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Deformation quantization and Borel's theoremin lo
ally 
onvex spa
esbyMiroslav Engli² (Praha and Opava) and Jari Taskinen (Helsinki)
Abstra
t. It is well known that one 
an often 
onstru
t a star-produ
t by expand-ing the produ
t of two Toeplitz operators asymptoti
ally into a series of other Toeplitzoperators multiplied by in
reasing powers of the Plan
k 
onstant h. This is the Berezin�Toeplitz quantization. We show that one 
an obtain in a similar way in fa
t any star-produ
t whi
h is equivalent to the Berezin�Toeplitz star-produ
t, by using instead ofToeplitz operators other suitable mappings from 
ompa
tly supported smooth fun
tionsto bounded linear operators on the 
orresponding Hilbert spa
es. A 
ru
ial ingredientin the proof is the generalization, due to Colombeau, of the 
lassi
al theorem of Borelon the existen
e of a fun
tion with pres
ribed derivatives of all orders at a point, whi
hredu
es the proof to a 
onstru
tion of a lo
ally 
onvex spa
e enjoying some spe
ial prop-erties.
1. Introdu
tion and ba
kground. Let Ω be a domain in Cn ∼= R2nequipped with a Poisson bra
ket {·, ·}, i.e. a �rst order bidi�erential operator

(1) {f, g}(x) =

2n∑

j,k=1

Bjk(x)
∂f

∂xj

∂g

∂xk
, x ∈ R

2n,

where, for ea
h x ∈ Ω, the matrix Bjk(x) is skew-symmetri
 and nonsingular.Denote by C∞(Ω)[[h]] the ring of formal power series in a variable h with
oe�
ients in C∞(Ω). A star produ
t on Ω is a C[[h]]-bilinear map ∗ :
C∞(Ω)[[h]] × C∞(Ω)[[h]] → C∞(Ω)[[h]] su
h that(i) ∗ is asso
iative,(ii) there exist bidi�erential operators Cj : C∞(Ω)×C∞(Ω) → C∞(Ω)2000 Mathemati
s Subje
t Classi�
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78 M. Engli² and J. Taskinensu
h that
(2) f ∗ g =

∞∑

j=0

hjCj(f, g), ∀f, g ∈ C∞(Ω);(iii) the operators Cj satisfy
C0(f, g) = fg,

C1(f, g) − C1(g, f) =
i

2π
{f, g},and

Cj(f,1) = Cj(1, f) = 0, ∀j ≥ 1.Note that the last equality means pre
isely that 1 is the unit element for ∗.Remark. Generalization to 
omplex manifolds Ω is straightforward.Two star produ
ts ∗, ∗′ are 
alled equivalent if there exists a sequen
eof linear di�erential operators M0, M1, M2, . . . on C∞(Ω) with M0 = I(the identity operator) su
h that we have the following equality of formalpower series:
(3) M(f ∗′ g) = Mf ∗ Mg, ∀f, g ∈ C∞(Ω)[[h]],where
(4) Mf =

∞∑

j=0

hjMjf.Star produ
ts are the obje
t of study of deformation quantization, and were�rst introdu
ed in the seminal paper by Bayen, Flato, Fronsdal, Li
hnero-wi
z and Sternheimer [BF℄. Some more information about them 
an be founde.g. in the re
ent surveys by Gutt [Gu℄ or by S.-T. Ali and the �rst au-thor [AE℄.Toeplitz star produ
t. One 
an sometimes 
onstru
t a star produ
t usingToeplitz operators. Namely, under suitable hypotheses on Ω and the Poissonstru
ture (the boundary behaviour of the Bjk in (1)), there exists a family ofmeasures µh on Ω, 0 < h < 1, su
h that the following holds. Let L2
hol(µh) bethe subspa
e of holomorphi
 fun
tions in L2(µh) (weighted Bergman spa
e),

Ph : L2(µh) → L2
hol(µh) the orthogonal proje
tion, and for f a bounded
ontinuous fun
tion on Ω de�ne the Toeplitz operator T

(h)
f on L2

hol(µh) by
T

(h)
f φ = Ph(fφ). Then for any f, g ∈ D(Ω) (:= the fun
tions in C∞(Ω) with
ompa
t support), there is an asymptoti
 expansion

(5) T
(h)
f T (h)

g ≃

∞∑

j=0

hjT
(h)
Cj(f,g) as h → 0,



Borel's theorem 79with some bidi�erential operators Cj (independent of f, g). Further, theseoperators Cj de�ne�via the formula (2)�a star produ
t on Ω.Here the expansion (5) is understood in the sense of operator norms,i.e. for ea
h N = 0, 1, 2, . . . ,

(6)
∥∥∥T

(h)
f T (h)

g −

N∑

j=0

hjT
(h)
Cj(f,g)

∥∥∥ ≤ CN,f,gh
N+1, ∀h ∈ (0, 1).

