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A note on extensions of Pelczynski’s
decomposition method in Banach spaces

by

ELO1 MEDINA GALEGO (Sao Paulo)

Abstract. Let X,Y, A and B be Banach spaces such that X is isomorphic to Y & A
and Y is isomorphic to X @ B. In 1996, W. T. Gowers solved the Schroeder—Bernstein
problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In the
present paper, we give a necessary and sufficient condition on sextuples (p, q,, s, u,v) in N
with p4+¢ > 2,7+s > 1 and u,v € N* for X to be isomorphic to Y whenever these spaces
satisfy the following decomposition scheme:

X"~ XPBYY,
YU ~ A" @ B

Namely, 2 = (p — u)(s —r —v) — g(r — s) is different from zero and (2 divides p+ ¢ — u
and v. In other words, we obtain an arithmetic characterization of some extensions of the
classical Pelczynski decomposition method in Banach spaces. This result leads naturally
to several problems closely related to the Schroeder—Bernstein problem.

1. Introduction. Let X and Y be Banach spaces. We write X ~ Y if
X is isomorphic to Y, and X ¢ Y otherwise. If n € N* = {1,2,3,...}, then
X™ denotes the sum of n copies of X, X ®---® X. It will be useful to define
X0 = {0}. We recall that Y is isomorphic to a complemented subspace of X
if there exists a Banach space A such that X ~Y ¢ A.

Suppose now that X, Y, A and B are Banach spaces satisfying

X~Y @A,

(1.1)
Y ~X@&B.

In 1996, W. T. Gowers [12] solved the so-called Schroeder—Bernstein problem
for Banach spaces by showing that X is not necessarily isomorphic to Y.
Moreover, this first solution was obtained by the construction of a Banach
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space Z satisfying
(1.2) Z~2Z% and Z o Z%

Gowers’s solution opened two directions of research. The first is to look for
new solutions with some particular properties (see [2]-[6], [8], [13]). The
second is to ask what additional conditions on X, Y, A and B satisfying
(1.1) ensure that X is isomorphic to Y (see [7], [9]-[11]).

Concerning this last direction, it is well known that Petczyniski’s de-
composition method [1, p. 64], which has played an important role in the
isomorphic theory of classical Banach spaces, states that X ~ Y if these
spaces satisfy (1.1) and the following decomposition scheme:

(13) X ~ X2,
) Y ~ Y2

Furthermore, in [10] a sextuple (p,q,r,s,u,v) in N with p + ¢+ u > 3,
(p,q) # (0,0), r+s+t>3,(r,s) #(0,0), u > 1 and v > 1 was said to be
a Schroeder—Bernstein sextuple for Banach spaces (for short, SBs) if X ~Y
whenever the Banach spaces X and Y satisfy (1.1) for some Banach spaces
A and B and the following decomposition scheme holds:

X'~ XPpYH?
(1.4) S5
YV~ X" Y5,
The number & = (p — u)(s — v) — rq was called the discriminant of the
sextuple (p, q,r, s, u,v).
We recall the following result on SBs obtained in [10, Corollary 4.2].
THEOREM 1.1. Let (p,q,7,s,u,v) be a sextuple in N with p+q+u > 3,
(1) # (0,0), 7+ 5+ >3, (r,5) £ (0,0, u=1orv =1 or (p,q) = (1,0)
r(r,s) = (0,1), and with discriminant ). Then (p,q,r,s,u,v) is a SBs if
and only if & is different from zero and { divides p+q —u and r + s — v.
It is an open problem to complete the characterization of the sextuples
in N which are SBs (see [10, Conjecture 4.3 and Problem 4.4]). The present
work is a continuation of [10] in the sense that we present new extensions of
Pelczyriski’s decomposition method in Banach spaces. This time, the starting
point is the simple fact that from (1.1) we deduce that

(1.5) Y~X®B~Y®ASDB.

