t2‖Qnx‖ + t−2‖Rnx‖. Taking
t = ‖Rnx‖1/2/‖Qnx‖1/2, we obtain ‖x−Qnx−Rnx‖ ≤ 2‖Rnx‖1/2‖Qnx‖1/2.

By scaling, we can assume that supy∈M ‖y‖ = 1. By Lemma 1.2.9, there
exists n ∈ N such that ‖Rny‖ < ε2/16 for any y ∈M . For any x ∈ PSol(M),
there exists y ∈ M such that 0 ≤ x ≤ y, hence 0 ≤ Rnx ≤ Rny. By the
above, ‖x−Qnx−Rnx‖ ≤ 2‖Rny‖1/2 < ε/2, hence

‖(I −Qn)x‖ = ‖x−Qnx−Rnx‖+ ‖Rnx‖ ≤
ε

2
+
ε2

16
< ε.

Recall that if Z is an OBS and x ∈ Z+, the order interval [0, x] is the
set {y ∈ Z+ : y ≤ x}.

Corollary 1.2.10. Suppose E is a fully symmetric non-commutative
sequence space. Then E is order continuous if and only if any order interval
in E is compact.

Lemma 1.2.11. Suppose E is a fully symmetric non-commutative func-
tion or sequence space which is not order continuous. Then there exists a
positive complete isomorphism j : `∞ → E.

Proof. In the notation of [22, Section 6], there exists x ∈ E+ \Ean. More-
over, there exists a sequence of mutually orthogonal projections ei ∈ A
(i ∈ N) such that infi ‖eixei‖ > 0. The map y 7→

∑
i eiyei is contractive in

A, and in its predual, hence
∑

i eiyei ≺≺ y for any y ∈ A + A?. Due to A
being fully symmetric,

∑
i eixei ∈ E , and ‖

∑
i eixei‖ ≤ ‖x‖. Therefore, the

map
j : `∞ → E : (αi) 7→

(∑
i

αiei

)(∑
i

eixei

)
=
∑
i

αieixei

has the desired properties.

Proof of Corollary 1.2.10. Note that an order interval [0, x] is closed. If
E is order continuous, an application of Lemma 1.2.7 to M = {x} shows the
compactness of [0, x]. If E is not order continuous, then, for x as in Lemma
1.2.11, [0, x] is not (relatively) compact.
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1.3. Compactness of order intervals in C∗-algebras. In this sub-
section, we investigate the compactness of order intervals in C∗-algebras, and
obtain a new description of compact C∗-algebras.

First we introduce some definitions. We say that an element a of a Banach
algebra A is multiplication compact if the map A → A : b 7→ aba is compact.
Combining [57], [58], we see that, for an element a of a C∗-algebra A, the
following are equivalent:

(1) a is multiplication compact.
(2) The map A → A : b 7→ ab is weakly compact.
(3) The map A → A : b 7→ ba is weakly compact.
(4) The map A → A : b 7→ aba is weakly compact.

By [56], there exists a faithful representation π : A → B(H) such that a is
multiplication compact iff π(a) is a compact operator on H. If, in addition,
A is an irreducible C∗-subalgebra of B(H), then a ∈ A is multiplication
compact iff a is a compact operator [55].

Suppose A is a C∗-subalgebra of B(H), where H is a Hilbert space. For
x ∈ B(H) we define an operator Mx : A → B(H) : a 7→ x∗ax.

Lemma 1.3.1. For an element a of a C∗-algebra A, the following are
equivalent:

(1) a is multiplication compact.
(2) The operator Ma is compact.
(3) The operator Ma is weakly compact.

Proof. (2)⇒(3) is trivial. To show (1)⇒(2), recall that a is multiplication
compact iff the map A → A : b 7→ ab is weakly compact. Passing to the
adjoint, we see that the last statement holds iff the map A → A : b 7→ ba∗

is weakly compact, or equivalently, iff a∗ is multiplication compact. By [10],
this implies the compactness of Ma.

To prove (3)⇒(1), note that M??
a takes b ∈ A?? to a∗ba. We identify

M??
a with Ma, acting on A??. Write a = cu, where c = (aa∗)1/2 and u

(respectively, u∗) is a partial isometry from (ker a)⊥ = (ker c)⊥ to ran a =
ran c (from ran a∗ = ran c to (ker a∗)⊥ = (ker c)⊥). Then Ma = MuMc, and
Mu is an isometry on ranMc ⊂ A??. Writing Mc = M−1u Ma, we conclude
that Mc is weakly compact. However, Mcx = cxc, hence, by the remarks
preceding the lemma, c is multiplication compact. The operator S : A?? →
A?? : b 7→ aba can be written as S = UMcV , where V b = ub and Ub = bu.
Then S is weakly compact, and therefore a is multiplication compact.

Multiplication compactness of elements of a C∗-algebra can be described
in terms of compactness of order intervals.
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Proposition 1.3.2. For a positive element a of a C∗-algebra A, the
following are equivalent:

(1) a is multiplication compact.
(2) aα is multiplication compact for any α > 0.
(3) The order interval [0, a] is compact.
(4) The order interval [0, a] is weakly compact.

Proof. The implications (2)⇒(1) and (3)⇒(4) are immediate. To estab-
lish (1)⇒(2), pick a faithful representation π so that a is multiplication
compact if and only if π(a) is compact, and note that the compactness of
π(a) is equivalent to the compactness of π(a)α = π(aα).

For (2)⇒(3), assume ‖a‖ = 1. By [13, Lemma I.5.2], for any x ∈ [0, a]
there exists u ∈ B(A) such that x1/2 = ua1/4, hence x = a1/4u∗ua1/4. In
particular, [0, a] ⊂ Ma1/4(B(A)). If a is multiplication compact, then so is
a1/4. Therefore, [0, a] is compact.

To prove (4)⇒(1), suppose a is not multiplication compact. Then a1/2

is not multiplication compact, hence Ma1/2(B(A)) is not relatively compact.
Note that any element x ∈ B(A) can be written as x = x1− x2 + i(x3− x4)
with x1, x2, x3, x4 ∈ B(A)+. Thus, Ma1/2(B(A)+) is not relatively weakly
compact. However, [0, a] ⊃ Ma1/2(B(A)+). Indeed, if 0 ≤ y ≤ 1, then 0 ≤
a1/2ya1/2 ≤ a. Therefore, [0, a] is not relatively weakly compact.

These results allow us to obtain new characterizations of compact C∗-
algebras. Recall that a Banach algebra is called compact (or dual) if all of
its elements are multiplication compact. By [1], the compact C∗-algebras are
precisely the algebras of the form A = (

∑
i∈I K(Hi))c0 , where each Hi is a

complex Hilbert space, and K(H) denotes the space of compact operators
on H. Several alternative characterizations of compact C∗-algebras can be
found in [14, 4.7.20].

Proposition 1.3.3. For a C∗-algebra A, the following four statements
are equivalent:

(1) A is compact.
(2) For any c ∈ A+, the order interval [0, c] is compact.
(3) For any c ∈ A+, the order interval [0, c] is weakly compact.
(4) For any relatively compact M ⊂ A+, PSol(M) is relatively compact.

Proof. The implications (4)⇒(2)⇒(3) are immediate.
(3)⇒(1). By Proposition 1.3.2, any positive a ∈ A is multiplication com-

pact. By [10, Corollary 10.4], the map A → A : x 7→ axb is compact for any
a, b ∈ A+. As any x ∈ A is a linear combination of four positive elements, it
is multiplication compact.

(1)⇒(4). It suffices to show that, for any ε > 0, PSol(M) admits a finite
ε-net. Assume, without loss of generality, thatM ⊂ B(A)+. The map A+ →
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A+ : a 7→ a1/4 is continuous, hence M1/4 = {a1/4 : a ∈M} is compact. Pick
(ai)

n
i=1 ⊂ M so that (a

1/4
i )ni=1 is an ε/4-net in M1/4. By Proposition 1.3.2,

a
1/4
i is multiplication compact for each i, hence a1/4i B(A)+a1/4i contains an
ε/4-net (bij)mj=1.

