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Deformation quantization and Borel’s theorem
in locally convex spaces

by

MIROSLAV ENGLIS (Praha and Opava) and JARI TASKINEN (Helsinki)

Abstract. It is well known that one can often construct a star-product by expand-
ing the product of two Toeplitz operators asymptotically into a series of other Toeplitz
operators multiplied by increasing powers of the Planck constant h. This is the Berezin—
Toeplitz quantization. We show that one can obtain in a similar way in fact any star-
product which is equivalent to the Berezin—Toeplitz star-product, by using instead of
Toeplitz operators other suitable mappings from compactly supported smooth functions
to bounded linear operators on the corresponding Hilbert spaces. A crucial ingredient
in the proof is the generalization, due to Colombeau, of the classical theorem of Borel
on the existence of a function with prescribed derivatives of all orders at a point, which
reduces the proof to a construction of a locally convex space enjoying some special prop-
erties.

1. Introduction and background. Let {2 be a domain in C* = R??
equipped with a Poisson bracket {-,-}, i.e. a first order bidifferential operator

2n a 8
1) Uohw =3 Bjk<x>8—gfja—i, € R,

jk=1

where, for each = € 2, the matrix Bj; () is skew-symmetric and nonsingular.
Denote by C°°(£2)[[h]] the ring of formal power series in a variable h with
coefficients in C*°(§2). A star product on §2 is a C[[h]]-bilinear map x* :
C®(N2)[[h]] x C>®(£2)[[h]] — C>=(£2)[[h]] such that

(i) = is associative,
(ii) there exist bidifferential operators C; : C°(£2) x C*°(£2) — C™(12)
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such that
(2) frg=> hCj(f.g), Vf.geC=();
j=0

(iii) the operators C} satisfy
Co(f,9) = fg;

Ci(f.0) - Crlg. ) = 5-{f.9).

and
Ci(f,1)=C;(1,f)=0, Vj=1
Note that the last equality means precisely that 1 is the unit element for x.

REMARK. Generalization to complex manifolds (2 is straightforward.

Two star products *,*" are called equivalent if there exists a sequence
of linear differential operators My, My, Ms,... on C°(§2) with My = I
(the identity operator) such that we have the following equality of formal
power series:

(3) M(f+"g)=MfxMg, VfgeC®R)n],
where
(4) Mf =Y hMf.

=0

Star products are the object of study of deformation quantization, and were
first introduced in the seminal paper by Bayen, Flato, Fronsdal, Lichnero-
wicz and Sternheimer [BF|. Some more information about them can be found
e.g. in the recent surveys by Gutt [Gu] or by S.-T. Ali and the first au-
thor [AE].

Toeplitz star product. One can sometimes construct a star product using
Toeplitz operators. Namely, under suitable hypotheses on {2 and the Poisson
structure (the boundary behaviour of the Bj, in (1)), there exists a family of
measures /i, on {2, 0 < h < 1, such that the following holds. Let L? (1) be
the subspace of holomorphic functions in L?(uy) (weighted Bergman space),
Py L*(up) — L3, (up) the orthogonal projection, and for f a bounded

" on Li i (1) by

T}h)gb = P, (f). Then for any f,g € D(£2) (:= the functions in C*°({2) with
compact support), there is an asymptotic expansion

continuous function on {2 define the Toeplitz operator T]gh

J

(B () o N () .
(5) T T ~ D W,y ash—0,
j=0
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with some bidifferential operators C; (independent of f,g). Further, these
operators C; define—via the formula (2)—a star product on 2.

Here the expansion (5) is understood in the sense of operator norms,
i.e. foreach N =0,1,2,..

*

| < Cnggh™* vhe (01).

N
(M) (b)) jr(h)
(6) HTf 1 Z%h]TCj(f,g)
j:

REMARK. Formally, we can write (5) as

(M) (k) _ (k)
Tf T, _Tf*g.

EXAMPLE ([Cob]). If 22 = C and dus(z) = (wh)"te ?*/hdz (where dz
stands for the two-dimensional Lebesgue measure), then (5) holds with
1 0ifdlg
Cj(f.9) = e =k
Similarly, (5) holds for {2 = ID, the unit disc, with the standard weighted

Bergman spaces corresponding to dup(z) = h:;ll (1—|z>)Y"dz [KL].

