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Semigroup actions on tori and stationary
measures on projective spaces
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Dedicated to Hillel Furstenberg on the occasion of
his 70th birthday, with admiration

Abstract. Let I" be a subsemigroup of G = GL(d,R), d > 1. We assume that the ac-
tion of I" on R? is strongly irreducible and that I” contains a proximal and quasi-expanding
element. We describe contraction properties of the dynamics of I" on R? at infinity. This
amounts to the consideration of the action of I" on some compact homogeneous spaces
of G, which are extensions of the projective space P4~1. In the case where I' is a subsemi-
group of GL(d,R)NM(d,Z) and I" has the above properties, we deduce that the I-orbits
on T? = R?/Z? are finite or dense.

1. Introduction and main results. Let I' be a multiplicative semi-
group of integers. The semigroup I is said to be lacunary if the members
{y € I' : v > 0} are of the form 'yg, k € N, 79 € N*. Otherwise I is
non-lacunary. In 1967 Furstenberg [12] proved that if I" is a non-lacunary
semigroup of integers and « is an irrational number, then the orbit '« is
dense modulo 1. The problem of approximating a number # modulo 1 by
numbers of the form qa, where « is a fixed irrational and ¢ varies in a
specified subset Q C N, was considered by Hardy and Littlewood in [20]
for various subsets ) of N. In particular, the result of Furstenberg above
can be considered as a generalization of a theorem of [20], which asserts
that if » is a positive integer and « is an irrational number, then the set
{¢"a : ¢ € N} is dense modulo 1; furthermore, this result draws attention to
the role of the multiplicative structure of () in Diophantine approximation,
hence of the role of the corresponding dynamical properties of endomor-
phisms of T = R/Z. Hence, one is led, more generally, to consider separately
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the properties depending on the multiplicative structure of I" and the prop-
erties depending on the additive structure implied in reduction modulo 1.
In this direction, a generalization of Furstenberg’s result to a commutative
semigroup I” C Min(d,Z) := GL(d,R) N M(d, Z), where M(d,Z) is the set
of d x d matrices with integer entries, acting by endomorphisms on the torus
T = R?/Z? was given by Berend in [4].

Following [4], we say that the semigroup of endomorphisms of a d-di-
mensional torus T¢ has the ID-property (cf. [4, 25, 26]) if the only infinite
closed I'-invariant subset of T¢ is T? itself. (ID stands for infinite invariant
is dense.) Berend [4] gave necessary and sufficient conditions in arithmetical
terms for a commutative semigroup to have the ID-property.

On the other hand, starting from [4] and [12], Margulis [24] asked for
necessary and sufficient conditions on a subsemigroup I' C My (d,Z) in
order that the I'-orbit closures on T¢ are finite unions of manifolds. We
observe that it follows from general results of Dani and Raghavan on linear
actions [9] that the orbits of I" = SL(d, Z) acting on T? are finite or dense. In
this direction a detailed study of I'-orbits in R% of a general subgroup I" C
SL(d,R) was developed by Conze and Guivarc’h in [7]. The homogeneity at
infinity of I'-orbits was pointed out there as well as the role of “I'-irrational”
vectors in the construction of limit points of ['-orbits, if I' is a general
subgroup of SL(d,R).

Some results in the direction of the general question of Margulis have been
obtained recently. Muchnik proved in [25] that if the semigroup I" of SL(d, Z)
is Zariski dense in SL(d,R), then I" acting on T? has the ID-property. In [29]
Starkov proved the same result in case I is a strongly irreducible subgroup
of SL(d, Z). In the next paper [26] Muchnik generalized the results of Berend
to semigroups of Miny(d,Z). At the same time Guivarc’h and Starkov [19]
derived an important part of Muchnik’s result using different methods, based
on [6, 7). We observe that in [19], the property I" C SL(d,Z) is used only
when additive aspects connected with reduction modulo one come into play.
It turned out that the property of I'-orbits in R? which is responsible for
density in T? is “thickness” at infinity of I-orbits (see Theorem 5.23 and
the comments to it). Hence, this property can be studied separately in full
generality; I" is then a general subsemigroup of GL(d,R) and the use of
boundaries and random walks is natural in this context.

In this paper we consider this problem in a simplified setting, we give a
self-contained exposition of some of the methods developed in [6, 7, 19] in
the more general context of random walks and linear actions, and we use
the results to prove the ID-property in our setting. We also prove some new
results for actions on tori and on certain compact G-factor spaces of RY.

The general idea is to lift the automorphisms of the torus T¢ to its uni-
versal cover R? and to study the action of the lifts at infinity. The action
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of I' at infinity can be expressed in terms of some compact homogeneous
spaces of GL(d,R) which are closely related to the projective spaces -1,
The random walk framework allows us to take into account the global semi-
group asymptotic behavior in terms of stationary measures and convergence
to them. As in [13] and [15], the results can be used to obtain topological
properties of the I'-action. Furthermore, this general framework allows us
to obtain a series of facts about linear actions which are of interest in other
problems.

Before we state the results we need to introduce some notions. A matrix
v € GL(d,R) is said to be prozimal if it has an eigenvalue A, such that
|Ay| > |A| for all other eigenvalues A of 7. A matrix ~ is said to be quasi-
expanding if it has an eigenvalue A such that |A| > 1.

Let I' be a subsemigroup of GL(d,R). The I'-action on R¢ (or simply
I') is said to be strongly irreducible if no finite union of proper subspaces is
[-invariant.

The first main theorem of this paper is as follows:

THEOREM 1.1. Let I' be a subsemigroup of Miny(d,Z), d > 1, such that
I contains a prozimal element and the I'-action on RY is strongly irreducible.
Then the semigroup I' acting on T¢ has the ID-property, that is, every infi-
nite I'-invariant subset of T® is dense.

If d =1, one has My (1,Z) = Z* C R*. As said above, the conclusion of
Theorem 1.1 is valid in this case too, if and only if I" is non-lacunary, i.e., not
contained in a cyclic subgroup of R*. For d > 1, the condition in Theorem 1.1
implies that I is not contained in a finite extension of an abelian subgroup
of Miny(d, Z); in particular, here I" is non-abelian, hence the situation of [4]
is excluded from our setting.

The first step in order to get Theorem 1.1 is to study closed infinite
I-invariant subsets X of T¢ such that 0 is a limit point of X. Then we notice
that the inverse image in R? of such an infinite I'-invariant subset contains
some asymptotic set which consists of lines. Moreover, there are some rays
with good properties, that is, not contained in a subspace having a basis
which consists of integer vectors. This allows us to project them using the
canonical projection p : R — R?/Z% p(x) = x + Z%, on T¢ and obtain
the result in the case when 0 is a limit point of the subset X'. Furthermore,
using arguments close to [4] and [12] and reduction to a finitely generated
subsemigroup of I', we show that the opposite situation does not occur.

Let Lr € P91 be the closure of the set of directions corresponding
to dominant eigenvectors of the proximal elements in 1. We denote by Ep
the set of corresponding non-zero vectors in V- = R?, by ¢ the symmetry
o:v— —vinV, and by V the factor space V = V/{o,1d}.

The following is the basic tool in the proof of Theorem 1.1.
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THEOREM 1.2. Suppose I' is a subsemigroup of GL(d,R), d > 1, which
is strongly wrreducible and contains a prozimal and quasi-ezpanding element.
Let X be a I'-invariant subset of V' \ {0} and suppose 0 € X. Then

¥ > Lp/{o,1d}.

To have in mind a simple example illustrating Theorems 1.1 and 1.2,
consider the torus T2. One of the simplest examples of a subsemigroup of
SL(2,Z) satisfying the conditions of Theorem 1.1 is the semigroup I" = (a, b)
generated by the matrices a = (1) and b= (3 2) from SL(2,Z).

From Theorem 1.1 we infer that the I'-orbits in T? are finite or dense.
Furthermore we observe that, in the context of Theorem 1.2, the dynamics
of I on R? is easy to visualize. The closure of the eigen-directions in the
positive quadrant Ri forms a Cantor set and the corresponding lines form
an “attractor set” Z} for the action of I in Ri. There exist vectors in
R? whose orbit closures contain 0, for example dominant _eigenvectors of
elements of I"~!. The I'-orbit for such a vector tends to fill L} U —L} since
the dynamics of its I'-orbit consists of attraction towards 0 and expansion
along the eigenvectors sitting in E} U —Z}

For a general vector, for example a vector v € RZ, there is attraction
towards E} and expansion along Z}, and the I'-orbit of v is “thick at infinity”
due to the irrationality properties of eigenvalues of elements in I'. In the
general case the situation is similar, in particular the projections of general
I-orbits into T? are large, hence one can expect the closed I'-orbits in T¢ to
be finite unions of special manifolds, as conjectured in [24].

Let us now consider, for ¢ > 1, the factor space P9~! of V \ {0} by the
subgroup of homotheties with ratio +c* (k € Z). The action of g € G =
GL(d,R) on v € P?~! will be denoted v + g.v. Let u be a probability
measure on I' C GL(d,R) whose support generates I". Then we can define
an associated Markov operator P, on PZ=1 by the formula

Pyu(v,) =\ 8 du(g)-

The iterates P of P, define a random walk on Pt
The following describes the asymptotic behavior of the iterates P}; it is
an essential tool in the proof of Theorem 1.2, hence of Theorem 1.1.

THEOREM 1.3. Assume that I' C GL(d,R) is a subsemigroup which is
strongly irreducible and contains a prorimal element. With the above nota-
tions, the Markov operator P, on ]P’g_1 has a unique stationary measure o,
the support S, of o is the unique closed I'-invariant minimal subset of Pgl—l,
and for any v € P the sequence of measures Pﬁ(v,-) converges to o.
Moreover, the trajectories of P, starting from v converge a.e. to S,.
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Along the way, we get some new results and facts. For example, we show
a priori that the weak ID-property (that is, the closures of the orbits 'z,
x € T9, are either finite or equal to T? itself) and the ID-property are
equivalent, a fact implicitly used in previous papers, but apparently unproved
in the literature.