Now consider x ∈ [0, a] for some a ∈M . As noted in the proof of Propo-
sition 1.3.2, there exists u ∈ B(A) such that x = a1/4u∗ua1/4. Pick i and j
so that ‖a1/4 − a1/4i ‖ < ε/4 and ‖a1/4i u∗ua

1/4
i − bij‖ < ε/4. Then

‖a1/4u∗ua1/4 − bij‖ ≤ ‖(a1/4i − a1/4)u∗ua1/4‖

+ ‖a1/4i u∗u(a
1/4
i −a

1/4)‖+‖a1/4i u∗ua
1/4
i − bij‖ < ε.

Recall that a C∗-subalgebra A of a C∗-algebra B is called hereditary if,
for any a ∈ A+, we have {b ∈ B : 0 ≤ b ≤ a} ⊂ A.

Proposition 1.3.4. A C∗-algebra A is a hereditary subalgebra of A?? if
and only if A is a compact C∗-algebra.

Proof. If A is compact, then it is an ideal in A?? [57]. It is well known
(see e.g. [9, Proposition II.5.3.2]) that any ideal in a C∗-algebra is hereditary.

Now supposeA is a hereditary subalgebra ofA??. By [14, Exercise 4.7.20],
it suffices to show that, for any a ∈ A+, any non-zero point of the spectrum of
a is an isolated point. Suppose, for the sake of contradiction, that there exists
a ∈ A+ whose spectrum contains a strictly positive non-isolated point α. In
other words, for every δ > 0, ((α − δ, α) ∪ (α, α + δ)) ∩ σ(a) 6= ∅. Without
loss of generality, we can assume 0 ≤ a ≤ 1. Thus, we can find countably
many mutually disjoint non-empty subsets Si of (α/2,∞) ∩ σ(a). Denote
the corresponding spectral projections by pi (that is, pi = χSi(a)). These
projections belong to A??. Furthermore, pi ≤ (inf Si)

−1a, hence, by the
hereditary property, these projections belong to A.

Now consider the linear map T : A → A : x 7→ axa. Then T ?? is also
implemented by x 7→ axa. If 0 ≤ x ≤ 1, then axa ≤ a2, hence axa ∈ A.
Therefore, T ?? takes A?? to A. By Gantmacher’s Theorem (see e.g. [4, Theo-
rem 5.23]), T is weakly compact. However, T is an isomorphism on the copy
of c0 spanned by the projections pi, leading to a contradiction.

Remark 1.3.5. The above result was independently proved in [5], using
a different method.

1.4. Positive Schur Property. Compactness of order intervals in
Schatten spaces. An OBS X is said to have the Positive Schur Property
(PSP) if every weakly null positive sequence is norm convergent to 0, and
X has the Super Positive Schur Property (SPSP) if every positive weakly
convergent sequence is norm convergent. Clearly, the Schur Property implies
the SPSP, which, in turn, implies the PSP. Note that, if X has the SPSP,
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then, by the Eberlein–Šmulian Theorem, any weakly compact subset of X+

is compact.
The PSP and SPSP of Banach lattices have been investigated earlier.

By [52], the Schur Property and the PSP coincide for atomic Banach lat-
tices. In [33], it is shown that `1 is the only symmetric sequence space with
the Schur Property (by Remark 1.4.7 below, the symmetry assumption is
essential). [34] gives a criterion for the PSP of Orlicz spaces.

Lemma 1.4.1. Suppose E is a symmetric sequence space, and (An) is
a positive bounded sequence in SE without a convergent subsequence. Then
there exist a subsequence (Ank

) and c > 0 such that ‖RkAnk
‖ > c for every k.

Proof. Assume there is no such subsequence, that is,

lim
m

sup
n
‖RmAn‖ = 0.

Applying Lemma 1.2.1 when T is the identity operator, we obtain the in-
equality

‖An −QmAn‖ ≤ ‖An −QmAn −RmAn‖+ ‖RmAn‖
≤ 2‖QmAn‖1/2‖RmAn‖1/2 + ‖RmAn‖.

Thus, limm supn ‖An−QmAn‖ = 0. However, Qm is a finite rank map, hence
the set (An) is relatively compact, a contradiction.

Proposition 1.4.2. Suppose E is a separable symmetric sequence space.
Let (An) be a weakly null positive sequence in SE(H) which contains no
convergent subsequences. Then there exists c > 0 with the property that, for
any ε ∈ (0, 1), there exist sequences 1 = n1 < n2 < · · · and 0 = m0 <
m1 < · · · such that infk ‖Ank

‖ > c and∑
k

‖Ank
− (Pmk

− Pmk−1
)Ank

(Pmk
− Pmk−1

)‖ < ε.

Consequently, the sequence (Ank
) is equivalent to a disjoint sequence of pos-

itive finite-dimensional operators.

Proof. By the separability (equivalently, order continuity) of E , there
exists a projection p ∈ B(H) with separable range such that pAkp = Ak for
any k. Thus, it suffices to prove our proposition in SE .

Furthermore, the order continuity of E implies that the finite rank op-
erators are dense in SE . It is easy to see that, for any rank 1 operator u,
limn ‖u−Qnu‖ = 0. Thus, limn ‖x−Qnx‖ = 0 for any x ∈ E .

By scaling, we can assume supn ‖An‖ = 1. Applying Lemma 1.4.1, and
passing to a subsequence if necessary, we may assume that ‖RnAn‖ > c for
some positive number c. We construct the sequences (nk) and (mk) recur-
sively. Set n1 = 1 and m0 = 0. As noted above, there exists m1 > m0 such
that ‖An1 − Pm1An1Pm1‖ < ε/2.
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Suppose we have already selected 0 = m0 < m1 < · · · < mj and 1 =
n1 < n2 < · · · < nj so that, for 1 ≤ j ≤ k,

‖Ank
− (Pmk

− Pmk−1
)Ank

(Pmk
− Pmk−1

)‖ < 2−jε.

As Qm is a finite rank operator for any m, and the sequence (An) is weakly
null, we deduce limn ‖QmAn‖ = 0. Consequently, there exists nk+1 > nk
such that ‖Qmk

Ank+1
‖ < 2−2(k+1)−4ε2. Then

‖Ank+1
−Rmk

Ank+1
‖ ≤ ‖Ank+1

−Rmk
Ank+1

−Qmk
Ank+1

‖+ ‖Qmk
Ank+1

‖
≤ 2‖Qmk

Ank+1
‖1/2‖Rmk

Ank+1
‖1/2 + ‖Qmk

Ank+1
‖ < 2−(k+2)ε.

Now find mk+1 such that ‖Rmk
Ank+1

−Qmk+1
Rmk

Ank+1
‖ < 2−(k+2)ε.

Proposition 1.4.3. For any Hilbert space H, S1(H) has the SPSP.

Proof. It suffices to consider the case of infinite-dimensional H. Sup-
pose A0, A1, A2, . . . are positive elements of S1(H), and An → A0 weakly.
Then there exist projections p0, p1, p2, . . . with separable range such that
piAipi = Ai for every i. Then p =

∨
i≥0 pi has separable range, and pAip = Ai

for every i. Thus, we can assume that H = `2.
By Lemma 1.4.1 there exist c > 0 and a subsequence such that ‖RkAnk

‖
> c. Since Rm ≥ Rk when m ≤ k, we have tr(RmAnk

) > c for every k. On
the other hand we can always pick m such that tr(RmA) = ‖RmA‖ < c.
This contradicts An → A weakly.

Proposition 1.4.4. Suppose E is a strongly symmetric sequence space,
and H is an infinite-dimensional Banach space. Then the following are equiv-
alent:

(1) E = `1.
(2) E has the Schur Property.
(3) E has the PSP.
(4) E has the SPSP.
(5) SE(H) has the PSP.
(6) SE(H) has the SPSP.

Proof. (1)⇒(2) is well known. The implications (2)⇒(4)⇒(3), (6)⇒(4),
and (6)⇒(5)⇒(3) are obvious. (1)⇒(6) follows from Proposition 1.4.3.

(3)⇒(1). Assume that a basis (en) of E is not equivalent to the canonical
basis of `1. By symmetry, (en) contains no subsequence equivalent to the
canonical basis of `1. By Rosenthal’s dichotomy, the sequence (en) is weakly
null, which contradicts the PSP.

We complete this section by (partially) describing Banach lattices having
various versions of the Schur Property.

Proposition 1.4.5. Any Banach lattice E with the SPSP is atomic.
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Recall that a Banach lattice is called atomic if it is the band generated
by its atoms.

