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Dynamics of differentiation and integration operators
on weighted spaces of entire functions

by

Maŕıa J. Beltrán (València)

Abstract. We investigate the dynamical behavior of the operators of differentiation
and integration and the Hardy operator on weighted Banach spaces of entire functions
defined by integral norms. In particular we analyze when they are hypercyclic, chaotic,
power bounded, and (uniformly) mean ergodic. Moreover, we estimate the norms of the
operators and study their spectra. Special emphasis is put on exponential weights.

1. Introduction and notation. In this article we are concerned with
the dynamics of the following three operators on weighted spaces of entire
functions: the differentiation operator Df(z) = f ′(z), the integration op-
erator Jf(z) =

	z
0 f(ζ) dζ and the Hardy operator Hf(z) = z−1

	z
0 f(ζ) dζ,

z ∈ C.
In [BBF], Bonet, Fernández and the author study these operators on

weighted Banach spaces of entire functions defined by means of supremum
norms. The continuity of the differentiation and the integration operators on
these spaces was considered by Harutyunyan and Lusky [HL], and the spec-
trum of the differentiation operator was studied by Atzmon and Brive [AB].
Bonet [Bo] investigated when the operator of differentiation is hypercyclic
or chaotic on weighted Banach spaces of entire functions.

It is our purpose to extend the work in [BBF] to more general spaces
of entire functions such as weighted spaces of entire functions Bp,q(v), 1 ≤
p ≤ ∞, 1 ≤ q ≤ ∞ or q = 0, determined by a weight v. Bonet and Bonilla
[BB] also extend the results of [Bo] to generalized weighted Bergman spaces
Bp,q(v), 1 ≤ p ≤ ∞, q ∈ {0,∞}, giving conditions that ensure that the differ-
entiation operator is chaotic, hypercyclic or frequently hypercyclic. Similar
spaces of holomorphic functions on the disc have been considered by Blasco
[B] and by Blasco and de Souza [BS].
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Given a Banach space X, we denote by L(X) the space of continuous
and linear operators T : X → X. For x ∈ X, we denote by Orb(x, T ) :=
{x, Tx, T 2x, . . .} its orbit under T , and we say that a point x ∈ X is periodic
if there is some n ∈ N such that Tnx = x. An operator T : X → X
is called topologically transitive if, for any non-empty open subsets U, V
of X, there exists some n ∈ N0 such that Tn(U) ∩ V 6= ∅, and T is called
topologically mixing if, for any such U, V, there exists some N ∈ N0 such
that Tn(U) ∩ V 6= ∅ for all n ≥ N.

The operator T ∈ L(X) is called hypercyclic if there is x ∈ X with a
dense orbit, and chaotic if it is hypercyclic and it has a dense set of periodic
points. By Birkhoff’s transitivity criterion (see [GEP, Theorem 1.16]), if X
is separable, then T is hypercyclic if and only if it is topologically transi-
tive. The first simple criterion ensuring that an operator T on a separable
completely metrizable topological vector space is hypercyclic (even topolog-
ically mixing) was presented by Kitai in her 1982 thesis (see [GEP, Theo-
rem 3.4]). It was discovered independently by Gethner and Shapiro (1987)
and was improved by several authors. A weakening of the Kitai–Gethner–
Shapiro criterion is the famous Hypercyclicity Criterion (1999) due to Bès
and Peris (see [BP] and [BBP, 17]). The assumptions in the weaker form
of the criterion given below do not imply that the operator is topologically
mixing.

Hypercyclicity Criterion. Let T : X → X be an operator on a sep-
arable completely metrizable topological vector space X. Suppose that there
are dense subsets Y0, Y1 ⊆ X, an increasing sequence {nk}k of positive in-
tegers, and maps Snk : Y1 → X, k ≥ 1, not necessarily linear or continuous,
such that:

(i) Tnkx→ 0 for each x ∈ Y0,
(ii) Snky → 0 for each y ∈ Y1, and
(iii) TnkSnky → y for each y ∈ Y1.

Then T is hypercyclic.

If the Hypercyclicity Criterion is satisfied for the sequence of all posi-
tive integers, then the proof shows that T is even topologically mixing. Bès
and Peris proved that an operator T satisfies the assumptions of the Hyper-
cyclicity Criterion if and only if T ⊕ T is hypercyclic on X ⊕X. Only very
recently, De La Rosa and Read [DRR] were able to exhibit hypercyclic oper-
ators which do not satisfy the Hypercyclicity Criterion, thus solving a long
standing problem. Their example was later improved by Bayart and Ma-
theron [BM], who presented examples defined on classical Banach sequence
spaces.
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A vector x ∈ X is called frequently hypercyclic for T if, for every non-
empty open subset U of X,

dens{n ∈ N : Tnx ∈ U} > 0,

where

dens(A) = lim inf
N→∞

]{n ∈ A : n ≤ N}
N

denotes the lower density of a subset A of N and ] denotes cardinality.
The operator T is called frequently hypercyclic if it has a frequently hyper-
cylic vector. The orbit of a frequently hypercyclic vector is therefore, in the
specified sense, frequently recurrent. Obviously, frequent hypercyclicity is a
stronger notion than hypercyclicity.

According to Bayart and Grivaux [BGr], a bounded operator T on a
Banach space X is said to have a perfectly spanning set of eigenvectors
associated to unimodular eigenvalues if there exists a continuous probability
measure σ on the unit circle T such that for every σ-measurable subset A
of T of σ-measure 1, span(

⋃
{Ker(T − λI) : λ ∈ A}) is dense in X. Grivaux

[Gr, Theorem 1.4] proved that a bounded operator with a perfectly spanning
set of eigenvectors associated to unimodular eigenvalues is always frequently
hypercyclic. For more background about linear dynamics see the books by
Bayart and Matheron [BM] and by Grosse-Erdmann and Peris [GEP].

An operator T ∈ L(X) is said to be power bounded if supm≥0 ‖Tm‖ <∞,
i.e., the orbit {x, Tx, T 2x, . . .} is bounded for every x ∈ X, by the uniform
boundedness principle.

Given T ∈ L(X), let

(1.1) T[m] :=
1

m

m∑
j=1

T j , m ∈ N,

denote the Cesàro means of the iterates of T. The operator T is said to
be Cesàro power bounded if the sequence {T[m]}m∈N is bounded, and mean
ergodic if the limits Px := limm→∞ T[m]x, x ∈ X, exist in X. A power
bounded operator T is mean ergodic precisely when

X = Ker(I − T )⊕ Im(I − T ),

where I stands for the identity on X and the bar denotes closure in X.
In general, Im(I − T ) is the set of all x ∈ X for which the sequence
{T[m]x}m∈N converges to 0. If {T[m]}m∈N is convergent in the operator norm,
then T is called uniformly mean ergodic. Clearly, if T is mean ergodic, then
‖Tmx‖/m → 0 for every x ∈ X, and if it is uniformly mean ergodic, then
‖Tm‖/m → 0. Conversely, if this last convergence holds, then the operator
T is uniformly mean ergodic if and only if Im(I − T ) is closed [L].
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Mean ergodic operators in Fréchet spaces and barrelled locally con-
vex spaces have been considered by Albanese, Bonet and Ricker [ABR1],
[ABR2].

An operator T is said to be quasi-compact if Tm is compact for some
m ∈ N. Quasi-compact operators share some properties of compact opera-
tors, in particular their spectrum reduces to eigenvalues and {0}.

Our notation for functional analysis and operator theory is standard.
We refer the reader e.g. to [MV] and [R]. For ergodic theory of operators on
Banach spaces, see [K].

2. Preliminaries. In what follows, H(C) and P denote the spaces of
entire functions and of polynomials, respectively. The space H(C) is en-
dowed with the compact-open topology τco. It is easy to see that the three
operators, D, J and H, are continuous on H(C).

For r ≥ 0 and f ∈ H(C), consider

Mp(f, r) :=

(
1

2π

2π�

0

|f(reiθ)|p dθ
)1/p

for 1 ≤ p <∞,

M∞(f, r) := sup
|z|=r
|f(z)|.

By the classical Hardy convexity theorem and the Maximum Modulus The-
orem, the mapping r 7→Mp(f, r) is increasing and logarithmically convex.