Adding A @ B to both sides of (1.5) we have
Y~Y®A®B~Y ®A*® B

Therefore by induction we conclude that

(1.6) Y~Y® A" ®B™, VmeN.
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So if we want to obtain the second condition of the decomposition scheme
(1.3) from (1.1) it suffices to require the strong condition Y ~ A™ & B™,
for some m € N*. Hence according to Pelczynski’s decomposition method
X ~ Y whenever there exist Banach spaces A and B satisfying (1.1) and
m € N* such that the following decomposition scheme holds:

X ~ X2,
(1.7)
Y ~ A™ @ B™.

It is then natural to pose, in the spirit of [10], the following problem:

PROBLEM 1.2. Is it possible to describe all decomposition schemes sim-
ilar to (1.7) which added to (1.1) also yield X ~ Y?

In order to formulate Problem 1.2 more precisely we introduce the fol-
lowing definition:

DEFINITION 1.3. A sextuple (p,q,r,s,u,v) in N, with p+q > 2,r+s > 1
and u,v € N*  is a strong Schroeder—Bernstein sextuple for Banach spaces
(for short, SSBs) if X ~ Y whenever there exist Banach spaces A and B
satisfying (1.1) and the following decomposition scheme:

X%~ XP @YY,
(1.8)
YV~ A" @ BS.
We also say that 2 = (p—u)(s —r —v) —q(r —s) is the strong discriminant
of the sextuple (p,q,r, s, u,v).

Notice that by (1.7), (2,0,m,m,1,1) is a SSBs for every m in N*. Fur-
thermore, by using the Banach space Z mentioned in (1.2) we see that
(1,2,2,1,1,1) is not a SSBs. Indeed, take X = Z2, Y = Z and A= B = Z.
According to (1.2), it follows that (1.1) is satisfied, X ¢ Y and also

X~XaY?
Y ~ A2 @ B.

Problem 1.2 asks whether it is possible to determine all SSBs. The main
aim of this paper is to solve this problem. Indeed, we shall see that certain
families of Banach spaces constructed by W. T. Gowers and B. Maurey in
1997 (see Remark 3.1) are large enough to provide the following characteri-
zation of the SSBs in terms of their strong discriminants f2.

THEOREM 1.4. A sextuple (p,q,r,s,u,v) in N withp+q>2,r+s>1
and u,v € N* is a SSBs if and only if its strong discriminant §2 is different
from zero and (2 divides p+ q —u and v.

The proof of this theorem is quite long and it will be done by proving
four propositions: Propositions 2.2, 3.5, 3.6 and 3.7.
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In the last section we also introduce the notion of tight Schroeder—Bern-
stein sextuples for Banach space and indicate their characterization. We end
the paper by posing some problems related to the decomposition scheme

(1.8): see Problems 4.3, 4.4 and 4.5.

2. Sufficient condition for a sextuple in N to be a SSBs. The
purpose of this section is to prove Proposition 2.2, which is the sufficiency
part of Theorem 1.4.

PROPOSITION 2.2. Let (p,q,7,s,u,v) be a sextuple in N with p + q > 2,
r+s>1, u,v € N* and with strong discriminant (2. If 2 is different from
zero, and {2 divides p 4+ q —u and v, then (p,q,r, s,u,v) is a SSBs.

Proof. Let X, Y, A and B be Banach spaces satisfying (1.1) and (1.8).
We will prove that X ~ Y. Let d = s — r. Then by the definition of {2,

(2.1) R=dp+q—u)—(p—u.

We distinguish five cases: d =0; u = p; d > 0and u > p; d > 0 and u < p;
d < 0.

CASE 1: d =0. Thenr = s > 1 and {2 = (u — p)v. Adding Y to both
sides of the second condition of (1.8) and using (1.6) with m = r, we get
Y ~ Yyutl
{ X" ~Yi¢ XP.
Since the discriminant < of the sextuple (v+1,0,¢,p, 1, u) is v(p—u) = =12,

it follows by hypothesis that {6 # 0 and < divides (v+1)—1 = v and g+p—u.
So Theorem 1.1 implies that X ~ Y.

CASE 2: u = p. Then {2 = dq # 0 and dq divides q. Hence d = —1 or
d=1.

