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Semigroup a
tions on tori and stationarymeasures on proje
tive spa
esby
Yves Guivarc’h (Rennes) and Roman Urban (Wro
ªaw)Dedi
ated to Hillel Furstenberg on the o

asion ofhis 70th birthday, with admirationAbstra
t. Let Γ be a subsemigroup of G = GL(d, R), d > 1. We assume that the a
-tion of Γ on Rd is strongly irredu
ible and that Γ 
ontains a proximal and quasi-expandingelement. We des
ribe 
ontra
tion properties of the dynami
s of Γ on Rd at in�nity. Thisamounts to the 
onsideration of the a
tion of Γ on some 
ompa
t homogeneous spa
esof G, whi
h are extensions of the proje
tive spa
e Pd−1. In the 
ase where Γ is a subsemi-group of GL(d, R)∩M(d, Z) and Γ has the above properties, we dedu
e that the Γ -orbitson Td = Rd/Zd are �nite or dense.1. Introdu
tion and main results. Let Γ be a multipli
ative semi-group of integers. The semigroup Γ is said to be la
unary if the members

{γ ∈ Γ : γ > 0} are of the form γk0 , k ∈ N, γ0 ∈ N∗. Otherwise Γ isnon-la
unary. In 1967 Furstenberg [12℄ proved that if Γ is a non-la
unarysemigroup of integers and α is an irrational number, then the orbit Γα isdense modulo 1. The problem of approximating a number θ modulo 1 bynumbers of the form qα, where α is a �xed irrational and q varies in aspe
i�ed subset Q ⊂ N, was 
onsidered by Hardy and Littlewood in [20℄for various subsets Q of N. In parti
ular, the result of Furstenberg above
an be 
onsidered as a generalization of a theorem of [20℄, whi
h assertsthat if r is a positive integer and α is an irrational number, then the set
{qrα : q ∈ N} is dense modulo 1; furthermore, this result draws attention tothe role of the multipli
ative stru
ture of Q in Diophantine approximation,hen
e of the role of the 
orresponding dynami
al properties of endomor-phisms of T = R/Z. Hen
e, one is led, more generally, to 
onsider separately2000 Mathemati
s Subje
t Classi�
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e, stationary measure.The se
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34 Y. Guivar
'h and R. Urbanthe properties depending on the multipli
ative stru
ture of Γ and the prop-erties depending on the additive stru
ture implied in redu
tion modulo 1.In this dire
tion, a generalization of Furstenberg's result to a 
ommutativesemigroup Γ ⊂ Minv(d,Z) := GL(d,R) ∩ M(d,Z), where M(d,Z) is the setof d×d matri
es with integer entries, a
ting by endomorphisms on the torus
Td = Rd/Zd was given by Berend in [4℄.Following [4℄, we say that the semigroup of endomorphisms of a d-di-mensional torus Td has the ID-property (
f. [4, 25, 26℄) if the only in�nite
losed Γ -invariant subset of Td is Td itself. (ID stands for in�nite invariantis dense.) Berend [4℄ gave ne
essary and su�
ient 
onditions in arithmeti
alterms for a 
ommutative semigroup to have the ID-property.On the other hand, starting from [4℄ and [12℄, Margulis [24℄ asked forne
essary and su�
ient 
onditions on a subsemigroup Γ ⊂ Minv(d,Z) inorder that the Γ -orbit 
losures on Td are �nite unions of manifolds. Weobserve that it follows from general results of Dani and Raghavan on lineara
tions [9℄ that the orbits of Γ = SL(d,Z) a
ting on Td are �nite or dense. Inthis dire
tion a detailed study of Γ -orbits in Rd of a general subgroup Γ ⊂
SL(d,R) was developed by Conze and Guivar
'h in [7℄. The homogeneity atin�nity of Γ -orbits was pointed out there as well as the role of �Γ -irrational�ve
tors in the 
onstru
tion of limit points of Γ -orbits, if Γ is a generalsubgroup of SL(d,R).Some results in the dire
tion of the general question of Margulis have beenobtained re
ently. Mu
hnik proved in [25℄ that if the semigroup Γ of SL(d,Z)is Zariski dense in SL(d,R), then Γ a
ting on Td has the ID-property. In [29℄Starkov proved the same result in 
ase Γ is a strongly irredu
ible subgroupof SL(d,Z). In the next paper [26℄ Mu
hnik generalized the results of Berendto semigroups of Minv(d,Z). At the same time Guivar
'h and Starkov [19℄derived an important part of Mu
hnik's result using di�erent methods, basedon [6, 7℄. We observe that in [19℄, the property Γ ⊂ SL(d,Z) is used onlywhen additive aspe
ts 
onne
ted with redu
tion modulo one 
ome into play.It turned out that the property of Γ -orbits in Rd whi
h is responsible fordensity in Td is �thi
kness� at in�nity of Γ -orbits (see Theorem 5.23 andthe 
omments to it). Hen
e, this property 
an be studied separately in fullgenerality; Γ is then a general subsemigroup of GL(d,R) and the use ofboundaries and random walks is natural in this 
ontext.In this paper we 
onsider this problem in a simpli�ed setting, we give aself-
ontained exposition of some of the methods developed in [6, 7, 19℄ inthe more general 
ontext of random walks and linear a
tions, and we usethe results to prove the ID-property in our setting. We also prove some newresults for a
tions on tori and on 
ertain 
ompa
t G-fa
tor spa
es of Rd.The general idea is to lift the automorphisms of the torus Td to its uni-versal 
over Rd and to study the a
tion of the lifts at in�nity. The a
tion