A weight v on C is a strictly positive continuous function on C which is
radial, i.e. v(z) = v(|z|), z ∈ C, v(r) is non-increasing on [0,∞[ and rapidly
decreasing, that is, limr→∞ r

nv(r) = 0 for each n ∈ N.
For such a weight, 1 ≤ p ≤ ∞, and q ∈ {0,∞}, the generalized weighted

Bergman spaces of entire functions are defined by

Bp,∞(v) :=
{
f ∈ H(C) : |||f |||p,v := sup

r>0
v(r)Mp(f, r) <∞

}
,

Bp,0(v) :=
{
f ∈ H(C) : lim

r→∞
v(r)Mp(f, r) = 0

}
.

Both are Banach spaces under the norm |||·|||p,v. In case p = ∞ they are
usually denoted by Hv(C) and H0

v (C) (see [BBG, BBT, BG, G, Lu3]). The
inclusions Bp,0 ⊆ Bp,∞ ⊆ B1,∞ ⊆ H(C) are continuous for 1 ≤ p ≤ ∞. As
in [BB], take r > 0, select R0 > r, fix |z| ≤ r and apply the Cauchy formula,
integrating around the circle of center 0 and radius R0, to get

R0 − r
R0

|f(z)| ≤M1(f,R0) ≤Mp(f,R0) ≤M∞(f,R0).
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This implies

sup
|z|≤r
|f(z)| ≤ R0

(R0 − r)v(R0)
v(R0)Mp(f,R0)(2.1)

≤ R0

(R0 − r)v(R0)
|||f |||p,v.

Then, for every 1 ≤ p ≤ ∞, the closed unit ball of Bp,∞(v), denoted by
Cp,∞, is bounded on H(C) and τco-closed, since for r > 0 the mapping
δp,r : H(C)→ C, f 7→Mp(f, r), is continuous and

Cp,∞ =
⋂
r≥0

δ−1p,r ([0, 1/v(r)]).

As H(C) is Montel, the set Cp,∞ is τco-compact.
For 1 ≤ p ≤ ∞ and 1 ≤ q <∞, we consider the space

Bp,q(v) :=
{
f ∈ H(C) : ‖f‖p,q,v :=

(
2π

∞�

0

rv(r)qMp(f, r)
q dr

)1/q
<∞

}
.

Given a compact set K ⊆ C and z ∈ K, by the mean value formula we
get

|f(z)| ≤ 1

π

�

D(z,1)

|f(λ)| dλ ≤ 1

π

�

D(0,R)

|f(λ)| dλ

for every f ∈ H(C), where λ is the Lebesgue measure on R2, D(z, r) denotes
thee open disc centered at z and of radius r, and R > 0 is such that z ∈
K ⊆

⋃
z∈K D(z, 1) ⊆ D(0, R). For the unit disc centered at zero we simply

write D := D(0, 1). Thus

|f(z)| ≤ 1

π

R�

0

r

2π�

0

|f(reiθ)| dθ dr = 2

R�

0

rM1(f, r) dr ≤ 2

R�

0

rMp(f, r) dr,

so, applying Hölder’s inequality, we see that for every z ∈ K,

|f(z)| ≤ 2R1−1/q
(R�

0

rqMp(f, r)
q dr

)1/q
(2.2)

≤ 2R2−2/q

v(R)

(∞�
0

rv(r)qMp(f, r)
q dr

)1/q
.

Therefore, convergence in Bp,q(v) implies uniform convergence on compact
subsets of C. Thus, Bp,q(v) is a closed subset of the Banach space{

f : C→ C measurable :

∞�

0

rv(r)q
( 2π�

0

|f(reiθ)|p dθ
)q/p

dr <∞
}
,

and therefore a Banach space. The spaces Bp,q(v) are called weighted spaces
of entire functions. Observe that for p = q the last displayed space is usually
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denoted by Lpv(C), the Banach space of all complex functions f on C such
that fv ∈ Lp(C, dλ). When p = 2 it is a Hilbert space. For these spaces,
we simply write Bp

v := Bp,p(v) and denote the norm by ‖ ‖p,v. Spaces of
this type appear in the study of growth of analytic functions and have been
investigated in various articles (see e.g. [BBG, BBT, BG, ?, Lu2] and the
references therein).

By (2.2), the closed unit ball of Bp,q(v), denoted by Cp,q, is bounded
on H(C). It is τco-closed since for r0 > 0 the mapping δp,q,r0 : H(C) → C,
f 7→

	r0
0 rv(r)qMp(f, r)

q dr, is continuous and

Cp,q =
⋂
r0≥0

δ−1p,q,r0([0, 1/(2π)]).

So, also Cp,q is τco-compact.

Since the weights are rapidly decreasing and
∞�

r0

rjv(r)dr =

∞�

r0

rj+2v(r)
1

r2
dr <∞

for every r0 > 0, the polynomials are in Bp,q(v) for all 1 ≤ p ≤ ∞ and
q = 0 or 1 ≤ q ≤ ∞. By [Lu2, Theorem 2.1] (see also [?, Proposition 2.1]),
the polynomials are even dense whenever q 6= ∞. In particular, Bp,q(v) is
separable. For 1 < p < ∞ and 1 ≤ q < ∞ or q = 0, the monomials are a
Schauder basis of Bp,q(v), but this is not the case in general for p ∈ {1,∞}
[Lu2, Theorem 2.3].

Throughout the paper, Bp,q(a, α) denotes the space associated to the
following weight: va,α(r) = e−α, r ∈ [0, 1[, va,α(r) = rae−αr, r ≥ 1, if a < 0,
and va,α(r) = (a/α)ae−a, r ∈ [0, a/α[, va,α(r) = rae−αr, r ≥ a/α, if a > 0.
Clearly, changing the value of v on a compact interval does not change the
spaces and gives an equivalent norm. Moreover, we can assume without loss
of generality that the weight is differentiable. In case a = 0, we simply write
Bp,q(α). The norms will be denoted by ‖ ‖p,q,a,α and ‖ ‖p,q,α, respectively.
In case q = ∞, we write ||| |||p,a,α and ||| |||p,α. If, in addition, p = ∞, then
the spaces are denoted by Ha,α(C), H0

a,α(C), Hα(C) and H0
α(C), and the

norms by ‖ ‖a,α and ‖ ‖α, respectively. For p =∞ we adopt the convention
1/p := 0 and for q ∈ {0,∞}, 1/q := 0.

For the estimates of the norms of the operators on these spaces, we use
the Stirling formulas

n! ∼
√

2πn(n/e)n and Γ (x+ 1) ∼
√

2πx (x/e)x, x > 0,

where Γ denotes the Gamma function. Recall that Γ (z) =
	∞
0 e−ttz−1 dt,

z ∈ C, and Γ (n) = (n − 1)! for every n ∈ N. Given two real functions
h(x) and g(x), the expression h(x) ∼ g(x) means limx→∞ h(x)/g(x) = 1
and h(x) . g(x) means that there exists some constant D > 0 such that
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h(x) ≤ Dg(x) for every x ∈ R. When h(x) . g(x) . h(x), we simply write
h(x) ≈ g(x).

Whereas the behavior of the iterates of the differentiation and the in-
tegration operators depends heavily on the weights, the Hardy operator is
power bounded and uniformly mean ergodic in all cases.

The next lemma is an extension of [BB, Lemma 2.2]:

Lemma 2.1. Given a weight v, a > 0, 1 ≤ p ≤ ∞, and q = 0 or
1 ≤ q ≤ ∞, the following are equivalent:

(i) {eaθz : |θ| = 1} ⊆ Bp,q(v),
(ii) there is θ ∈ C, |θ| = 1, such that eaθz ∈ Bp,q(v),

(iii) limr→∞ v(r) ear

r1/(2p)
= 0 if q = 0, and r1/q−1/(2p)ear ∈ Lqv([r0,∞[) for

some r0 > 0 if q 6= 0.

Proof. (i)⇔(ii)⇔(iii) is proved for q = 0 in [BB, Lemma 2.2], where it is
shown that for each 1 ≤ p < ∞ there are dp, Dp, r0 > 0 such that, for each
|θ| = 1 and each r > r0,

(2.3) dp
ear

r1/(2p)
≤Mp(e

aθz, r) ≤ Dp
ear

r1/(2p)
.