Remark. Formally, we 
an write (5) as
T

(h)
f T (h)

g = T
(h)
f∗g.Example ([Cob℄). If Ω = C and dµh(z) = (πh)−1e−|z|2/hdz (where dzstands for the two-dimensional Lebesgue measure), then (5) holds with

Cj(f, g) =
1

j!

∂jf

∂zj

∂jg

∂zj
.Similarly, (5) holds for Ω = D, the unit dis
, with the standard weightedBergman spa
es 
orresponding to dµh(z) = h+1

πh (1 − |z|2)1/h dz [KL℄.Other situations when the Berezin�Toeplitz quantization 
an be 
arriedout in
lude bounded symmetri
 domains [BLU℄ (see also [E3℄ for an extensionfrom fun
tions in D to fun
tions not ne
essarily having 
ompa
t support),stri
tly pseudo
onvex domains with Poisson bra
kets having a reasonableboundary behaviour [E1℄, or, provided one 
onsiders the manifold 
ase andallows also spa
es L2
hol of se
tions of line bundles (instead of just fun
tions),all 
ompa
t Kähler manifolds [BMS℄, [S
h℄.The Berezin�Toeplitz quantization prompts the following de�nition.Definition. We say that a star produ
t (2) is indu
ed by operators ifthere exists a family of Hilbert spa
es Hh, 0 < h < 1, a �large� subspa
e Z ⊂

C∞(Ω), and linear maps f 7→ Q
(h)
f from Z into bounded linear operatorson Hh su
h that

(7) Q
(h)
f Q(h)

g ≃
∞∑

j=0

hjQ
(h)
Cj(f,g) as h → 0, ∀f, g ∈ Z,

in the sense of operator norms.Here being �large� 
an be interpreted, for instan
e, as follows:
(8) for ea
h �nite set of multiindi
es α1, . . . , αk, 
omplex numbers

w1, . . . , wk, and point z ∈ Ω, there exists f ∈ Z su
h that
Dαjf(z) = wj , ∀j = 1, . . . , k,



80 M. Engli² and J. Taskinenwhere Dα denotes the operator of di�erentiation. The merit of (8) is that itensures that the knowledge of Cj(f, g) for all f, g ∈ Z already determinesthe Cj uniquely.Conje
ture. Every star produ
t is indu
ed by operators.At the moment, we have no idea how to atta
k this 
onje
ture. But weare able to prove at least a weaker result:Main Theorem. Every star produ
t equivalent to the Toeplitz star prod-u
t is indu
ed by operators.For the 
ase of bounded symmetri
 domains and star-produ
ts whi
hare invariant with respe
t to holomorphi
 automorphisms, this theorem wasproved by one of the authors in [E2℄, using heavily the spe
ial ma
hineryof Lie groups available in that setup (above all, the Helgason�Fourier trans-form and the related theory of invariant di�erential operators on symmetri
spa
es). No su
h thing is available in the general 
ase treated here, and thuswe use another approa
h building on an extension of the 
lassi
al theoremof Borel to Fré
het spa
es, due to Colombeau [Col℄.The paper is organized as follows. In Se
tion 2, we show how the proof ofthe theorem 
an be redu
ed to the problem of existen
e of a lo
ally 
onvexspa
e of fun
tions on Ω possessing 
ertain properties. This spa
e is then
onstru
ted in Se
tion 3 as the indu
tive limit of a sequen
e of Bana
hspa
es. The ne
essary prerequisites on lo
ally 
onvex spa
es 
an be founde.g. in the books of Jar
how [Ja℄, Koethe [Koe℄, Meise and Vogt [MV℄, orBonet and Perez Carreras [BnC℄. In the �nal Se
tion 4, we brie�y mentionalso a nonlinear variant of the above quantization pro
edure, for whi
h amu
h simpler proof 
an be given.2. Plan of proof of Main Theorem. Let ∗ denote the Toeplitz starprodu
t, and let ∗′ be a star produ
t equivalent to ∗. Let M0 = I, M1, M2, . . .be the di�erential operators furnishing the equivalen
e, and let M denotethe linear operator on C∞(Ω)[[h]] given by (4). Writing (5) and (7) for-mally as
TfTg = Tf∗g, QfQg = Qf∗′g,and 
omparing this with (3), we see that if we 
ould take

Q
(h)
f := T

(h)
Mfthen we would be done. The problem is that Mf is just a formal power series,whi
h may diverge if one assigns to h some value. So we need to approximate,in some sense, the formal power series M by genuine operators.