SUBCASE 2.1: d = —1. Then r = s + 1. Therefore the second condition
of (1.8) implies that
(2.2) YV ~ AT g B
Adding Y to both sides of (2.2), by (1.6) with m = s we see that
(2.3) Y Yo A~ X,

On the other hand, adding BP? to both sides of the first condition of (1.8),
by (1.1) we deduce that

YP~ (XOBP~XPaB P~ XPaY?I®BP ~ (X®BPaY?~YPH.
Thus according to (2.3) we conclude that
X ~Yvth
{yp ~YPHa
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Since the discriminant <> of the sextuple (0,v + 1,0,p + ¢, 1,p) is equal to
—q = {2, we have { # 0 and ¢ divides (v+1)—1 = v and ¢. Again Theorem
1.1 implies that X ~ Y.

SUBCASE 2.2: d = 1. Then s = r + 1. By the second condition of (1.8)
we know that
(2.4) YY~ A" @ BT

Adding X to both sides of (2.4), by the analogue of (1.6) for X with m =r
we infer that
Y'eX~X@B~Y.

Hence again by the first condition of (1.8) we obtain
Y ~Y'® X,
XP ~ YT XP.

Since the discriminant <> of the sextuple (v, 1,q,p, 1,p) is —q¢ = 2, it follows
that ¢ # 0 and < divides (v + 1) — 1 = v and g. Once more Theorem 1.1
implies that X ~ Y.

Before we consider Cases 3 and 4 note that if d > 0, then adding Y to
both sides of the second condition of (1.8), by (1.6) with m = r we see that

(2.5) Yyt ~ Y e B
Now adding A? to both sides of (2.5), by (1.6) with m = d we get
(2.6) Y ~ YUt g Ad,

Next adding Y @ A? to both sides of (2.6) we deduce that
Y ~ YU+1 a Ad ~ Y2U+l D AQd.

Therefore by induction we have

(2.7) Y ~ YT g Al v e N

CASE 3: d > 0 and u > p. In this case, u > p + q. Otherwise, u < p + ¢
and by (2.1), £2 > v, which is absurd, because by hypothesis {2 divides v.
There are two subcases: {2 > 0 and {2 < 0.

SUBCASE 3.1: 2 > 0. Let m,n € N be such that p+ ¢ — u = —m{2 and
v =nil.
Adding BP to both sides of the first condition of (1.8) we conclude that

YPH A (XOBPOYI~ X" POXPOBP ~ (YA POYP ~ YU AYP.
Consequently,
(2.8) yreta) oy g gnlu—p),
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Fix j € N* such that ju +1 > n(p + ¢). By (2.7) with i = j and (2.8) we
have
(2'9) Y ~ Yjv+1—n(p+q) DY™ @ An(u—p) @ Ajd
~ Yivtl-n(pta—u) g gid+n(u—p)
Moreover, by (2.7) with i = j7 4+ m, it follows that
(2'10) Y ~ Yjv+l+mv a Ajd—i—md'

By (2.1) and the choice of m and n we obtain —n(p + ¢ — u) = mv and
1+md = n(u—p). Hence, by using (2.10) in (2.9) we see that Y ~ Y B A ~ X.

SUBCASE 3.2: {2 < 0. Pick m,n € N such that p + ¢ — u = m{2 and
v = —nf2. Proceeding as in Subcase 3.1 we get (2.9) and (2.10). Observe
that —n(p + ¢ — u) = mv and 1 4+ n(u — p) = md. Thus by using (2.9) in
(2.10) we deduce that Y ~Y @& A ~ X.

CASE 4: d > 0 and u < p. There are two subcases: {2 > 0 and {2 < 0.

