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A note on extensions of Peª
zy«ski'sde
omposition method in Bana
h spa
esbyElói Medina Galego (São Paulo)
Abstra
t. Let X, Y, A and B be Bana
h spa
es su
h that X is isomorphi
 to Y ⊕Aand Y is isomorphi
 to X ⊕ B. In 1996, W. T. Gowers solved the S
hroeder�Bernsteinproblem for Bana
h spa
es by showing that X is not ne
essarily isomorphi
 to Y . In thepresent paper, we give a ne
essary and su�
ient 
ondition on sextuples (p, q, r, s, u, v) in Nwith p+q ≥ 2, r+s ≥ 1 and u, v ∈ N

∗ for X to be isomorphi
 to Y whenever these spa
essatisfy the following de
omposition s
heme:
{

Xu
∼ Xp

⊕ Y q,

Y v
∼ Ar

⊕ Bs.Namely, Ω = (p − u)(s − r − v) − q(r − s) is di�erent from zero and Ω divides p + q − uand v. In other words, we obtain an arithmeti
 
hara
terization of some extensions of the
lassi
al Peª
zy«ski de
omposition method in Bana
h spa
es. This result leads naturallyto several problems 
losely related to the S
hroeder�Bernstein problem.1. Introdu
tion. Let X and Y be Bana
h spa
es. We write X ∼ Y if
X is isomorphi
 to Y , and X 6∼ Y otherwise. If n ∈ N

∗ = {1, 2, 3, . . .}, then
Xn denotes the sum of n 
opies of X, X ⊕· · ·⊕X. It will be useful to de�ne
X0 = {0}. We re
all that Y is isomorphi
 to a 
omplemented subspa
e of Xif there exists a Bana
h spa
e A su
h that X ∼ Y ⊕ A.Suppose now that X, Y , A and B are Bana
h spa
es satisfying
(1.1)

{

X ∼ Y ⊕ A,

Y ∼ X ⊕ B.In 1996, W. T. Gowers [12℄ solved the so-
alled S
hroeder�Bernstein problemfor Bana
h spa
es by showing that X is not ne
essarily isomorphi
 to Y .Moreover, this �rst solution was obtained by the 
onstru
tion of a Bana
h2000 Mathemati
s Subje
t Classi�
ation: Primary 46B03, 46B20.Key words and phrases: Peª
zy«ski's de
omposition method, S
hroeder�Bernsteinproblem. [27℄ 
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28 E. M. Galegospa
e Z satisfying
(1.2) Z ∼ Z3 and Z 6∼ Z2.Gowers's solution opened two dire
tions of resear
h. The �rst is to look fornew solutions with some parti
ular properties (see [2℄�[6℄, [8℄, [13℄). These
ond is to ask what additional 
onditions on X, Y , A and B satisfying(1.1) ensure that X is isomorphi
 to Y (see [7℄, [9℄�[11℄).Con
erning this last dire
tion, it is well known that Peª
zy«ski's de-
omposition method [1, p. 64℄, whi
h has played an important role in theisomorphi
 theory of 
lassi
al Bana
h spa
es, states that X ∼ Y if thesespa
es satisfy (1.1) and the following de
omposition s
heme:
(1.3)

{

X ∼ X2,

Y ∼ Y 2.Furthermore, in [10℄ a sextuple (p, q, r, s, u, v) in N with p + q + u ≥ 3,
(p, q) 6= (0, 0), r + s + t ≥ 3, (r, s) 6= (0, 0), u ≥ 1 and v ≥ 1 was said to bea S
hroeder�Bernstein sextuple for Bana
h spa
es (for short, SBs) if X ∼ Ywhenever the Bana
h spa
es X and Y satisfy (1.1) for some Bana
h spa
es
A and B and the following de
omposition s
heme holds:
(1.4)

{

Xu ∼ Xp ⊕ Y q,

Y v ∼ Xr ⊕ Y s.The number ♦ = (p − u)(s − v) − rq was 
alled the dis
riminant of thesextuple (p, q, r, s, u, v).We re
all the following result on SBs obtained in [10, Corollary 4.2℄.Theorem 1.1. Let (p, q, r, s, u, v) be a sextuple in N with p + q + u ≥ 3,
(p, q) 6= (0, 0), r + s + v ≥ 3, (r, s) 6= (0, 0), u = 1 or v = 1 or (p, q) = (1, 0)or (r, s) = (0, 1), and with dis
riminant ♦. Then (p, q, r, s, u, v) is a SBs ifand only if ♦ is di�erent from zero and ♦ divides p + q − u and r + s − v.It is an open problem to 
omplete the 
hara
terization of the sextuplesin N whi
h are SBs (see [10, Conje
ture 4.3 and Problem 4.4℄). The presentwork is a 
ontinuation of [10℄ in the sense that we present new extensions ofPeª
zy«ski's de
omposition method in Bana
h spa
es. This time, the startingpoint is the simple fa
t that from (1.1) we dedu
e that
(1.5) Y ∼ X ⊕ B ∼ Y ⊕ A ⊕ B.Adding A ⊕ B to both sides of (1.5) we have

Y ∼ Y ⊕ A ⊕ B ∼ Y ⊕ A2 ⊕ B2.Therefore by indu
tion we 
on
lude that
(1.6) Y ∼ Y ⊕ Am ⊕ Bm, ∀m ∈ N.