We also clarify the relations between a fundamental cocycle equation
on I' x P4~ and an aperiodicity condition for the dominant eigenvalues of
proximal elements in I" which occurs in [22] and which also has a geometric
interpretation in terms of lengths of closed geodesics (see [8]).

Furthermore, the result in Theorem 1.3 extends results of [17] but is new
in this generality.

Also the result of Theorem 1.1 is not covered by [19] since, in our setting,
I is allowed to be a subsemigroup of Min,(d,Z) (d > 1). We are led to prove
a result of independent interest: I' can be supposed to be finitely generated
(see Proposition 2.6).

The structure of the paper is as follows. In Section 2 we set the notation
and give all necessary definitions. In particular, we define a dominant vector,
a proximal element and state our two hypothesis (H;) (strong irreducibility)
and (Hz) (proximality), under which we prove Theorem 1.3. We introduce
hypothesis (Hy), i.e. the unboundedness of I'-orbits in V' \ {0}. Under (H;)
and (Hz), this condition is equivalent (see Proposition 2.4) to the existence
of a proximal and quasi-expanding element in I', which allows us to prove
Theorems 1.1 and 1.2. It is clear that this condition is necessary for the
validity of the ID-property.

We observe that conditions (Hy), (H;) and (Hs) are analogous to those
used in [16, Theorem 2.5 in order to get a homogeneous behavior at infinity
of the potential measure in V associated with 1, hence also of the I'-orbits
at infinity in V. (See also [10] for the case of affine actions.)

In Section 3 we prove the equivalence of the weak ID-property and ID-
property (Proposition 3.1).

In Section 4 we study the I'-actions on various spaces, namely on the
projective space P(V'), the compact homogeneous space P.(V') and V itself.
We define the asymptotic sets for I'-actions and we study their properties.
We also clarify the role of aperiodicity hypotheses of I" considered by Kesten
in [22] and Eberlein in [11] (see Corollary 4.8 and Proposition 4.6).

Section 5 develops the random walks techniques which are used in the
proof of the main new result of this section which is Theorem 5.19. This
theorem together with the method presented in [12] allow us to prove Theo-
rem 1.1 in Section 6. Theorem 5.19 follows from a detailed study of random
walks on V' and various I'-spaces, governed by a measure p sitting on I’
and such that the convolution iterations p** fill I. Some of these results
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are well known but we have included the proofs in order to make the paper
self-contained. Some others are new.
Finally, in Section 6 we give the proof of Theorem 1.1.

2. Proximality, irreducibility, expansivity. In what follows, I" will
denote a subsemigroup of GL(d,R). We consider the actions of I" on the
vector space V = R%, on the associated projective space P4~ = P(V), and
on V = V/{Id,c} = V/{£Id}. We denote by 7 the projection of V \ {0} on
P4=1 = P(V) and we identify P(V) with the unit sphere S9! divided by the
symmetry o : z — —x. Also K = SO(d, R) will denote the special orthogonal
group and m the unique K-invariant probability measure on P(V).

The action of the matrix g on the vector € V is denoted by (g, z) — gz,
whereas for the action of g on the projective space P(V) we write g.7w(z) =
mw(gx).

A matrix v € GL(d, R) is said to be prozimal if it has an eigenvalue A,
such that |Ay| > |A| for all other eigenvalues A of . Thus A, € R. For such
a v an eigenvector v, € V corresponding to the eigenvalue A, is called a
dominant eigenvector or simply dominant vector of v. By Ar we denote the
set of all proximal elements in I'. An element v € GL(d,R) is said to be
quasi-expanding if it has an eigenvalue A such that |A| > 1.

More generally, for u € End(V'), we denote by |\, | the spectral radius of u.

If v € A then we define v© € P(V) as a point corresponding to the line
in V' generated by v,. By V7< we denote the unique ~v-invariant hyperplane
complementary to V" = Ru,.

We consider the following assumptions.

(Hp) For every v € V '\ {0}, the orbit I'v is unbounded.

(H1) The I'-action is strongly irreducible (for short, I' is strongly irre-
ducible), that is, no finite union of proper subspaces is I'-invariant.

(H2) I contains a matrix - which is proximal.

REMARK 2.1. (i) Condition (H;) can be equivalently formulated as fol-
lows. A subsemigroup I" of GL(V') acts strongly irreducibly on V' if every
finite index subgroup H of the group (I, ') acts irreducibly on V, that is,
every H-invariant subspace of V is either 0 or V.

(ii) If I" is a subsemigroup of SL(d,R), then conditions (H;) and (Ha)
imply (Hy), since otherwise the determinant of the proximal element v would
be strictly less than 1. The same is true, using the same argument, if I is
a subsemigroup of M,y (d,Z), since det~y, v € I, is a nonzero integer (see
Proposition 2.4 below).

(iii) Condition (Hj) (resp. (Hz)), if valid for I is also valid for I'*, the
transposed semigroup acting on the dual space V*.
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(iv) Conditions (Hy), (H;) for I" imply condition (Hg) for I'. This will
be used in the proof of Theorem 1.1 and can be seen as follows. Let W C V*
be the subspace of vectors with bounded I"-orbits. Then W is I'-invariant,
hence (iii) implies W = {0} or W = V*. In case W = V*  I'! is relatively
compact in End(V*), hence I is relatively compact in End(V'). This contra-
dicts condition (Hy) for I

The concept of Zariski closure, defined below, will be freely used when
dealing with the above conditions (see [27]).

Let I" be a subset of GL(d, R). We recall that the Zariski closure Zc(I") of
I is the set of zeros of all real polynomials in the coefficients of g € GL(d, R)
and (det g)~!, which vanish on I

If I" is a subsemigroup of GL(d, R) then Zc(I") is a group which contains
I, is closed and has a finite number of connected components in the real
topology (see [27]). The connected component of the identity in the Zariski
topology is a subgroup of finite index which will be denoted by Zco(I').

We have the following generalization of Lemma 2.8 in [6] to the case of
semigroups.

LEMMA 2.2. Let I' C GL(V) be a subsemigroup. The I'-action satisfies
condition (Hy) if and only if the orbit ['v of no non-zero vector v is contained
i a finite union of proper vector subspaces of V.

Proof. Suppose (Hj) to be valid and v € V' be such that I'v C U?:l 1%
where V; are proper subspaces of V. Let W be a finite union of subspaces
of V such that I'v C W, and W the set of such W. We observe that I'v C
ey W. Since a strictly decreasing family of elements of W is finite we see
that (¢ W also belongs to W, in other words Wy := (¢ W is the
minimum element in WW. We write Wy = U;”Zl Vj; we are going to show that
Wy is preserved by I'. Since W € W is algebraic we have Zc(I")v C W, in
particular (I", "~')v C W. It follows that, for any v € I,

AW D ([, T Yo D I

Hence, YW € W. Since Wy is the minimum element of W, we have vW;y D
Wo, so yWy = Wo; hence, I'Wy = Wy. Condition (H;) says that this is
impossible.

Conversely, suppose V; (1 < j < n) is a family of proper subspaces which
is preserved by I'. Let v € Vy; then I'v € |J;-_; Vi. From the hypothesis this
is impossible, hence condition (H7) is satisfied. m

Let X be a compact metric space with distance function . We say that
the action of a semigroup I” of continuous transformations of X is prozimal if,
given x,y € X, there exists a sequence {7,} C I" such that §(y,.z,yn.y) — 0
as n — oo.
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Define the distance function ¢ on P(V') as follows:
6(w, ) = luAoll/llulllvl,  @veP(V),
where u and v are the corresponding vectors in the vector space V.

PROPOSITION 2.3 (Theorem 2.9 in [14]). Let I' be a subsemigroup of
GL(V). Then the following are equivalent:

(a) I satisfies (Hy) and (Ha).
(b) I' acts prozimally on P(V') and is strongly irreducible.

Proof. ((a)=-(b)) We consider a proximal element v € I" and define
u=lim|[y?"|714?", 3 =Keru c P(V*).
n

Then if z,y € P(V) do not belong to Keru, we have lim,y".x = T,
lim, y*.y = v*. Hence, lim, §(y".z,7".y) = 0.

In general, if z,y € P(V) are given we can find h € I" such that h.x ¢
Keru and h.y ¢ Ker u, otherwise, passing to the dual space V*, transposing
maps, and using the hyperplanes 2+ and y of V* defined by x and ¥, one
would have

Vhel, hizcatorhlscyh.

But Remark 2.1(iii) and Lemma 2.2 say that this is impossible under condi-
tion (Hy).

((b)=(a)) It follows from proximality of I" on the compact metric space
P(V) (see [13]) that, given a finite subset E C P(V'), there exist a sequence
{gn} C I" and = € P(V) such that

Vye E, limg,.y==.
n

We consider a finite system E = {x1,...,224-1} of 2d — 1 points in P(V)
such that any d-subsystem consists of independent points.

We consider the linear maps w,, = ¢,,/||gn|| and using a convergent subse-
quence, we can assume that u, converges towards u € End(V') with ||u| = 1.
We show that u has rank one.

From the definition of E it follows that at least d points of E do not
belong to Ker u. We replace these points, as well as x, by the corresponding
unit vectors in V, say Z1,...,Z4, Z. Then we obtain

uiﬁiz)\ii, lg’igd,

where \; # 0; the points {Z;} form a basis of V, hence the rank of u is
one, i.e., dimKeru = d — 1. We can moreover suppose that Imu ¢ Keru,
since otherwise we could replace g, by gg,, where g € I satisfies Im gu =
g(Imu) ¢ Keru and Ker gu = Kerwu. The existence of g € I' such that
g(Imu) ¢ Keru = Ker gu follows from Lemma 2.2.
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Under this condition, u is proportional to the projection on Imwu along
the hyperplane Ker u. In particular, © has a unique non-zero eigenvalue A.
Since the sequence g, /||gn|| — v converges to zero, we conclude that for n
large, gn/||gn|| also has a unique dominant eigenvalue close to A. The same
is true for g, hence I" satisfies (H3). u

PROPOSITION 2.4. Let I" be a subsemigroup of GL(V'). Then the follow-
ing are equivalent:

(a) I' satisfies (H1), (H2) and the element vy in condition (Hz) satisfies
Ay > 1.