Proof. Clearly, a Banach lattice with the SPSP cannot contain a lattice
copy of c0. Theorems 2.4.12 and 2.5.6 of [39] show that E is a KB-space. In
particular, E is order continuous. By [37, Proposition 1.a.9], without loss of
generality, we may assume E is atomless and has a weak unit. Therefore,
by [37, Theorem 1.b.4], there exists an atomless probability measure space
(Ω,µ) such that L∞(µ) ⊂ E ⊂ L1(µ). Suppose, furthermore, that e ∈
E+\{0}. Find S ⊂ Ω of finite measure such that eχS > αχS for some positive
number α. By the proof of [11, Proposition 2.1], there exists a weakly null
sequence (fn) such that |fn| = 1 µ-a.e. on S, fn = 0 on Ω \S, and fn → 0 in
σ(L∞(µ), L1(µ)). Letting en = e+ fn, we conclude that en ≥ 0 for every n,
and en → e weakly, but not in norm.

Proposition 1.4.6. For any order continuous Banach lattice E the
SPSP, the PSP, and the Schur Property are equivalent.

Proof. Proposition 1.4.5 implies E is atomic. Therefore the result follows
from the fact that the lattice operations are weakly sequentially continuous
(see [39, Proposition 2.5.23]).

Remark 1.4.7. An order continuous atomic Banach lattice with the
Schur Property need not be isomorphic to `1, even as a Banach space. In-
deed, suppose (En) is a sequence of finite-dimensional lattices. Then E =
(
∑∞

n=1En)`1 has the Schur Property. If, for instance, En = `n2 , then E is
not isomorphic to `1. We do not know of any Banach lattice with the Schur
Property which is not isomorphic to an `1 sum of finite-dimensional spaces.

1.5. Compactness of order intervals in preduals of von Neumann
algebras. Following [49, Definition III.5.9], we say that a von Neumann
algebra A is atomic if every projection in A has a minimal subprojection.
Note thatA is atomic iff it is isomorphic to (

∑
i∈I B(Hi))`∞(I) for some index

set I and a collection (Hi)i∈I of Hilbert spaces. Indeed, any von Neumann
algebra of the above form is atomic. To prove the converse, note that an
atomic algebra must be of type I. Moreover, it can be written as A =
(
∑

j∈J Aj)`∞(J), where Aj is an atomic algebra of type Ij . By [49, Theorem
V.1.27] (see also [30, Theorem 6.6.5] and [9, III.1.5.3]), Aj is isomorphic to
Cj ⊗ B(Hj), where Cj is the center of Aj . Denote the set of all minimal
projections in Cj by Fj . Then the elements of Fj are mutually orthogonal,
and their join equals the identity of Cj . Thus, Cj is isomorphic to `∞(Fj).
Alternatively, one could use [9, III.1.5.18] and its proof to show that Cj is an
`∞ space.

Theorem 1.5.1. For a von Neumann algebra A, the following are equiv-
alent:
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(1) A is an atomic von Neumann algebra.
(2) A? has the SPSP.
(3) All order intervals in A? are compact.

Remark 1.5.2. Note that the predual of any von Neumann algebra has
the PSP. Indeed, suppose (fn) is a sequence of positive elements of A? con-
verging weakly to 0. Then ‖fn‖ = 〈fn,1〉, hence limn ‖fn‖ = limn〈fn,1〉 = 0.

Also, any order interval in the predual of a von Neumann algebra is
weakly compact. Indeed, suppose f is a positive element of A?. Then [0, f ]
is convex and closed. For any g ∈ [0, f ] and a ∈ A, the Cauchy–Schwarz
inequality [49, Proposition I.9.5] yields |g(a)|2 ≤ g(1)g(a∗a) ≤ f(1)f(a∗a).
By [49, Theorem III.5.4], [0, f ] is relatively weakly compact.

To prove Theorem 1.5.1, we need to determine when A? contains an order
copy of L1(0, 1), complemented via a positive projection.

Proposition 1.5.3. For a von Neumann algebra A, the following state-
ments hold:

(1) If A is atomic, then A? does not contain L1(0, 1) isomorphically.
(2) If A is not atomic, then there exist an isometric order isometry j :

L1(0, 1)→ A? and a positive projection P : A? → ran j.

Proof. (1) Note that, for any Hilbert space H, S1(H) does not contain
L1(0, 1) isomorphically. Indeed, otherwise, by the separability argument, we
would be able to embed L1(0, 1) into S1. This, however, is impossible, by
e.g. [26]. To finish the proof of (1), recall that, if A is atomic, then it can be
identified with (

∑
iB(Hi))∞, and A? is isometric to (

∑
i S1(Hi))1.

(2) We can write A = AI ⊕ A¬I , where AI has type I, and A¬I has no
type I components (that is, it is a direct sum of von Neumann algebras of
types II and III ). Either AI is not atomic, or A¬I is non-trivial.

If AI is not an atomic von Neumann algebra, write AI = (
∑

s∈S As)`∞(S)

with As = Cs ⊗ B(Hs) (Cs is the center of As). By [49, Theorem III.1.18],
Cs is isomorphic to L∞(νs) for some locally finite measure νs. Consequently,
A? contains L1(νs) ⊗ S1(Hs) as a positively and completely contractively
complemented subspace. As AI is not an atomic von Neumann algebra,
νs is not a purely atomic measure, for some s. By the above, A? contains
L1(νs)⊗S1(Hs) as a positively and completely contractively complemented
subspace. Furthermore, L1(νs) is complemented in L1(νs) ⊗ S1(Hs) via a
positive projection Q: just pick a rank one projection e ∈ B(Hs), and set
Q(x) = (IL1(νs)⊗ e)x(IL1(νs)⊗ e). Finally, L1(νs) contains a positively com-
plemented copy of L1(0, 1). Indeed, we can represent L1(νs) as a direct sum
of spaces L1(σi), where σi is a finite measure. Since νs is not purely atomic,
the same is true for L1(σi), for some i. By [49, Theorem III.1.22] (or [30,
Theorem 9.4.1]), L1(νs) contains a positively complemented copy of L1(0, 1).
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Now suppose A¬I is non-trivial. By the reasoning of [38, p. 217], A¬I
contains a von Neumann subalgebra B isomorphic to the hyperfinite II 1 fac-
torR. Furthermore, there exists a normal contractive projection (conditional
expectation) P : A¬I → B. By [49, Theorem III.3.4], P is positive. Conse-
quently, A? contains a copy of R?, complemented via a positive contractive
projection.

Let µ be the “canonical” measure on the Cantor set ∆, defined as follows:
represent ∆ = {0, 1}N, and write µ = νN, where the measure ν on {0, 1}
satisfies ν(0) = ν(1) = 1/2. For α = (i1, . . . , in) ∈ I = {0, 1}<N, define
the function fα by setting fα(j1, j2, . . .) =

∏n
k=1 δik,jk (here, δi,j stands for

Kronecker’s delta). Note that fα and fβ have disjoint supports if α and β
are different bit strings of the same length. Moreover, fα = f(α,0) + f(α,1).
Clearly, L1(µ) is the closed linear span of the functions fα. Subdividing
(0, 1) appropriately, one can also construct an isometric order isomorphism
between L1(µ) and L1(0, 1).

It therefore suffices to show that there exists an order isometry J :
L1(µ) → R? such that the range of J is the range of a positive projection.
To prove this, let ∆n = {0, 1}n, and denote by µn the product of n copies
of ν. In this notation, L1(µn) is isometric to `2n1 . We can also identify L1(µn)
with span[fα : |α| = n]. Let in be the formal identity L1(µn−1) → L1(µn)
(taking fα to itself when |α| ≤ n).

For n ∈ N, consider the map jn : M2n−1 → M2n : x 7→ x ⊗M2. Denote
by Trn the normalized trace on M2n , and by M?

2n the dual of M2n defined
using Trn. Then jn :M?

2n−1 →M?
2n is an isometry. Furthermore, the diagonal

embedding un : L1(µn) → M?
2n is an isometry, and unin = jnun−1. We can

view both M?
2n−1 and L1(µn) as subspaces of M?

2n , Furthermore, for any n
there exist positive contractive unital projections pn : M?

2n → L1(µn) and
qn :M?

2n →M?
2n−1 (the “diagonal” and “averaging” projections, respectively).