Borel's theorem 81Denote by Cj the 
oe�
ients (2) of the Toeplitz star produ
t, and by C ′
jthe 
oe�
ients of ∗′. Expanding (3) and 
omparing the expressions at likepowers of h on both sides, we see that Cj and C ′

j are related by
(9)

∑

j+k=N

MjC
′
k(f, g) =

∑

j+k+l=N

Cj(Mkf, Mlg), ∀f, g ∈ C∞(Ω),

for ea
h N = 0, 1, 2, . . . .Assume that we 
an 
onstru
t a ve
tor spa
e Z 
ontained in C∞(Ω) su
hthat(a) D ∩ Z is �large�, in the sense of (8);(b) MjZ ⊂ L∞ for all j;(
) Cl(MjZ, MkZ) ⊂ L∞ for all j, k, l;(d) C ′
k(Z,Z) ⊂ Z for all k; and, �nally,(e) there exists a family of linear operators M (h), 0 < h < 1, from Z into

L∞ su
h that for ea
h N = 0, 1, 2, . . . and f ∈ Z,
∥∥∥
(
M (h) −

N∑

j=0

hjMj

)
f
∥∥∥
∞

≤ Cf,NhN+1

with some �nite 
onstant Cf,N , for all 0 < h < 1.(Note that, as M0 = I, (b) implies in parti
ular that Z ⊂ L∞.)Granted this, let us set, for f ∈ Z,
Q

(h)
f := T (h)[M (h)f ],where, for typographi
al reasons, we started writing T (h)[f ] instead of T

(h)
f .Sin
e the norm of a Toeplitz operator always satis�es

‖T
(h)
f ‖ ≤ ‖f‖∞,we see from (e) that, for ea
h N = 0, 1, 2, . . . ,

(10)
∥∥∥T (h)[M (h)f ] −

N∑

j=0

hjT (h)[Mjf ]
∥∥∥ = O(hN+1).

(Note that M (h)f, Mjf ∈ L∞ in view of (e) and (b).)If g is another fun
tion from Z, it follows that
(11)

∥∥∥Q
(h)
f Q(h)

g −
( N∑

j=0

hjT (h)[Mjf ]
)( N∑

j=0

hjT (h)[Mjg]
)∥∥∥ = O(hN+1).

Finally, if f and g (and hen
e also Mjf, Mkg) belong in addition to D,



82 M. Engli² and J. Taskinenthen (6) applies to T (h)[Mjf ]T (h)[Mkg], for ea
h j and k; thus for any
f, g ∈ D ∩ Z,
(12) Q

(h)
f Q(h)

g =
N∑

j,k=0

hj+kT (h)[Mjf ]T (h)[Mkg] + O(hN+1)

=
N∑

j,k,l=0

hj+k+lT (h)[Cl(Mjf, Mkg)] + O(hN+1) by (6)
=

∑

j+k+l≤N

hj+k+lT (h)[Cl(Mjf, Mkg)] + O(hN+1) by (
)
=

∑

j+k≤N

hj+kT (h)[MjC
′
k(f, g)] + O(hN+1) by (9)

=
N∑

j,k=0

hj+kT (h)[MjC
′
k(f, g)] + O(hN+1) by (d) and (b)

=
N∑

j=0

hjT (h)
[
Mj

N∑

k=0

hkC ′
k(f, g)

]
+ O(hN+1)

= T (h)
[
M (h)

N∑

k=0

hkC ′
k(f, g)

]
+ O(hN+1) by (d) and (10) again

= Q(h)
[ N∑

k=0

hkC ′
k(f, g)

]
+ O(hN+1).(All the O-terms relate to errors in operator norm.) Thus (7) holds (with C ′

jin pla
e of Cj), and the proof is 
omplete.It thus only remains to 
onstru
t the spa
e Z with the above properties.3. Constru
tion of the spa
e Z. Re
all that the 
lassi
al theorem ofBorel asserts that for any sequen
e fn of 
omplex numbers, there exists afun
tion f ∈ D(R) su
h that
f (j)(0) = j!fj , ∀j = 0, 1, 2, . . . .In parti
ular, by Taylor's formula, it follows that

∣∣∣f(h) −
N∑

j=0

hjfj

∣∣∣ ≤ Cf,NhN+1, ∀h ∈ R.Comparing this with the 
ondition (e), we see that (e) is tantamount to hav-ing a Borel theorem for fun
tions on R with values in the spa
e of operatorsfrom Z into L∞ equipped with the strong operator topology (the topology of