Extensions of Peª
zy«ski's de
omposition method 29So if we want to obtain the se
ond 
ondition of the de
omposition s
heme(1.3) from (1.1) it su�
es to require the strong 
ondition Y ∼ Am ⊕ Bm,for some m ∈ N
∗. Hen
e a

ording to Peª
zy«ski's de
omposition method

X ∼ Y whenever there exist Bana
h spa
es A and B satisfying (1.1) and
m ∈ N

∗ su
h that the following de
omposition s
heme holds:
(1.7)

{

X ∼ X2,

Y ∼ Am ⊕ Bm.It is then natural to pose, in the spirit of [10℄, the following problem:Problem 1.2. Is it possible to des
ribe all de
omposition s
hemes sim-ilar to (1.7) whi
h added to (1.1) also yield X ∼ Y ?In order to formulate Problem 1.2 more pre
isely we introdu
e the fol-lowing de�nition:Definition 1.3. A sextuple (p, q, r, s, u, v) in N, with p+q ≥ 2, r+s ≥ 1and u, v ∈ N
∗, is a strong S
hroeder�Bernstein sextuple for Bana
h spa
es(for short, SSBs) if X ∼ Y whenever there exist Bana
h spa
es A and Bsatisfying (1.1) and the following de
omposition s
heme:

(1.8)

{

Xu ∼ Xp ⊕ Y q,

Y v ∼ Ar ⊕ Bs.We also say that Ω = (p−u)(s− r− v)− q(r− s) is the strong dis
riminantof the sextuple (p, q, r, s, u, v).Noti
e that by (1.7), (2, 0, m, m, 1, 1) is a SSBs for every m in N
∗. Fur-thermore, by using the Bana
h spa
e Z mentioned in (1.2) we see that

(1, 2, 2, 1, 1, 1) is not a SSBs. Indeed, take X = Z2, Y = Z and A = B = Z.A

ording to (1.2), it follows that (1.1) is satis�ed, X 6∼ Y and also
{

X ∼ X ⊕ Y 2,

Y ∼ A2 ⊕ B.Problem 1.2 asks whether it is possible to determine all SSBs. The mainaim of this paper is to solve this problem. Indeed, we shall see that 
ertainfamilies of Bana
h spa
es 
onstru
ted by W. T. Gowers and B. Maurey in1997 (see Remark 3.1) are large enough to provide the following 
hara
teri-zation of the SSBs in terms of their strong dis
riminants Ω.Theorem 1.4. A sextuple (p, q, r, s, u, v) in N with p + q ≥ 2, r + s ≥ 1and u, v ∈ N
∗ is a SSBs if and only if its strong dis
riminant Ω is di�erentfrom zero and Ω divides p + q − u and v.The proof of this theorem is quite long and it will be done by provingfour propositions: Propositions 2.2, 3.5, 3.6 and 3.7.



30 E. M. GalegoIn the last se
tion we also introdu
e the notion of tight S
hroeder�Bern-stein sextuples for Bana
h spa
e and indi
ate their 
hara
terization. We endthe paper by posing some problems related to the de
omposition s
heme(1.8): see Problems 4.3, 4.4 and 4.5.2. Su�
ient 
ondition for a sextuple in N to be a SSBs. Thepurpose of this se
tion is to prove Proposition 2.2, whi
h is the su�
ien
ypart of Theorem 1.4.Proposition 2.2. Let (p, q, r, s, u, v) be a sextuple in N with p + q ≥ 2,
r + s ≥ 1, u, v ∈ N

∗ and with strong dis
riminant Ω. If Ω is di�erent fromzero, and Ω divides p + q − u and v, then (p, q, r, s, u, v) is a SSBs.Proof. Let X, Y , A and B be Bana
h spa
es satisfying (1.1) and (1.8).We will prove that X ∼ Y . Let d = s − r. Then by the de�nition of Ω,
(2.1) Ω = d(p + q − u) − (p − u)v.We distinguish �ve 
ases: d = 0; u = p; d > 0 and u > p; d > 0 and u < p;
d < 0.Case 1: d = 0. Then r = s ≥ 1 and Ω = (u − p)v. Adding Y to bothsides of the se
ond 
ondition of (1.8) and using (1.6) with m = r, we get