This equivalence is also satisfied for 1 ≤ q <∞, since for every s > r0,

dqp

∞�

s

r1−q/(2p)v(r)qearq dr ≤
∞�

s

rv(r)qMp(e
aθz, r)q dr(2.4)

≤ Dq
p

∞�

s

r1−q/(2p)v(r)qearq dr.

Corollary 2.2. For the exponential weight v(r) = e−αr, α > 0, we
have eλz ∈ Bp,∞(α) if and only if eλz ∈ Bp,0(α), for every 1 ≤ p < ∞ and
λ ∈ C. This is not satisfied for p =∞, since eαz ∈ Hv(C) \H0

v (C).

Lemma 2.3. For every 1 ≤ p ≤ ∞, the unit ball Cp,0 is τco-dense in
Cp,∞.

Proof. Given f ∈ Cp,∞, let fr(z) := f(rz), r ∈ (0, 1). Fix r and ε > 0
and pick n ∈ N such that rn+1 < ε/4. If f(z) =

∑∞
k=0 akz

k is the Taylor se-
ries representation of f at 0, then the Taylor polynomial Pn(z) :=

∑n
k=0 akz

k

is in Bp,0(v), so there exists R > 0 such that v(s)Mp(Pn, s) < min(ε/2, 1)
for all s > R. Since r 7→ Mp(f, r) is increasing for every f ∈ H(C), for all
s > R we have

(2.5) v(s)Mp((Pn)r, s) = v(s)Mp(Pn, rs) ≤ v(s)Mp(Pn, s) < ε/2.

Moreover, if we consider g := f−Pn and h(z) :=
∑∞

k=n+1 akz
k−(n+1), z ∈ C,
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then g(z) = zn+1h(z). For s > R, by Minkowski’s inequality, we get

v(s)Mp(g, rs) = v(s)Mp(z
n+1h, rs) = rn+1sn+1v(s)Mp(h, rs)(2.6)

≤ rn+1sn+1v(s)Mp(h, s) = rn+1v(s)Mp(g, s)

= rn+1v(s)Mp(f − Pn, s)
≤ rn+1v(s)Mp(f, s) + rn+1v(s)Mp(Pn, s)

≤ rn+1(|||f |||p,v + min(ε/2, 1)) ≤ 2rn+1 ≤ ε/2.
By (2.5) and (2.6) we obtain

v(s)Mp(fr, s) = v(s)Mp(gr + (Pn)r, s)

≤ v(s)Mp(gr, s) + v(s)Mp((Pn)r, s) ≤ ε
for all s > R, which implies that fr ∈ Bp,0(v). Moreover, fr ∈ Cp,0 since

|||fr|||p,v = sup
s≥0

v(s)Mp(f, rs) ≤ |||f |||p,v ≤ 1,

and it is easy to see that fr converges to f in τco as r → 1, since f is
uniformly continuous on compact subsets of C.

The next lemma is inspired by [Bo, Proposition 1.1].

Lemma 2.4. Let T : (H(C), τco) → (H(C), τco) be a continuous linear
operator such that T (P) ⊆ P, let v be a weight and 1 ≤ p ≤ ∞. The
following conditions are equivalent:

(i) T (Bp,∞(v)) ⊆ Bp,∞(v),
(ii) T : Bp,∞(v)→ Bp,∞(v) is continuous,

(iii) T (Bp,0(v)) ⊆ Bp,0(v),
(iv) T : Bp,0(v)→ Bp,0(v) is continuous.

If (i)–(iv) hold, then ‖T‖L(Bp,∞(v)) = ‖T‖L(Bp,0(v)).
Proof. The equivalences (i)⇔(ii) and (iii)⇔(iv) follow from the closed

graph theorem, since Bp,∞(v) ↪→ H(C) continuously and T is continuous on
(H(C), τco). Moreover, (ii)⇒(iii) comes easily from the fact that the poly-
nomials are dense in Bp,0(v), T (P) ⊆ P and Bp,0(v) is closed in Bp,∞(v).
Clearly ‖T‖L(Bp,0(v)) ≤ ‖T‖L(Bp,∞(v)).

(iv)⇒(i). By Lemma 2.3, the unit ball of Bp,0(v) is τco-dense in the unit
ball of Bp,∞(v), so given f in Cp,∞ there exists {fα}α in Cp,0 such that
{fα}α converges to f in τco and |||Tfα|||p,v ≤ ‖T‖L(Bp,0(v)). Since T is τco-
continuous, Tfα converges to Tf in τco, and since the unit ball of Bp,∞(v)
is τco-closed, we have |||Tf |||p,v ≤ ‖T‖L(Bp,0(v)). Since this happens for every
f in the unit ball of Bp,∞(v), the operator T : Bp,∞(v) → Bp,∞(v) is con-
tinuous with ‖T‖L(Bp,∞(v)) ≤ ‖T‖L(Bp,0(v)), and thus the norms coincide.

In what follows we write |||T |||p,v instead of ‖T‖L(Bp,∞(v)) = ‖T‖L(Bp,0(v))
for 1 ≤ p ≤ ∞, and ‖T‖p,v instead of ‖T‖L(Bpv ). For 1 ≤ q < ∞ we use
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the notation ‖T‖p,q,v. Moreover, |||T |||p,a,α, ‖T‖p,a,α and ‖T‖p,q,a,α refer to
the norm of the operator acting on the respective spaces associated to the
weight va,α. For v(r) = e−αr, r ≥ 0, we omit the a.

Using Lemma 2.4 and arguing as in the proof of [BBF, Proposition 2.3]
we get the proposition below. In fact, inspecting the proof we even find that
if J is mean ergodic on Bp,∞(v) or on Bp,0(v), then limm (J+ · · ·+Jm)(f)/m
= 0 for every f in the corresponding space. Observe also that as the poly-
nomials are dense in Bp,0(v), the operator D is mean ergodic on Bp,0(v) if
and only if it is Cesàro power bounded. In this case, P (f) = 0 for every
f ∈ Bp,0(v).

Proposition 2.5. Let T = D or T = J and assume that T is contin-
uous on Bp,∞(v), and equivalently on Bp,0(v). The following conditions are
equivalent:

(i) T : Bp,∞(v)→ Bp,∞(v) is uniformly mean ergodic,
(ii) T : Bp,0(v)→ Bp,0(v) is uniformly mean ergodic,
(iii) limm→∞ |||T + · · ·+ Tm|||p,v/m = 0.

Also from the proof of [BBF, Proposition 2.3] we obtain the next general
lemma:

Lemma 2.6. If T ∈ L(X) is a uniformly mean ergodic operator such
that limm→∞ ‖T + · · ·+ Tm‖/m = 0, then 1 6∈ σ(T ).

For every 1 ≤ p ≤ ∞ and n ∈ N we have Mp(z
n, r) = rn, and thus

‖zn‖p,q,v = ‖zn‖∞,q,v. In what follows, we denote it simply by ‖zn‖q,v. As
in [Bo], it is important to estimate the norms of monomials. In fact, from
the inequalities ‖1‖q,vn! ≤ ‖Dn‖p,q,v‖zn‖q,v and ‖zn‖q,v/n! = ‖Jn(1)‖q,v ≤
‖Jn‖p,q,v‖1‖q,v we get:

Lemma 2.7. Let v be a weight such that the differentiation operator D
and the integration operator J are continuous on Bp,q(v), 1 ≤ p ≤ ∞, q = 0
or 1 ≤ q ≤ ∞.

(i) If D is power bounded (resp. uniformly mean ergodic), then infn
‖zn‖q,v
n!

> 0 (resp. ‖zn‖q,v/(n− 1)!→∞).
(ii) If J is power bounded (resp. mean ergodic), then {‖zn‖q,v/n!}n is

bounded (resp. ‖zn‖q,v/(n!n)→ 0).

In [BBF] it is shown that for the weights v(r) = rae−αr (α > 0, a ∈ R)
for r ≥ r0 for some r0 ≥ 0,

(2.7) ‖zn‖v ≈
(
n+ a

eα

)n+a
,

with equality for v(r) = e−αr, r ≥ 0. In what follows the symbol ≈ will
appear as a consequence of the fact that the value of a given weight v can
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be changed on a compact interval in order to satisfy some required conditions
without changing the spaces and giving an equivalent norm.