Borel's theorem 83uniform 
onvergen
e in norm on �nite subsets of Z). Unfortunately, it turnsout that in this generality, i.e. for fun
tions with values in a lo
ally 
onvexspa
e, Borel's theorem may fail in general (see [Col℄).However, it is a notable result of Colombeau [Col℄ that Borel's theoremis valid for fun
tions on R with values in a Fré
het spa
e. Furthermore, it isknown that if Z is an (LB)-spa
e, that is, a 
ountable indu
tive limit ofBana
h spa
es, then the spa
e Lb(Z, L∞(Ω)) of 
ontinuous linear operators,endowed with its natural lo
ally 
onvex topology of uniform 
onvergen
e onbounded sets, automati
ally be
omes a Fré
het spa
e. Consequently, if our
Z is an (LB)-spa
e, then Colombeau's result applies, and we get our require-ment (e) granted.Our purpose will therefore be to 
onstru
t an (LB)-spa
e Z ⊂ C∞(Ω)whi
h satis�es the 
onditions (a)�(d).Let cjα ∈ C∞(Ω) be the 
oe�
ients of the di�erential operators Mj , i.e.

Mjf(x) :=
∑

α multiindex

cjα(x)Dαf(x);and similarly de�ne
Cj(Mkf, Mlg) =

∑

α,β

cjklαβDαf · Dβg,

C ′
k(f, g) =

∑

α,β

c′kαβDαf · Dβg.

Let us enumerate the 
ountable set {cjα}j,α∪{cjklαβ}j,k,l,α,β ∪{c′kαβ}k,α,β ofall the above 
oe�
ients as vj , j ∈ N. (Here and in what follows,
N := {0, 1, 2, . . .}.)Lemma 1. There exists a C∞ weight fun
tion w : Ω → R

+ su
h that
w ≥ 1, w(x) → ∞ as x tends to the boundary or to in�nity , and

γα,j := sup
x∈Ω

|Dαvj(x)|

w(x)
< ∞for all j ∈ N and all multiindi
es α.Proof. Enumerate the (
ountable) set of all the fun
tions Dαvj , j ∈ N,

α ∈ N
n, as fk, k = 1, 2, . . . . Further, pi
k a sequen
e φj of fun
tions in D(Ω)su
h that 0 ≤ φj ≤ 1, the union of the supports of φj is all of Ω, and φj+1 = 1on the support of φj . De�ne Kj := suppφj , and set f0(x) :=

∑
j(1 − φj).Thus Kj is an in
reasing sequen
e of 
ompa
t subsets su
h that the unionof their interiors is Ω, and f0 is in C∞(Ω), f0 ≥ 0 and f0(x) → ∞ as xtends to the boundary of Ω or to in�nity. Now 
hoose 
onstants Cm su
hthat

sup
x∈Km, j≤m, |α|≤m

|Dαfj(x)| ≤ Cm.



84 M. Engli² and J. TaskinenSet
w(x) := 1 +

∞∑

j=0

fj(x)

2jCj
.The sum 
onverges uniformly on 
ompa
t subsets, together with all its par-tial derivatives, thus w ∈ C∞(Ω). Clearly w ≥ 1, and w(x) → ∞ as x tendsto the boundary or to in�nity sin
e w ≥ C−1

0 f0. Finally, fk/w ≤ 2kCk. Thus
w does the job we need.We �x a fun
tion w as in the last lemma from now on, and also set

W (x) := ew(x).De�ne, for j ∈ N,
κj := sup

x∈Ω

w(x)j

W (x)
.From the fa
t that w → ∞ as x tends to the boundary or to in�nity itfollows that ea
h κj is �nite.Finally, we �x from now on a sequen
e φk of fun
tions in D su
h thatthe union of their supports is Ω, and φk+1 = 1 on the support of φk.Lemma 2. There exists a sequen
e {εj}j∈N su
h that 0 < εj ≤ 1 for all

j and
sup
x∈Ω

W (x)
∑

α

ε|α||D
α(xγφk(x))| < ∞for any k ∈ N and any multiindex γ. Here the summation extends over allmultiindi
es α ∈ N

n, and |α| := α1 + · · · + αn.Proof. Choose again 
onstants C ′
m < ∞ su
h that

sup
x∈Ω, |γ|≤m, k≤m, |α|≤m

W (x)|Dα(xγφk(x))| ≤ C ′
m.Set εm := 2−m/C ′

m. Then for any k, γ and x,
∑

|α|≥max(k,|γ|)

W (x)|Dα(xγφk(x))|ε|α| ≤
∑

α

2−|α| = 2n < ∞,and the 
laim follows.Lemma 3. There exist positive 
onstants Ak, k ∈ N, su
h that Ak ≥ γ0,kand
(13) AkA|ι| ≥ 2|ι|

(
ι

µ

)
γι−µ,k

(
µ

π

)

for any multiindi
es ι, µ, π su
h that π ⊂ µ ⊂ ι.Here we are using the usual multiindex notation(
ι

µ

)
:=

(
ι1
µ1

)
· · ·

(
ιn
µn

)
,and π ⊂ µ means that πj ≤ µj for all j.