(b) I' is unbounded and satisfies (H1) and (Hs).

(¢) I' satisfies (Hy), (H1) and (H3).

(d) I satisfies (H1), (H2) and there exists v € I' such that |\,| > 1.

Proof. ((d)=(b)) Let v € I' be a quasi-expanding element in I, hence
|Ay| > 1. Then ||y™]| > |A,|™. Hence lim, ||y"|| = oo, i.e., I" is unbounded.

((b)=-(a)) We will use the basic [1, Theorem 4.1|, which allows us to
construct new proximal maps and which implies the following. If I" € GL(V)
satisfies (H1) and (Hgz) there exist ¢ > 0, 7 > 1 and a finite subset M C I,
such that, for any g € GL(V), there exist a € M such that ag is proximal,
the distance in P(V') of (ag)* to V.5 is at least ¢, and

gl 2 7ll(@0)lyz -
Since I' is unbounded, there exists a sequence {~,} C I" such that
lim ||y, || = oo.
n

Using a subsequence of 7, we can suppose that, for some a € M, av, is
proximal, (ay,)", (V,5, resp.) converges to x € P(V) (W,, = V5, converges
to the hyperplane W of P(V'), resp.). We have = ¢ W, since the distance of
(ayn)T to W, is at least . We can also suppose that ay,/||a¥,|| converges
to u € End(V') with ||u|| = 1. Clearly, V is the direct sum of the hyperplane
W and of the line generated by z. Furthermore,
i Ayl o 1

Since u # 0 preserves the above direct sum we have |\,| > 0. Then the
condition |Agy, | > r||(ayn)|w, || implies

Aul = rllulwll,  [Aul > fulw.

an H

In particular, u has a dominant eigenvalue which is simple. Since Hu— I
n

converges to zero, for n large we have

[Aarn | = [lavnll [Aul/2.
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Moreover, the condition lim,, ||v,| = co implies

lim [|ayy|| > lim [la™ |7 |yall = occ.
n n

In particular, for n large, [Aqy,| > 1, hence ay, is proximal and quasi-
expanding, i.e., (a) is valid.

((b)=(c)) We consider the subspace W C V of vectors in V' having a
bounded I"-orbit. Clearly, this subspace is I'-invariant. Then condition (H;)
implies W = V or W = {0}. In the second case (Hp) has been proved.
The first case does not occur since it contradicts the hypothesis that I is
unbounded.

((c)=>(b)) and ((a)=>(d)) are trivial. m

The following is a useful characterization of strong irreducibility in terms
of Zariski closure.

PROPOSITION 2.5. Let I' be a subsemigroup of GL(V'). Then I satisfies
(H1) if and only if Zco(I') acts irreducibly on V.

Proof. Assume that I satisfies (H;) and let W C V be a non-zero
Zco(I')-invariant subspace. For some finite set F' C I" we have I' C Z¢(I") =
U, ervZeo(I), hence I'W = (J, o yW. Since I" satisfies (H1) we get W =V,
hence Zco(I") acts irreducibly on V.

Assume that Zco(I") acts irreducibly on V' and let W be a non-zero
subspace of V, and F a finite subset of I" such that I'W = U’yEF ~vW. Since
I'W is an algebraic manifold, Zc(I") leaves I'WW invariant, hence permutes
the subspaces YW (y € I'). Since Zco(I") is connected, for any v € F we
have

Zeo(D)AYW =~ W.
From the irreducibility of the action of Zco(I") on V, we get W =V. u
The following will be essential in the proof of Theorem 1.1.

PROPOSITION 2.6. Assume that the semigroup I' C GL(V') satisfies (H;)

and (Hz). Then I' contains a finitely generated subsemigroup which satisfies
(Hl) and (HQ)

The proof of the above proposition depends on the following

LEMMA 2.7. Assume that I satisfies (Hy), (H2). Denote by D (resp. C)
the commutator subgroup (resp. connected center) of Zco(I"). Then Zco(I') is
the almost direct product of D and C. Furthermore, D is semisimple without
compact factors and C consists of homotheties.

Proof. Since I' acts irreducibly on V, Zc(I") is an R-reductive group (see
[27]), hence D is semisimple and Zco(I") is the almost direct product of C
and D. We can write D as the almost direct product D = D1Ds, where
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D1 is compact and D- is semisimple without compact factor. Since I" con-
tains a proximal element and Zc(I")/Zco(I") is finite, Zco(I") also contains
a proximal element. We denote this element by v and write yv, = A\ v,,
v = cdide with ¢ € C, d1 € D1, do € Ds. Since d; and v commute, and the
direction of v, is uniquely determined by <, dyv, is proportional to v,. Since
D1 is compact we have div, = $wv., hence cdy is also proximal with dom-
inant eigenvector v,. Since C' commutes with cdz, and v, is cdz-dominant,
there exists an R-character x of C such that gv, = x(g)v, for every g € C.
Since the subspace W = {v : cv = x(c¢)v,VYe € C} is I'-invariant, con-
tains vy, and the action of I" is irreducible, it follows that cv = x(c)v for
all v € V and ¢ € C. Thus, C consists of homotheties, D1 D5 also acts
irreducibly on V', and v, is dz-dominant. Since D commutes with dy we
infer, as above, that Dy preserves the direction of v,. Since D; is compact
and connected, v, is Di-invariant. Since D; commutes with C'Ds, the sub-
space of Di-invariant vectors is preserved by the action of CD1Ds. From the
irreducibility of Zco(I"), we conclude that D; = Id, hence Zco(I') = CDy. m

Proof of Proposition 2.6. We consider the semigroup I'(S) generated by
the finite set S C I'. Clearly, if S C ', then I'(S) C I'(S"). We take a totally
ordered family S; (i € I) such that I' = | J;c; I'(S;); we denote by Gy the

connected component of the identity in Zc(I'(S;)). Then, since G} C Gé if
S; C S;, for some ¢ € I we get

Hy:=Gy=JGi=Gf ifS, D8,
i€l
We can suppose that G = Gy for any i € I. It follows that Hy is normal in
Zc(I'(S;)) for any i € I, hence Hy is normal in Zc(I). In particular, Hy C
Zco(I"). We observe that Hy has finite index in Zc(I'(S;)), hence L = Zco(I")/
Hj is an algebraic group which is the Zariski closure of the union of the finite
subgroups @; corresponding to Zco(I'(S;)). In view of Lemma 2.7 we know
that the algebraic group L has the same structure as Zco(I"), in particular
is reductive. We write it as the almost direct product of its connected center
C’ C R* and its commutator subgroup D’. Passing to the factor group L/
D', using the finite subgroups @;, we get C' = {Id}, L = D’. We consider a
faithful, irreducible representation of the adjoint group of L in a real vector
space V'. Then each finite subgroup ®; leaves invariant a positive definite
quadratic form ¢;. We can suppose that the forms ¢; are normalized and we
denote by ¢ a cluster value of the (g;);er. Then ¢ is invariant under the action
of the topological closure @ of J;.;®;. Since Zc(J;c; Pi) = L = Ze(P),
we see that @ acts irreducibly on V') as L itself. Since the kernel of ¢ is
d-invariant, it is trivial, hence ¢ is positive definite. It follows that & is
compact. Since Zc(®) = L, we conclude that L = & is compact, hence from
Lemma 2.7, L = {Id}. It follows that Hy = Zco(I") = Zco(L'(S,)). We can



44 Y. Guivarc’h and R. Urban

suppose that I'(S,) contains a proximal element from I' N Zco(I"). Then
I'(S,) is finitely generated, and satisfies (Hz). From Proposition 2.5 we see
that condition (H;) is also satisfied by I'(S,), since Zco(L'(S,)) = Zco(I)
acts irreducibly on V. =

REMARK 2.8. We will see in Lemma 3.3 below that condition (Hy) also
remains valid after passing to a convenient finitely generated subsemigroup.
However, in Proposition 2.6, this property cannot be achieved with condi-
tion (Hp) alone. A simple counterexample is the following: suppose I" is the
semigroup of rational rotations of the Euclidean plane, centered at the ori-
gin. Then any finitely generated subsemigroup I"” preserves a regular polygon
inscribed in the unit circle. Hence, condition (H;) is not satisfied by I".

This explains why we consider (H;) and (Hz) simultaneously in Propo-
sition 2.6.

3. Equivalence of the weak ID-property and ID-property. Let us
recall the definitions of the weak ID-property and ID-property once again,
in the context of subsemigroups of M.y, (d,Z) acting in the usual way on
d-dimensional tori. We say that a subsemigroup I' of My (d,Z) has the
ID-property if every infinite I'-invariant subset of T% is dense in T¢. This is
of course equivalent to the fact that every infinite closed I'-invariant subset
of T4 is T itself.

We say that a subsemigroup I" of My (d, Z) acting on the d-dimensional
torus has the weak ID-property if for every x € T¢, the closure of the orbit
T’z is either finite or the whole T¢,

Here it is convenient to use condition (Hp) which is weaker than the
hypothesis in Theorem 1.1.

PROPOSITION 3.1. Let I' be a subsemigroup of Miny(d,Z) acting on T¢
and satisfying condition (Hp). Then I has the weak ID-property if and only
if I has the ID-property.

To prove the above equivalence we need the following three lemmas.