Other situations when the Berezin—Toeplitz quantization can be carried
out include bounded symmetric domains [BLU] (see also [E3| for an extension
from functions in D to functions not necessarily having compact support),
strictly pseudoconvex domains with Poisson brackets having a reasonable
boundary behaviour [E1], or, provided one considers the manifold case and
allows also spaces Lﬁol of sections of line bundles (instead of just functions),
all compact Kahler manifolds [BMS], [Sch].

The Berezin—Toeplitz quantization prompts the following definition.

DEFINITION. We say that a star product (2) is induced by operators if
there exists a family of Hilbert spaces Hy, 0 < h < 1, a “large” subspace Z C

C>(2), and linear maps f +— Qgch) from Z into bounded linear operators
on Hj, such that

[e.9]

(7) QM =YW@l ash—0, VigeZ
j=0

in the sense of operator norms.
Here being “large” can be interpreted, for instance, as follows:

(8)  for each finite set of multiindices o, . . ., ag, complex numbers

wi, ..., Wk, and point z € §2, there exists f € Z such that
D% f(z) =w;, Vj=1,...,k,
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where D® denotes the operator of differentiation. The merit of (8) is that it
ensures that the knowledge of C;(f,g) for all f,g € Z already determines
the C; uniquely.

CONJECTURE. Fwvery star product is induced by operators.

At the moment, we have no idea how to attack this conjecture. But we
are able to prove at least a weaker result:

MAIN THEOREM. FEvery star product equivalent to the Toeplitz star prod-
uct s induced by operators.

For the case of bounded symmetric domains and star-products which
are invariant with respect to holomorphic automorphisms, this theorem was
proved by one of the authors in [E2], using heavily the special machinery
of Lie groups available in that setup (above all, the Helgason—Fourier trans-
form and the related theory of invariant differential operators on symmetric
spaces). No such thing is available in the general case treated here, and thus
we use another approach building on an extension of the classical theorem
of Borel to Fréchet spaces, due to Colombeau [Col].

The paper is organized as follows. In Section 2, we show how the proof of
the theorem can be reduced to the problem of existence of a locally convex
space of functions on {2 possessing certain properties. This space is then
constructed in Section 3 as the inductive limit of a sequence of Banach
spaces. The necessary prerequisites on locally convex spaces can be found
e.g. in the books of Jarchow [Ja|, Koethe [Koe|, Meise and Vogt [MV], or
Bonet and Perez Carreras [BnC]. In the final Section 4, we briefly mention
also a nonlinear variant of the above quantization procedure, for which a
much simpler proof can be given.

2. Plan of proof of Main Theorem. Let * denote the Toeplitz star
product, and let *’ be a star product equivalent to *. Let My = I, My, Mo, ...
be the differential operators furnishing the equivalence, and let M denote
the linear operator on C'*°(2)[[h]] given by (4). Writing (5) and (7) for-
mally as

TyTg =Tpg,  Qlg = Qrrg,
and comparing this with (3), we see that if we could take

(h) . p(h)

Q" =Ty

then we would be done. The problem is that M f is just a formal power series,

which may diverge if one assigns to h some value. So we need to approximate,
in some sense, the formal power series M by genuine operators.
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Denote by C; the coefficients (2) of the Toeplitz star product, and by C’j‘
the coefficients of #'. Expanding (3) and comparing the expressions at like
powers of h on both sides, we see that C; and C]’- are related by

(9) Z MJCI/g<fvg) = Z Cj(MkfaMlg)7 vf?QECOO(Q)7
j+k=N k=N

foreach N =0,1,2,....
Assume that we can construct a vector space Z contained in C*°(2) such
that

a) DN Z is “large”, in the sense of (8);

b) M;Z C L for all j;

c) Ci(M;Z,MZ) C L*> for all j, k,I;

d) C,.(Z,Z) C Z for all k; and, finally,

e) there exists a family of linear operators MM 0 < h<1,from Z into
L such that for each N =0,1,2,... and f € Z,

(GRS ST LT
j=0

with some finite constant Cy y, for all 0 < h < 1.