Borel's theorem 85Proof. The right-hand side of (13) 
an be bounded by a 
onstant A(k, ι)depending on k and ι only. Take
Am := max

k,|ι|≤m
A(k, ι) + 1.It is easy to see that (13) follows.We now de�ne, indu
tively, a sequen
e of small positive numbers am,i,

m, i ∈ N. Assume that m and i are given and that ak,j has already beende�ned for all (k, j) with k < m, or k = m and j < i. We 
hoose am,i > 0so small that the following requirements are satis�ed:
am,i ≤ εi ≤ 1,(14)

am,i ≤ am−1,i if m ≥ 1,(15)

am,i ≤ am−1,i+1 if m ≥ 1,(16)

am,i ≤
am,pam,q

Ai
for all p, q < i.(17)Lemma 4. For all k, m ∈ N and µ, π ∈ N

n with π ⊂ µ,
∑

ι⊃µ

am,|ι|

(
ι

µ

)
γι−µ,k

(
µ

π

)
≤ (2n + 1)Ak

am,|µ−π|am,|π|

am,0
,

where Ak is as in (13).Proof. As a 
ombination of (13) and (17) we obtain
∑

ι)µ

am,|ι|

(
ι

µ

)
γι−µ,k

(
µ

π

)
≤ Ak

∑

ι)µ

am,|ι|A|ι|2
−|ι|

≤ Akam,|µ−π|am,|π|

∑

ι)µ

2−|ι|

≤ 2nAkam,|µ−π|am,|π| ≤ 2nAk

am,|µ−π|am,|π|

am,0
,sin
e am,0 ≤ 1 by 
onstru
tion. The remaining term ι = µ redu
es to

am,|µ|γ0,k

(µ
π

). For 0 < |π| < |µ| we 
an again use (13) and (17) to boundthis by Akam,|µ−π|am,|π|2
−|µ| ≤ Akam,|µ−π|am,|π|. For π = 0 or π = µ, theterm be
omes just am,|µ|γ0,k, whi
h is again bounded by am,|µ|am,0

am,0
Ak sin
e

Ak ≥ γ0,k by Lemma 3.We pro
eed to de�ne the spa
e Z := indk→∞Zk. The step spa
es Zk arede�ned to 
onsist of the C∞ fun
tions f on Ω su
h that
‖f‖k := sup

x∈Ω
W (x)w(x)−k

∑

α

ak,|α||D
αf(x)| < ∞.



86 M. Engli² and J. TaskinenWe have Zk ⊂ Zk+1 
ontinuously, for all k. In fa
t, ‖f‖k+1 ≤ ‖f‖k by (15)and the fa
t that w ≥ 1.To re
all the basi
 properties of the indu
tive limit, we have Z :=
⋃

k Zk,and if we de�ne Uk := {f ∈ C∞(Ω) : ‖f‖k ≤ 1}, then a basis of neighbour-hoods of zero is given by the sets
(18) U := Γ

∞⋃

k=1

bkUk :=
{ ∑

k

λkgk :
∑

k

|λk| ≤ 1, gk ∈ bkUk

}

for bj > 0. Here the sum in the de�nition of U is allowed to have only a�nite number of terms.We are now going to prove that the spa
e Z satis�es the 
onditions(a)�(e) from the pre
eding se
tion. This will �nish the proof of our Main The-orem.Proof of (a). By Lemma 2 and (14), all fun
tions of the form pφk, where
k ∈ N and p is an arbitrary polynomial, belong to Z. Sin
e these fun
tionsobviously also belong to D and the germ of pφk at any point of suppφk−1
oin
ides with the germ of p at that point, it is obvious that D∩Z is �large�in the sense of (8).Proof of (b). It is enough to show that for ea
h l and α, the operator
vlD

α maps Z into L∞. However, if f ∈ Zk, then
|vl(x)Dαf(x)| ≤ |vl(x)|

‖f‖kw(x)k

ak,|α|W (x)
≤ γ0,l

‖f‖k

ak,|α|

w(x)k+1

W (x)

≤ γ0,l
‖f‖k

ak,|α|
κk+1 < ∞for any x ∈ Ω.Proof of (
). Again, it is enough to prove that vl(D

αf)(Dβg) ∈ L∞ forany l ∈ N, α, β ∈ N
n and f, g ∈ Z. However, for f ∈ Zk and g ∈ Zm, by asimilar argument to the one above,

|vl(D
αf)(Dβg)| ≤ γ0,lw

‖f‖kw
k

ak,|α|W

‖g‖mwm

am,|β|W

≤ γ0,l
‖f‖k‖g‖m

ak,|α|am,|β|
κk+1κm < ∞.