For 1 ≤ q <∞, the Stirling formula yields

‖zn‖q,a,α ≈
(

2π

∞�

0

r(a+n)q+1e−αrq dr
)1/q

=

(
2π
Γ ((a+ n)q + 2)

(αq)(a+n)q+2

)1/q

(2.8)

≈
(

(a+ n)q + 1

eαq

)a+n+3/(2q)

.

Observe that (2.8) tends to (2.7) as q →∞. Applying again the Stirling
formula yields

‖zn‖q,a,α
n!

≈ na+3/(2q)−1/2

αn
.(2.9)

3. The integration operator

Proposition 3.1. The operator J is not hypercyclic on H(C), nor on
Bp,q(v) for 1 ≤ p ≤ ∞, and q = 0 or 1 ≤ q <∞, whenever it is continuous.
Moreover, J − λI is injective on H(C) for all λ ∈ C, and J has no periodic
points different from 0 on H(C).

Proof. Jf(0) = 0 for every f ∈ H(C), thus Im(J), and the orbit of an
element, cannot be dense. What is more, Jmf tends to zero in the compact-
open topology for every f ∈ H(C). Indeed, given f(z) =

∑∞
k=0 akz

k ∈ H(C),
we have Jmf(z) =

∑∞
k=0 akz

k+m k!
(k+m)! , so

|Jmf(z)| ≤ Rm
∞∑
k=0

|ak|Rk
k!

(k +m)!
≤ Rm

m!

∞∑
k=0

|ak|Rk

for every z ∈ C, |z| ≤ R. Thus, Jmf tends to zero in the compact-open
topology.

If λ = 0, then J is injective, since Jf = 0 implies f = DJf = 0. If λ 6= 0

and Jf − λf = 0, then f − λDf = 0, so f(z) = Ce
1
λ
z for some C ∈ C. But

f(0) = 1
λJf(0) = 0, which implies 0 = f(0) = C, and thus f = 0.

Now suppose that Jmf = f for some f 6= 0 and some m ∈ N. Using the
trivial decomposition Jm−I = (J−θ1I) . . . (J−θmI), θmj = 1, j = 1, . . . ,m,
we conclude that there is g ∈ H(C), g 6= 0, and θ ∈ C, θm = 1, such that
(J − θI)g = 0. But J − θI is injective, so we get a contradiction.

Proposition 3.2. Let v be a weight such that J is continuous on Bp,q(v),
1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ or q = 0, and assume that v(r)eαr is non-decreasing
for some α > 0. Then σ(J) ⊇ (1/α)D.

Proof. To see that (1/α)D ⊆ σ(J) we show that J − λI is not surjective
on Bp,q(v) for |λ| < 1/α. For λ = 0, J is not surjective on any Bp,q(v)
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(without any additional assumption) since Jf(0) = 0 for each f, hence the
equation Jf = 1 has no solution. Now assume that λ 6= 0 and that there is
f ∈ Bp,q(v) such that Jf − λf = 1. Then f − λf ′ = 0 and, as by Lemma
2.1, ez/λ /∈ Bp,q(v), we have f ≡ 0, and thus Jf − λf 6= 1.

Following [AB] we define, for every λ ∈ C, an integral operator Kλ on
H(C) by

Kλf(z) = eλz
z�

0

e−λζf(ζ) dζ, f ∈ H(C), z ∈ C.

It maps H(C) into itself continuously and it is a right inverse of D − λI.
Integrating along the segment that joins 0 to z, we obtain, for f ∈ H(C),

(3.1) Kλf(z) = z

1�

0

eλz(1−t)f(zt) dt, z ∈ C.

Observe that for λ = 0, it is just the integration operator J.

Proposition 3.3. Let v be a weight such that v(r)eαr is non-increasing
for some α > 0 and let 1 ≤ p ≤ ∞. If |λ| < α, then the operator Kλ is
continuous on Bp,∞(v) and on Bp,0(v) with |||Kλ|||p,v ≤ 1/(α− |λ|). As a
consequence, J is continuous on Bp,∞(v) with |||J |||p,v ≤ 1/α. In particular,
σ(J) ⊆ (1/α)D. Moreover, |||Jm|||p,a,α ≈ 1/αm for all m ∈ N0 and a ≤ 0,
with equality for a = 0.

Proof. Given f ∈ Bp,∞(v), we have

Mp(Kλf, r) =

(
1

2π

2π�

0

|Kλf(reiθ)|p dθ
)1/p

= r

(
1

2π

2π�

0

∣∣∣ 1�
0

eλre
iθ(1−t)f(treiθ) dt

∣∣∣p dθ)1/p

.

So, applying the Minkowski integral inequality we obtain

Mp(Kλf, r) ≤ r
1�

0

(
1

2π

2π�

0

e|λ|r(1−t)p|f(treiθ)|p dθ
)1/p

dt

= r

1�

0

e|λ|r(1−t)Mp(f, rt) dt.

Thus, by hypothesis, for |λ| < α,

v(r)Mp(Kλf, r) ≤ r
1�

0

v(tr)Mp(f, rt)e
r(t−1)(α−|λ|) dt ≤ |||f |||v,p

α− |λ|
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and Kλ : Bp,∞(v) → Bp,∞(v) is continuous with |||Kλ|||p,v ≤ 1/(α− |λ|).
Let us see now that Kλ(Bp,0(v)) ⊆ Bp,0(v). Since

Kλ(1) = − 1

λ
+

1

λ
eλz ∈ Bp,0(v),

and integrating by parts yields

Kλ(zn) = − 1

λ
zn +

n

λ
Kλ(zn−1), n ∈ N,

we get

Kλ(P) ⊆ P ⊕ span(eλz) ⊆ Bp,0(v).

Since the polynomials are dense in Bp,0(v), Kλ : Bp,0(v) → Bp,0(v) is con-
tinuous.

If we consider λ = 0, we get |||J |||p,v ≤ 1/α, and the spectral radius
formula yields σ(J) ⊆ (1/α)D. As a consequence, |||J |||p,a,α . 1/α.

The lower estimate is satisfied for all 1 ≤ q ≤ ∞ whenever J is continu-
ous, using (2.9):

‖Jm‖p,q,a,α ≥ sup
k∈N

‖Jm(zk)‖p,q,a,α
‖zk‖q,a,α

= sup
k∈N

‖zk+m‖q,a,α
‖zk‖q,a,α

k!

(k +m)!
(3.2)

& lim
k

1

αm

(
1 +

m

k

)a+3/(2q)−1/2
=

1

αm
.

Proposition 3.4. Let v be a weight such that v(r)eαr is non-increasing
for some α > 0 and let 1 ≤ p <∞, p > 1/α. Then Kλ is continuous on Bp

v

if |λ| < α and J is continuous on Bp
v with

‖Jm‖p,v .
(

p

αp− 1

)m
for every m ∈ N.

In particular, σ(J) ⊆ p
αp−1D. Moreover, ‖Jm‖p,a,α & 1/αm for all m ∈ N0.

Proof. The continuity is proved in [AB, Theorem 4] for weights of the
type v(z) = exp(−ϕ(|z|)), z ∈ C, where ϕ is a non-negative concave function
on R+ such that ϕ(0) = 0 and limt→∞ ϕ(t)/log t = ∞. For our weights, to
get an estimate for the norm we proceed similarly. Since Kλ : H(C)→ H(C)
is continuous, it would be enough to show that Kλ is bounded on Lpv(C). But
this is not the case for 1 ≤ p <∞. Simple examples show that Kλ is not even
defined on this space for 1 ≤ p ≤ 2. However, for 1 ≤ p < ∞, the measure
v(z)pdλ(z) can be replaced by another positive Borel measure µ on C such
that the space Lp(C, dµ) includes Bp

v , the restriction of its norm Np to Bp
v

is equivalent to the Lpv(C) norm, and Kλ maps Lp(C, dµ) continuously into
itself.
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Since v(r)eαr is non-increasing, the function ρ(r) := v(r) for 0 ≤ r ≤ 1,
and ρ(r) := v(r)r1/p for r > 1, satisfies

ρ′(r)

ρ(r)
=
v′(r)

v(r)
< −α if r ≤ 1

and
ρ′(r)

ρ(r)
=
v′(r)

v(r)
+

1

rp
< −α+

1

p
if r > 1.