{

Y ∼ Y v+1,

Xu ∼ Y q ⊕ Xp.Sin
e the dis
riminant ♦ of the sextuple (v+1, 0, q, p, 1, u) is v(p−u) = −Ω,it follows by hypothesis that ♦ 6= 0 and ♦ divides (v+1)−1 = v and q+p−u.So Theorem 1.1 implies that X ∼ Y .Case 2: u = p. Then Ω = dq 6= 0 and dq divides q. Hen
e d = −1 or
d = 1.Sub
ase 2.1: d = −1. Then r = s + 1. Therefore the se
ond 
onditionof (1.8) implies that
(2.2) Y v ∼ As+1 ⊕ Bs.Adding Y to both sides of (2.2), by (1.6) with m = s we see that
(2.3) Y v+1 ∼ Y ⊕ A ∼ X.On the other hand, adding Bp to both sides of the �rst 
ondition of (1.8),by (1.1) we dedu
e that

Y p ∼ (X ⊕ B)p ∼ Xp ⊕ Bp ∼ Xp ⊕ Y q ⊕ Bp ∼ (X ⊕ B)p ⊕ Y q ∼ Y p+q.Thus a

ording to (2.3) we 
on
lude that
{

X ∼ Y v+1,

Y p ∼ Y p+q.
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e the dis
riminant ♦ of the sextuple (0, v + 1, 0, p + q, 1, p) is equal to
−q = Ω, we have ♦ 6= 0 and ♦ divides (v+1)−1 = v and q. Again Theorem1.1 implies that X ∼ Y .Sub
ase 2.2: d = 1. Then s = r + 1. By the se
ond 
ondition of (1.8)we know that
(2.4) Y v ∼ Ar ⊕ Br+1.Adding X to both sides of (2.4), by the analogue of (1.6) for X with m = rwe infer that

Y v ⊕ X ∼ X ⊕ B ∼ Y.Hen
e again by the �rst 
ondition of (1.8) we obtain
{

Y ∼ Y v ⊕ X,

Xp ∼ Y q ⊕ Xp.Sin
e the dis
riminant ♦ of the sextuple (v, 1, q, p, 1, p) is −q = Ω, it followsthat ♦ 6= 0 and ♦ divides (v + 1) − 1 = v and q. On
e more Theorem 1.1implies that X ∼ Y .Before we 
onsider Cases 3 and 4 note that if d > 0, then adding Y toboth sides of the se
ond 
ondition of (1.8), by (1.6) with m = r we see that
(2.5) Y v+1 ∼ Y ⊕ Bd.Now adding Ad to both sides of (2.5), by (1.6) with m = d we get
(2.6) Y ∼ Y v+1 ⊕ Ad.Next adding Y ⊕ Ad to both sides of (2.6) we dedu
e that

Y ∼ Y v+1 ⊕ Ad ∼ Y 2v+1 ⊕ A2d.Therefore by indu
tion we have
(2.7) Y ∼ Y iv+1 ⊕ Aid, ∀i ∈ N

∗.Case 3: d > 0 and u > p. In this 
ase, u ≥ p + q. Otherwise, u < p + qand by (2.1), Ω > v, whi
h is absurd, be
ause by hypothesis Ω divides v.There are two sub
ases: Ω > 0 and Ω < 0.Sub
ase 3.1: Ω > 0. Let m, n ∈ N be su
h that p + q − u = −mΩ and
v = nΩ.Adding Bp to both sides of the �rst 
ondition of (1.8) we 
on
lude that
Y p+q ∼ (X ⊕B)p⊕Y q ∼ Xu−p⊕Xp⊕Bp ∼ (Y ⊕A)u−p⊕Y p ∼ Y u⊕Au−p.Consequently,
(2.8) Y n(p+q) ∼ Y nu ⊕ An(u−p).