We then have pnjn = inpn−1.
It is well known (see e.g. [44, Theorem 3.4]) that R? can be viewed

as
⋃
nM

?
2n . Moreover, for any n there exists a positive contractive unital

projection q̃n : R? → M?
2n (with q̃n|M?

2n
= qn+1 · · · qN ). Now identify L1(µ)

with
⋃
n L1(µn), and define the projection P : R? → J(L1(µ)) by setting

P |M?
2n

= qn.

Proof of Theorem 1.5.1. If (1) holds, then A = (
∑

iB(Hi))∞, hence
A? = (

∑
i S1(Hi))1. So (2) and (3) follow from Propositions 1.4.4 and 1.2.7,

respectively.
Now suppose A is not atomic. By Proposition 1.5.3, A? contains a (pos-

itively and contractively complemented) lattice copy of L1(0, 1). To finish
the proof, note that L1(0, 1) fails the SPSP, and has non-compact order in-
tervals. Indeed, let f = 1, and fn = 1+ rn, where r1, r2, . . . are Rademacher
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functions. Then fn → f weakly, but not in norm. This witnesses the failure
of the SPSP. Moreover, fn/2 ∈ [0,1], hence the order interval [0,1] is not
compact.

2. Main results on majorization

2.1. Compact operators on non-commutative function spaces.
First we consider maps from ordered Banach spaces into Schatten spaces.

Proposition 2.1.1. Suppose E is a separable symmetric sequence space,
H is a Hilbert space, A is a generating OBS, and 0 ≤ T ≤ S : A → SE(H)
(not necessarily linear). If S is compact, then T is compact.

Proof. It is enough to show T (B(A)+) is relatively compact. This follows
from Lemma 1.2.7, since T (B(A)+) ⊆ PSol(S(B(A)+)).

For operators into Schatten spaces, we have:

Proposition 2.1.2. Suppose E is a separable symmetric sequence space,
and H is a Hilbert space.

(1) If E does not contain `1, and operators T and S from SE(H) to
a normal OBS Z satisfy 0 ≤ T ≤ S, then the compactness of S?
implies the compactness of T ?.

(2) Conversely, suppose E contains `1, and a Banach lattice Z is either
not atomic, or not order continuous. Then there exist 0 ≤ T ≤ S :
SE(H)→ Z such that S is compact, but T is not.

Proof. (1) By [36, Theorem 1.c.9], E? is separable. Now apply Proposition
2.1.1.

(2) By [51], there exist 0 ≤ T̃ ≤ S̃ : `1 → Z such that S̃ is compact,
but T̃ is not. By Proposition 1.2.6, there exists a lattice isomorphism j :
`1 → SE and a positive projection P from SE onto j(`1). Then the operators
T = T̃ j−1P and S = S̃j−1P have the desired properties.

Finally we deal with operators on general non-commutative function
spaces.

Proposition 2.1.3. Suppose E is a strongly symmetric non-commutative
function space such that E× is not order continuous. Suppose, furthermore,
that a symmetric non-commutative function space F contains non-compact
order intervals. Then there exist 0 ≤ T ≤ S : E → F such that S has rank 1
and T is not compact.

Note that many spaces F contain non-compact order ideals. Suppose, for
instance, that F arises from a von Neumann algebra A that is not atomic,
and is equipped with a normal faithful semifinite trace τ . Using the type
decomposition, we can find a projection p ∈ A with a finite trace. Then
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the interval [0, p] is not compact. Indeed, [49, Proposition V.1.35] allows us
to construct a family (pni) (n ∈ N, 1 ≤ i ≤ 2n) of projections such that
(i) p = p11 + p12, and pni = pn+1,2i−1 + pn+1,2i for any n and i, and (ii) all
projections pni are equivalent. Then the family qn =

∑2n−1

i=1 pn,2i is a sequence
in [0, p] with no convergent subsequences.

Note that, for fully symmetric non-commutative sequence spaces, order
continuity is fully described by Corollary 1.2.10.

Lemma 2.1.4. Suppose E is a strongly symmetric non-commutative func-
tion space such that E× is not order continuous. Then there exists an iso-
morphism j : `1 → E such that both j and j−1 are positive and j(`1) is the
range of a positive projection.

Proof. By [17], E× is fully symmetric. By Lemma 1.2.11, there exist
x ∈ B(E×)+ and a sequence (ei) of mutually orthogonal projections such
that (αi) 7→

∑
αieixei determines a positive embedding of `∞ into E×.

For each i, find yi ∈ E+ such that eiyiei = yi, ‖yi‖ < 2‖eixei‖−1, and
〈eixei, yi〉 = 1. The map j : `1 → E : (αi) 7→

∑
i αiyi determines a positive

isomorphism. Furthermore, define U : E → `1 : y 7→ (〈eixei, y〉)i. Clearly,
U is a bounded positive map, and Uj = I`1 . Therefore, jU is a positive
projection onto j(`1).

Proof of Proposition 2.1.3. In view of Lemma 2.1.4, it suffices to con-
struct 0 ≤ T ≤ S : `1 → F such that S has rank 1, and T is not compact.
Pick y ∈ F such that [0, y] is not compact. Then find a sequence (yi) ⊂ [0, y]
without convergent subsequences. Denote the canonical basis of `1 by (δi).
Let δ?i be the biorthogonal functionals in `∞. Following [51], define S and
T by setting Sδi = y and Tδi = yi. In other words, for a = (αi) ∈ `1,
Sa = 〈1, a〉y and Ta =

∑
i〈δ?i , a〉yi. It is easy to see that rankS = 1, and

0 ≤ T ≤ S. Moreover, T (B(`1)) contains the non-compact set {y1, y2, . . .},
hence T is not compact.

2.2. Compact operators on C∗-algebras and their duals. In this
section, we determine the C∗-algebras A with the property that every op-
erator on A dominated by a compact operator is itself compact. First we
introduce some definitions. Let A be a C∗-algebra, and consider f ∈ A?.
Let e ∈ A?? be its support projection. Following [29], we call f atomic if
every non-zero projection e1 ≤ e dominates a minimal projection (all pro-
jections are assumed to “live” in the enveloping algebra A??). Equivalently,
f is a sum of pure positive functionals. We say that A is scattered if every
positive functional is atomic. By [28], [29], the following three statements
are equivalent: (i) A is scattered; (ii) A?? = (

∑
i∈I B(Hi))∞; (iii) the spec-

trum of any self-adjoint element of A is countable. Consequently (see [14,
Exercise 4.7.20]), any compact C∗-algebra is scattered. In [53], it is proved
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that a separable C∗-algebra has separable dual if and only if it is scat-
tered.

The main result of this section is:

Theorem 2.2.1. Suppose A and B are C∗-algebras, and E is a generat-
ing OBS.

(1) Suppose A is a scattered. Then, for any 0 ≤ T ≤ S : E → A?, the
compactness of S implies the compactness of T .

(2) Suppose B is a compact. Then, for any 0 ≤ T ≤ S : E → B, the
compactness of S implies the compactness of T .

(3) Suppose A is not scattered, and B is not compact. Then there exist
0 ≤ T ≤ S : A → B such that S has rank 1, while T is not compact.

From this, we immediately obtain:

Corollary 2.2.2. Suppose A and B are C∗-algebras. Then the following
are equivalent:

(1) At least one of the two conditions holds: (i) A is scattered, (ii) B is
compact.

(2) If 0 ≤ T ≤ S : A → B and S is compact, then T is compact.

It is easy to see that a von Neumann algebra is scattered if and only if
it is finite-dimensional if and only if it is compact. This leads to:

Corollary 2.2.3. If von Neumann algebras A and B are infinite-dimen-
sional, then there exist 0 ≤ T ≤ S : A → B such that S has rank 1, while T
is not compact.

We establish similar results about preduals of von Neumann algebras.

Lemma 2.2.4.

(1) Suppose A is an atomic von Neumann algebra, and E is a generating
OBS. Then 0 ≤ T ≤ S : E → A?, where S is a compact operator, implies T
is compact.

(2) Suppose A is a non-atomic von Neumann algebra. Then there exist
0 ≤ T ≤ S : A? → A? such that S is compact, but T is not.

Proof. (1) The weak compactness of S implies, by Theorem 2.5.1 below,
the weak compactness of T . By Theorem 1.5.1, A? has the SPSP, hence
T (B(E)+) is relatively compact. Thus, T (B(E)) is relatively compact as
well, hence T is compact.