So, applying the mean value theorem to the function log ρ, we get

(3.3) ρ(t) ≤ ρ(x)e(1/p−α)(t−x), 0 < x < t,

which yields

(3.4)

∞�

x

ρ(t)p dt ≤ ρ(x)p

αp− 1
, x ∈ R+.

Hence, as ρ satisfies the hypothesis of [AB, Proposition 2(1)], the operator
Vγ : Lpρ(R+)→ Lpρ(R+) given by

Vγf(x) = eγx
x�

0

e−γtf(t) dt, x ∈ R+,

is continuous. Moreover, since (3.7) in the proof of [AB, Proposition 2] is sat-
isfied for a constant C := 1/(1− αp), we even get ‖V0‖ ≤ Cp = p/(αp− 1).
By [AB, Theorem 4], Np(Kλ) ≤ ‖Vλ‖. In particular, Np(J) ≤ ‖V0‖ ≤
p/(αp− 1). Since the norms Np and ‖ ‖p,v are equivalent on Bp

v , we con-
clude that ‖Jm‖p,v .

( p
αp−1

)m
for every m ∈ N. Therefore, the conclusion

about the norm and the spectrum follows. The lower estimate is calculated
in (3.2).

Corollary 3.5. The spectrum of J : Bp,q(a, α)→ Bp,q(a, α) satisfies

σ(J) = (1/α)D for 1 ≤ p ≤ ∞, q ∈ {0,∞},

(1/α)D ⊆ σ(J) ⊆ p

αp− 1
D for 1 ≤ p <∞, p > 1/α, p = q.

Proof. For each β < α, the function va,α(r)eβr is decreasing in [r0,∞[ for
some r0 > 0. Therefore, by Propositions 3.3 and 3.4, the integration operator
J is continuous on Bp,q(a, α), and for an equivalent norm, ‖Jm‖ ≤ 1/βm

on Bp,∞(v) and ‖Jm‖ ≤
( p
βp−1

)m
on Bp

v for 1 ≤ p <∞. Thus, the spectral

radius r(J) satisfies r(J) ≤ 1/β and r(J) ≤ p/(βp− 1), respectively. Since
β < α is arbitrary, we have σ(J) ⊆ (1/α)D and σ(J) ⊆ p

αp−1D. On the

other hand, va,α(r)eγr is non-decreasing for every γ > α. By Proposition
3.2, σ(J) ⊇ (1/γ)D for every γ > α, and thus σ(J) ⊇ (1/α)D.



48 M. J. Beltrán

Theorem 3.6.

(a) Let 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞ or q = 0, and assume J : Bp,q(v)→
Bp,q(v) is continuous. Then:

(i) If rae−αr = O(v(r)) for α < 1, a ∈ R, or α = 1, a > 1/2 −
3/(2q), then J is not power bounded on Bp,q(v).

(ii) J is not uniformly mean ergodic on Bp,q(v) if v(r)eβr is non-
decreasing for all β > 1. In particular J is not uniformly mean
ergodic on Bp,q(a, 1), for any a ∈ R.

(iii) If r3/2−3/(2q)e−r = O(v(r)), then J is not mean ergodic on
Bp,q(v). In particular, it is not mean ergodic on Bp,q(a, α) when
α < 1, a ∈ R.

(b) For 1 ≤ p ≤ ∞ and q ∈ {0, p,∞}, we get:

(iv) J is power bounded on Bp,q(v) for q ∈ {0, p,∞} and mean er-
godic for q∈{0, p} provided that v(r)e(1+1/q)r is non-increasing.
In particular, this monotonicity condition is satisfied for the
weight va,1+1/q for every a ≤ 0.

(v) J is uniformly mean ergodic on Bp,q(v) if v(r)eαr is non-in-
creasing for some α > 1 + 1/q.

Proof. (i) We have ‖zn‖q,a,α/n! = O(‖zn‖v/n!) and (2.9) implies that
the sequence {‖zn‖q,a,α/n!}n is unbounded if α < 1, a ∈ R, or α = 1,
a > 1/2− 3/(2q). So, by Lemma 2.7(ii), J is not power bounded.

(ii) If for all β > 1, v(r)eβr is non-decreasing in some interval [r0,∞[,
then σ(J) ⊇ D. Since 1 ∈ σ(J), Lemma 2.6 yields the conclusion.

(iii) By (2.9), the sequence {‖zn‖q,3/2−3/(2q),1/(n!n)}n does not tend to
zero and ‖zn‖q,3/2−3/(2q),1 = O(‖zn‖p,q,v). By Lemma 2.7(ii), J is not mean
ergodic on Bp,q(v).

(iv) The first statement follows from the estimates of the norm of Jm in
Propositions 3.3 and 3.4. Moreover, for each k ∈ N,

‖Jm(zk)‖p,q,v =
k!

(m+ k)!
‖zm+k‖q,v .

k!

(m+ k)!
‖zm+k‖q,1+1/q.

So, by (2.9), the successive iterates tend to zero on the polynomials. As J is
power bounded and the polynomials are a dense subset, {Jmf}m converges
to zero for each f ∈ Bp,q(v), and thus m−1

∑m
j=1 J

jf also converges to 0.

(v) {‖Jn‖p,q,v}n tends to zero by Propositions 3.3 and 3.4, therefore∥∥∥∥ 1

m

m∑
j=1

J j
∥∥∥∥
p,q,v

≤ 1

m

m∑
j=1

‖J j‖p,q,v → 0.

From Theorem 3.6 and [BBF, Corollary 3.6], we obtain:
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Corollary 3.7. Let 1 ≤ p ≤ ∞. The integration operator J is uni-
formly mean ergodic on Bp,q(α), q ∈ {0, p,∞}, if α > 1 + 1/q, and it is not
mean ergodic on these spaces if 1/q < α < 1. Moreover, J is power bounded
and mean ergodic on Bp,q(1 + 1/q), q ∈ {0, p}, not uniformly mean ergodic
on Bp,q(1), q ∈ {0, p,∞}, and not mean ergodic on H1(C).

4. The Hardy operator. The next theorem is an analogue of [BBF,
Theorem 3.12] for weighted spaces of entire functions.

Theorem 4.1. Given a weight v, 1 ≤ p ≤ ∞, and q = 0 or 1 ≤ q ≤ ∞,
the Hardy operator H : Bp,q(v) → Bp,q(v), Hf(z) = z−1

	z
0 f(ζ) dζ, z ∈ C,

is well defined and continuous with norm ‖H‖ = 1. Moreover, H2 is com-
pact and H2(Bp,∞(v)) ⊆ Bp,0(v). If the integration operator J : Bp,q(v) →
Bp,q(v) is continuous, then H is compact. Moreover, H(Bp,∞(v)) ⊆ Bp,0(v).

Proof. For every f ∈ H(C) and r ≥ 0 we have

Mp(Hf, r)
p =

1

2π

2π�

0

∣∣∣∣ 1

reiθ

reiθ�

0

f(ω) dω

∣∣∣∣p dθ
=

1

2π

2π�

0

∣∣∣ 1�
0

f(treiθ) dt
∣∣∣p dθ

≤
1�

0

1

2π

2π�

0

|f(treiθ)|p dθ dt ≤Mp(f, r)
p.

Hence, for every f ∈ Bp,q(v) we have ‖Hf‖p,q,v ≤ ‖f‖p,q,v and ‖H‖ :=
‖H‖p,q,v ≤ 1. On the other hand, since H(c) = c for every c ∈ C, taking
g := c/‖c‖q,v ∈ Bp,q(v) we obtain ‖H‖ = 1.

Given f =
∑∞

k=0 akz
k ∈ Bp,q(v), the Cauchy and Jensen inequalities

imply

|ak| ≤
1

2π

∣∣∣∣ �

|ω|=R

f(ω)

ωk+1
dω

∣∣∣∣ =
1

Rk
M1(f,R) ≤ 1

Rk
Mp(f,R)(4.1)

for every R > 0, so |ak| ‖zk‖q,v ≤ ‖f‖p,q,v for every k ∈ N0. As H2f(z) =∑∞
k=0

ak
(k+1)2

zk, one has∥∥∥∥H2f −
N∑
k=0

ak
(k + 1)2

zk
∥∥∥∥
p,q,v

≤
∞∑

k=N+1

|ak| ‖zk‖q,v
(k + 1)2

(4.2)

≤ ‖f‖p,q,v
∞∑

k=N+1

1

(k + 1)2
,
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which shows that the finite rank operatorsH2
N (
∑∞

k=0 akz
k) :=

∑N
k=0

ak
(k+1)2

zk

are bounded on Bp,q(v) and that

‖H2 −H2
N‖p,q,v ≤

∞∑
k=N+1

1

(k + 1)2
,

proving the compactness of H2. Since H2f belongs to the closure of the
polynomials, it belongs to Bp,0(v) if f ∈ Bp,∞(v).