32 E. M. GalegoFix j ∈ N
∗ su
h that jv + 1 > n(p + q). By (2.7) with i = j and (2.8) wehave

Y ∼ Y jv+1−n(p+q) ⊕ Y nu ⊕ An(u−p) ⊕ Ajd(2.9)

∼ Y jv+1−n(p+q−u) ⊕ Ajd+n(u−p).Moreover, by (2.7) with i = j + m, it follows that
(2.10) Y ∼ Y jv+1+mv ⊕ Ajd+md.By (2.1) and the 
hoi
e of m and n we obtain −n(p + q − u) = mv and
1+md = n(u−p). Hen
e, by using (2.10) in (2.9) we see that Y ∼ Y ⊕A ∼ X.Sub
ase 3.2: Ω < 0. Pi
k m, n ∈ N su
h that p + q − u = mΩ and
v = −nΩ. Pro
eeding as in Sub
ase 3.1 we get (2.9) and (2.10). Observethat −n(p + q − u) = mv and 1 + n(u − p) = md. Thus by using (2.9) in(2.10) we dedu
e that Y ∼ Y ⊕ A ∼ X.Case 4: d > 0 and u < p. There are two sub
ases: Ω > 0 and Ω < 0.Sub
ase 4.1: Ω > 0. Let m, n ∈ N be su
h that p + q − u = mΩ and
v = nΩ. Adding Au to both sides of the �rst 
ondition of (1.8) we infer that
Y u ∼ Xu⊕Au ∼ Xp−u⊕Xu⊕Au⊕Y q ∼ (Y ⊕A)p−u⊕Y u⊕Y q ∼ Y p+q⊕Ap−u.Consequently,
(2.11) Y nu ∼ Y n(p+q) ⊕ An(p−u).Fix j ∈ N

∗ su
h that jv + 1 > nu. By (2.7) with i = j and (2.11) we have
Y ∼ Y jv+1−nu ⊕ Y n(p+q) ⊕ An(p−u) ⊕ Ajd(2.12)

∼ Y jv+1+n(p+q−u) ⊕ Ajd+n(p−u).Furthermore, by (2.7) with i = j + m, it follows that
(2.13) Y ∼ Y jv+1+mv ⊕ Ajd+md.Now noti
e that n(p + q − u) = mv and 1 + n(p− u) = md. Hen
e by using(2.12) in (2.13) we dedu
e that Y ∼ Y ⊕ A ∼ X.Sub
ase 4.2: Ω < 0. Let m, n ∈ N be su
h that p + q − u = −mΩ and
v = −nΩ. Similarly to Sub
ase 4.1 we obtain (2.12) and (2.13). Note that
n(p + q − u) = mv and 1 + md = n(p − u). Therefore by using (2.13) in(2.12) we obtain Y ∼ Y ⊕ A ∼ X.Case 5: d < 0. In this 
ase observe that if u > p and u > p + q, thenby (2.1), Ω > v, whi
h is absurd. Further, if u < p, then again by (2.1),
Ω < −v, whi
h is also absurd. So u > p and u ≤ p + q. There are twosub
ases: Ω > 0 and Ω < 0.
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ase 5.1: Ω > 0. Let m, n ∈ N be su
h that p + q − u = mΩ and
v = nΩ. From the �rst 
ondition of (1.8) and (1.1) we dedu
e that

Xu ∼ Xp ⊕ (X ⊕ B)q ∼ Xp+q ⊕ Bq.Consequently,
(2.14) Xnu ∼ X(n(p+q) ⊕ Bnq.On the other hand, adding Y to both sides of the se
ond 
ondition of (1.8),by (1.6) with m = s we see that
(2.15) Y v+1 ∼ Y ⊕ A−d.Adding B−d to both sides of (2.15), by (1.6) with m = −d we infer

Y ∼ Y v+1 ⊕ B−d.Then we have
(2.16) X⊕B ∼ Y ∼ Y v+1⊕B−d ∼ (X⊕B)v+1⊕B−d ∼ Xv+1⊕B−d+v+1.Adding A to both sides of (2.16), by the analogue of (1.6) for X with m = 1we 
on
lude that
(2.17) X ∼ Xv+1 ⊕ B−d+v.Next adding Xv ⊕ B−d+v to both sides of (2.17) we have

X ∼ Xv+1 ⊕ B−d+v ∼ X2v+1 ⊕ B2(−d+v).Therefore by indu
tion we get
(2.18) X ∼ X iv+1 ⊕ Bi(−d+v), ∀i ∈ N

∗.Pi
k j ∈ N
∗ su
h that jv+1 > nu. By (2.18) with i = j and (2.14) we obtain

X ∼ Y jv+1−nu ⊕ Xn(p+q) ⊕ Bnq ⊕ Bj(−d+v)(2.19)