Proof of (d). On
e more, we need only prove that vk(D
αf)(Dβg) belongsto Z whenever k ∈ N, α, β are multiindi
es and f, g ∈ Z.Assume that a neighbourhood of 0 as in (18) is given. So we are given apositive sequen
e {bj}j∈N.



Borel's theorem 87We pi
k numbers b̃j > 0, j ∈ N, su
h that for all j we have
(19) b̃j ≤ min

m≤2j+|α|+|β|

(
bmam,0

κm+1(2n + 1)Ak
, 1

)
.We 
laim that f ∈ Γ

⋃∞
j=1 b̃jUj and g ∈ Γ

⋃∞
j=1 b̃jUj imply

vk(D
αf)(Dβg) ∈ Γ

∞⋃

j=1

bjUj .By the assumptions on f and g, we 
an �nd �nite sets of 
omplex numbers
λj and µj and fun
tions fj ∈ b̃jUj and gj ∈ b̃jUj su
h that

∑

j

|λj| ≤ 1,
∑

j

|µj| ≤ 1, f =
∑

j

λjfj , g =
∑

j

µjgj .We have
vk(D

αf)(Dβg) =
∑

j,l

λjµlvk(D
αfj)(D

βgl),and here ∑
j,l |λjµl| ≤ 1, so it is enough to prove that for all j and l thereexists m su
h that vk(D

αfj)(D
βgl) ∈ bmUm.We 
laim that this happens for m := j+ l+ |α|+ |β|. Re
all that |Dιvk| ≤

γι,kw by Lemma 1.We have
(20) ‖vk(D

αfj)(D
βgl)‖m

= sup
x∈Ω

W (x)w(x)−m
∑

ι

am,|ι||D
ι(vk(D

αfj)(D
βgl))|.By the Leibniz rule,

∑

ι

am,|ι||D
ι(vk(D

αfj)(D
βgl))|

≤
∑

ι

am,|ι|

∑

µ⊂ι

(
ι

µ

)
|(Dι−µvk)D

µ((Dαfj)(D
βgl))|

≤
∑

ι

am,|ι|

∑

µ⊂ι

(
ι

µ

)
γι−µ,kw

∑

π⊂µ

(
µ

π

)
|(Dα+µ−πfj)(D

β+πgl)|

= w
∑

π

∑

µ⊃π

∑

ι⊃µ

am,|ι|

(
ι

µ

)
γι−µ,k

(
µ

π

)
|(Dα+µ−πfj)(D

β+πgl)|.By Lemma 4 this is bounded by
(2n + 1)Ak

am,0
w

∑

π

∑

µ⊃π

am,|µ−π|am,|π||(D
α+µ−πfj)(D

β+πgl)|.
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e, (20) 
an be bounded by
(2n + 1)Ak

am,0
sup
x∈Ω

W (x)w(x)−m+1

×
∑

π

∑

µ⊃π

am,|µ−π|am,|π||(D
α+µ−πfj)(D

β+πgl)|

≤
(2n + 1)Ak

am,0

(
sup
Ω

Ww−m
∑

µ

am,|µ||D
α+µfj |

)

×
(

sup
Ω

Ww−m
∑

µ

am,|µ||D
β+µgl|

)
·

(
sup
Ω

wm+1

W

)

≤ κm+1
(2n + 1)Ak

am,0

(
sup
Ω

Ww−m+|α|
∑

µ

am−|α|,|µ+α||D
α+µfj |

)

×
(

sup
Ω

Ww−m+|β|
∑

µ

am−|β|,|µ+β||D
β+µgl|

) by (16) and w ≥ 1

≤ κm+1
(2n + 1)Ak

am,0

(
sup
Ω

Ww−m+|α|
∑

γ

am−|α|,|γ||D
γfj |

)

×
(

sup
Ω

Ww−m+|β|
∑

γ

am−|β|,|γ||D
γgl|

)

≤ (2n + 1)Ak
κm+1

am,0
b̃j b̃l ≤ bm.Here in the penultimate inequality we have used the fa
t that

sup
Ω

Ww−m+|α|
∑

γ

am−|α|,|γ||D
γfj | = ‖fj‖m−|α| ≤ ‖fj‖j ≤ b̃j ,sin
e m − |α| = j + l + |β| ≥ j (and similarly for gl); while the very lastinequality follows from (19).Proof of (e). Let us �rst of all remark that Lb(Z, L∞(Ω)) is indeed aFré
het spa
e. Indeed, sin
e every (LB)-spa
e is a (DF )-spa
e (
f. [Koe,part I, �29.5(5)℄), and Lb(E, F ) is 
omplete if E is (DF ) and F is any 
om-plete lo
ally 
onvex spa
e (see [Koe, part II, �39.6(6)℄), the 
ompleteness of