SUBCASE 4.1: 2 > 0. Let m,n € N be such that p+ ¢ — u = mf2 and
v = n{f2. Adding A" to both sides of the first condition of (1.8) we infer that

Y ~ XUQAY ~ XPTUQ X "D A"DY ! ~ (YBRAP QY QY ~ YPTIpAPTY,

Consequently,
nu _, yn(p+q) n(p—u)
(2.11) Y™ Y oA .
Fix j € N* such that ju +1 > nu. By (2.7) with ¢ = j and (2.11) we have
(2'12) Y ~ Yjv—l—l—nu @ Yn(p-I—q) ey An(p—u) @ Ajd

~ YIvtltn(ptg—u) ® AJd+n(p—u)

Furthermore, by (2.7) with i = j + m, it follows that
(2'13) Y ~ Yjv+l+mv a Ajd—i—md'

Now notice that n(p + g —u) = mv and 1+ n(p — u) = md. Hence by using
(2.12) in (2.13) we deduce that Y ~Y & A ~ X.

SUBCASE 4.2: 2 < 0. Let m,n € N be such that p+ ¢ — u = —m{2 and
v = —n{2. Similarly to Subcase 4.1 we obtain (2.12) and (2.13). Note that
n(p+q¢—u) = mv and 1 + md = n(p — u). Therefore by using (2.13) in
(2.12) we obtain Y ~Y ¢ A ~ X.

CASE 5: d < 0. In this case observe that if u > p and u > p + ¢, then
by (2.1), 2 > v, which is absurd. Further, if u < p, then again by (2.1),
{2 < —v, which is also absurd. So v > p and u < p 4+ ¢. There are two
subcases: 2 > 0 and {2 < 0.
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SUBCASE 5.1: £2 > 0. Let m,n € N be such that p+ ¢ — u = m{2 and
v = n{f2. From the first condition of (1.8) and (1.1) we deduce that

X*~XP®(X®B)!~XPrig B
Consequently,
(2.14) X X (0+0) g pra.

On the other hand, adding Y to both sides of the second condition of (1.8),
by (1.6) with m = s we see that

(2.15) Yol oy g A4

Adding B~ to both sides of (2.15), by (1.6) with m = —d we infer
Y~V g B

Then we have

(2.16) X®&B~Y ~Y" " @B~ (XaB)" @B %~ Xvtlgp dtvtl

Adding A to both sides of (2.16), by the analogue of (1.6) for X with m =1
we conclude that

(2.17) X ~ Xvtl g gt
Next adding XV @ B~9*" to both sides of (2.17) we have
X ~ Xv+1 D B*dJrU ~ X2U+1 D B2(7d+’u).

Therefore by induction we get

(2.18) X ~ X0 g B e N¥
Pick j € N* such that ju+1 > nu. By (2.18) with i = j and (2.14) we obtain
(2.19) X ~ Yivtl-nu o xn(p+a) g gna g gi(=d+v)

~ XJvtltn(pta—u) o pi(—dtv)t+ng

Moreover, by (2.18) with ¢ = j + m, it follows that
(2.20) X ~ va+1+mv ® Bj(—d—i—v)—&-m(—d—i—v)'

Notice that n(p+g—u) = mv and 1 = md+n(u—p). So ng = mv+n(u—p) =
mv + (1 —md) = m(—d + v) + 1. Hence by using (2.19) in (2.20), it follows
that X ~ X & B ~Y.

SUBCASE 5.2: 2 < 0. Let m,n € N be such that p+ ¢ — u = —mJ{2 and
v = —n{2. Proceeding as in Subcase 5.1 we obtain (2.19) and (2.20). Note
that n(p+¢—u) = mv and 1 = —md —n(u—p). Thus ng = mv+n(u—p) =
mv —md — 1 = m(—d + v). Therefore by using (2.20) in (2.19) we see that
X~X®B~Y.n

3. Necessary condition for a sextuple in N to be a SSBs. Our
task in this section is to prove the necessity part of Theorem 1.4. In order
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to do this we prove Propositions 3.5, 3.6 and 3.7. We start by recalling some
Banach spaces introduced by W. T. Gowers and B. Maurey in 1997.

REMARK 3.1. In [13, p. 563] Banach spaces X; were constructed, for
every t € N, ¢ > 2, having the following property: X" ~ X}*, with m,n € N*,
if and only if m = n mod t.

In order to prove our propositions we need three lemmas. They relate to
the Banach spaces X; mentioned in Remark 3.1.