(Note that, as My = I, (b) implies in particular that Z C L*°.)
Granted this, let us set, for f € Z,

Q}h) =TM MM ),

where, for typographical reasons, we started writing 7" [f] instead of T}h).
Since the norm of a Toeplitz operator always satisfies

h
1750 < 11 £llc,
we see from (e) that, for each N =0,1,2,...,

N
(10) HT(h)[M(h)f] _Zth(h)[Mjf]H ZO(hN‘H).
7=0

(Note that MW" £, M;f € L* in view of (e) and (b).)
If g is another function from Z, it follows that

(11) HQS}L)Q;’Z) _ (f: BT [Mjf]> (zN: BT [Mjg]) H _ oMY,
j=0 =0

Finally, if f and g (and hence also M, f, Myg) belong in addition to D,
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then (6) applies to T [Mjf]T(h) [Myg], for each j and k; thus for any
frgeDnNZ,

N
(12)  QVQW = S WHETW (A fITM [ Myg) + OV
Jisk=0

N
Z WHHTM (G (M f, Myg)] + O(BNTY) by (6)

= > WHFHTWC (M, f, Myrg)) + OBV by (c)
JHEHN

= Z WTETM M CL(f, 9)) + O(RN ™) by (9)
JHR<N

N
= > WHTWMCL(f )] + 00N ) by (d) and (b)
4,k=0
N N
=Y WT® M S RC(f. )| + O
7=0 k=0

N
h [M(h) S RECH(f, g)} +O(RM1) by (d) and (10) again
k=0

N
" [kzzo BECL(f.9)| + O,

(All the O-terms relate to errors in operator norm.) Thus (7) holds (with C;
in place of C;), and the proof is complete.
It thus only remains to construct the space Z with the above properties.

3. Construction of the space Z. Recall that the classical theorem of
Borel asserts that for any sequence f, of complex numbers, there exists a

function f € D(R) such that
fO0)=4f, Vi=0,1,2,....
In particular, by Taylor’s formula, it follows that

N
‘ OB fj‘ < CpnhVt, VheR
§=0
Comparing this with the condition (e), we see that (e) is tantamount to hav-
ing a Borel theorem for functions on R with values in the space of operators
from Z into L*> equipped with the strong operator topology (the topology of
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uniform convergence in norm on finite subsets of Z). Unfortunately, it turns
out that in this generality, i.e. for functions with values in a locally convex
space, Borel’s theorem may fail in general (see [Col|).

However, it is a notable result of Colombeau [Col] that Borel’s theorem
is valid for functions on R with values in a Fréchet space. Furthermore, it is
known that if Z is an (LB)-space, that is, a countable inductive limit of
Banach spaces, then the space Ly(Z, L°°(£2)) of continuous linear operators,
endowed with its natural locally convex topology of uniform convergence on
bounded sets, automatically becomes a Fréchet space. Consequently, if our
Z is an (LB)-space, then Colombeau’s result applies, and we get our require-
ment (e) granted.

Our purpose will therefore be to construct an (LB)-space Z C C*°({2)
which satisfies the conditions (a)—(d).

Let ¢jo € C°°(12) be the coefficients of the differential operators Mj, i.e.

Mif(z):= Y cjale)D*f(x);
amultiindex
and similarly define
Cj(Myf, Myg) =Y cjriapD®f - Dy,
a’ﬁ
Ci(f,9) =D chagD*f - D
a’ﬁ

Let us enumerate the countable set {cja }j.a U{¢jkias}jkiasU {C;gag}k,aﬁ of
all the above coefficients as vj, j € N. (Here and in what follows,

N:={0,1,2,...}.)
LEMMA 1. There exists a C* weight function w : 2 — RT such that
w > 1, w(z) — oo as  tends to the boundary or to infinity, and
D%vj(x
ey ID2(2)
zef? w(x)

for all 7 € N and all multiindices «.