Lb(Z, L∞(Ω)) follows. As for metrizability, Z has a fundamental sequen
e
(Bn)∞n=1 of bounded sets (by 
onstru
tion, or by the fa
t that it is (DF ),see [Koe, part I, beginning of �29.3℄). Hen
e every bounded subset of Z is
ontained in some multiple cBn, and from the de�nition of the topologyof uniform 
onvergen
e on bounded sets we see that the 
ountably manysets

Un := {T ∈ Lb(Z, L∞) : ‖Tf‖∞ ≤ 1 for all f ∈ Bn}



Borel's theorem 89form a basis of neighbourhoods of 0 in Lb(Z, L∞). Thus Lb(Z, L∞) isFré
het.Let us now show in detail how the norm estimate (e) follows fromColombeau's result. For the various fa
ts from the di�erential 
al
ulus inBana
h spa
es, we refer to [Cha℄.Re
all that a 
ontinuous mapping P : Y → X, where Y and X areBana
h spa
es, is 
alled a (
ontinuous) j-homogeneous polynomial if thereexists a 
ontinuous symmetri
 j-linear mapping P̃ : Y j → X su
h that
P (x) = P̃ (x, . . . , x). The de�nition for lo
ally 
onvex spa
es is the same.Given a P as above, the mapping P̃ is unique and 
an be 
onstru
ted from
P using the polarization formula ([Cha, Theorems 4.6 and 4.7℄).For all j ∈ N let us denote by Nj the j-homogeneous polynomial

Nj(h) := hjMjfrom R into Lb(Z, L∞(Ω)) =: X. Let Ñj be the 
orresponding symmetri

j-linear mapping. Clearly, both Nj and Ñj are 
ontinuous.By the main theorem of [Col℄ we �nd a C∞-mapping M : R → X whose
nth derivative 
oin
ides with Ñj . By the explanation after the main theoremin [Col℄, the jth derivative of M is even a 
ontinuous j-linear mapping from Rto XB, where XB ⊂ X denotes the linear span of some bounded 
onvexbalan
ed subset B ⊂ X. Also, XB is a Bana
h spa
e when endowed withthe norm ‖x‖B := 1/sup{r > 0 : rx ∈ B}, and the 
anoni
al inje
tion
XB → X is 
ontinuous.Hen
e, also Ñj : R

j → XB is 
ontinuous. By the Taylor formulafor Bana
h spa
es ([Cha, Theorem 8.9℄), we obtain the error estimate(M (h) = M(h))
(21)

∥∥∥M (h) −
N∑

j=0

hjMj

∥∥∥
B
≤ CNhN+1.Now every bounded set B ⊂ X is 
ontained in the set

(22) U◦ := {T ∈ X : ‖Tf‖∞ ≤ 1 for all f ∈ U}for some neighbourhood of zero U of Z. Hen
e,
(23)

∥∥∥M (h) −

N∑

j=0

hjMj

∥∥∥
B
≥ sup

f∈U

∥∥∥
(
M (h) −

N∑

j=0

hjMj

)
f
∥∥∥
∞

.Let now f ∈ Z be given. Sin
e U is a neighbourhood of 0, it absorbs f ,i.e. there exists a c > 0 su
h that f ∈ cU . The desired norm estimate (e)(for some f -dependent 
onstant) follows from this, (21) and (23).This 
ompletes the proof of the Main Theorem.



90 M. Engli² and J. TaskinenRemark. Note that in the above proofs we have a
tually establishedassertions slightly stronger than the properties (b)�(d), namely that thein
lusions given there are in fa
t 
ontinuous: that is, for ea
h j, k and l,
Mj maps Z 
ontinuously into L∞, Cl(Mj · , Mk · ) maps Z ×Z 
ontinuouslyinto L∞, and C ′