∼ Xjv+1+n(p+q−u) ⊕ Bj(−d+v)+nq.Moreover, by (2.18) with i = j + m, it follows that
(2.20) X ∼ Xjv+1+mv ⊕ Bj(−d+v)+m(−d+v).Noti
e that n(p+q−u) = mv and 1 = md+n(u−p). So nq = mv+n(u−p) =
mv + (1 − md) = m(−d + v) + 1. Hen
e by using (2.19) in (2.20), it followsthat X ∼ X ⊕ B ∼ Y.Sub
ase 5.2: Ω < 0. Let m, n ∈ N be su
h that p + q − u = −mΩ and
v = −nΩ. Pro
eeding as in Sub
ase 5.1 we obtain (2.19) and (2.20). Notethat n(p+q−u) = mv and 1 = −md−n(u−p). Thus nq = mv+n(u−p) =
mv − md − 1 = m(−d + v). Therefore by using (2.20) in (2.19) we see that
X ∼ X ⊕ B ∼ Y .3. Ne
essary 
ondition for a sextuple in N to be a SSBs. Ourtask in this se
tion is to prove the ne
essity part of Theorem 1.4. In order



34 E. M. Galegoto do this we prove Propositions 3.5, 3.6 and 3.7. We start by re
alling someBana
h spa
es introdu
ed by W. T. Gowers and B. Maurey in 1997.Remark 3.1. In [13, p. 563℄ Bana
h spa
es Xt were 
onstru
ted, forevery t ∈ N, t ≥ 2, having the following property: Xm
t ∼ Xn

t , with m, n ∈ N
∗,if and only if m ≡ n mod t.In order to prove our propositions we need three lemmas. They relate tothe Bana
h spa
es Xt mentioned in Remark 3.1.Lemma 3.2. Let p, q, r, s, u, v ∈ N with p+q ≥ 2, r+s ≥ 1 and u, v ∈ N
∗and suppose that there exist i, j, t ∈ N

∗ with t ≥ 2 satisfying(a) t divides i(p − u) + jq;(b) t divides i(r − s) + j(s − r − v);(
) t does not divide j − i.Then (p, q, r, s, u, v) is not a SSBs.Proof. Let n ∈ N
∗ be su
h that nt − j + i > 0 and nt − i + j > 0. Sin
e

j + (nt− j + i)− i = nt and i + (nt− i + j)− j = nt, by the property of Xumentioned in Remark 3.1 we have
{

X i
t ∼ Xj

t ⊕ Xnt−j+i
t ,

Xj
t ∼ X i

t ⊕ Xnt−i+j
t .From 
onditions (a) and (b) we dedu
e that

{

X iu
t ∼ X ip

t ⊕ Xjq
t ,

Xjv
t ∼ X

(nt−j+i)r
t ⊕ X

(nt−i+j)s
t .Further a

ording to 
ondition (
) we 
on
lude that X i

t is not isomorphi
to Xj
t . Consequently, (p, q, r, s, u, v) is not a SSBs.Lemma 3.3. Let p, q, r, s, u, v ∈ N with p+q ≥ 2, r+s ≥ 1 and u, v ∈ N

∗and with strong dis
riminant Ω ≥ 2. Suppose that there exist integers α and
β satisfying(a) α(s − r − v) > βq;(b) β(p − u) > α(r − s);(
) Ω does not divide β(p + q − u) + αv.Then (p, q, r, s, u, v) is not a SSBs.Proof. Let t = Ω and 
onsider the linear system
(3.1)

{

i(p − u) + jq = αt,

i(r − s) + j(s − r − v) = βt.The only solution of (3.1) is i = α(s−r−v)−βq and j = β(p−u)+α(r−s). Itfollows from (a)�(
) that i, j > 0 and t does not divide j−i = β(p+q−u)+αv.
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zy«ski's de
omposition method 35Moreover, 
learly t divides i(p−u)+ jq and i(r−s)+ j(s−r−v). ThereforeLemma 3.2 implies that (p, q, r, s, u, v) is not a SSBs.Taking t = −Ω and pro
eeding as in the proof of Lemma 3.3 we obtain:Lemma 3.4. Let p, q, r, s, u, v ∈ N with p + q ≥ 2, r + s ≥ 1, u, v, t ∈ N
∗and with strong dis
riminant Ω ≤ −2. Suppose that there exist integers αand β satisfying(a) α(s − r − v) < βq;(b) β(p − u) < α(r − s);(
) Ω does not divide β(p + q − u) + αv.Then (p, q, r, s, u, v) is not a SSBs.Proposition 3.5. If a sextuple (p, q, r, s, u, v) in N with p + q ≥ 2,

r+s ≥ 1 and u, v ∈ N
∗ is a SSBs , then its strong dis
riminant Ω is di�erentfrom zero.Proof. Suppose that Ω = 0. We distinguish four 
ases: q = 0; p = u and

q > 0; p > u and q > 0; p < u and q > 0.Case 1: q = 0. Then p ≥ 2 and sin
e Ω = (p−u)(s− r− v) = 0, we get
p = u or s = r + v.Sub
ase 1.1: p = u. Take n ∈ N