< 00

Proof. Enumerate the (countable) set of all the functions D%v;, j € N,
a eN" as fi, k=1,2,.... Further, pick a sequence ¢; of functions in D({2)
such that 0 < ¢; < 1, the union of the supports of ¢; is all of {2, and ¢; 11 = 1
on the support of ¢;. Define K; := supp ¢;, and set fo(z) := Zj(l — ¢j).
Thus K is an increasing sequence of compact subsets such that the union
of their interiors is {2, and fo is in C*°(£2), fo > 0 and fop(z) — oo as z
tends to the boundary of {2 or to infinity. Now choose constants C, such
that

sup |D fj(x)| < Ch,.
ZC'EKmajva |Ot‘§m
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Set

o0
The sum converges uniformly on compact subsets, together with all its par-
tial derivatives, thus w € C*°(£2). Clearly w > 1, and w(z) — oo as z tends
to the boundary or to infinity since w > Cy L fo. Finally, f Jw < 2FC. Thus
w does the job we need. =

We fix a function w as in the last lemma from now on, and also set

W (z) = e®.

Define, for j € N, ,
Kj 1= su wiz)

7 :L’Eg W($)

From the fact that w — oo as = tends to the boundary or to infinity it
follows that each k; is finite.

Finally, we fix from now on a sequence ¢ of functions in D such that
the union of their supports is {2, and ¢x11 = 1 on the support of ¢y.

LEMMA 2. There exists a sequence {€;}jen such that 0 < e; <1 for all

j and
Squ Zq [D* (27 k()] < 00
xTe

for any k € N and any multzmdex ~v. Here the summation extends over all
multiindices o € N" and |a| :=aq + -+ + au,.

Proof. Choose again constants C/ < oo such that

sup W ()| D27 di())| < .

2602, |y|<m, k<m, a|<m
Set &y, :=27™/C/,. Then for any k, v and z,
> W@)D @ gr(@))lee < Y271 =27 < o,
|| >max(k,|v]) o

and the claim follows. =

LEMMA 3. There exist positive constants Ay, k € N, such that Ay, > o
and

e p
(13) ApAy, > 2! |<M) Yok (W)

for any multiindices ¢, p, ™ such that m C p C ¢.

Here we are using the usual multiindex notation

()= (o))

and 7 C p means that 7; < pu; for all j.
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Proof. The right-hand side of (13) can be bounded by a constant A(k, )
depending on k and ¢ only. Take

Ap, = max A(k,.) + 1.
k,|e|<m

It is easy to see that (13) follows. =

We now define, inductively, a sequence of small positive numbers a,, ;,
m,i € N. Assume that m and ¢ are given and that a; ; has already been
defined for all (k, j) with £ < m, or k = m and j < i. We choose ap,; > 0
so small that the following requirements are satisfied:

(14) am,i <& <1,

(15) myi < Am—1, if m>1,

(16) Ui < Qm—1,i+1  fm>1,

(17) Ui < % for all p,q < i.
i

LEMMA 4. For all k,m € N and p,m € N" with m C p,

L H A, |u—7|Am,
2 am (u) Yok <7T> < (2" + 1) Ay, —melpmrlTmr]

=y am,0
where Ay, is as in (13).

Proof. As a combination of (13) and (17) we obtain

Zam,|b|<b>’n 1k < ><Akza A2

L2p L2p

< Ak (O Y 27

LIp

ama|ufﬂ|am7‘ﬂ-|
)

< 2" A = G, ) < 2" A
Gm,0

since a0 < 1 by construction. The remaining term ¢ = p reduces to
A Y0,k (£). For 0 < |7 < |p| we can again use (13) and (17) to bound
this by Akam7w_7r‘am7‘ﬂ|2_|“| < Akl |y—r|@m,|x|- For m =0 or m = p, the
. . . . a am,0 .
term becomes just a,, |,70,k, Which is again bounded by MAk since

Gm,0
A > 70 by Lemma 3. =

We proceed to define the space Z := indy_,, Zi. The step spaces Zj, are
defined to consist of the C°° functions f on {2 such that

I fllx == SUPW Zak |a\|D flx)] < 0.
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We have Zj C Zi.1 continuously, for all k. In fact, || f|lzr1 < || f]lx by (15)
and the fact that w > 1.