l even maps Z×Z 
ontinuously into Z. (Well, for (b) and (
),we have only shown that the operators map bounded sets into balls, butthis implies 
ontinuity by a simple argument: one forms a small enoughneighbourhood U of 0 in Z using just the de�nition of the indu
tive limittopology�that is, U is 
hosen as the balan
ed 
onvex hull of the union of
ountably many bounded sets (the unit balls of the step spa
es) multipliedby small 
onstants; if the 
onstants are small enough, U is still mapped intothe unit ball of L∞.) However, this extra pie
e of information seems to haveno impli
ations for the appli
ations to quantization.4. A nonlinear variant. Note that the argument (15) still works evenif the operators M (h) and Q(h) are not assumed to be linear, i.e. if we justrequire that for ea
h �xed f ∈ Z there be some fun
tions M (h)f ∈ L∞,
0 < h < 1, su
h that (e) holds. In that 
ase, the sought-for operators M (h)
an be 
onstru
ted for Z = D dire
tly along the lines of the usual proofof Borel's theorem. Let us in
lude a proof of this assertion for 
omplete-ness.Take Z = D(Ω), the subspa
e of fun
tions in C∞(Ω) with 
ompa
tsupport. Then 
learly (a)�(d) hold; let us settle (e) (allowing M (h) to benonlinear). So let f ∈ D, and de�ne for brevity mj = Mjf ∈ D.Fix a fun
tion φ ∈ C∞(R) su
h that 0 ≤ φ ≤ 1 and φ(x) = 1 for
|x| ≤ 1/2, φ(x) = 0 for |x| ≥ 1. Let νn,α := ‖Dαmn‖∞ and set qj :=
max|α|,n≤j να,n + 1, so that νn,α ≤ qnq|α|. Let now cn := max(2, n!qn) andde�ne

un(x, h) = φ(cnh)mn(x)hn.Clearly ea
h un is a bounded smooth fun
tion on Ω ×R. Observe that un isnonzero only if
(24) |h| ≤ 1/cn ≤ 1/2,owing to the fa
t that cn ≥ 2. Using the Leibniz rule, for any integer k ≥ 0and multiindex α we have

Dk
hDα

xun(x, h) = Dαmn(x) ·
k∑

j=0

(
k

j

)
Dk−jhn · cj

nφ(j)(cnh),where the subs
ripts at D indi
ate the di�erentiated variable. The lastfa
tor on the right is bounded by |h|−jsj where sj := supx∈R |xjφ(j)(x)|
< ∞. Moreover, Dk−jhn = (n!/(n − k + j)!)hn−k+j, whi
h is bounded by
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n!|h|n−k+j (and vanishes for j < k − n). Thus

|Dk
hDα

xun(x, h)| ≤ ‖Dαmn‖∞

k∑

j=0

(
k

j

)
n!|h|n−ksj

≤ qnq|α|n!|h|n−kWk,where Wk :=
∑k

j=0

(
k
j

)
sj < ∞. Sin
e cn ≥ n!qn, it follows that

∞∑

n=k+1

|Dk
hDα

xun(x, h)| ≤ q|α|Wk

∞∑

n=k+1

qnn!|h|n−k

≤ q|α|Wk

∞∑

n=k+1

qnn!

cn
|h|n−k−1 by (24)

≤ 2q|α|Wk < ∞.As α and k 
an be arbitrary, we see that the series
(25) u(x, h) :=

∞∑

n=0

un(x, h)
onverges in the C∞ topology to a fun
tion u ∈ C∞(Ω × R). Further,as ea
h un is, in view of (24), supported in suppmn× [−1/2, 1/2] ⊂ supp f ×
[−1/2, 1/2], we even have u ∈ D(Ω × (−1, 1)). Sin
e

Dj
hun(x, 0) =

{
0 if j 6= n,
j!mj(x) if j = n,the C∞ 
onvergen
e of (25) implies that Dj

hu(x, 0) = j!mj(x). By the Taylorremainder formula, we therefore have, for any integer N ≥ 0,
u(x, h) −

N∑

j=0

mj(x)hj =
hN+1

(N + 1)!
DN+1

h u(x, θ(x, h)h)

for some 0 ≤ θ(x, h) ≤ 1; 
onsequently,
h−N−1

∣∣∣u(x, h) −

N∑

j=0

mj(x)hj
∣∣∣ ≤

1

(N + 1)!
‖DN+1

h u‖∞ < ∞, ∀x, h,sin
e u is 
ompa
tly supported. Thus the 
hoi
e
M (h)f(x) := u(x, h)will do the job we need.Remark. In e�e
t, the above argument proves Borel's theorem for fun
-tions from R into D, for the 
ase that the pres
ribed derivatives mj havesupports in a �xed 
ompa
t set. Perhaps there is some hope that Borel's



92 M. Engli² and J. Taskinentheorem might hold even for fun
tions from R into more general lo
ally 
on-vex spa
es provided some additional hypothesis is assumed on the sequen
eof the pres
ribed derivatives�for instan
e, if the target spa
e is a spa
e ofoperators, when Mj are �tame� in the sense that there exists a shrinking 
ol-le
tion Uk of neighbourhoods of zero su
h that ea
h Mj maps Uk+1 into Uk,for all k. Note that having larger and larger supports is also the idea be-hind Colombeau's 
ounterexample [Col℄ showing that Borel's theorem failsfor fun
tions from R into D.It should be remarked that from the point of view of physi
s, the nonlin-ear quantization treated in this se
tion is probably a rather doubtful busi-ness.
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