LEMMA 3.2. Letp,q,r,s,u,v € Nwithp+q>2,r+s>1 andu,v € N*
and suppose that there exist i,j,t € N* with t > 2 satisfying

(a) t divides i(p — u) + jg;

(b) t divides i(r — s) + j(s —r —v);

(c) t does not divide j — i.

Then (p,q,r,s,u,v) is not a SSBs.

Proof. Let n € N* be such that nt — j +¢ > 0 and nt — i+ j > 0. Since
j+nt—j+i)—i=mntand i+ (nt —i+ j) — j = nt, by the property of X,
mentioned in Remark 3.1 we have

Xi~X] o x0T
X ~ Xie X
From conditions (a) and (b) we deduce that
qu ~ XZP @Xijq’
ng ~ Xt(nt—j-l—i)r @ Xt(nt—i—‘rj)s'
Further according to condition (c) we conclude that X! is not isomorphic
to X}. Consequently, (p,q,r,s,u,v) is not a SSBs. =

LEMMA 3.3. Letp,q,r,s,u,v € Nwithp+q>2,r+s>1 andu,v € N*
and with strong discriminant 2 > 2. Suppose that there exist integers o and
0 satisfying

(a) a(s —r —v) > fg;

(b) B(p —u) > a(r — s);

(c) 2 does not divide B(p + q — u) + awv.

Then (p,q,r,s,u,v) is not a SSBs.
Proof. Let t = {2 and consider the linear system
i(p—u)+jg=at,
i(r—s)+j(s—r—wv) =gt

The only solution of (3.1) is i = a(s—r—wv)—LFqand j = B(p—u)+a(r—s). It
follows from (a)—(c) that 4, j > 0 and ¢ does not divide j—i = B(p+q—u)+awv.

(3.1)
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Moreover, clearly t divides i(p —u) +jq and i(r — s) 4+ j(s —r —v). Therefore
Lemma 3.2 implies that (p, q,r, s, u,v) is not a SSBs. =

Taking t = —f2 and proceeding as in the proof of Lemma 3.3 we obtain:

LEMMA 3.4. Letp,q,r,s,u,v e Nwithp+q>2,r+s>1, u,v,t € N*
and with strong discriminant {2 < —2. Suppose that there exist integers o
and (B satisfying

(a) a(s —r —wv) < Bg;

(b) B(p —u) < a(r —s);

(c) £2 does not divide B(p + q — u) + awv.

Then (p,q,r,s,u,v) is not a SSBs.

PROPOSITION 3.5. If a sextuple (p,q,r,s,u,v) in N with p + q > 2,
r+s>1andu,v € N* is a SSBs, then its strong discriminant §2 is different
from zero.

Proof. Suppose that 2 = 0. We distinguish four cases: ¢ = 0; p = v and
qg>0;p>wuand ¢g>0;p<uandqg>0.

CASE 1: ¢ =0. Then p > 2 and since 2 = (p—u)(s—r —v) = 0, we get
p=uors=r-+uv.

SUBCASE 1.1: p = u. Take n € N* such that —nv =v+4+r—s—2,i=mn,
j=n+1andt € N satisfying —t = n(r—s)+(n+1)(s—r—wv). Thus t > 2,
t divides i(r — s) + j(s —r —v) and ¢ does not divide j —i = 1. So Lemma
3.2 implies that (p,q,r, s, u,v) is not a SSBs.

SUBCASE 1.2: s = r +v. By Remark 2.1 we have
{Xg ~ Xo ® Xo, {X%” ~ X3P,
Xy ~ X2 X, X3~ X7 X5
Since X2 7 Xo, it follows that (p, q,,s,u,v) is not a SSBs.