LEMMA 3.2. Suppose S is a finite subset of GL(d,R) which generates a
semigroup I" which satisfies (Hyp). Define

C =sup{||s]| : s € S}.
Then for every x € V with ||z|| <1 there exists an element g € I" such that
1< lgz| <C.

Proof. Note that C' > 1, since I" is unbounded. We consider a sequence
sk € S such that the sequence sy, ...s1z, ||z|| <1, is unbounded, and define

k=sup{n € N: |s,...s1z| < 1}.
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Then we have
Isk+1ll < C,  lsg...s1z|| <1,  [|Sg41-..s12| > 1.
It follows that
1< |skt18k---s12|| < Cllsg...s1z|| < C.

Then the conclusion follows with ¢ = s;11...51. =

LEMMA 3.3. Let I' be a subsemigroup of GL(d,R) which satisfies con-
dition (Hyp). Then I' contains a finitely generated subsemigroup which satis-
fies (Hp).

Proof. For any finite subset S C I, we denote by I'(S) the semigroup
generated by S, and by V'(5) the subspace of vectors v € V such that I'(S)v
is bounded. We observe that the inclusion S C S’ implies V(S") € V(S).
We consider a totally ordered family of finite subsets S, (¢ € I) such that
I'=U,c; I'(S)). Then W = (,; V(S,) is of the form V(S;) for some j € I
and we have V(S,) = V(S;) if S, D S;. It follows that W is I'-invariant.
Furthermore, for any v € W and ¢ € I, I'(S,)v is bounded.

We show that, if W # {0}, then I'v is bounded, for some v € W \ {0}.
Hence W = {0} by condition (Hp). This implies that condition (Hy) is
satisfied by I'(.S;).

We consider the complexified vector space W€ ¢ VC, a I'irreducible
subspace U C WC, and the action of I'(S,) on U. Since every I'(S,)-orbit in
W is bounded for any v € I'(S,) we have |\y| < 1, hence |Trv|y| < dimU
for any v € I'.

Since the action of I" on U is irreducible, Burnside’s theorem implies that
the algebra End(U) is generated by I, i.e. there exist y1,...,7, in I" such
that the linear forms fi,..., f, on End(U) defined by

fe(w) = Tr(ypw)  (1<k<r)

form a basis of (End(U))*. Since |fx(7)| < dimU for every v € I, and the
family { fx} forms a basis of (End(U))*, we deduce that I'|;; is bounded. Then
any [-orbit in U is bounded. Hence the same is true for the conjugate space
U c VC, and for the sum U + U C VC. In particular, any v € (U +U) NV
has a bounded I'-orbit. Hence from condition (Hy), (U + U) NV = {0},
U={0}, W={0}. m

Let B. C R denote the ball with radius ¢ and center 0. For ¢ < 1/2, we
also denote by B, the homeomorphic image of B, C R? under the canonical
quotient map p : R? — T = R4/7Z9,

LEMMA 3.4. Let I' be a subsemigroup of Miny(d, Z) which satisfies (Hp).
Then there exists e = e > 0 such that for every 0 # x € T¢,

I'zNT?\ B. # {0}.
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Proof. From Lemmas 3.3 and 3.2 above we can find C > 1 such that for
any x € B. C R%, ¢ < 1/2, there exists g € I" such that

e <|\gz|| < Ce.

If e = 1/2C < 1/2 we see that 'z ¢ B, for every & € B. C T If for
some y &€ B, we had I'y C B, then x = vy € B, for some v € I'; hence,
from the above observation, I'x ¢ B.; in particular, since I'z C I'y, we have
I'y ¢ Be, and this is a contradiction. =

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. It is obvious that the ID-property implies the
weak ID-property. Therefore we have to prove the converse, i.e. any infinite
closed subset ¥ with I'Y C ¥ is equal to T¢.

If I'z is infinite for some 2 € X, then the hypothesis implies 'z =T%=X.
Hence we can suppose that X is infinite, X = |J, .5 'z and each I'z with
x € X is finite. It follows that X C p(Q?), hence X is countable.

Now consider the sequence of derived sets,

(3.5) N=yoxts...ox">...,

that is, X"*! is the set of limit points of X™. Actually, the sequence (3.5)
terminates, i.e. there is an index n such that X" = (). If not we consider
X =y, X" Clearly, ¥ is a closed countable set such that the set
(X°°)2¢ of limit points of X*° is equal to X°°. This means that Y is a
non-void and countable perfect set. Since every point of 3°° is closed and
has empty interior in 32’*°, the Baire theorem says that 32> also has empty
interior in X’*°, which is impossible. Therefore, there is n € N such that

N=yosylo...ox"=4.

Without loss of generality we may assume n = 2. It follows that X' is finite.
In fact, otherwise X2 would not be an empty set. Let {x1,...,2,} = X! C
p(Q?) be the set of limit points of ¥ and let ¢ be a common denominator of
zi, 1 <i<n. Then 0 € ¢X" is the unique limit point of ¢X. Consider a ball
B; around 0 with € < e given by Lemma 3.4. Then the points of ¢} outside
B have no limit point, hence form a finite set F. Now we can consider the
I'-orbits of these points, i.e. I'z, x € F. They form a ['-invariant finite set
F' = J, ep I'v that we can exclude from ¢X without changing its properties.
Therefore, now we have the new set X’ = ¢X' \ F’ which is closed, infinite,
I-invariant and fully included in Bg, and this contradicts Lemma 3.4. =

4. Dominant vectors, a cohomological equation and the spec-
trum of I'. Asin Section 2, I" is a subsemigroup of GL(V) = GL(d,R) and
we consider its action on V and P(V) = 7(V \ {0}).
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We define the asymptotic sets:

Lr ={m(vp) : vo is a dominant vector for I'},
Lr={v#0:7(v) e Lp} =n (Lr).

We start with the following proposition which is a semigroup version of
a result of Guivarc’h and Conze (cf. [6, Proposition 3.2]).

PROPOSITION 4.1. Let X be a I'-invariant subset of V' \ {0} such that
0 € X. Then, under assumptions (Hy), (H1) and (H2), for any prozimal and
quasi-expanding element v € I' there exists a v-dominant vector ug such that

(4.2) YPug == {7*ug : ke Z} C .

Proof. Let V. = V) @ Vf be the decomposition of V relative to a
proximal and quasi-expanding element v € I

Let 2; € X and z; — 0 as i — oo. Then there exists a sequence {«;} of
reals and w € V such that o;x; — w as ¢ — oco. We will show that without
loss of generality we can assume that w & Vf. In fact, since I acts strongly
irreducibly on V, by Lemma 2.2 one can find an element h € I" such that
hw g Vs, e w ¢ h=1V<. Define

IN=h'rn, ~n=htyherl, X =h'x.

Then ~; is proximal in I}, w & h*1V,Y< = va, and Y] is a ['}-invariant subset
that contains 0 as a limit point. Assume that we have found a non-zero vector
up € V7** such that Yiug € 1. Then h™'y%hug € h™1 X ie., ¥ hug C X.
But hug € V;"** and we are done.

Thus from the very beginning we can assume that w ¢ V7<.

Let e1,...,e, be a basis of V such that e; € V™, |les]| = 1 and
€2,...,6n € Vf. Let ¢; : V — R be linear forms such that

:r:Zngj(:v)ej, xeV.
j=1

Let @ : V = V"™ @ VS — V2" be the projection along V.5, ie., &(x) =
¢1(x)ey. Since w & Vf, it follows without loss of generality that ®(x;) # 0
(since a;z; — w € V,°). Since |\, = A > 1, there exists a sequence {p;} of
integers such that p; — oo and

Now passing to a subsequence if necessary one can find a y-dominant vec-
tor ug € V" such that 7?i(®(x;)) — up as i — oo. We will prove that
YPi(x;) — ug as i — oo.

Clearly, it is enough to show that

(4.3) ¢j(zi)vPi(ej) = 0 asi— oo, for any j > 1.
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In fact, P! (x;) — uo if VP (3°7_; dj(wi)ej) = D27 dj(xi)yPi(ej) — uo and
so we are led to (4.3).
Therefore, we are going to prove (4.3). One has

oy Q@) APe) | p
P ) = 15, Gy e 1P
where the first fraction tends to ¢;(w)/|¢1(w)|, the second one tends to zero,
and the third term tends to |lug|| as i — oc.

Since z; € X and v € I for every i € N it follows that ug € X.
Since lim; vPi (z;) = ug, we infer that v~ (ug) = lim; vPi~™(z;). We see that
AP (z;) € X for almost all 4, thus v ™ug € . m

REMARK 4.4. Notice that the condition (4.2) implies that 0 € X. In fact,
simply take a sequence Z > k,, such that k, — —oo.

PROPOSITION 4.5. Under conditions (Hy) and (Hz), the set Lp is the
unique minimal I'-invariant closed subset of P(V).

Proof. We first show that Lp is [-invariant. Consider ¢ € Ap, and
u = lim, ¢**/||g*"|, where the limit exists in End(V) by proximality of g.
Consider a decomposition V' = V;]< @® V,"#*. Then u is a multiple of the
projection of V' onto V;»** along V=.

On the other hand, we consider v € I" and want to show that v.g" € L.
We observe that for any § € I, we have

g2n 5 5
Mgt
We have Im(yud) = y(Imu) and Ker(yud) = 6 !(Keru). We note that
~yud has rank one, like u, hence yud will be a multiple of a one-dimensional
projection if y(Imu) ¢ 6§~ (Keru), i.e. §(Im(yu)) ¢ Ker u.

Since I is strongly irreducible, Lemma 2.2 shows that such a § € I
exists. Then, as in the proof of Proposition 2.3, perturbation theory shows
that for n large, v(g?"/||g?"||)d has a simple dominant eigenvalue and the
corresponding eigenvector is close to y(vg). In other words,

lim
n

-0

v9*"S € Ap, y.gT =lim (yg*"0)".
Hence vLp C Ly.