To recall the basic properties of the inductive limit, we have Z := |, Zy,
and if we define Uy, := {f € C(£2) : ||f||x < 1}, then a basis of neighbour-
hoods of zero is given by the sets

(18) U:=T U kak = {Z)\kgk : Z |)\k’ < 1, gi € kak}
k=1 k k

for b; > 0. Here the sum in the definition of U is allowed to have only a
finite number of terms.

We are now going to prove that the space Z satisfies the conditions
(a)—(e) from the preceding section. This will finish the proof of our Main The-
orem.

Proof of (a). By Lemma 2 and (14), all functions of the form p¢y, where
k € N and p is an arbitrary polynomial, belong to Z. Since these functions
obviously also belong to D and the germ of p¢r at any point of supp ¢p_1
coincides with the germ of p at that point, it is obvious that DN Z is “large”
in the sense of (8). =

Proof of (b). It is enough to show that for each [ and «, the operator
v D® maps Z into L*°. However, if f € Z;, then

|1 l|w ()" 1l w(a)
g jo|W () =0 el apjo) W(z)

< oo, 10
a

() D f ()| < [oi(2)| ===

KEk+1 < 00
k,ler

forany x € 2. u

Proof of (c). Again, it is enough to prove that v (D®f)(D?g) € L™ for
any l € N, o, € N® and f,g € Z. However, for f € Z; and g € Z,,,, by a
similar argument to the one above,

£ w® [l gllmw™
ko) W | g W
£ 11kl glm

<0 Kk41hm < 00. =
Ak, Am, ||

[o(D* f)(DPg)| < o,

Proof of (d). Once more, we need only prove that vj,(D®f)(D?g) belongs
to Z whenever k € N, o, 8 are multiindices and f,g € Z.

Assume that a neighbourhood of 0 as in (18) is given. So we are given a
positive sequence {b;}jen.
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We pick numbers Ej > 0, j € N, such that for all j we have

> . binGm,0 >
19 b, < min ;1.
(19) ! T m<2j+al 48 (chﬂ(?" + 1) Ay,

We claim that f € FU?’;lngj and g € FU;ilngj imply

o0
ve(Df)(D) € T b;U;.
j=1
By the assumptions on f and g, we can find finite sets of complex numbers
Aj and p; and functions f; € b U; and g; € b U; such that

SNnI<t <t F=Y N 9= g
J J J J

We have
we(DF)(D%g) = N (D £;)(Dg1),
j?l

and here Ejjl |Ajm| < 1, so it is enough to prove that for all j and I there
exists m such that vi(Df;)(D%g;) € by Up,.

We claim that this happens for m := j+[+|a|+|5|. Recall that | D'vg| <
v, kw by Lemma 1.

We have

(20)  [Joe(D*f) (D g1) lm

= sup W(zjw(z)™ > | D (0k(D f;)(DP 1))

By the Leibniz rule,
> | D (0 (D £)(Dq0))|

<Za Z( ) (D" HoR) DH((D* f;)(D 1))

et

<2 omul 2 < )%—#,kw > <;‘>\(Da+““fj><pﬁ+wgl>y
pCu TCu

—w;ggam |( )% m( >I(Da+" T g

By Lemma 4 this is bounded by

2 DA ™S et | (DO 1) (D)

a
m,0 T WOT
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Hence, (20) can be bounded by
2"+ 1)A

Qm,0 e
X Z Z A, |p—7| Am, | 7| ’(Da—‘_“_ﬁf]’)(D/B—i_ﬁgl)’

™ UOT

(271 + 1)Ak -m atp £
< 7<s1(12pW’w zﬂ:am,lulw fJ|)

am,0

X (supr_mZa ‘ ‘ID‘”"gzl) : (Sup wm+1>
0 # m, | 0 w

2" 4+ 1 Ak .
< hipyy E DA (Sl{l}p W™ ™S " a o eral \D“+“fj|)
I

am,0

X (Sgp W Zam—|ﬂl,m+m|Dﬁ+“gz!) by (16) and w > 1
o

Qm,0

< Km+1 (S?)p Ww—m+|oz\ Zam—|a\,|7||vaj|)
Y

X (supr_mHﬁ‘ Ay Dvgl)
p ; 181,109l

< (2" + 1) A, 2L BB < by,

Gm,0

Here in the penultimate inequality we have used the fact that

Sup W=t Zam—|a\,|’y|‘D’yfj’ = 1 fillm=jal < If5ll5 < by,
S
since m — || = j 4+ 1+ |3] > j (and similarly for ¢;); while the very last
inequality follows from (19). =