Finally, suppose thatJ :Bp,q(v)→Bp,q(v) is continuous. SinceMp(Hf, r)
= 1

rMp(Jf, r) for every r ≥ 0, the Hardy operator H : Bp,∞(v) → Bp,0(v)
is well defined, as for every r ≥ 0,

v(r)Mp(Hf, r) = v(r)
1

r
Mp(Jf, r) ≤

|||J |||p,v
r
|||f |||p,v.

Take a sequence {fn}n in the unit ball of Bp,q(v). As it is compact with
respect to the compact-open topology τco, there exists a subsequence {nk}k
such that fnk tends to some f in the unit ball of Bp,q(v) in τco. Given ε > 0,
take R > 0 such that R > 2

ε‖J‖p,q,v in order to get

v(r)Mp(Hfnk −Hf, r) ≤ v(r)
1

r
Mp(Jfnk − Jf, r) ≤

2

R
‖J‖p,q,v ≤ ε

for r ≥ R and

2π

∞�

R

rv(r)qMp(Hfnk−Hf, r)
q dr ≤ 2π

∞�

R

r1−qv(r)qMp(Jfnk − Jf, r)
q dr

≤ 1

Rq
‖Jfnk − Jf‖

q
p,q,v ≤

2q

Rq
‖J‖qp,q,v <εq.

Since the Hardy operator H :H(C)→H(C) is continuous, there exists k0
such that ‖Hfnk −Hf‖p,q,v ≤ ε for k ≥ k0, and therefore H is compact.

Proceeding as in [BBF, Corollary 3.13] yields:

Corollary 4.2. The Hardy operator H is power bounded and uniformly
mean ergodic on Bp,q(v) for 1 ≤ p ≤ ∞, and q = 0 or 1 ≤ q ≤ ∞. Moreover,
its spectrum is σ(H) = {1/n}n∈N ∪ {0}.

Remark 4.3. Observe that unlike the operators J and D, the Hardy
operator H is mean ergodic and 1 belongs to its spectrum on Bp,q(v). The
Cesàro means of the iterates ofH do not converge to zero on the polynomials.
Being power bounded, H cannot be hypercyclic on Bp,q(v). In fact, since
δ0(H

nf) = f(0) for each f ∈ H(C), H is not hypercyclic onH(C). Moreover,
it is not difficult to show that the spectrum of H : H(C)→ H(C) reduces to
its eigenvalues {1/n}n∈N, since by the Cauchy–Hadamard theorem, H − λI
is surjective for λ 6∈ {1/n}n∈N.
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5. The differentiation operator. The results of the first part of this
section are inspired by [Bo] and [BB].

Proposition 5.1. Let v be a weight such that C := supr>0
v(r)
v(r+1) <∞.

Then the differentiation operator D : Bp,q(v) → Bp,q(v) is continuous for
every 1 ≤ p ≤ ∞, and q = 0 or 1 ≤ q ≤ ∞.

Proof. The case q ∈ {0,∞} is proved in [BB, Proposition 2.1], where it
is shown that Mp(f

′, r) ≤ r+1
2r+1Mp(f, r + 1) for every f ∈ H(C), r > 0 and

1 ≤ p ≤ ∞. Therefore,

‖Df‖qp,q,v = 2π

∞�

0

rv(r)qMp(f
′, r)q dr

≤ Cq2π
∞�

0

(r + 1)v(r + 1)qMp(f, r + 1)q dr ≤ Cq‖f‖qp,q,v,

and so D is continuous.

Theorem 5.2. Let 1 ≤ p ≤ ∞, and 1 ≤ q < ∞ or q = 0. Assume
that the differentiation operator D : Bp,q(v) → Bp,q(v) is continuous. The
following conditions are equivalent:

(i) D satisfies the hypercyclicity criterion.
(ii) D is hypercyclic.

(iii) lim infn→∞ ‖zn‖q,v/n! = 0.

Proof. As in the proof of [BB, Theorem 2.8], we find that if we assume
that D is hypercyclic, then there is f ∈ Bp,q(v) such that {f (n)(0)}n is
unbounded in C. Fix n ∈ N. By the Cauchy inequalities, for each r > 0,

rn
|f (n)(0)|

n!
=
rn

2π

∣∣∣∣ �

|w|=r

|f(w)|
wn+1

dw

∣∣∣∣ ≤ 1

2π

2π�

0

|f(reiθ)| dθ ≤Mp(f, r),

which yields |f (n)(0)| ‖zn‖q,v/n! ≤ ‖f‖p,q,v for every n ∈ N. Since {f (n)(0)}n
is unbounded, there exists an increasing sequence {nk}k ⊆ N such that
limk→∞ |f (nk)(0)| = ∞. Hence, lim infn→∞ ‖zn‖q,v/n! = 0. Since the poly-
nomials are dense in Bp,q(v), proceeding as in [Bo, Theorem 2.3] we get
(iii)⇒(i).

Theorem 5.3. Assume that D : Bp,q(v) → Bp,q(v) is continuous. The
following conditions are equivalent:

(i) D is topologically mixing.
(ii) limn→∞ ‖zn‖q,v/n! = 0.

Proof. By the proof of [Bo, Theorem 2.4], if D is topologically mixing,
then limn→∞ ‖δ0 ◦Dn‖ =∞. Proceeding as in the proof of Theorem 5.2, for
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each f ∈ Bp,q(v) with ‖f‖p,q,v ≤ 1 and each n ∈ N we have

|δ0 ◦Dn(f)|‖z
n‖q,v
n!

= |f (n)(0)|‖z
n‖q,v
n!

≤ ‖f‖p,q,v.

So, (ii) holds. Since the polynomials are dense in Bp,q(v), (ii) implies that
D satisfies the assumptions of the criterion of Kitai–Gethner–Shapiro, and
thus it is topologically mixing.

Lemma 5.4. Let A ⊆ αD, α > 0, be a subset with at least one accumu-
lation point in αD or such that A ∩ δ(αD) is dense in δ(αD) := {z ∈ C :
|z| = α}. If 1 ≤ p ≤ ∞ and limr→∞ v(r)eαr/r1/(2p) = 0, then the set
Y := span({ea : a ∈ A}) is dense in Bp,0(v), where eω(z) := eωz with
z, ω ∈ C. If for some r0 > 0, r1/q−1/(2p)eαr ∈ Lqv([r0,∞[), 1 ≤ p ≤ ∞
and 1 ≤ q < ∞, then Y is dense in Bp,q(v). Under these assumptions,
zneζ(z) ∈ Bp,q(v) for every n ∈ N and ζ ∈ C, |ζ| ≤ α.

Proof. Let u be a continuous functional on Bp,q(v), and assume that

u(f) = 0 for each f ∈ Y. Consider the function S : αD → Bp,q(v), ζ 7→ eζ ,
and define ũ := u ◦S : αD→ C, so ũ(ζ) = u(eζ) for ζ ∈ αD. By Lemma 2.1,
S is well defined and bounded. Indeed, by (2.3), for 1 ≤ p ≤ ∞ and ζ ∈ αD,

|||S(ζ)|||p,v = |||eζz|||p,v = sup
r≥0

v(r)Mp(e
ζz, r) ≤ Dp sup

r≥0
v(r)

eαr

r1/(2p)

in case q = 0, whereas for 1 ≤ q < ∞ there exists some constant Dp,q > 0
such that

‖S(ζ)‖p,q,v = ‖eζz‖p,q,v ≤ Dp,q

(
2π

∞�

0

r1−q/(2p)v(r)qearq dr
)1/q

=: M.

Since S is locally bounded (even bounded), we proceed analogously to the
proof of [BB, Theorem 2.3] to show that S is holomorphic on αD with
zneζ(z) = S(n)(ζ) ∈ Bp,q(v).