Now let A be a closed I'-invariant subset of P(V') and let us show that
A D Lp. Since I' is strongly irreducible, A is not contained in a proper
subspace. In particular A ¢ VV<, hence there exists © € A with = ¢ V'y<'
Then v+ = lim,, 7*.x € A. Since A is closed, we have Ly C A. This shows
that Lp is minimal and is the unique minimal subset of P(V'). m

PROPOSITION 4.6 (Proposition 2.2 in [7]). Let I' be a subsemigroup of
GL(d,R), d > 1, satisfying condition (Hy) and (Hz). Let S be a generating
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subset of I'. If ¢ is a non-zero, continuous function on P41, t is real and
0 € [0,27), then the equation

Vye S Veelp, o)y’ =e’p(x)
has no solution, unless @ = 0, t = 0, p(z) = const on L.

Proof. Clearly we can suppose that |det+y| = 1 for v € I'. Consider the

function ¥ (v) defined on Ly by the formula 1(v) = ¢(m(v))||v||®. Then the
relation for ¢ can be written as

Vye s, () =e’y(v).
Suppose that ¢ # 0 and put logo = 27/|t|. Then additionally we have
Y(+0*v) = 9(v) and the condition ¥ (\v) = 1(v) for some v € Ly and some
A € R implies that A = +0F, where k € Z.
Let ¢ be any of the values of ¢ and put L. = ¢~ ({c}) C L. Then, since

1) is continuous, L. is a non-empty closed subset of L which satisfies
Vye S, ~v(Lc) C Lege.

For every A\ € H,, which is the group of homotheties of the form +o*. ke,
we also have

AL, = L.

If now u € End(R?) satisfies u = limy, o™ with v, € T, 07! < [jul| < 1,
then we have |detu| = limj, o~™¢ = 0 and u(L.) C L.« U {0} with a € R.
From condition (Hs) we can choose 7 = % € I' with W = Keru # 0
having codimension 1. Since Imu = Rvy = Ra, a # 0, we find that u(L.) C
H,a U {0}. Since u=!(a) = b+ W with b € R?\ {0} we deduce that L. C
W UHy(b+W). It follows that, in the quotient space R¢/W, L, is projected
onto a set which is countable and H-invariant. If W;, 1 <¢ <, is a family
of such subspaces then ();_; W; has the same property. In fact V/(._; W;
can be identified with the diagonal subspace of V/Wj x --- x V/W,, and
so the projection of L. into V/();_; W; can be identified with a subset of
the product of the projections of L.. Hence, such a projection is countable
and H,-invariant. Since the intersection of any family of subspaces with
the above properties is a finite intersection, there exists a unique minimal
subspace Wy which has these properties. This subspace is unchanged when
c is replaced by ce’®. As a consequence, the condition vy(L.) C L.s for
~ € I' implies that v(Wpy) = Wy. Since m(L.) = Ly and L is uncountable
(see Lemma 5.1), W) is proper. This contradicts the irreducibility of I', and
sot =0, ep(y.x) = p(z) for all z € Ly and v € S. Therefore, for
every n, all v; € S, and all z € Ly we have e ™ (v, ... y,.2) = ¢(x). Since
I = )22, S satisfies (H>), we deduce that ¢ = const on Ly, and e = 1.
In fact, suppose that there are two different points = and y in L such that
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¢(x) # ¢(y). Then
p(z)=e

—inf —inf

e mex) #Fe ™o mey) = ()

and so,

(4.7) 0 <fe(@) =@l =le(y- ynz) —@n...my)|
for every n € N and all v; € S. By proximality of I" on P(V') (see Proposition
2.3) there exists a sequence {7;}5°; such that

lirllné(’yl YTV Yny) = 0.
By continuity of ¢ we a get a contradiction to (4.7). m

Now we consider the set Sy = {log|\y| : g € Ar}, the so-called spectrum
of I' ([8]).

The following corollary, which is a complement to Proposition 4.6 above,
clarifies the connections between the aperiodicity hypotheses on I" considered
by Kesten in 22|, Guivarc’h and Raugi in [17] (Proposition 3 and Lemma
p. 45), Lalley in [23] (Corollaries 11.3, 11.4) and the geometric conditions
considered by Eberlein in [11] and Dal’bo in [8] in the context of lengths of
closed geodesics in the case of negative curvature. For an extension of these
results and their use in the more general setting of semisimple groups see [3]
and [19]. The corollary below also explains why aperiodicity conditions are
not explicitly stated in Theorem 1.1, as in [4] and [26].

COROLLARY 4.8. Suppose I' C GL(d,R) is a subsemigroup which satis-
fies (Hy), (H2) and define Sp = {log|\s| : g € Ar}. Then S generates a
dense subgroup of R.

For the proof, which uses standard arguments of thermodynamic for-
malism, we need three lemmas, the first of them being well known (see [5,
pp. 90-94)).

LEMMA 4.9. Let A be a finite set, {2 the compact metric space AN, and 0

the shift transformation on (2 given by (w)r = wi+1, k € N. For a function
@ on {2 define

n—1
Snp(w) =Y ot (w).
k=0

Suppose ¢ is Holder continuous, and for any periodic point w of period p,
the sum Spp(w) belongs to Z. Then there exists a Holder Z-valued function
¢ on 2 and a Hélder function v such that ¢ = @'+ —1po6.

LEMMA 4.10. Suppose g,h € GL(d,R) are such that h is proximal and
g.ht ¢ Vh<' Then, for n = 2p large, gh™ is proximal and

liy{n (gh™)*t = g.n™, lign V;ln =V:=.
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Proof. We consider the sequence of linear maps u,, = h"/||h"|| and ob-
serve that u,, converges towards a map 7, which is proportional to the pro-
jection on Ruy, along the subspace V,~. Hence gu, converges towards gry,.
We have

Im(gmp,) = Rg.h™,  Ker(gm,) = V;=.

Hence, if g.h™ € V,=, then gm, is collinear to a projection onto a one-dimen-
sional subspace. Since g7, has a simple dominant eigenvalue, the same is true
for gu, for n large. Therefore, for n large, gu, is proximal, and moreover,
we have the required convergence. m

LEMMA 4.11. Suppose I' C GL(V) is a subsemigroup and satisfies con-
ditions (Hy), (Hz). Then there exist a,b € Ap such that a® # b*, V< # V<
and a™ ¢ V<, bT ¢ V<.

Proof. We consider the transposed semigroup I"* acting on the dual space
V* and the projective space P(V*). From Remark 2.1(iii) conditions (H;) and
(Hj) remain valid for I'* and we can consider the corresponding asymptotic
set Lyt = L}.. We fix a € Ar and observe that we can find b € Ap such
that V,~ # V<, a™ ¢ V,=. Otherwise there would be a dense subset of L.
contained in the union of the two projective subspaces defined by V. and
a® in P(V*). Hence L. itself would be contained in such a union. But, from
Lemma 5.1 below, this is impossible. If b* & a™ U V<, we have found the
required pair (a, b). If not, we consider g € I" and the sequence gb™, n € 2N.
In view of Lemma 2.2 we can choose g € I" such that

gbT g V,suVSuUat.

Then we can apply Lemma 4.10 and replace b by gb™ = ¥’ for n large. Under
this condition, Vb,< is close to Vb< and the relations are still satisfied. Since
(b')* is close to g.b" and g.b™ & at U V.=, the condition (b')" € a™ UV,< is
also satisfied. Hence, we can take (a,b’) as the required pair. m

Proof of Corollary 4.8. Since I' satisfies (H;) and (H2) we can choose
ai,as in I’ according to Lemma 4.11. Let C1,C5 be closed and disjoint
neighborhoods of af", a3 in P(V) such that (C1 UCs) N (VT UV,S) =0, and
let 0 be a point outside V5 U V,5 U Cy U Ca. Then, for i = 1,2,

liqgn al.(Ch U Cy) = af, liﬁnd?ﬂ =a}.

If we take n large and set a = af, b = a3, we have
(4.12) a.o € Cq, b.oe€ Oy, a.(01 ] CQ) C Int C1, b.(Cl U CQ) C Int Cs.

It follows from (4.12) that the semigroup I'(a,b) generated by a, b is free. In
order to prove Corollary 4.8 we can suppose I' = I'(a,b). We consider the
trivial metric § on {a, b} and endow £2 = {a, b} with the metric §(w,w’) =
S, 27%5(wk, w)). We define a homeomorphism 3 between §2 and L as
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follows. We observe that if w = (ay)ken and ax € {a, b}, then it follows from
(4.12) that the sequence a; ... ay,.o converges to 3(w) € C1 UChy. It is easy to
verify that 3 is a bi-H6lder homeomorphism, hence we can transfer properties
of (£2,0) to the action of I' on L. We consider 3(w) as a unit vector in V'
and observe that, by definition of 3,

a1(w)3(0w) = &(w)|ar(w)3(6w)([3(w),
with e(w) = +1 or —1. It follows that, if we set

n—1
p(w) =log lar(@)3(0w)l,  Snep(w) =D p(0*w),
k=0

we have, with v =ay...a,-1 € ' and = = 3(0"w) € Lp,

Snp(w) = log [|yz].
Given a Holder function ¢ on {2 we define a Holder function 1 on Lr by

Y[3(w)] = ¥ (w) and we also have (w) — (0"w) = 1 (v.x2) —(x). In partic-
ular, if w € §2 is periodic with period p (fPw = w), then 3(w) is a dominant
eigenvector of v = a; ...a,—1 and the corresponding eigenvalue \, satisfies

log |Ay[ = Spp(w)-
If Sp does not generate a dense subgroup of R, then for some positive ¢ we
have Sy C cZ, hence Spp(w) € ¢Z for any periodic point w and we can apply
Lemma 4.9 to the function (1/¢)¢. In particular, the function e?7#/¢ can be
written in the form e2™(¥=%°%) where 1) is a Holder function on 2. We can
define 1) on L1 as above and write u(z) = ™. Then u is continuous and
we obtain, with v =ay ...ap, x = 3(0"w),