(2) It suffices to show that there exists an order isomorphism j : L1(0, 1)
→ A? such that there exists a positive projection P onto ran j. Indeed,
by [51], there exist operators 0 ≤ T0 ≤ S0 : L1(0, 1)→ L1(0, 1) such that S0
is compact and T0 is not. Then T = jT0j

−1P and S = jS0j
−1P have the
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desired properties. The existence of j and P as above follows from the proof
of Proposition 1.5.3.

To establish Theorem 2.2.1, we need some auxiliary results.

Lemma 2.2.5. Suppose A is a C∗-algebra for which A? has non-compact
order intervals, and a Banach lattice E is not order continuous. Then there
exist 0 ≤ T ≤ S : A → E such that S has rank 1, while T is not compact.

Proof. By [39, Theorem 2.4.2], there exist y ∈ E+ and normalized el-
ements y1, y2, . . . ∈ [0, y] with disjoint supports. By our assumption there
exist ψ ∈ A?+ and a sequence (φi) ⊂ [0, ψ] which does not have conver-
gent subsequences. By Alaoglu’s theorem we may assume φi → φ in weak∗
topology. Define two operators via

Sx = ψ(x)y and Tx = φ(x)y +

∞∑
n=1

(φn − φ)(x)yn.

Note that T is well defined: (φn − φ)(x)→ 0 for all x, hence∥∥∥ k∑
n=m+1

(φn − φ)(x)yn
∥∥∥ ≤ sup

n>m
|(φn − φ)(x)| ‖y‖ −−−−→

m→∞
0.

Moreover, for any x > 0 and N ∈ N we have

φ(x)y +

N∑
n=1

(φn − φ)(x)yn = φ(x)
(
y −

N∑
n=1

yn

)
+

N∑
n=1

φn(x)yn ≥ 0,

and

ψ(x)y − φ(x)y −
N∑
n=1

(φn − φ)(x)yn

= ψ(x)y −
n∑
n=1

φn(x)yn − φ(x)
(
y −

N∑
n=1

yn

)
≥ (ψ(x)− φ(x))

(
y −

N∑
n=1

yn

)
.

By letting N → ∞, we obtain 0 ≤ Tx ≤ Sx for every x > 0. Clearly,
rankS = 1. It remains to show that T ? is not compact. Note that there
exist norm one f1, f2, . . . ∈ E? such that fn(ym) = δnm. It is easy to see
that T ?f = f(y)φ+

∑∞
n=1 f(yn)(φn−φ), hence T ?fm = (fm(y)− 1)φ+φm.

The sequence (T ?fm) has no convergent subsequences, since if it had, (φm)
would have a convergent subsequence, too. This rules out the compactness
of T ?.

Corollary 2.2.6. Suppose a C∗-algebra B is not compact, and A? has
non-compact order intervals. Then there exist 0 ≤ T ≤ S : A → B such that
S has rank 1, while T is not compact.
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Proof. By Lemma 2.2.5, it suffices to show that B contains a Banach
lattice which is not order continuous. By [14, Exercise 4.7.20], B contains
a positive element b whose spectrum contains a positive non-isolated point.
Then the abelian C∗-algebra B0 generated by b is not order continuous.
Indeed, suppose α > 0 is not an isolated point of σ(a). Then there exist
disjoint subintervals Ii = (βi, γi) ⊂ (α/2, 3α/2) such that δi = (βi + γi)/2 ∈
σ(b) for every i ∈ N. For each i, consider the function σi such that σi(βi) =
σi(γi) = 0, σi((βi + γi)/2) = 1, and σi is defined by linearity elsewhere.
Then the elements yi = σi(b) belong to B0, are disjoint and normalized, and
yi ≤ y = 2α−1b.

Proof of Theorem 2.2.1. (1) If A is scattered, then A?? is atomic. Now
invoke Lemma 2.2.4(1).

(2) By assumption,M = S(B(E)+) is relatively compact, and T (B(E)+)
⊂ PSol(M). By Proposition 1.3.3, T (B(E)+) is relatively compact.

(3) Combine Theorem 1.5.1 with Corollary 2.2.6.

2.3. Comparisons with multiplication operators. Suppose A is a
C∗-subalgebra of B(H), where H is a Hilbert space. For x ∈ B(H) we
define an operator Mx : A → B(H) : a 7→ x∗ax. In this section, we study
domination of, and by, multiplication operators, in relation to compactness.
First, we record some consequences of the results from Section 1.3.

Proposition 2.3.1. Suppose x is an element of a C∗-algebra A.

(1) If Mx is weakly compact, and 0 ≤ T ≤ Mx : A → A, then T is
compact.

(2) If 0 ≤ Mx ≤ S : A → A, and S is weakly compact, then Mx is
compact.

Proof. By passing to the second adjoint if necessary, we can assume A
is a von Neumann algebra. Note that [0, x∗x] = Mx(B(A)+). Indeed, if
a ∈ B(A)+, then 0 ≤ a ≤ 1, so 0 ≤ Mxa ≤ Mx1 = x∗x, so Mxa ∈ [0, x∗x].
Next we show that any b ∈ [0, x∗x] belongs to Mxa ∈ [0, x∗x]. By [15, p. 11],
there exists v ∈ B(A) such that b1/2 = vc, where c = (x∗x)1/2. Write x = uc,
where u is a partial isometry from (kerx)⊥ onto ranx. Then c = u∗x = x∗u,
and therefore b =Mx(uv

∗vu∗).
Consequently, Mx is (weakly) compact if and only if the interval [0, x∗x]

is (weakly) compact. By Proposition 1.3.2, the compactness and weak com-
pactness of [0, x∗x] are equivalent. To establish (1), suppose 0 ≤ T ≤Mx and
Mx is weakly compact. Then T (B(A)+) is relatively compact, as a subset of
[0, x∗x]. Thus, T is compact. (2) is established similarly.

If the “symbol” x of the operator Mx comes from the ambient B(H), we
obtain:
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Proposition 2.3.2. Suppose A is an irreducible C∗-subalgebra of B(H),
x ∈ B(H), Mx : A → B(H) is compact, and 0 ≤ T ≤ Mx. Then T is
compact.

Proposition 2.3.3. Suppose A is an irreducible C∗-subalgebra of B(H),
S : A → B(H) is compact, x ∈ B(H), and 0 ≤ Mx ≤ S. Then Mx is
compact.

Remark 2.3.4. The irreducibility of A is essential here. Below we con-
struct an abelian C∗-subalgebra A ⊂ B(H) and operators x1, x2 ∈ B(H)
such that 0 ≤Mx1 ≤Mx2 and Mx2 is compact, while Mx1 is not (here, Mx1

and Mx2 are viewed as taking A to B(H)). By [51], there exist operators
0 ≤ R1 ≤ R2 : C[0, 1]→ C[0, 1] such that R2 is compact and R1 is not. Let
λ be the usual Lebesgue measure on [0, 1], and let j : C[0, 1] → B(L2(λ))
be the diagonal embedding (taking a function f to the multiplication op-
erator φ 7→ φf). By [42, Theorem 3.11], R1 and R2 are completely posi-
tive. Thus, by the Stinespring Theorem, these operators can be represented
as Ri(f) = V ∗i πi(f)Vi (i = 1, 2), where πi : C[0, 1] → B(Hi) are repre-
sentations, and Vi ∈ B(L2(λ), Hi). Let H = L2(λ) ⊕2 H1 ⊕2 H2. Then
π = j ⊕ π1 ⊕ π2 : C[0, 1] → B(H) is an isometric representation. Let
A = π(C[0, 1]). Furthermore, consider the operators x1 and x2 on H de-
fined via

x1 =

 0 0 0

V1 0 0

0 0 0

 and x2 =

 0 0 0

0 0 0

V2 0 0

 .

Then, for any f ∈ C[0, 1], jRi(f) = x∗iπ(f)xi. Considering Mx1 and Mx2 as
operators on A, we see that 0 ≤ Mx1 ≤ Mx2 , and Mx2 is compact, while
Mx1 is not.

The following lemma establishes a criterion for compactness of Mx. This
result may be known to experts, but we could not find any references in the
literature.

Lemma 2.3.5. Suppose A is an irreducible C∗-subalgebra of B(H), and
c ∈ B(H). Then c∗B(A)+c is a relatively compact set if and only if c is a
compact operator.