Let us see now that S : αD→ Bp,q(v) is continuous. The case q = 0 can
be found in the proof of [BB, Theorem 2.3]. For 1 ≤ q < ∞ observe that,
given ζ0 in the boundary of αD and a sequence {ζj}j ∈ αD converging to ζ0,
by (2.3) there exist C, r0 > 0 such that

‖S(ζj)− S(ζ0)‖qp,q,v = 2π

∞�

0

rv(r)qMp(e
ζjz − eζ0z, r)q dr

≤ C
∞�

r0

r1−q/(2p)v(r)qeαrq dr.

Given ε > 0, the hypothesis implies that there exists r1 > r0 such that
∞�

r1

r1−q/(2p)v(r)qeαrq dr <
ε

2C
.
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Since the map C → H(C), ζ 7→ eζz, is continuous, there exists j0 ∈ N such
that

r1�

r0

rv(r)qMp(e
ζjz − eζ0z, r)q dr ≤

r1�

r0

rv(r)qM∞(eζjz − eζ0z, r)q dr < ε

2C
.

So, S is continuous. Since u ◦ S is holomorphic on αD, continuous at the
boundary and vanishes in A, it is zero in αD. In particular, we get 0 =
(u ◦ S)(n)(0) = u(S(n)(0)) = u(zn) for each n ∈ N0. As the polynomials are
dense in Bp,q(v), it follows that u = 0. By the Hahn–Banach theorem we
conclude that Y is dense in Bp,q(v).

Theorem 5.5. Assume that D : Bp,q(v) → Bp,q(v) is continuous. If
limr→∞ v(r)er/r1/(2p) = 0 for q = 0, and r1/q−1/(2p)er ∈ Lqv([r0,∞[) for
some r0 > 0 if 1 ≤ q < ∞, then D is frequently hypercyclic, and thus
hypercyclic. Moreover, it is topologically mixing on Bp,q(v) for 1 ≤ p ≤ ∞
when q = 0, and for 1 < p ≤ ∞ when 1 ≤ q <∞.

Proof. By [Gr, Theorem 1.4], to prove that D is frequently hypercyclic,
it is enough to show that D has a perfectly spanning set of eigenvectors
associated to unimodular eigenvalues. As a probability measure we consider
the normalized Lebesgue measure on T. If a subset A of T has Lebesgue
measure 1, then A is dense in T. By Lemma 5.4, span({ea : a ∈ A}) is dense
in Bp,q(v), and the condition is satisfied.

Let us see now that D : Bp,q(v) → Bp,q(v) is topologically mixing. By
Theorem 5.3, it is equivalent to study when limn ‖zn‖q,v/n! = 0. For q = 0,
the hypothesis implies that given ε > 0, there exists rε > 0 such that
v(r) ≤ εr1/(2p)e−r for every r ≥ rε. Let rn be a global maximum point of
the function r 7→ v(r)rn; by [HL, Lemma 1.2], rn →∞ as n→∞, so there
exists some nε such that for n ≥ nε,

(5.1)
‖zn‖v
n!

= sup
r≥rε

v(r)
rn

n!
≤ ε sup

r≥rε
r1/(2p)e−r

rn

n!
≤ ε
‖zn‖1/(2p),1

n!
.

By (2.9), ‖zn‖1/(2p),1/n! converges to 0 for 1 < p ≤ ∞ and to 1 for p = 1.
Therefore, since (5.1) holds for every ε > 0, we have limn ‖zn‖v/n! = 0. For
1 ≤ q <∞,

‖zn‖qq,v
n!q

.
∞�

r0

rv(r)q
rnq

n!q
dr =

∞�

r0

rnq+q/(2p)e−rq

n!q
v(r)qr1−q/(2p)erq dr

≤
‖zn‖q1/(2p),1

n!q

∞�

r0

v(r)qr1−q/(2p)erq dr.

Since ‖zn‖1/(2p),1/n!→ 0 for 1 < p ≤ ∞, we get limn ‖zn‖q,v/n! = 0.
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Theorem 5.6. Assume that D : Bp,q(v) → Bp,q(v) is continuous for
some 1 ≤ p ≤ ∞, and q = 0 or 1 ≤ q < ∞. The following conditions are
equivalent:

(i) D is chaotic.
(ii) D has a periodic point different from 0.
(iii) limr→∞ v(r)er/r1/(2p) = 0 if q = 0, and r1/q−1/(2p)er ∈ Lqv([r0,∞[)

for some r0 > 0 if 1 ≤ q <∞.
Proof. Clearly (i) implies (ii). Let us see (ii)⇒(iii). By hypothesis, there

exists a function 0 6= f ∈ Bp,q(v) such that Dnf = f for some n ∈ N.
Using the trivial decomposition Dn − I = (D − θ1I) . . . (D − θnI), θnj = 1,
j = 1, . . . , n, we conclude that there is θ ∈ C, |θ| = 1, and g ∈ Bp,q(v),
g 6= 0, such that (D − θI)g = 0. This yields eθz ∈ Bp,q(v). Using Lemma
2.1, we obtain (iii).

(iii)⇒(i). Denote by P the linear span of the functions eθz, θ ∈ C, θn = 1
for some n ∈ N. Obviously, P is formed by periodic points and, by Lemma
5.4, it is dense in Bp,q(v). On the other hand, since D is hypercyclic by
Theorem 5.5, it is chaotic.

Observe that Theorems 5.6 and 5.5 show that any chaotic continuous
differentiation operator D : Bp,q(v) → Bp,q(v) is frequently hypercyclic,
even topologically mixing on Bp,q(v) for 1 ≤ p ≤ ∞ when q = 0 and for
1 < p ≤ ∞ when 1 ≤ q <∞.

In [BB, Corollaries 2.6, 2.7 and 2.10], some examples of weights for which
the differentiation operator on Bp,q(v), 1 ≤ p ≤ ∞, q = 0, is topologically
mixing, chaotic, or none of them are shown. We present here some examples
for the case 1 ≤ q <∞.

Corollary 5.7. Consider the weight va,α, a ∈ R, α > 0, 1 ≤ p ≤ ∞,
and q = 0 or 1 ≤ q <∞.

(a) If α < 1, then D is neither hypercyclic nor chaotic on Bp,q(v).
(b) If α > 1 then D is topologically mixing and chaotic on Bp,q(v).
(c) If α = 1, D is hypercyclic (even topologically mixing) if and only if

a < 1/2− 3/(2q), and D is chaotic if and only if a < 1/(2p)− 2/q.

Proof. Note that Theorem 5.6 yields the conclusion about chaos since
va,α(r)err−1/(2p) = er(1−α)ra−1/(2p) tends to zero as r → ∞ if and only if
α > 1, or α = 1 and a < 1/(2p), and

	∞
r0
r1+aq−q/(2p)e−rq(α−1) dr <∞ if and

only if α > 1, or α = 1 and a < 1/(2p) − 2/q. Theorem 5.3 and (2.9) yield
the conclusion about hypercyclicity.

Corollary 5.8. Assume that 1 ≤ p ≤ ∞, and q = 0 or 1 ≤ q <∞.
(a) If v(r) = r1/(2p)−1/qe−r/ϕ(r) for r large enough, where ϕ(r) is a

positive increasing continuous function with limr→∞ ϕ(r) = ∞ in
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the case q = 0, or 1/ϕ(r) ∈ Lq([r0,∞[) for 1 ≤ q < ∞, and
supr>0 ϕ(r + 1)/ϕ(r) < ∞, then D : Bp,q(v) → Bp,q(v) is chaotic,
and thus a frequently hypercyclic continuous operator.

(b) If v(r) = r1/(2p)−1/qe−r for r large enough, then D : Bp,q(v) →
Bp,q(v) is continuous, but it is hypercyclic (even topologically mixing)
if and only if 1/p + 1/q < 1. For this weight, D is never chaotic.
Observe that for q = 0 and p > 1 it is always topologically mixing,
but not chaotic.

Proof. (a) is trivial from Proposition 5.1 and Theorem 5.6; (b) follows
from Corollary 5.7 by considering a = 1/(2p)− 1/q.

From now on we restrict our attention to the spaces Bp,q(a, α), a ∈ R,
α > 0.

Proposition 5.9. Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. If a > 0, then

‖Dn‖p,q,a,α = O

(
n!