Proof of (e). Let us first of all remark that Ly(Z, L°°({2)) is indeed a
Fréchet space. Indeed, since every (LB)-space is a (DF)-space (cf. [Koe,
part I, §29.5(5)|), and Ly(E, F') is complete if E is (DF') and F is any com-
plete locally convex space (see [Koe, part II, §39.6(6)]), the completeness of
Ly(Z,L>(12)) follows. As for metrizability, Z has a fundamental sequence
(Br)22, of bounded sets (by construction, or by the fact that it is (DF),
see [Koe, part I, beginning of §29.3]). Hence every bounded subset of Z is
contained in some multiple ¢B,, and from the definition of the topology
of uniform convergence on bounded sets we see that the countably many

sets
U, = {T c Lb(Z,LOO) : HTfHOo <1lforall f e Bn}
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form a basis of neighbourhoods of 0 in Ly(Z,L>). Thus Ly(Z,L>®) is
Fréchet.

Let us now show in detail how the norm estimate (e) follows from
Colombeau’s result. For the various facts from the differential calculus in
Banach spaces, we refer to [Cha].

Recall that a continuous mapping P : ¥ — X, where Y and X are
Banach spaces, is called a (continuous) j-homogeneous polynomial if there
exists a continuous symmetric j-linear mapping P :YJ — X such that
P(z) = P(x,...,x). The definition for locally convex spaces is the same.
Given a P as above, the mapping P is unique and can be constructed from
P using the polarization formula ([Cha, Theorems 4.6 and 4.7]).

For all j € N let us denote by N; the j-homogeneous polynomial

N](h) = h‘ij

from R into Ly(Z,L>°(f2)) =: X. Let ij be the corresponding symmetric
Jj-linear mapping. Clearly, both N; and ]\7]- are continuous.

By the main theorem of [Col] we find a C*°-mapping M : R — X whose
nth derivative coincides with N ;. By the explanation after the main theorem
in [Col], the jth derivative of M is even a continuous j-linear mapping from R
to Xpg, where Xg C X denotes the linear span of some bounded convex
balanced subset B C X. Also, Xp is a Banach space when endowed with
the norm ||z||p := 1/sup{r > 0 : r& € B}, and the canonical injection
Xp — X is continuous.

Hence, also ]\ij : R — Xp is continuous. By the Taylor formula

for Banach spaces (|Cha, Theorem 8.9]), we obtain the error estimate
(M®) = M(h))

(21) HM(h) _ g:thjHB < OyhNHL

Now every bounded set B C X is contained in the set

(22) U:={TeX:|Tfllowo<1lforall feU}

for some neighbourhood of zero U of Z. Hence,

N N
I YER w0V P R ST N

Let now f € Z be given. Since U is a neighbourhood of 0, it absorbs f,
i.e. there exists a ¢ > 0 such that f € cU. The desired norm estimate (e)
(for some f-dependent constant) follows from this, (21) and (23). =

This completes the proof of the Main Theorem.
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REMARK. Note that in the above proofs we have actually established
assertions slightly stronger than the properties (b)—(d), namely that the
inclusions given there are in fact continuous: that is, for each j, k£ and I,
M; maps Z continuously into L>°, Cj(M; -, M, - ) maps Z x Z continuously
into L*°, and C] even maps Z x Z continuously into Z. (Well, for (b) and (c),
we have only shown that the operators map bounded sets into balls, but
this implies continuity by a simple argument: one forms a small enough
neighbourhood U of 0 in Z using just the definition of the inductive limit
topology—that is, U is chosen as the balanced convex hull of the union of
countably many bounded sets (the unit balls of the step spaces) multiplied
by small constants; if the constants are small enough, U is still mapped into
the unit ball of L>°.) However, this extra piece of information seems to have
no implications for the applications to quantization.