’27L7r/c _ u(fya:)

u()
We extend u to P(V) as a continuous function, again denoted by u. Then
we have

[o&d

’2i7r/c _ u(")/.f)

VeeLp, Vyel, |vyz| = @)

In view of Proposition 4.6, this implies 2i7/c = 0, v = 1, and this is impos-
sible. m

5. Random walks on a vector space and its factor spaces. In this
section, relying strongly on [13], [17] (see also [18]), we develop the random
walk approach to the study of I™-orbits on V'\ {0} and other related I'-spaces.
The main new results are Theorems 5.10 and 5.19 and their corollaries.
They give Theorems 1.3 and 1.2 of the Introduction. In particular, Corollary
5.22 is one of the main tools for the study of I-orbits on the torus T¢ if
I' C My (d, Z), i.e., for Theorem 1.1.
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Let u be a probability measure on G = GL(V), and I', the closed sub-
semigroup generated by the support S, of . We denote by Ml(X) the set
of probability measures on a given Polish space X. We set {2 = SEI and we
consider the probability measure P, = pu®N on 2; the shift 6 on 2 given by
(Bw)r = w1 (k € N) preserves P, and the components wy, = gi(w) of w
are i.i.d. G-valued random variables of law u. From the Markov—Kakutani
theorem, there exists a probability measure v on P(V') which is u-stationary,
ie.,

Wk v = Sg.l/d,u(g) = .
We are going to establish that [P(V),v] is a u-boundary (see [13]), i.e.,
limgigs...gn.v =10,

where z,, € P(V'). This will allow us to derive some properties of the typical
sequences

Sn = 9gngn-1--.91 and X, = g1g2...Gn,
and of the transposed maps S, and X}.

LEMMA 5.1. Assume that I' = I, satisfies condition (Hy), and let v be
a p-stationary measure. Then v gives zero mass to every projective subspace.
Furthermore, if I' also satisfies (Hz), then L is not contained in a countable
union of subspaces.

Proof. Let W be a projective subspace of minimal dimension such that
v(W) > 0. Define

(52) o= 3 (1/25 )

k>1
and consider the function f(g) = g.v(W) = v(g~1.W). This function is
p-harmonic, i.e. satisfies

| £(gh) du(h) =\ f(gh) do(h) = f(9),

and reaches its maximum. In fact, the hypothesis on W gives v(g.WW N
g W) =0if g W # ¢'.W, so the set of g.W such that v(g.W) > § is finite for
every 0. Then if f(go) = supyeq f(g), the equation f(go) = § f(goh)do(h)
gives f(goh) = f(go), o-a.e. Let E be the set of subspaces W’ = g~1.W such
that v(W’) = f(go). Then, from above, F is finite and I"~!-invariant. Hence
the strong irreducibility of I" gives a contradiction.

If (Ho) is also satisfied by I, then Lp is well defined. From the Markov—
Kakutani theorem, we know that there exists a p-stationary measure A such
that A(Lp) = 1, hence S\, C Lp. Since \ gives zero measure to every sub-
space, the same is true for a countable union of subspaces, hence L cannot
be contained in such a union.
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PROPOSITION 5.3. Let v be a p-stationary measure on P(V') and n be as
in (5.2). Then the sequence gi ... gn.v converges P,-a.e. and for P, ®n-a.e.
(w,g) € 2 x G we have

li7rlngl(w) coign(w)r = ligngl(w) oo gn(w)g.v.

Proof. For a continuous function ¢, we set Fi,(g) = g.v(¢) and we ob-
serve that the relation {g.vdu(g) = v gives {F,(gh)du(h) = F,(g), and
consequently Fi,(X,) = g1 ...gn.v(p) is a bounded martingale. This martin-
gale converges and, letting ¢ vary in a dense countable part of C(P(V')), we
obtain the convergence of g; ... gy,.v. In order to obtain the second claim, it
suffices to show that Fi,(X,g) — F,(X,) converges to zero P, ® p*"-a.e. for
every r > 1. But

Vo (Xng) = Fo(Xa)|? dp (9) dP(w) = ™™ (F2) — ™™ (F2)
because | Fi,(Xng) d*(g) = F(X5). One deduces that

WD I1Fa(Xng) = Fo(Xa) P dP(w) du™(g) < 2r|loll3
n=0

for every r > 1; this proves the convergence P ® p*"-a.e. of the series
3 o |Fo(Xng) — Fp(X,,)|? and consequently the convergence of Fi,(X,,g) —
F,(Xp) to zero. m

In what follows we are going to use concepts introduced in [13]. Therefore,
we recall them briefly.

To every linear transformation of R? is associated a quasi-projective trans-
formation acting on the lines of R? not contained in the kernel of the trans-
formation. So we have maps of P?~! defined outside a projective subspace:
these maps are continuous outside the exceptional subspace and are limits,
outside this subspace, of a sequence of projective transformations. Further-
more, from every sequence of projective transformations, we can extract a
subsequence converging to a quasi-projective one, outside a projective sub-
space.

THEOREM 5.4. Let v be a p-stationary measure on P(V'). Assume that
I' = I', satisfies conditions (H1) and (Hz). Then we have P, -a.e.

liinglgg ceGnV =0g,.
In particular v is unique and its support is Lp.

Proof. The proof goes as in [17]. For a fixed w, we consider the relation
given by Proposition 5.3,

O(w) = limg1(w) ... gn(w)-v = lim g1 (w) . .. gn(w)g-V,
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which is true for P, ® n-a.e. (w,g). One can extract from g;(w)...gn(w) a
subsequence converging outside a projective subspace to a quasi-projective
map 7(w). As v gives zero measure to any projective subspace (Lemma 5.1),
from Proposition 5.3 above one has 7(w).v = 7(w)y.v = 0(w) for n-a.e. v, and
therefore for all v € I'. As I” satisfies (H;) and (Hz), one can find a sequence
Yn € I such that ~,.v converges to a Dirac measure §, with z belonging to
the open set of continuity of 7(w). Then, in the limit #(w) = 7(w).d,. This
proves that f(w) is a Dirac measure J, . The law of the random variable z is
necessarily v by the martingale convergence theorem. Since z is independent
of the choice of the p-stationary measure v we get the uniqueness of v.

Clearly, S, is closed and I'-invariant. Hence, Proposition 4.5 shows that
S, DO Lp. The Markov—Kakutani theorem and uniqueness of v give, as in
the proof of Lemma 5.1, v(Lr) =1, hence S, = L. n

COROLLARY 5.5. Let o (0* resp.) be a probability measure on P(V') (P(V*)
resp.) which gives zero mass to every projective subspace. Then we have P, -
a.e.

liqungl e On0 =0z, (liglgi c..gh.0" =0, Tesp.).

In particular

limgy...gnm=25,, (limg}...gl.m"= 025 Tesp.),
n n

where m (m* resp.) is the K -invariant probability measure on P(V) (P(V*)
resp.)

Proof. We observe that g; ... gn/||g1 ... 9gn| € End(V) has norm one, and
consider an arbitrary convergent subsequence,

T gi-. 'g”k
u = lim —————*—.
kg gnl
Clearly u # 0, since ||u|| = 1. We note that u defines a continuous map from

P(V)\ Kerw into P(V'). We will denote it again by u, and observe that, since
o(Keru) =0, u.p is well defined, and from dominated convergence,

u.0 = li;?lgl o+ Gny-0-

In particular, from Theorem 5.4 and Lemma 5.1, u.v = §,,. This means that
the linear map w has rank one and satisfies u(P(V) \ Keru) = 4, . Hence
u.0 = 0,,. The convergent subsequence chosen above was arbitrary, hence

limgy...gn.0=20,,.
n

In particular, we have the above convergence for o = m.
The results for P(V*), o*, m*, 2% follow from I}, = (I},)" and Remark
2.1(iii). m
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Recall m is the K-invariant probability measure on P(V'), where K =
SO(d,R). One says that a sequence f, € GL(d,R) has the contraction prop-
erty on P(V') towards z if the sequence of measures f,.m on P(V') converges
weakly towards J,. A point z € P(V') will be identified with a vector of norm
one, defined up to sign.

We will use, as in [17] and [18], the K AT K decomposition of g€ GL(d,R),
g = kak', k and k' are orthogonal matrices and A+ 3 a = diag(a’,...,a%)
with a! > -+ > a?. Let (e1,...,eq) denote the canonical basis of R, In
particular, if g € SL(d,R) then k,k’ € K = SO(d,R) and a € AT =
{diag(a',...,a?) :a' > - >a% >0 and ngl a =1}.

If one writes the polar decomposition of f, as f, = knank,, where
kn,k‘% € K, a € AT, one sees that the contraction property is equivalent
to at, = o(al), 1 <i < d, lim, ky.e; = 2.

In the proposition below and its corollary, the point z € P(V*) is consid-
ered as a unit vector, hence |z(z)| is well defined for z € V.

PROPOSITION 5.6. Assume that f, € GL(V) is a sequence such that f!

has the contraction property on P(V*) towards z € P(V*). Then for any
z,y € P(V),

A (. ft)
AN 5(z,y)

The second convergence is uniform when x,y belong to a compact subset of

P(V)\Ker z. If f, € SL(V), then lim, || fp(z)|| = +oo for every x & Ker z.

= |2(@)].  limz(2)z(y) 0.

Proof. Recall that the distance between @ = 7(u) and v = 7(v) in P(V)
is equal to §(@,0) = ||[u Av||/|lu|||v]-

One writes f,, = knank,, as above, with k,, k!, € K and a,, € A+, From
the contraction property of f! we get

limk, tey =2, d,=o(a)) (i>1).