∗ su
h that −nv = v + r− s− 2, i = n,
j = n+1 and t ∈ N satisfying −t = n(r−s)+(n+1)(s−r−v). Thus t ≥ 2,
t divides i(r − s) + j(s − r − v) and t does not divide j − i = 1. So Lemma3.2 implies that (p, q, r, s, u, v) is not a SSBs.Sub
ase 1.2: s = r + v. By Remark 2.1 we have

{

X2
2 ∼ X2 ⊕ X2,

X2 ∼ X2
2 ⊕ X2,

{

X2v
2 ∼ X2p

2 ,

Xv
2 ∼ Xr

2 ⊕ Xr+v
2 .Sin
e X2

2 6∼ X2, it follows that (p, q, r, s, u, v) is not a SSBs.Case 2: p = u and q > 0. Hen
e Ω = −q(r− s) = 0 and r = s. Thus byRemark 3.1 we see that
{

X2 ∼ X2
2 ⊕ X2,

X2
2 ∼ X2 ⊕ X2,

{

Xp
2 ∼ Xp

2 ⊕ X2q
2 ,

X2v
2 ∼ Xr

2 ⊕ Xr
2 .Consequently, (p, q, r, s, u, v) is not a SSBs.Case 3: p > u and q > 0. Take i = p and j = p − u. So i(p − u) + jq =

(p − u)(p + q) and sin
e Ω = 0, it follows that i(r − s) + j(s − r − u) =
(r − s)(p + q). Furthermore, j − i = −u and p + q does not divide u. Thusit su�
es to take t = p + q and apply Lemma 3.2 to see that (p, q, r, s, u, v)is not a SSBs.



36 E. M. GalegoCase 4: p < u and q > 0. Take i = q and j = u−p. Therefore i(p − u)+
jq = 0 and sin
e Ω = 0, we have i(r−s)+j(s−r−u) = 0. Moreover u 6= p+q.Otherwise from Ω = (p − u)(s − r − v) − q(r − s) = 0 we would 
on
ludethat qv = 0, whi
h is absurd. Now take t ∈ N, t ≥ 2, su
h that t does notdivide j − i = u− p− q and apply Lemma 2.2 to dedu
e that (p, q, r, s, u, v)is not a SSBs.Proposition 3.6. If a sextuple (p, q, r, s, u, v) in N with p + q ≥ 2,
r + s ≥ 1, u, v ∈ N

∗ and with strong dis
riminant Ω di�erent from zero isa SSBs, then Ω divides p + q − u.Proof. Assume that Ω 6= 0 and Ω does not divide p+ q−u. We 
onsidertwo 
ases: Ω ≥ 2 and Ω ≤ −2.Case 1: Ω ≥ 2. We distinguish four sub
ases: q = 0; p = u and q > 0;
p > u and q > 0; p < u and q > 0.Sub
ase 1.1: q = 0. Then Ω = (p−u)(s−r−v) and hen
e p 6= u. Notethat in this sub
ase (p, 0, r, s, u, v) is a SSBs if and only if (u, 0, r, s, p, v) is.Thus we 
an suppose p > u and therefore s− r− v > 0. Take α = p− u and
β = r−s+1. Sin
e (p−u)(r−s) < (p−u)(r−s+1) and β(p+q−u)+αv =
(p − u)(r − s + v) + p − u, it is enough to apply Lemma 3.3 to see that
(p, q, r, s, u, v) is not a SSBs.Sub
ase 1.2: p = u and q > 0. Then Ω = −q(r − s). Take α = q and
β = s−r−v−1. Sin
e q(s−r−v−1) < q(s−r−v) and βq+αv = (s−r)q−q,Lemma 3.3 implies that (p, q, r, s, u, v) is not a SSBs.Sub
ase 1.3: p > u and q > 0. By (2.1), (r− s)/(p−u) < (s− r− v)/q.Let m ∈ N

∗ be su
h that
r − s

p − u
<

s − r − v

q
−

1

qm
,and take α = qm and β = m(s − r − v) − 1. Therefore (r − s)/(p − u) <

β/α < (s − r − v)/q and β(p + q − u) + αv = mΩ − (p + q − u). Again byLemma 3.3, (p, q, r, s, u, v) is not a SSBs.Sub
ase 1.4: p < u and q > 0. By (2.1), (s−r−v)/q < (r−s)/(p−u).Fix m ∈ N
∗ su
h that