Proof. By polar decomposition, it suffices to consider the case of c ≥ 0.
Indeed, write c = du, where d = (cc∗)1/2 and u is a partial isometry from
(ker c)⊥ = ran c∗ to (ker c∗)⊥ = ran c. Then Mc =MuMd and Md =Mu∗Mc

(here, we abuse the notation slightly, and allowMu andMu∗ to act on B(H)).
Therefore, the sets c∗B(A)+c = Mc(B(A)+) and dB(A)+d = Md(B(A)+)
are compact simultaneously.
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If c is compact, then, by [56], cB(B(H))c is relatively compact. The set
cB(A)+c is also relatively compact, since it is contained in cB(B(H))c.

Now suppose c is not compact. By scaling, we can assume that the spec-
tral projection p = χ(1,∞)(c) has infinite rank. We shall show that, for every
n ∈ N, there exist a1, . . . , an ∈ B(A)+ such that ‖c(ai−aj)c‖ > 1/3 for i 6= j.
Note first that there exist mutually orthogonal unit vectors ξ1, . . . , ξn in ran p
such that 〈ξi, ξj〉 = 〈cξi, cξj〉 = 0 whenever i 6= j. Indeed, if σ(c) ∩ (1,∞) is
infinite, then there exist disjoint Borel sets Ei ⊂ (1,∞) (1 ≤ i ≤ n) such
that σ(c) ∩ Ei 6= ∞. Then we can take ξi ∈ χEi(c). On the other hand,
if σ(c) ∩ (1,∞) is finite, then for some s ∈ σ(c) ∩ (1,∞), the projection
q = χ{s}(c) has infinite rank. Then we can take ξ1, . . . , ξn ∈ ran q.

Let ηi = cξi/‖cξi‖ (by construction, these vectors are mutually orthogo-
nal). As A is irreducible, its second commutant is B(H). By the Kaplansky
Density Theorem (see e.g. [13, Theorem I.7.3]), B(A)+ is strongly dense
in B(B(H))+. Thus, for every 1 ≤ i ≤ n there exist ai ∈ B(A)+ such
that ‖aiηk‖ < 1/3 for i 6= k, and ‖aiηi − ηi‖ < 1/3. Consider bi = caic ∈
c(B(A)+)c. For i 6= j,

‖bi − bj‖ ≥ 〈c(ai − aj)cξi, ξi〉 = ‖cξi‖2〈(ai − aj)ηi, ηi〉 > 2/3− 1/3 = 1/3.

As n is arbitrary, we conclude that c(B(A)+)c is not relatively compact.

Proof of Proposition 2.3.2. Suppose x ∈ B(H) is such that Mx : A →
B(H) is compact. By polar decomposition, we can assume that x ≥ 0. Then
xB(A)+x is relatively compact, and therefore, by Lemma 2.3.5, x is a com-
pact operator. By Proposition 1.3.2, [0, x2] is compact. But T (B(A)+) ⊂
[0, x2], hence T (B(A)+) is relatively compact. By polarization, T (B(A)) is
compact.

To prove Proposition 2.3.3, we need a technical result.

Lemma 2.3.6. Suppose z ∈ B(H), and x, y ∈ [0,1H ]. Then zxz∗ ≥
zxyxz∗.

Proof. Note that zxz∗− zxyxz∗ = z(x−x2)z∗+ zx(1− y)xz∗, and both
terms on the right are positive.

Proof of Proposition 2.3.3. As in the proof of Proposition 2.3.2, we can
assume that x ≥ 0, and that p = χ(1,∞)(x) is a projection of infinite rank.
It suffices to show that there exist a0 ≥ a1 ≥ · · · ≥ an in B(A)+ such
that ‖x(ak−1 − ak)x‖ > 2/3 for 1 ≤ k ≤ n. Indeed, if S is compact, then
there exist u1, . . . , um ∈ B(H) such that for every a ∈ B(A)+ there ex-
ists j ∈ {1, . . . ,m} with ‖Sa − uj‖ < 1/3. By the pigeon-hole principle, if
n > m, then there exist i < j in {1, . . . , n} and k in {1, . . . ,m} such that
max{‖Sai−uk‖, ‖Saj−uk‖} < 1/3. However, ‖Sai−Saj‖ ≥ ‖x(ai−aj)x‖ >
2/3, leading to a contradiction.
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Imitating the proof of Proposition 2.3.2, we use the spectral decompo-
sition of x to find mutually orthogonal unit vectors ξ1, . . . , ξn in ran p such
that (i) xkξi is orthogonal to x`ξj for any i 6= j and k, ` ∈ {0, 1, . . .}, and
(ii) for any i, 1 = ‖ξi‖ ≤ ‖xξi‖ ≤ ‖x2ξi‖ ≤ · · · . To construct a0, . . . , an, let
c = (2/3)1/(2n+1) and ηi = xξi/‖xξi‖. By the Kaplansky Density Theorem,
for 0 ≤ k ≤ n there exist bk ∈ B(A)+ such that

bkηi =

{
cηi, 1 ≤ i ≤ n− k,
0, i > n− k

(we can take bn = 0). Let a0 = b0, a1 = b0b1b0, a2 = b0b1b2b1b0, etc. By
Lemma 2.3.6, a0 ≥ a1 ≥ · · · ≥ an. Furthermore,

akηi =

{
c2k−1ηi, 1 ≤ i ≤ n− k,
0, i > n− k,

and therefore
‖x(ak−1 − ak)x‖ ≥ 〈x(ak−1 − ak)xξn−k+1, ξn−k+1〉

= 〈(ak−1 − ak)ηn−k+1, ηn−k+1〉 = c2k−1 > 2/3.

Hence, the sequence (ak)
n
k=0 has the desired properties.

2.4. Dunford–Pettis Schur multipliers. Recall that a map T :
SF → SE is called a Schur (or Hadamard) multiplier if it can be writ-
ten in the coordinate form as (Tx)ij = φijxij . The infinite matrix φ is called
the symbol of T , which we denote by Sφ. The main goal of this section is to
prove:

Theorem 2.4.1. Suppose 0 ≤ Sφ ≤ Sψ are Schur multipliers from S1
to SE (E is a symmetric sequence space). If Sψ is Dunford–Pettis, then the
same is true for Sφ.

Recall that an operator is called Dunford–Pettis if it maps weakly null
sequences to norm null ones. Equivalently, it carries relatively weakly com-
pact sets to relatively norm compact sets. The reader is referred to e.g. [4,
Section 5.4] for more information.

The proof relies on several technical lemmas, which may be known to
experts.

Lemma 2.4.2. A bounded sequence (xn) in S1 is weakly null if and only
if the following two conditions are satisfied:

(1) limm supn ‖Rmxn‖ = 0, and
(2) for every m, limn ‖Qmxn‖ = 0.

Proof. Suppose first (xn) is weakly null. As Qm has finite rank, (2) must
be satisfied. If (1) fails, then one can assume, by passing to a subsequence,
that there exist c > 0 and a sequence n1 < n2 < · · · such that, for every k,
‖Qnk+1

Rnk
xk‖ > c, while ‖Rnk+1

xk‖ + ‖Qnk
xk‖ < 10−kc. Consider the
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block-diagonal truncation P : S1 → S1 : x 7→
∑

kQnk+1
Rnk

x. Clearly, P is
contractive. Letting, for every k, yk = Qnk+1

Rnk
xk, we see that ‖Pxk−yk‖ <

10−kc. Thus, for every sequence (αk),∥∥∥∑
k

αkxk

∥∥∥ ≥ ∥∥∥∑
k

αkyk

∥∥∥−∑
k

|αk| · 10−kc >
c

2

∑
k

|αk|.

Therefore, the sequence (xk) is equivalent to the canonical basis of `1, hence
is not weakly null.

Now suppose (1) and (2) are satisfied for a bounded sequence (xn); we
show that, for any f ∈ B(`2), limn f(xn) = 0. Indeed, otherwise, by pass-
ing to a subsequence, and by scaling, we can assume that supn ‖xn‖ ≤ 1,
and there exists f ∈ B(B(`2)) such that infn |f(xn)| > c. Pick m with
supn ‖Rmxn‖ < c/5. We now observe that there exists M > m such that
‖(I −QM )(I −Rm)f‖ < c/5. Indeed,

(I −QM )(I −Rm)f = P⊥MfPm + PmfP
⊥
M .