Writing x = 2?21 xie;, we get

d

1fa]® = llankszl® =Y (ap)?|(kna, e0)|* = (an)?|(kpz, e1) .

i=1

Since the norm of f, is a}, we get

i\ 2
l an ||2 — lim k/ 1 2 1 a’_n k 2
i~ lmle ke im ) (T ) [kl

i>1
=lim|(z, by ler)|* = [z(2) .
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Also
a2 A Fal)I? =D (agad)[(kp( A y), e Aej) ],
i#j
1 £a(@) A fa()|l < dagag iz Ayl
Therefore,

§(fn-x, fn-y) _ [ frnz A oyl < J2 ﬁ 1
o(z,y) [ fnlH [ fayll Iz Ayl = an [(Rna, en) (Rpys e

6(z,y)
The uniformity of the required convergence is clear from the previous formula

if z(x)z(y) # 0.
In order to obtain the last assertion, it suffices to show, in view of the

first statement, that || f,|| converges to co. The relation a? = o(al) implies

det f,, = J]%, a’ = o(al). Since det f, = 1, we conclude that lim, || f,|| =

i=1"n
lim, a,, = co. =

and

lim |=(2)] |=(y) ~0.

Now we are able to get information about the vector Sy, (w)z, if z is fixed,
as follows:

COROLLARY 5.7 (see [17, 18]). If u, 2% are as in Theorem 5.4 and Corol-
lary 5.5, then, as n tends to infinity, we have uniformly in x,y € P(V),

limE,6(S,.z, Sy.y) = 0,

and P -a.e.

. [1Snz]]

lim = |z (2)|.
o [Snll

If pw € MY(SL(V)), then, for every x € V and P-a.e., lim, ||S,z| = oo.

Proof. Note that Corollary 5.5 implies that S!(w) has the contraction
property towards z},. Hence Proposition 5.6 implies

lim = |z5(x)].
o |[Shll

For the first convergence it suffices to show that for any sequence x,,, y, €
P(V') we have P -a.e.

(5.8) lim §(Sy,.xp, Sn-yn) = 0.

Then the first formula will follow from dominated convergence.

One can suppose that lim, x, = z and lim,y, = y. From Corollary
5.5 and Lemma 5.1, one knows that the law of 2} = lim,, S!.m* gives zero
measure to every subspace. Hence, for almost every w € {2, x and y are not
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in Ker 2}, and the same is true for z,, y, for large n. Then (5.8) follows from
the second formula in Proposition 5.6.

The last assertion is proved as follows. If x is fixed, then P -a.e. as above
|25 (x)| # 0, hence from the first formula in Proposition 5.6 it follows that
lim, ||Spz|| = c0. =

REMARK 5.9. In [18| (see Theorem 4.4) the first and the last conclusion
of Corollary 5.7 is proved under a weaker hypothesis, namely validity of (Hz)
is replaced by non-relative compactness of I" = I',,. Such a result can also be
deduced from Corollary 5.7, using wedge products.

Now we are going to study stationary measures on factor spaces of V'\{0}.
Fix ¢ > 1 and denote by P.(V) = P4~! the factor space of V' \ {0} by the
multiplicative subgroup

+cl = {+£c":n e}

of R* and denote by T, the 1-torus R*/+ cZ.
We can consider the projection from V' \ {0} to P(V) x T, given by

v (T, o)),

where a = 27 /log ¢ and we observe that P.(V') is then naturally identified
with P(V') x T.. Hence a point of P.(V') will be written as v = (7, z), where
v € P(V) is the projection of v and z = ||v]|*®. The action of g € G = GL(V)
on P.(V) can then be written as

g-v = g.(v, 2) = (9.7, 2| gv[|"")-
R* acts also on this space and the two actions commute. The corresponding
formula is

t.(7,2) = (3, 2[t[1®), teR".

We denote by A, = dz the normalized Lebesgue measure on T. and
observe that every measure of the form v ® \., where v € MY(P(V)), is
invariant under the action of R* on P.(V'). Furthermore, if u € M!(G) and
v € MY(P(V)) is u-stationary, then v ® ). is also p-stationary. If Ly C P(V)
is the asymptotic set of I (I" = I, satisfies conditions (H1) and (Hs)), then
Lr(c)=Lp x T, is a closed and I'-invariant subset of P(V') x T..

THEOREM 5.10. Assume that u € MY(G) is such that I' = I, satisfies
conditions (H1) and (Hz). Then, with the above notations, for every ¢ €
C(P.(V)) the sequence i*™ 1) converges uniformly to (v @ A\¢)(v), where v
is the p-stationary measure on P(V). Furthermore, for any v € P.(V) we
have the following a.e. convergence:

lign 0°(Sp(w).v,Lr(c)) =0,
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where §¢ is the distance on P(V') x T, given by
(5.11) §¢(v,v") = 6(T,v) + |z — 2|,
and v = (v,2), v = (v, 2').

COROLLARY 5.12. Assume I' C G is a subsemigroup of G which satisfies
conditions (Hy) and (Hz) and ¢ > 1 is fized. Then the closed I'-invariant
subset Lr(c) = Lp x T, of P.(V) is the unique minimal set. Furthermore,
any i € MY(G) such that I' = T, satisfies conditions (Hy) and (Hz) has a
unique stationary measure on P.(V).

Clearly, Theorem 5.10 and its corollary imply Theorem 1.3 of the Intro-
duction.
For the proof of Theorem 5.10 we need three lemmas.

LEMMA 5.13. If u is as in Theorem 5.10 then for z,y € V,

HSnrvH>m ‘
—1|=0.
(HSnyH

Proof. From Corollary 5.7 we know that if x,, — = and y,, — y, then

g 1502ll _ [2u(@)

n Syl 2 (@)l
Hence, from dominated convergence,
2w ()

(\\snxnu>“ e
| Snynll ER)

The formula in the lemma corresponds to the special case x, =z, y =z. =

lim limsup E,,
y—r g

e} ’

limsup E,,
n

"

LEMMA 5.14. If p is as in Theorem 5.10, then for every ¢ € C(P.(V))
the sequence of functions [i** x 1 is uniformly equicontinuous.

Proof. One considers the distance 0 on P.(V') given by (5.11). Then, in
view of the form of the action of G on P.(V),

S— tQ

5%(Snv, Spv') = 5(Sn.T, Sp.t7) + Y
1S "]l

From the proof of Lemma 5.13, we get
(©, 25)

(V' 25)

[1eY

lim §¢(S,,.v, Sp.v') = ‘

- 1‘ + |z =2

Hence, by dominated convergence,

(m2) [ 1)

(v, 25)

The right hand side of this formula is uniformly small when §¢(v,v’) is small.
Now, if ¢ € C'(P.(V)) is Lipschitz, with coefficient [¢], then

|7 % p(v) — @™ x b ()] < EL[0°(Sp-v, Snv")|[Y]-

(5.15) limsup E,6°(Sy.v, Sp ') = |2 — 2| + Eu<
n
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Since Lipschitz functions are dense in C'(P.(V')) the above inequality and
(5.15) imply equicontinuity of the sequence i*" x 1)(v) for ¢ € C(P.(V)). =

LEMMA 5.16. Suppose 0 € R, n € C(P(V)) and n # 0 and satisfies the
equation

(5.17) V(g-0) g™ du(g) = ¢“n(v).
Then a =0, 8 =0 and n = const on P(V).

Proof. Passing to absolute values in (5.17) we get

(5.18) n@)] < In(g.9)| du(g).

Let M ={v € P(V) : [n(0)| = ||n]|cc}. Then from (5.18) the condition 7 € M
implies g.v € M p-a.e. Hence from continuity of |n|, we have g.M C M for
every g € S, and I,.M C M. Since Lp is the unique minimal subset in
P(V) (see Proposition 4.5), we get Lr C M. In particular, |9(7)| = ||7]l
for every v € L. From strong convexity of the unit disc in C and (5.17) we
get
Vo € Lr, Vg € Sus n(g.0)|go]™ = (D).
From Proposition 4.6 it follows that o« = 0, # = 0 and 1 = const on Lp.
Now on P(V') we have

{n(9.9) du(g) = n(v).

We can suppose 7 to be real and we consider the set M’ (M" resp.) of
points where 7 attains its maximum (minimum resp.). As above we obtain
M’ D Lp. Replacing n by —n, we also obtain M” O L, hence M' = M".
We conclude that

Vo e P(V), n(v)=const. =

Proof of Theorem 5.10. We use the following result of [28]. Let P be
a Markov operator on the compact metric space X, which preserves C(X)
and is equicontinuous, i.e., for any ) € C(X), the sequence P*1, k € N, is
equicontinuous. Then if 1 is the only eigenvalue of modulus one in C'(X),
the sequence P¥i) converges uniformly. Here we have P(x,-) = u * 0., and
X =P.(V). From Lemma 5.14 we know that P is equicontinuous. Suppose
that n € C(X) with n # 0 satisfies Pn = ¢, i.e.,

{n(g.v) du(g) = en(v)
for any v in P.(V'). Now we can consider the Fourier coefficients (k € Z)
(V) = Sn(@, 2)2F d(2)

and we obtain ‘ ‘
V7 (9.9) g% du(g) = €"mi. (D).
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From Lemma 5.16 we get ¢’ = 1, n,(7) = 0 for k # 0, n9(T) = const. Hence
1 = const on P.(V). Now the result of [28], recalled above, gives the uniform
convergence of the sequence ¥, = ™" * 1.

Clearly, if lim,, 1, = 1, one has Pn = fixn = n and 7 is continuous. From
the above result, we deduce 1 = const. Furthermore,

n= (V ® )\c)(ﬁ) = hTIln (V ® )‘c)(djn) = (V ® )‘c)(d))

Hence we obtain the formula 7 = (¥ ® A.)(¢’) and the required convergence.
In order to prove the second statement of the theorem, notice that since
Lr(c) is the inverse image of L in P.(V') we have
0¢(Sp(w).v, Lp(c)) = §(Sp(w).w, Lp).