CASE 2: p=w and ¢ > 0. Hence 2 = —q(r —s) =0 and r = s. Thus by
Remark 3.1 we see that
Xy~ X28 Xo, X0~ XP @ X2,
X2 ~ Xy @ X, X2V~ X5 ® X5
Consequently, (p, q,r,s,u,v) is not a SSBs.
CASE 3: p>uand ¢ >0. Takei=pand j =p—u. So i(p —u) + jg=
(p — u)(p + q) and since 2 = 0, it follows that i(r — s) + j(s —r —u) =
(r — s)(p+ q). Furthermore, j — i = —u and p + ¢ does not divide u. Thus

it suffices to take ¢t = p + ¢ and apply Lemma 3.2 to see that (p,q,r, s, u,v)
is not a SSBs.
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CASE 4: p < wand ¢ > 0. Takei = g and j = u—p. Therefore i(p — u)+
jq = 0 and since {2 = 0, we have i(r—s)+j(s—r—u) = 0. Moreover u # p+q.
Otherwise from 2 = (p —u)(s —r —v) — q(r — s) = 0 we would conclude
that qu = 0, which is absurd. Now take ¢ € N, ¢t > 2, such that ¢ does not
divide j — ¢ = u — p — ¢ and apply Lemma 2.2 to deduce that (p, q,r, s, u,v)
is not a SSBs. =

PROPOSITION 3.6. If a sextuple (p,q,r,s,u,v) in N with p + q¢ > 2,
r+s>1, u,v € N* and with strong discriminant {2 different from zero is
a SSBs, then (2 divides p + q — u.

Proof. Assume that {2 # 0 and {2 does not divide p + g — u. We consider
two cases: {2 > 2 and 2 < —2.

CASE 1: £2 > 2. We distinguish four subcases: ¢ = 0; p = v and ¢ > 0;
p>wuand g > 0; p<wuandq>0.

SUBCASE 1.1: ¢ = 0. Then {2 = (p—u)(s—r—v) and hence p # u. Note
that in this subcase (p,0,r, s, u,v) is a SSBs if and only if (u,0,r,s,p,v) is.
Thus we can suppose p > u and therefore s —r —v > 0. Take @« = p — u and
B =r—s+1.Since (p—u)(r—s) < (p—u)(r—s+1) and B(p+qg—u)+av =
(p—u)(r —s+wv)+p—u, it is enough to apply Lemma 3.3 to see that
(p,q,7,s,u,v) is not a SSBs.

SUBCASE 1.2: p = uw and ¢ > 0. Then 2 = —¢q(r — s). Take @ = ¢ and
B =s—r—v—1.Since ¢(s—r—v—1) < g(s—r—w) and Bg+av = (s—71)q—q,
Lemma 3.3 implies that (p, q,r, s, u,v) is not a SSBs.

SUBCASE 1.3: p >wuand ¢ > 0. By (2.1), (r—s)/(p—u) < (s—r—2v)/q.
Let m € N* be such that
r—s _S—r-—vw 1
< -
p—u q qm
and take « = gm and 8 = m(s — r — v) — 1. Therefore (r — s)/(p — u) <
Bla < (s—r—wv)/qgand B(p+q—u)+av=m2 — (p+q—u). Again by
Lemma 3.3, (p,q,r,s,u,v) is not a SSBs.

SUBCASE 1.4: p<wuand ¢ > 0. By (2.1), (s—r—v)/¢g < (r—s)/(p—u).
Fix m € N* such that
s§—1r—2v 1 r—35
q gm ~ p—u’
and take a = gm and = m(s —r —v) + 1. Hence (s —r —v)/q < B/a <
(r—s)/(p—u) and B(p+q—u)+av = mf2+(p+qg—u). Once more according
to Lemma 3.3, (p,q, 7, s,u,v) is not a SSBs.

CASE 2: 2 < —2. We distinguish four subcases: ¢ = 0; p = v and ¢ > 0;
p>wvandqg>0;p<wvandq>0.
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SUBCASE 2.1: ¢ = 0. Then 2 = (p—u)(s—r—wv) and as in Subcase 1.1 we
may assume that p > u. So s—r—v < 0. Take & = p—u and 8 = r—s—1. Since
(p—u)(r—s—v), (p—u)(r—s) and B(p—u)+av = (r—s+v)(p—u) — (p—u),
Lemma 3.3 shows that (p,q,,s,u,v) is not a SSBs.