For a fixed m, B(`2)Pm is isomorphic to a Hilbert space. For every y ∈
B(`2)Pm, P⊥My → 0, hence limM P⊥MfPm = 0. Similarly, limM PmfP

⊥
M = 0.

Finally, pick N so that, for n > N , ‖QMxn‖ < c/5. As

〈f, xn〉 = 〈f, (Rm + (I −Rm)QM + (I −QM )(I −Rm))xn〉
= 〈f,Rmxn〉+ 〈(I −Rm)f,QMxn〉+ 〈(I −QM )(I −Rm)f, xn〉,

we have, for n > N ,

c < |〈f, xn〉| ≤ ‖Rmxn‖+ 2‖QMxn‖+ ‖(I −QM )(I −Rm)f‖ < 4c/5,

a contradiction.

Corollary 2.4.3. An operator T : S1 → X is Dunford–Pettis if and
only if, for every i, the restrictions of T to span[Eij : j ∈ N] and span[Eji :
j ∈ N] are compact.

Proof. Suppose the restrictions of T to span[Eij : j ∈ N] and span[Eji :
j ∈ N] are compact, and (xn) is a weakly null sequence in S1. We have to
show that, for every c > 0, ‖Txn‖ < c for n large enough. Without loss of
generality, assume T is a contraction and supn ‖xn‖ ≤ 1. Find M > m such
that supn ‖Rmxn‖ < c/4, and

‖T |span[Eij : j>M ]‖+ ‖T |span[Eji: j>M ]‖ <
c

4M
.

Find N ∈ N with supn>N ‖QMxn‖ < c/4. Thus, for n > N , ‖Txn‖ < 3c/4.
Conversely, suppose T is Dunford–Pettis, but its restriction to span[Eij :

j ∈ N] is not compact. Then there exist n1 < n2 < · · · and αj ∈ C
such that the vectors satisfy xk =

∑nk+1

j=nk+1 αjEij , hence ‖xk‖ = 1, and
lim supk ‖Txk‖ > 0. However, the sequence (xk) is weakly null, while the
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sequence (Txk) is not norm null, yielding a contradiction. The restrictions
to span[Eji : j ∈ N] are handled similarly.

Specializing the previous result to Schur multipliers, we immediately ob-
tain:

Corollary 2.4.4. A Schur multiplier with the symbol φ, acting from S1
to SE , is Dunford–Pettis if and only if, for any i, limj φij = limj φji = 0.

Proof. By Corollary 2.4.3, Sφ : S1 → SE is Dunford–Pettis iff, for ev-
ery i, the restrictions of Sφ to span[Eij : j ∈ N] and span[Eji : j ∈ N]
are compact. By the definition, Sφ maps Eij to φijEij . It is well known
that, for any E , span[Eij : j ∈ N] ⊂ SE is isometric to `2, via an isome-
try sending the matrix units Eij to the elements of the orthonormal basis.
Thus, Sφ|span[Eij : j∈N] is compact iff limj φij = 0. Similarly, Sφ|span[Eji: j∈N] is
compact iff limj φji = 0.

Lemma 2.4.5. Suppose c > 0 and m ∈ N satisfy (mc)2 > m+1. Suppose,
furthermore, that C and D are positive matrices, with entries Cij and Dij

(0 ≤ i, j ≤ m), respectively, so that maxi,j{max{|Cij |, |Dij |}} ≤ 1, |C0j | > c
for 1 ≤ j ≤ m, and |Dij | < 10−2(i+j) for i 6= j. Then the inequality C ≤ D
cannot hold.

Proof. Suppose, for the sake of contradiction, that D ≥ C. Then, for any
vector ξ ∈ `m+1

2 ,

‖D1/2ξ‖2 = 〈D1/2ξ,D1/2ξ〉 = 〈Dξ, ξ〉 ≥ 〈Cξ, ξ〉 = ‖C1/2ξ‖2,
hence there exists a contraction U such that UD1/2ξ = C1/2ξ. Thus, C =
D1/2U∗UD1/2. By [59, Lemma 1.21], the block matrix

(
D C
C D

)
is positive.

Denote the canonical basis in `m+1
2 by (ei)

m
i=0. Consider the vector ξ =( ξ1

ξ2

)
∈ `2(m+1)

2 , where ξ1 = αe0 and ξ2 = −
∑m

i=1 ωiei. Here, ωi = Ci0/|Ci0|
and α = mc. By the above,

(1) 0 ≤
〈(

D C

C D

)
ξ, ξ

〉
= 〈Dξ1, ξ1〉+ 〈Dξ2, ξ2〉+ 2Re〈Cξ1, ξ2〉.

Note that 〈Dξ1, ξ1〉 = α2D00 ≤ α2 and

〈Dξ2, ξ2〉 ≤
m∑
i=1

Dii + 2
∑

1≤i<j≤m
|Dij | ≤ m+ 2

∑
1≤i<j≤m

10−2(i+j) < m+ 1.

On the other hand,

〈Cξ1, ξ2〉 = −α
m∑
i=1

Ci0 ·
Ci0
|Ci0|

< −αmc.

Returning to (1), we see that
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D C

C D

)
ξ, ξ

〉
≤ α2 +m+ 1− 2αmc < 0,

a contradiction.

Proof of Theorem 2.4.1. We say that an infinite matrix φ is formally
positive if each of its finite submatrices is positive. By [42, Theorem 3.7],
Sσ ≥ 0 iff σ is formally positive.

Suppose, for the sake of contradiction, that 0 ≤ Sφ ≤ Sψ, where Sψ
is Dunford–Pettis, while Sφ is not. We can assume that Sψ is contractive,
hence, for any (i, j), max{|φij |, |ψij |} ≤ 1. Corollary 2.4.4 shows that, for
any i, limj→∞ ψij = 0. By rearranging rows and columns if necessary, we
can assume the existence of n0 < n1 < n2 < · · · such that |φn0nk

| >
c > 0. Passing to a further subsequence, we obtain |ψninj | < 10−2(i+j) for
i 6= j.

Now select m so that mc > 4(m+1), and define matrices C and D with
entries Cij = φninj and Dij = ψninj (0 ≤ i, j ≤ m), respectively. As noted
above, the matrices C and D are positive. By Lemma 2.4.5, we cannot have
C ≤ D. Thus, a contradiction.

2.5. Weakly compact operators. In this section, we show that, under
certain conditions, weak compactness is inherited under domination. First
consider operators on C∗-algebras and their duals.

Theorem 2.5.1. Suppose E is an OBS, A is a C∗-algebra, S is a weakly
compact operator, and one of the following holds:

(1) E is generating, and 0 ≤ T ≤ S : E → A?.
(2) E is normal, and 0 ≤ T ≤ S : A → E.

Then T is weakly compact.

Note that, for A commutative, this theorem follows from [50] and the
order continuity of A?.

Proof. (1) Suppose, for the sake of contradiction, that T (B(E)+) is not
weakly compact. By Pfitzner’s Theorem [43], there exist a bounded se-
quence (an) ⊂ A of positive pairwise orthogonal elements, a sequence (φn) ⊂
B(E)+, and c > 0 such that Tφn(an) > c. Therefore, Sφn(an) > c, which
contradicts the weak compactness of S(B(E)) (once again, by Pfitzner’s
Theorem).

(2) Apply part (1) to 0 ≤ T ? ≤ S?.
Remark 2.5.2. Theorem 2.5.1 fails for operators from duals of C∗-

algebras to C∗-algebras, even in the commutative setting. Indeed, by [4,
Theorem 5.31], there exist 0 ≤ T ≤ S : `1 → `∞ such that S is weakly
compact, whereas T is not.
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For operators to or from general Banach lattices, we have:

Theorem 2.5.3. Suppose either

(i) A is a generating OBS, and B is order continuous Banach lattice, or
(ii) A is a Banach lattice with order continuous dual, and B is a normal

OBS.

If 0 ≤ T ≤ S : A→ B, and S is weakly compact, then T is weakly compact
as well.

Proof. The proof of case (i) is contained in the first few lines of the proof
of [4, Theorem 5.31]. Case (ii) follows by duality.

Next we obtain a partial generalization of the above results for non-
commutative function spaces. In the discrete case, we obtain a characteriza-
tion of order continuous Banach lattices.