Proposition 5.6 implies that, given 7 and w in P(V'), we have the a.e. con-
vergence of the sequence §(S,(w).v, Sp(w).w) to zero. If we choose W in Lp,
then Sy (w).w € L, hence
0(Sp(w).v, Lr) < §(Sp(w).v, Sp(w).w).
It follows that lim,, §(Sy(w).v, Lr) = 6(Sp(w).T, Sp(w).w) = 0. m
Proof of Corollary 5.12. Suppose & € M1(PP.(V)) is another y-stationary
measure. Since ¥, = [1*" % 1) converges uniformly to (v ® \;)(¢), we get

E(lim ) = lim & * ) = £().

Hence, (v @ A\o)(¥) = &(¢), v ® Ac = £ and the uniqueness follows.

Suppose A is a closed I'-invariant subset of P.(V'). Then from the Mar-
kov—Kakutani theorem, there is a p-stationary measure carried by A. From
the uniqueness of the stationary measure we get

A Dsupp v ®@ A = Lp(c).
Hence Lp(c) is the unique I-minimal subset of P.(V). u

THEOREM 5.19. Suppose that I' is a subsemigroup of GL(d,R), d > 1,
satisfying conditions (Hy), (H1) and (H2), and let X be I'-invariant subset
of V\ {0} such that 0 is a limit point of X. Then

(5.20) ¥ > Lp/{ld,o}.

Proof. We denote by X’ the inverse image of X' in V'\ {0}. Let ug be a
~v-dominant vector as in Proposition 4.1, that is, satisfying
(5.21) YPug == {yFug : k € Z} Cc 3.
Applying Corollary 5.12 with ¢ = A, where A is the unique eigenvalue of  of
maximum modulus, greater than 1 since 7y is quasi-expanding, we find that

if Uy denotes the projection of ug on P.(V') then I'uy O Lp(c). It follows
that if € Lp(c) is given, then there is a sequence {7, } C I" such that ~,.ug
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converges to y. This implies that there is a sequence {p,} of integers such
that APry,ug — y € V' \ {0}, which implies

Y NP ug = Y YPrug — .

But yPrug € X' by (5.21). Thus y € X'. Since 7 was an arbitrary point from
Lr(c) we conclude that L C X’ and (5.20) is proved. =

Clearly, Theorem 5.19 gives Theorem 1.2 of the Introduction.
Theorem 5.19 will be used below in the following special case. In view of
Remark 2.1(ii) condition (Hy) is satisfied in this case.

COROLLARY 5.22. Let I' be a subsemigroup of Miny(d,Z), d > 1, satis-

fying (H1) and (Hz). Let X be a I'-invariant subset of V' \ {0} such that 0
is a limit point of X. Then ¥ D Lp/{Id,c}.

Theorem 5.19 does not give information on a general [-orbit closure
Tw, v € V\ {0}, if 0 is not a limit point. On the other hand, Theorem
5.10 and its corollary describe the behavior of a general I'-orbit in P.(V).
Using more precise information on products of random matrices, i.e. the
renewal theorem as in [19] (see also [22]), one can go further and describe
the behavior at infinity of a general orbit I'v C V \ {0} as follows. For any
¢,d (1 < ¢ < d) we denote by ‘7[c,d] C V\ {0} the “c-shell” P! x [¢,d],
and by Lr, C V. := P x [1,] the closed subset Ly x [1,¢]. Then by the
methods of 7] and [19] we can obtain the following

THEOREM 5.23. Assume that the semigroup I" C GL(d,R), d > 1, sat-
isfies (Ho), (H1) and (Hz). With the above notations, for any ¢ > 1 and
v € V\ {0} every cluster value of the family of closed sets c='(I'v N Viet ct41])

contains L.

This can be interpreted as “thickness” at infinity, in the direction of Ep,
of the orbit closure I'v C V.

Theorems 5.19 and Corollary 5.22 can also be deduced from Theorem
5.23.

REMARK 5.24. The conclusions in statements 5.19 to 5.23 are also valid
if d = 1, if one supposes the semigroup I" of R* to be non-lacunary. The cor-
responding aperiodicity condition in the statements above is automatically
satisfied if d > 1, because of Corollary 4.8.

6. Proof of Theorem 1.1. In order to prove the theorem, we use ideas
of [12] and [4]. The first step is to prove that if ¥ C T¢is a closed I'-invariant
subset that contains 0 € T¢ as a limit point, then X = T?. Here we suppose
I’ C Miny(d,Z) and we apply Corollary 5.22 to the inverse image p~*(X) of
Y in R%
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In the general case, we suppose X' to be infinite and we construct other
closely related closed I'-invariant subsets of T¢ which contain 0. Then we

use the special case above to get information on X and we conclude that
X =14

6.1. The case when 0 is a limit point of ¥. The statement X = T¢
will hold by Corollary 5.22 applied to p~!(X) if we are able to see that Lr
contains at least one ray which is not contained in a rational subspace. But
the set of rational subspaces is countable and, by Lemma 5.1, Lp is not
contained in a countable union of subspaces. The result follows.

We can observe that the set Lp is very large, since it was proved in [6]
that L has strictly positive Hausdorff dimension.

6.2. The general case. In order to show that the special case above is
the only one, we make use of previous ideas from [12] and [4].
If v € Minv(d,Z) and m € N is fixed we write

v=1d (mod m) & v —Id=mA,

with A € M(d,Z) := {d x d matrices with integer entries}.
For a fixed m € N define

'™ ={~yeTl:vy=1d (mod m)}.

We observe that I' acts naturally on the finite set (Z/mZ)?. We denote by
v + 7 the corresponding homomorphism of I" into the semigroup A, 4 of
maps of (Z/mZ)? into itself and we write

Im={7y€A,q:veT}.

The proof depends on the following

LEMMA 6.1. Assume that I' C Miyy (d, Z) is finitely generated and satis-
fies (Hy) and (H3). Let m be a prime number not dividing the elements of
the multiplicative semigroup {det~y :~v € I'}. Then I" acts on (Z/mZ)* as a

group of permutations and the semigroup I'™) = {yeTI:y=1Id (mod m)}
satisfies (H1) and (Hj).

Proof. Here Z/mZ is a finite field and for v € I', 7 is an endomorphism
of the vector space (Z/mZ)%. Then det7 is the congruence class of det~y
in Z/mZ. Since m is a prime number not dividing det~y, we conclude that
dety # 0, hence ¥ € GL(d,Z/mZ). Thus I}, is a semigroup contained
in the finite group GL(d,Z/mZ); it follows that I, is a group. We write
I,={a;:a;,€I,i=1,...,q}, and we observe that the inverse of a@; is of
the form @; with ay € I' and 1 < ¢/ < q. Since for every v € I', we have
¥ = @; for some 1, we get ayy =1d, a;y € rm,
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Assume condition (H;) is not satisfied by I’ (m). then for some subspace
W C V, the orbit '™ W is finite, hence so is the set {agyW @y € Iy,
v € I, ayy = Id}. It follows that the set {yW : ~ € I'} is finite, and this
contradicts condition (H,) for I. Hence I'("™) satisfies condition (H;).

Let v € I' be a proximal element of I'. Since the group I3, is finite, it
follows that for k = |I},|, we have 7* = Id, hence v* € I'"™). Clearly, v* is
proximal. m

The following lemma will also be used. Its proof is analogous to the
classical case of one endomorphism of T (see for example [2]). In this lemma,
the torus T% is endowed with its normalized Haar measure, which is I'-
invariant.

LEMMA 6.2. Assume I' C Miny(d,Z) and X C T is measurable, has pos-
itive measure and satisfies 'YX C X. If any character x # Id has unbounded
I't-orbit, then ¥ has measure 1; in particular I’ is ergodic on T?.

In order to prove Theorem 1.1, we can suppose I' to be finitely gener-
ated. In fact, Proposition 2.6 implies that I" contains a finitely generated
semigroup I} which satisfies (H1) and (Ha).

Since Y is infinite and closed, it contains limit points. We have two cases.

CASE 1: Some limit point of X is rational. So, let p/q be a limit point
of 2. Then the set ¢ is I'-invariant and has 0 as its limit point. Therefore,
by considerations in Subsection 6.1 we find that ¢¥ = T?. Hence, X has
positive Haar measure (greater than (1/¢)%). Since I satisfies (H;) and, by
Remark 2.1(ii), also (Hp), we infer from Remark 2.1(iv) that I satisfies
(Hp), hence Lemma 6.2 allows us to conclude that X' has measure 1. Since
X is closed, we have X = T¢.

CASE 2: Fvery limit point of X is irrational. Let 3¢ be the set of
limit points of Y. For m fixed and prime not dividing the elements of the
finitely generated semigroup {dety : v € I'}, let (™) C 52° he a minimal
I'M)_invariant set. Since Y2¢ consists of irrational points, ¥("™) is infinite,
hence 0 is a limit point of the closed I"™)-invariant subset X(™) — 3(m),
From Lemma 6.1 above and considerations in Subsection 6.1 we deduce that
y(m) _ 5(m) — Td_Therefore, for every 7 = (11,...,74) € Z% there are z
and y in (™ such that

z—y=(r/m,...,rg/m)=r/m.
Define

m)

Clearly, Eﬁm) is closed and non-empty. Since r/m is fixed by I (m) it follows
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that Zﬁm) is I'(™)_invariant. Thus, by minimality of X(™ we get X(™) =
Z,Em). Therefore, for every m e N, x € X (M) and r € Z* we have

z4+r/m=ye X,

Hence £(™) is invariant under translations in T¢ by r/m, r € Z%. Tt follows
that X(™) is 1/m-dense, hence X2° is 1/m-dense for every prime m as above.
We observe that the set of such primes is infinite, thus 1/m can be chosen
arbitrarily small. Since X2¢ is closed we have X2 = T¢ which contradicts
the hypothesis. Thus, only Case 1 is possible, and hence ¥ = T¢. u
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