s − r − v

q
+

1

qm
<

r − s

p − u
,and take α = qm and β = m(s − r − v) + 1. Hen
e (s − r − v)/q < β/α <

(r−s)/(p−u) and β(p+q−u)+αv = mΩ+(p+q−u). On
e more a

ordingto Lemma 3.3, (p, q, r, s, u, v) is not a SSBs.Case 2: Ω ≤ −2. We distinguish four sub
ases: q = 0; p = v and q > 0;
p > v and q > 0; p < v and q > 0.
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zy«ski's de
omposition method 37Sub
ase 2.1: q = 0. Then Ω = (p−u)(s−r−v) and as in Sub
ase 1.1 wemay assume that p > u. So s−r−v < 0. Take α = p−u and β = r−s−1. Sin
e
(p−u)(r−s−v), (p−u)(r−s) and β(p−u)+αv = (r−s+v)(p−u)−(p−u),Lemma 3.3 shows that (p, q, r, s, u, v) is not a SSBs.Sub
ase 2.2: p = u and q > 0. Then Ω = −q(r − s). Take α = q and
β = s−r−v+1. Sin
e q(s−r−v) < q(s−r−v+1) and βq+αv = (s−r)q+q,it follows from Lemma 3.3 that (p, q, r, s, u, v) is not a SSBs.Sub
ase 2.3: p > u and q > 0. By (2.1), (s−r−v)/q < (r−s)/(p−u).Pi
k m ∈ N

∗ su
h that
s − r − v

q
+

1

qm
<

r − s

p − u
,and take α = qm and β = m(s− r−v)+1. Therefore (s− r−v)/q < β/α <

(r − s)/(p − u) and β(p + q − u) + αv = mΩ + (p + q − u). Consequently,Lemma 3.3 implies that (p, q, r, s, u, v) is not a SSBs.Sub
ase 2.4: p < u and q > 0. By (2.1), (r−s)/(p−u) < (s−r−v)/q.Let m ∈ N
∗ be su
h that

r − s

p − u
<

s − r − v

q
−

1

qm
,and take α = qm and β = m(s − r − v) − 1. Thus (r − s)/(p − u) < β/α <

(s− r − v)/q and β(p + q − u) + αv = mΩ − (p + q − u). It su�
es to applyLemma 3.3 to see that (p, q, r, s, u, v) is not a SSBs and 
omplete the proofof the proposition.Proposition 3.7. If a sextuple (p, q, r, s, u, v) in N with p + q ≥ 2,
r + s ≥ 1, u, v ∈ N

∗ and strong dis
riminant Ω di�erent fom zero is a SSBs,then Ω divides v.Proof. Assume that Ω 6= 0 and Ω does not divide v. We also 
onsidertwo 
ases: Ω ≥ 2 and Ω ≤ −2.Case 1: Ω ≥ 2. We distinguish �ve sub
ases: r = s; s = r + v; r > s;
r < s and s < r + v; r < s and s > r + v.Sub
ase 1.1: r = s. Then Ω = −(p − u)v and p < u. Take α = 1 − qand β = −v. Sin
e −qv < (−q + 1)v and β(p + q − u) + αv = −v(p− u) + v,Lemma 3.4 implies that (p, q, r, s, u, v) is not a SSBs.Sub
ase 1.2: s = r + v. Then Ω = −q(r − s) and r − s < 0. Take
α = u + 1 − p and β = s − r. Sin
e (p − u − 1)(r − s) > (p − u)(r − s) and
βq + αv = qv + v, Lemma 3.4 shows that (p, q, r, s, u, v) is not a SSBs.Sub
ase 1.3: r > s. Then s < r + v and by (2.1), (p − u)/(r − s) <
q/(s − r − v). Let m ∈ N

∗ be su
h that
p − u

r − s
<

q

s − r − v
+

1

m(s − r − v)
,



38 E. M. Galegoand take α = qm − 1 and β = m(s − r − u). Hen
e q/(s − r − v) < α/β <
(p− u)/(r − s), and β(p + q − v) + αv = mΩ + v. Consequently, Lemma 3.3implies that (p, q, r, s, u, v) is not a SSBs.Sub
ase 1.4: r < s and s < r+v. By (2.1), q/(s−r−v) < (p−v)/(r−s).Fix m ∈ N

∗ su
h that
q

s − r − u
−

1

m(s − r − u)
<

p − v

r − s
,and take α = qm+1 and β = m(s−r−u). Note that q/(s−r−v) < α/β <

(p− v)/(r − s), and β(p + q − v) + αt = m[(p− v)(s− r − u)− (r − s)]− v.Again by Lemma 3.3, (p, q, r, s, u, v) is not a SSBs.Sub
ase 1.5: r < s and s > r+v. By (2.1), (p−u)/(r−s) < q/(s−r−v).Pi
k m ∈ N
∗ su
h that

p − u

r − s
<

q

s − r − v
−

1

m(s − r − v)
,and take α = qm − 1 and β = m(s − r − u). Observe that q/(s − r − v) <