Proposition 2.5.4. Suppose E is a symmetric sequence space containing
a copy of `1, H is an infinite-dimensional Hilbert space, and X is a Banach
lattice. Then the following are equivalent:

(1) If 0 ≤ T ≤ S : SE(H) → X, and S is weakly compact, then T is
weakly compact.

(2) X is order continuous.

Proof. (2)⇒(1) follows from Theorem 2.5.3.
(1)⇒(2). By Proposition 1.2.6, SE(H) contains a positive disjoint se-

quence that spans a positively complemented copy of `1. Hence, the result
follows from [4, Theorem 5.31].

Now consider domination by a weakly compact operator for non-com-
mutative function spaces.

Recall that a non-commutative symmetric function space E is said to
have the Fatou Property (sometimes referred to as the Beppo Levi Property)
if for any norm bounded increasing net (xi) ⊂ E+, there exists x ∈ E such
that xi ↑ x and ‖x‖ = supi ‖xi‖. In the commutative setting, any symmetric
space with the Fatou Property is order complete.

We say that a non-commutative function space E is a KB space if any
increasing norm bounded sequence in E is norm convergent. Equivalently,
E is order continuous and has the Fatou Property (see [21]). Furthermore,
the following are equivalent: (i) E is a KB space, (ii) E is weakly sequentially
complete, and (iii) E contains no copy of c0. It is clear from [17] that, if E is
a symmetric KB function space, then the same is true of E(τ).

The following result is contained in [17, Section 5].

Proposition 2.5.5. Suppose E is a non-commutative strongly symmetric
function space. Then:
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(1) E× is strongly symmetric.
(2) E× coincides with E? if and only if E is order continuous. In this case,

for every f ∈ E? there exists a unique y ∈ E× such that f(x) = τ(xy)
for any x ∈ E.

(3) E coincides with E×× if and only if E has the Fatou Property.

Proposition 2.5.6. Suppose E = E(τ) is a non-commutative strongly
symmetric KB function space, X a generating OBS, and 0 ≤ T ≤ S : X → E
with S weakly compact. Then T is weakly compact as well.

Proof. By [17, Section 5], any positive element φ ∈ E?? = (E×)? can be
written as φ(f) = τ(af) + ψ(f), where a ∈ E is positive and ψ is a positive
singular functional. The canonical embedding of E into its double dual takes
a to the linear functional f 7→ τ(fa).

S is weakly compact, hence S??(X) ⊂ E . A normal functional cannot
dominate a singular one, hence T ??(B(X??)+) ⊂ E . As noted in Section 1.1,
X?? is a generating OBS, hence T ??(B(X??)) ⊂ E . Therefore, T is weakly
compact.

Alternatively, one can prove the above result using the characterization
of σ(F×,F)-compact sets given in [19, Proposition 6.2].

Remark 2.5.7. Note that the assumptions of Proposition 2.5.6 are
stronger than those of its commutative counterpart, Theorem 2.5.3. For in-
stance, the statement of Theorem 2.5.3(i) holds when the range space is
order continuous. Proposition 2.5.6 is proved under the additional assump-
tion of the Fatou Property. One reason for this is that much more is known
about order continuous Banach lattices (see e.g. [39, Section 2.4]). One use-
ful characterization states that a Banach lattice E is order continuous iff it
is an ideal in its second dual. No such description seems to be known in the
non-commutative setting.

3. Miscellaneous results

3.1. 2-positivity and decomposability: negative results. In this
section we consider stronger versions of positivity, such as 2-positivity and
indecomposability, as well as the appropriate notions of domination. We
show that these properties are not, in general, inherited by the dominated
operator.

Proposition 3.1.1.

(a) There are 0 ≤ T ≤c S acting onM2 such that S is completely positive,
but T is not 2-positive.

(b) There are 0 ≤ T ≤c S acting onM3 such that S is completely positive,
but T is not decomposable.
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For the definition and basic properties of decomposable maps, see e.g. [48].
Note that part (b) is optimal in the sense that any positive map from M2 to
M3 is decomposable [54].

In the proof below, we use the notation Eij for the matrix with 1 in the
(i, j) position, and 0’s elsewhere.

Proof. (a) Define T (a) = at and S(a) = tr(a)1 (tr(·) stands for the
canonical trace on M2). Clearly, T ≥ 0 and S is completely positive. Indeed,
consider a =

∑n
i,j=1Eij ⊗ a(ij) ∈ Mn(M2) ≥ 0 (here, a(ij) = (aijk`)

2
k,`=1 ∈

M2). Passing to submatrices, we see that for k = 1, 2, the n × n matrix
a′k = (a

(ij)
kk ) is positive. Thus, (IMn ⊗ S)a = (a′1 + a′2)⊗ (E11 + E22) ≥ 0.

The fact that T is not 2-positive is folklore: just apply IM2 ⊗ T to∑2
i,j=1Eij⊗Eij . To establish that S−T ≥c 0, note that (S−T )(a) = uau∗,

where u =
(

0 1
−1 0

)
.

(b) Define

U

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 −a12 −a13
−a21 a22 −a23
−a31 −a32 a33

 ,

V

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a33 0 0

0 a11 0

0 0 a22

 ,

W

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a11 0 0

0 a22 0

0 0 a33

 .

Let T = U+V and S = V +2W . By [48], T is positive, but not decomposable.
On the other hand, the maps V andW are completely positive, hence so is S.
Furthermore, S − T = I (the identity map on M3), hence it is completely
positive as well.

For powers of operators, we get:

Proposition 3.1.2. There are 0 ≤ T ≤c S acting on M2 such that S is
completely positive, while T is not 2-positive and T = T 2.

Proof. Define T (a) = (a + at)/2 and S(a) = (tr(a)1 + a)/2. As in the
proof of Proposition 3.1.1, we can establish the inequalities 0 ≤c S and
0 ≤ T ≤c S. Clearly, T = T 2. To show that T is not 2-positive, consider
x =

∑2
i,j=1Eij ⊗ Eij ∈ M2 ⊗M2. Then x can be identified with the 4 × 4
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matrix 
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 .

Therefore

(IM2 ⊗ T )(x) =
1

2


2 0 0 1

0 0 1 0

0 1 0 0

1 0 0 2

 ,

which is not positive.
Remark 3.1.3. It is not clear whether we can strengthen Proposition

3.1.1(b) to make the powers of T (not just T itself) non-decomposable. The
operator T presented in the proof of Proposition 3.1.1(b) will not work,
since T 2 is completely positive. Indeed, [48] shows that T = U + µV is not
decomposable for µ ≥ 1. However, U2 = I and UV = V U = V . Thus,
T 2 = I + 2µV + µ2V 2, which is completely positive.

3.2. A remark on operator systems. In the previous section, we
were working with non-commutative function spaces, or with C∗-algebras.
This brief section shows that general operator systems have too few positive
elements for any results about domination and inheritance of properties.

Recall that an operator system is a subspace of B(H) closed under con-
jugation. It is unital if it contains 1. If A and B are operator systems, and
T : A → B, we say that T is positive (T ≥ 0) if Ta ≥ 0 for any a ≥ 0.
Moreover, T is completely positive (T ≥c 0) if T ⊗IMn ≥ 0 for every n. Write
T ≥ S (resp. T ≥c S) if T − S ≥ 0 (resp. T − S ≥c 0).

It turns out that little can be said about domination in operator sys-
tems. More precisely, there exist a unital operator system A and a rank one
S ∈ B(A) such that IA ≤c S. We may choose A to be infinite-dimensional,
and even non-separable. We describe the construction of A and S below.

Suppose X ⊂ B(H) is an operator system (not necessarily unital). Using
“Paulsen’s trick”, define A as the set of all block matrices on H ⊕2 H of the
form (

λ1H x

y λ1H

)
,

where λ ∈ C and x, y ∈ X. It is easy to see that(
λ1K x

y λ1H

)
≥ 0 iff x = y∗ and λ ≥ ‖x‖.
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Set

S

(
λ1H x

y λ1H

)
= 2

(
λ1H 0

0 λ1H

)
= 2λ1H⊕2H .

Proposition 3.2.1. In the above notation, S ≥c IA.

Proof. It suffices to observe that

(S − IA)

(
λ1H x

y λ1H

)
=

(
λ1H −x
−y λ1H

)
= u

(
λ1H x

y λ1H

)
u

with

u =

(
1H 0

0 −1H

)
.
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