SUBCASE 2.2: p = u and ¢ > 0. Then 2 = —¢q(r — s). Take @ = ¢ and
B =s—r—v+1.Since ¢(s—r—v) < q(s—r—v+1) and Bg+av = (s—7)q+q,
it follows from Lemma 3.3 that (p, q,r, s,u,v) is not a SSBs.

SUBCASE 2.3: p >wuand ¢ > 0. By (2.1), (s—r—v)/q¢ < (r—s)/(p—u).

Pick m € N* such that
S—1r—20 1 r—s
q gm  p—u’
and take o = ¢gm and § = m(s —r —v)+ 1. Therefore (s —r—v)/q < B/a <
(r—s)/(p—u) and B(p+q —u) + av = mf2 + (p + g — u). Consequently,
Lemma 3.3 implies that (p,q,r, s, u,v) is not a SSBs.

SUBCASE 2.4: p <wand ¢ > 0. By (2.1), (r—s)/(p—u) < (s—r—v)/q.

Let m € N* be such that
r—s<s—r—v 1

p—u q qm’
and take « = gm and B =m(s—r —v) — 1. Thus (r — s)/(p —u) < f/a <
(s—r—wv)/qand B(p+q—u)+av=m — (p+q—u). It suffices to apply
Lemma 3.3 to see that (p,q,r,s,u,v) is not a SSBs and complete the proof
of the proposition. =

PROPOSITION 3.7. If a sextuple (p,q,r,s,u,v) in N with p + q¢ > 2,
r+s>1, u,v € N* and strong discriminant (2 different fom zero is a SSBs,

then (2 divides v.

Proof. Assume that 2 # 0 and {2 does not divide v. We also consider
two cases: 2 > 2 and 2 < —2.

CASE 1: 2 > 2. We distinguish five subcases: r = s; s =r +v; r > s;
r<sand s<r-+uv;r<sands>r-+wv.

SUBCASE 1.1: r = s. Then 2 = —(p —u)v and p < u. Take a =1 — ¢
and = —v. Since —qv < (—¢+1)vand B(p+q¢—u)+av=—v(p—u) +v,
Lemma 3.4 implies that (p, q,r, s, u,v) is not a SSBs.

SUBCASE 1.2: s = r +v. Then 2 = —¢(r — s) and r — s < 0. Take
a=u+1l—-—pand B=s—r.Since (p —u—1)(r—s)> (p—u)(r—s) and
Bq + av = qu + v, Lemma 3.4 shows that (p, q,r,s,u,v) is not a SSBs.

SUBCASE 1.3: r > s. Then s < r +wv and by (2.1), (p —u)/(r — s) <
q/(s —r —wv). Let m € N* be such that

- 1
p—u < q + :
r—s s—r—v m(s—r—uv)
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and take « = gm — 1 and 8 = m(s —r — u). Hence ¢/(s —r —v) < a/f <
(p—u)/(r—s),and B(p+ q—v) + av = mf2 + v. Consequently, Lemma 3.3
implies that (p, q,r, s, u,v) is not a SSBs.

SUBCASE 1.4: r < sand s < r+wv. By (2.1), ¢/(s—r—v) < (p—v)/(r—s).
Fix m € N* such that

q 1 p—v
s—r—u m(s—r—u) r—s5

and take o« = gm+1 and # = m(s —r —u). Note that ¢/(s—r—v) < o/ <
(p—v)/(r—s),and B(p+q—v)+at =ml[(p—v)(s—r—u)—(r—s) —v.
Again by Lemma 3.3, (p, q,7,s,u,v) is not a SSBs.

SUBCASE 1.5: 7 < sand s > r+v. By (2.1), (p—u)/(r—s) < q/(s—r—v).
Pick m € N* such that

p—u q 1
< - )
r—s s—r—v m(s—r—uv)

and take « = gm — 1 and § = m(s —r — u). Observe that ¢/(s —r —v) <
a/f < (p—u)/(r—s),and B(p+q—v)+ av = mf2 —v. Once again Lemma
3.3 implies that (p,q,r, s, u,v) is not a SSBs.