(
eα

n

)n)
.

If a ≤ 0 and n > |a|, then

‖Dn‖p,q,a,α = O

(
n!

(
eα

n+ a

)n+a)
.

For 1 ≤ q <∞,

n!

(
eαq

(a+ n)q + 1

)n+a+3/(2q)

= O(‖Dn‖p,q,a,α),

and for q =∞,

n!

(
eα

n+ a

)n+a
= O(|||Dn|||p,a,α),

with equality for a = 0.

Proof. For the lower estimate we use

‖Dn‖p,q,a,α ≥
∥∥∥∥Dn

(
zn

‖zn‖q,a,α

)∥∥∥∥
p,q,a,α

=
n!‖1‖q,a,α
‖zn‖q,a,α

and (2.8). Applying Jensen’s inequality and Fubini’s Theorem as in [BB,
Proposition 2.1], we get

Mp(f
(n), r) =

(
1

2π

2π�

0

|f (n)(reiθ)|pdθ
)1/p

=

(
1

2π

2π�

0

∣∣∣∣ n!

2πi

2π�

0

f(Reiϕ)iReiϕ

(Reiϕ − reiθ)n+1
dϕ

∣∣∣∣p dθ)1/p
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≤ n!

(
1

2π

2π�

0

(
1

2π

2π�

0

|f(Reiϕ)|R
|Reiϕ − reiθ|n+1

dϕ

)p
dθ

)1/p

=
n!R

R2 − r2

(
1

2π

2π�

0

(
1

2π

2π�

0

|f(Reiϕ)|
|Reiϕ − reiθ|n−1

Pr/R(θ − ϕ) dϕ

)p
dθ

)1/p

≤ n!R

(R2 − r2)(R− r)n−1

(
1

2π

2π�

0

1

2π

2π�

0

|f(Reiϕ)|pPr/R(θ − ϕ) dϕ dθ

)1/p

=
n!R

(R2 − r2)(R− r)n−1

(
1

2π

2π�

0

|f(Reiϕ)|p 1

2π

2π�

0

Pr/R(θ − ϕ) dθ dϕ

)1/p

=
n!R

(R2 − r2)(R− r)n−1
Mp(f,R)

for every R > r, where Ps(t) = 1−s2
1−2s cos t+s2 , 0 ≤ s < 1, is the Poisson kernel

for the unit disc. Then, if we consider R = r + ε for some ε > 0, we get

Mp(f
(n), r) ≤ n!

εn−1
r + ε

ε2 + 2rε
Mp(f, r + ε) ≤ n!

εn
Mp(f, r + ε).

If a > 0, then
va,α(r)

va,α(r + ε)
=

rae−αr

(r + ε)ae−α(r+ε)
≤ eαε

for r large enough. Thus,

(5.2) va,α(r)Mp(f
(n), r) ≤ n!

εn
eαεva,α(r + ε)Mp(f, r + ε)

for r large enough. This implies that there exists a constant A > 0 such
that ‖Dn‖p,q,a,α ≤ A(n!/εn)eαε for every ε > 0. If we take ε = n/α, which
minimizes eαε/εn, we get

‖Dn‖p,q,a,α ≤ An!(eα/n)n.

If a ≤ 0, then there exists a constant B > 0 such that

va,α(r)

va,α(r + ε)
=

raeαε

(r + ε)a
≤ Be

αε

εa

for r large enough and ε > ε0, for some ε0 > 0. Thus,

(5.3) va,α(r)Mp(f
(n), r) ≤ Bn!eαε

εn+a
va,α(r + ε)Mp(f, r + ε)

for r, ε large enough. Therefore, if we take ε = (n+ a)/α ≥ ε0, we deduce
that there exists some D2 > 0 such that

‖Dn‖p,q,a,α ≤ D2n!

(
eα

n+ a

)n+a
for every n ∈ N.
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Proposition 5.10. The spectrum of D : Bp,q(a, α) → Bp,q(a, α) satis-
fies

σ(D) = αD

for 1 ≤ p ≤ ∞, and q = 0 or 1 ≤ q ≤ ∞.

Proof. If |λ| < α, the function eλ(z) := eλz belongs to Bp,q(a, α) by
Lemma 2.1 and satisfies Deλ = λeλ. Therefore, αD ⊆ σ(D). On the other

hand, the spectral radius of D satisfies r(D) = limn∈N ‖Dn‖1/np,q,a,α. Using the
Stirling formula and the upper estimates for the norms in Proposition 5.9,
we obtain r(D) ≤ α.

By [AB, Proposition 4], D−λI is not surjective on Bp,q(a, α) for |λ| = α.
Furthermore D − λI is injective if and only if eλz 6∈ Bp,q(a, α). So Lemma
2.1 yields:

Proposition 5.11. For the weight va,α(r) = rae−αr, r large enough, and
1 ≤ p ≤ ∞, D − λI is injective on Bp,q(a, α) if and only if either |λ| > α,
or |λ| = α and

(i) a ≥ 1/(2p) when q = 0,
(ii) a > 1/(2p) when q =∞,

(iii) a ≥ 1/(2p)− 2/q if 1 ≤ q <∞.

By Propositions 3.3 and 3.4, we get:

Proposition 5.12. Let v be a weight such that D is continuous on
Bp,q(v), 1 ≤ p ≤ ∞, q ∈ {0, p,∞}, and v(r)eαr is non-increasing. If |λ| < α,
the operator D − λI is surjective on Bp,q(v) and it even has

Kλf(z) = z

1�

0

eλz(1−t)f(zt) dt, z ∈ C,

as a continuous linear right inverse. In particular, this holds for the weight
va,α, a ≤ 0, α > 0.

Theorem 5.13. Given 1 ≤ p ≤ ∞, and q = 0 or 1 ≤ q ≤ ∞ :

(i) For α > 1, or α = 1 and a < 1/2− 3/(2q), D is not power bounded
on Bp,q(a, α).

(ii) If D is chaotic, then D is not mean ergodic on Bp,q(a, α). Conse-
quently, D is not mean ergodic on Bp,q(a, α) if α > 1, or α = 1 and
a < 1/(2p)− 2/q.

(iii) For α < 1, D is power bounded and uniformly mean ergodic on
Bp,q(a, α).

(iv) D is not uniformly mean ergodic on Bp,q(a, 1), a ∈ R.
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Proof. (i) By (2.9),

‖Dn‖p,q,a,α ≥
n!‖1‖q,a,α
‖zn‖q,a,α

&
αn

na+3/(2q)−1/2

and this tends to infinity for the values of α as in the hypothesis.

(ii) If D is mean ergodic, then for each f ∈ Bp,q(a, α), we have
(f ′ + f ′′ + · · ·+ f (N))/N → 0, which is not the case if D is chaotic, since
ez ∈ Bp,q(a, α).

(iii) Since

n!

(
eα

n

)n
≤ n!

(
eα

n− a

)n−a
for every a > 0 and n large enough, Proposition 5.9 yields

‖Dn‖p,q,a,α = O

(
n!

(
eα

n− |a|

)n−|a|)
.

Applying the Stirling formula we get

‖Dn‖p,q,a,α = O

((
n

n− |a|

)n−|a|
n|a|+1/2αn−|a|

)
.

Therefore, for α < 1, limn→∞ ‖Dn‖p,q,a,α = 0, and thus

lim
m→∞

∥∥∥∥ 1

m

m∑
j=1

Dj

∥∥∥∥
p,q,a,α

≤ lim
m→∞

1

m

m∑
j=1

‖Dj‖p,q,a,α = 0.

(iv) Since 1 ∈ σ(D), the conclusion follows from Lemma 2.6.

By Proposition 5.13 and [BBF, Corollary 3.11] we get:

Corollary 5.14. Given vα(r) = e−αr, α > 0, 1 ≤ p ≤ ∞, and q = 0
or 1 ≤ q ≤ ∞, we have:

(i) If α > 1, then D is not mean ergodic on Bp,q(v).
(ii) If α < 1, then D is uniformly mean ergodic on Bp,q(v).

(iii) If α = 1, then D is not uniformly mean ergodic on Bp,q(v). It is not
mean ergodic for p = q =∞, and for 1 ≤ p <∞ and 2/q < 1/(2p),
q 6=∞.
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