α/β < (p−u)/(r− s), and β(p+ q− v) +αv = mΩ − v. On
e again Lemma3.3 implies that (p, q, r, s, u, v) is not a SSBs.Case 2: Ω ≤ 2. We distinguish �ve sub
ases: r = s; s = r + v; r > s;
r < s and s < r + v; r < s and s > r + v.Sub
ase 2.1: r = s. Then Ω = −(p − u)v and p > u. Take α = q + 1and β = −v. Sin
e (−q − 1)v < −qv and β(p + q − u) + αv = −v(p− u) + v,by Lemma 3.4, (p, q, r, s, u, v) is not a SSBs.Sub
ase 2.2: s = r + v. Then Ω = −q(r − s) and r − s > 0. Take
α = p − u + 1 and β = r − s. Sin
e (p − u)(r − s) < (p − u + 1)(r − s) and
βq + αv = −qv + v, Lemma 3.4 implies that (p, q, r, s, u, v) is not a SSBs.Sub
ase 2.3: r > s. Then s < r + v and by (2.1), q/(s − r − v) <
(p − u)/(r − s). Let m ∈ N

∗ be su
h that
q

s − r − v
−

1

m(s − r − v)
<

p − u

r − s
,and take α = qm − 1 and β = m(s − r − v). Noti
e that q/(s − r − v) <

α/β < (p − u)/(r − s, and β(p + q − u) + αv = −mΩ − v. Consequently,Lemma 3.4 implies that (p, q, r, s, u, v) is not a SSBs.Sub
ase 2.4: r < s and s < r+v. By (2.1), (p−u)/(r−s) < q/(s−r−v).Pi
k m ∈ N
∗ su
h that

p − u

r − s
<

q

s − r − v
+

1

m(s − r − v)
,
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zy«ski's de
omposition method 39and take α = qm − 1 and β = m(s − r − u). Thus q/(s − r − v) < α/β <
(p − u)/(r − s), and β(p + q − v) + αv = mΩ + v. Again by Lemma 3.3,
(p, q, r, s, u, v) is not a SSBs.Sub
ase 2.5: r < s and s > r+v. By (2.1), q/(s−r−v) < (p−u)/(r−s).Fix m ∈ N

∗ su
h that
q

s − r − v
<

1

m(s − r − v)
+

p − u

m(r − s)
,and take α = qm+1 and β = m(s−r−u). Therefore q/(s−r−v) < α/β <

(p − u)/(r − s), and β(p + q − v) + αv = mΩ + v. On
e again Lemma 3.4implies that (p, q, r, s, u, v) is not a SSBs, and the proposition is proved.4. Some remarks and problems. Taking into a

ount the analogueof (1.6) for X we are led toDefinition 4.1. A sextuple (p, q, r, s, u, v) in N with p+q ≥ 1, r+s ≥ 1and u, v ∈ N
∗ is a tight S
hroeder�Bernstein sextuple for Bana
h spa
es(for short, TSBs) if X ∼ Y whenever there exist Bana
h spa
es A and Bsatisfying (1.1) and the following de
omposition s
heme:

{

Xu ∼ Ap ⊕ Bq,

Y v ∼ Ar ⊕ Bs.We also say that Θ = (p − q − u)(s − r − v) − (q − p)(r − s) is the tightdis
riminant of the sextuple (p, q, r, s, u, v).Similarly to Theorem 1.4, we 
an prove:Theorem 4.2. A sextuple (p, q, r, s, u, v) in N with p + q ≥ 1, r + s ≥ 1and u, v ∈ N
∗ is a TSBs if and only its tight dis
riminant Θ is di�erent fromzero and Θ divides u and v.This result was proved in [11, Theorem 1.3℄ for the 
ase u = v = 1.However, note that if we repla
e B by X or A by Y or still Y by A inthe se
ond 
ondition of (1.8) some problems arise naturally, for example:Problem 4.3. Give non-isomorphi
 Bana
h spa
es X and Y su
h thatthere exist Bana
h spa
es A and B satisfying (1.1) and

{

X2 ∼ X ⊕ Y,

Y ∼ A ⊕ X.Problem 4.4. Give non-isomorphi
 Bana
h spa
es X and Y su
h thatthere exist Bana
h spa
es A and B satisfying (1.1) and
{

X2 ∼ X ⊕ Y,

Y ∼ Y ⊕ B2.



40 E. M. GalegoProblem 4.5. Give non-isomorphi
 Bana
h spa
es X and Y su
h thatthere exist Bana
h spa
es A and B satisfying (1.1) and
{

X2 ∼ X ⊕ Y,

A2 ∼ A ⊕ B.
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