CASE 2: 2 < 2. We distinguish five subcases: r = s; s =r +v; r > s;
r<sand s<r4wv;r<sands>r+w.

SUBCASE 2.1: r = s. Then 2 = —(p — u)v and p > u. Take « = g+ 1
and = —v. Since (—¢—1)v < —qv and B(p+q¢—u) +av = —v(p—u) +v,
by Lemma 3.4, (p,q,r,s,u,v) is not a SSBs.

SUBCASE 2.2: s = r+v. Then 2 = —q(r — s) and r — s > 0. Take
a=p—u+1land B=r—s. Since (p —u)(r —s) < (p—u—+1)(r —s) and
Bq + av = —quv + v, Lemma 3.4 implies that (p, q,r, s, u,v) is not a SSBs.

SUBCASE 2.3: r > s. Then s < r 4+ v and by (2.1), ¢/(s —r —v) <
(p—u)/(r —s). Let m € N* be such that

q 1 p—u
— < s
s—r—v m(s—r—v) r—s

and take @« = gm — 1 and § = m(s — r — v). Notice that ¢/(s —r —v) <
a/f < (p—u)/(r—s,and B(p+ q— u) + av = —m2 — v. Consequently,
Lemma 3.4 implies that (p, q,r, s, u,v) is not a SSBs.

SUBCASE 2.4: r < sand s < r+v. By (2.1), (p—u)/(r—s) < q/(s—r—v).
Pick m € N* such that
— 1
p—u < q + :
r—s s—r—v m(s—r—uv)
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and take « = gm — 1 and = m(s —r —u). Thus ¢/(s —r—v) < a/f <
(p—u)/(r—s),and B(p+ q— v) + av = mf2 + v. Again by Lemma 3.3,
(p,q, 7, s,u,v) is not a SSBs.

SUBCASE 2.5: r < sand s > r+v. By (2.1), ¢/(s—r—v) < (p—u)/(r—s).
Fix m € N* such that

q 1 p—u
s—r—v m(s—r—v) m(r—s)’

and take « = ¢gm+1 and f = m(s—r —u). Therefore ¢/(s—r—v) < a/f <
(p—u)/(r—s),and B(p+q—v)+ av = m2 + v. Once again Lemma 3.4
implies that (p, q,r, s, u,v) is not a SSBs, and the proposition is proved. m

4. Some remarks and problems. Taking into account the analogue
of (1.6) for X we are led to

DEFINITION 4.1. A sextuple (p,q,r,s,u,v) in Nwithp+q¢>1,r+s>1
and u,v € N* is a tight Schroeder—Bernstein sextuple for Banach spaces
(for short, TSBs) if X ~ Y whenever there exist Banach spaces A and B
satisfying (1.1) and the following decomposition scheme:

X"~ AP @ BY,

YV~ A" @ B®.
We also say that @ = (p —q¢ —u)(s —r —v) — (¢ — p)(r — s) is the tight
discriminant of the sextuple (p, q,r, s, u,v).

Similarly to Theorem 1.4, we can prove:

THEOREM 4.2. A sextuple (p,q,r,s,u,v) in Nwithp+q¢>1,r+s>1
and u,v € N* is a TSBs if and only its tight discriminant © is different from
zero and © divides u and v.

This result was proved in [11, Theorem 1.3| for the case u = v = 1.
However, note that if we replace B by X or A by Y or still Y by A in
the second condition of (1.8) some problems arise naturally, for example:

PROBLEM 4.3. Give non-isomorphic Banach spaces X and Y such that
there exist Banach spaces A and B satisfying (1.1) and

X2~ XY,
YV ~A® X.

PROBLEM 4.4. Give non-isomorphic Banach spaces X and Y such that
there exist Banach spaces A and B satisfying (1.1) and

X2~ XY,
Y ~Y & B2.
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PROBLEM 4.5. Give non-isomorphic Banach spaces X and Y such that

there exist Banach spaces A and B satisfying (1.1) and

(1]

(2]
(3]
[4]
[5]
[6]
[7]

(8]
[9]
[10]
[11]
[12]

[13]

X2~ X g,
A2~ A® B.
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