4. A nonlinear variant. Note that the argument (15) still works even
if the operators M) and Q) are not assumed to be linear, i.e. if we just
require that for each fixed f € Z there be some functions M) f e L,
0 < h < 1, such that (e) holds. In that case, the sought-for operators M (h)
can be constructed for Z = D directly along the lines of the usual proof
of Borel’s theorem. Let us include a proof of this assertion for complete-
ness.

Take Z = D({2), the subspace of functions in C°°({2) with compact
support. Then clearly (a)—(d) hold; let us settle (e) (allowing M™ to be
nonlinear). So let f € D, and define for brevity m; = M; f € D.

Fix a function ¢ € C*°(R) such that 0 < ¢ < 1 and ¢(x) = 1 for
lz| < 1/2, ¢(x) = 0 for |z| > 1. Let vpqo = || DMyl and set g :=
Max|q|n<j Van + 1, 80 that vn o < gngj|- Let now ¢, := max(2,nlg,) and
define

un(z, h) = ¢p(cph)my (z)h".

Clearly each u,, is a bounded smooth function on (2 x R. Observe that u,, is
nonzero only if

(24) |h| < 1/cn, <1/2,

owing to the fact that ¢, > 2. Using the Leibniz rule, for any integer k£ > 0
and multiindex a we have

k
DDy, (z, h) = D%y, (z) - Z (j)Dk_Jh” - D (¢e,h),
j=0
where the subscripts at D indicate the differentiated variable. The last
factor on the right is bounded by |h|™7s; where s; := sup,cp |27¢V) (z)]
< oo. Moreover, D¥=9h" = (n!/(n — k + j)!\)h"**J_ which is bounded by
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n!|h|"~**J (and vanishes for j < k — n). Thus

k
a o k e
DEDS (e, 1)| < [ Do S (j)n!rhr ks,
=0

< gngjon!| "W,

where Wy, := Z?:o (I;) sj < 00. Since ¢, > nlgy,, it follows that

(o] [o.¢]
> IDEDSun(w, 1) < Wi D gunl|h|"F
n=k+1 n=k+1

o0
Gnn! e
<quWe Y. Z [R["F1 by (24)
n=k+1 n
< QC]|a\Wk < 0.

As a and k can be arbitrary, we see that the series
(25) u(x, h) = Zun(az, h)
n=0

converges in the C* topology to a function u € C°°({2 x R). Further,
as each uy, is, in view of (24), supported in supp m,, x [-1/2,1/2] C supp f x
[—1/2,1/2], we even have u € D({2 x (—1,1)). Since

~ 0 if 7 # n,
l)iun(xao):: { ]:#

jimj(z) if j =mn,
the C'*° convergence of (25) implies that D%u(:c, 0) = j!m;(z). By the Taylor
remainder formula, we therefore have, for any integer N > 0,

N ; pN+1 Na1
u(z, h) — jz:%mj(x)h = NI Dy u(x, 0(x, h)h)
for some 0 < 0(x, h) < 1; consequently,
hN-L ‘ h) —g:m-(x)hj‘ <t |IDN o < 00, Va,h
u(z, =" = (N1 TR Hlee = o

since u is compactly supported. Thus the choice
MW f(x) = u(x, h)
will do the job we need. =m

REMARK. In effect, the above argument proves Borel’s theorem for func-
tions from R into D, for the case that the prescribed derivatives m; have
supports in a fixed compact set. Perhaps there is some hope that Borel's
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theorem might hold even for functions from R into more general locally con-
vex spaces provided some additional hypothesis is assumed on the sequence
of the prescribed derivatives—for instance, if the target space is a space of
operators, when M; are “tame” in the sense that there exists a shrinking col-
lection Uy, of neighbourhoods of zero such that each M; maps Uy into Uy,
for all k. Note that having larger and larger supports is also the idea be-
hind Colombeau’s counterexample [Col| showing that Borel’s theorem fails
for functions from R into D.

It should be remarked that from the point of view of physics, the nonlin-
ear quantization treated in this section is probably a rather doubtful busi-
ness.
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