Semigroup a
tions on tori 35of Γ at in�nity 
an be expressed in terms of some 
ompa
t homogeneousspa
es of GL(d,R) whi
h are 
losely related to the proje
tive spa
es Pd−1.The random walk framework allows us to take into a

ount the global semi-group asymptoti
 behavior in terms of stationary measures and 
onvergen
eto them. As in [13℄ and [15℄, the results 
an be used to obtain topologi
alproperties of the Γ -a
tion. Furthermore, this general framework allows usto obtain a series of fa
ts about linear a
tions whi
h are of interest in otherproblems.Before we state the results we need to introdu
e some notions. A matrix
γ ∈ GL(d,R) is said to be proximal if it has an eigenvalue λγ su
h that
|λγ | > |λ| for all other eigenvalues λ of γ. A matrix γ is said to be quasi-expanding if it has an eigenvalue λ su
h that |λ| > 1.Let Γ be a subsemigroup of GL(d,R). The Γ -a
tion on Rd (or simply
Γ ) is said to be strongly irredu
ible if no �nite union of proper subspa
es is
Γ -invariant.The �rst main theorem of this paper is as follows:Theorem 1.1. Let Γ be a subsemigroup of Minv(d,Z), d > 1, su
h that
Γ 
ontains a proximal element and the Γ -a
tion on Rd is strongly irredu
ible.Then the semigroup Γ a
ting on Td has the ID-property , that is, every in�-nite Γ -invariant subset of Td is dense.If d = 1, one has Minv(1,Z) = Z∗ ⊂ R∗. As said above, the 
on
lusion ofTheorem 1.1 is valid in this 
ase too, if and only if Γ is non-la
unary, i.e., not
ontained in a 
y
li
 subgroup of R∗. For d > 1, the 
ondition in Theorem 1.1implies that Γ is not 
ontained in a �nite extension of an abelian subgroupof Minv(d,Z); in parti
ular, here Γ is non-abelian, hen
e the situation of [4℄is ex
luded from our setting.The �rst step in order to get Theorem 1.1 is to study 
losed in�nite
Γ -invariant subsets Σ of Td su
h that 0 is a limit point of Σ. Then we noti
ethat the inverse image in Rd of su
h an in�nite Γ -invariant subset 
ontainssome asymptoti
 set whi
h 
onsists of lines. Moreover, there are some rayswith good properties, that is, not 
ontained in a subspa
e having a basiswhi
h 
onsists of integer ve
tors. This allows us to proje
t them using the
anoni
al proje
tion p : Rd → Rd/Zd, p(x) = x + Zd, on Td and obtainthe result in the 
ase when 0 is a limit point of the subset Σ. Furthermore,using arguments 
lose to [4℄ and [12℄ and redu
tion to a �nitely generatedsubsemigroup of Γ, we show that the opposite situation does not o

ur.Let LΓ ⊂ Pd−1 be the 
losure of the set of dire
tions 
orrespondingto dominant eigenve
tors of the proximal elements in Γ. We denote by L̃Γthe set of 
orresponding non-zero ve
tors in V = Rd, by σ the symmetry
σ : v 7→ −v in V, and by Ṽ the fa
tor spa
e Ṽ = V/{σ, Id}.The following is the basi
 tool in the proof of Theorem 1.1.



36 Y. Guivar
'h and R. UrbanTheorem 1.2. Suppose Γ is a subsemigroup of GL(d,R), d > 1, whi
his strongly irredu
ible and 
ontains a proximal and quasi-expanding element.Let Σ be a Γ -invariant subset of Ṽ \ {0} and suppose 0 ∈ Σ. Then
Σ ⊃ L̃Γ /{σ, Id}.To have in mind a simple example illustrating Theorems 1.1 and 1.2,
onsider the torus T2. One of the simplest examples of a subsemigroup of

SL(2,Z) satisfying the 
onditions of Theorem 1.1 is the semigroup Γ = 〈a, b〉generated by the matri
es a =
(

2 1
1 1

) and b =
(

3 2
1 1

) from SL(2,Z).From Theorem 1.1 we infer that the Γ -orbits in T2 are �nite or dense.Furthermore we observe that, in the 
ontext of Theorem 1.2, the dynami
sof Γ on R2 is easy to visualize. The 
losure of the eigen-dire
tions in thepositive quadrant R2
+ forms a Cantor set and the 
orresponding lines forman �attra
tor set� L̃1
Γ for the a
tion of Γ in R2

+. There exist ve
tors in
R2 whose orbit 
losures 
ontain 0, for example dominant eigenve
tors ofelements of Γ−1. The Γ -orbit for su
h a ve
tor tends to �ll L̃1

Γ ∪−L̃1
Γ sin
ethe dynami
s of its Γ -orbit 
onsists of attra
tion towards 0 and expansionalong the eigenve
tors sitting in L̃1

Γ ∪ −L̃1
Γ .For a general ve
tor, for example a ve
tor v ∈ R2

+, there is attra
tiontowards L̃1
Γ and expansion along L̃1

Γ , and the Γ -orbit of v is �thi
k at in�nity�due to the irrationality properties of eigenvalues of elements in Γ. In thegeneral 
ase the situation is similar, in parti
ular the proje
tions of general
Γ -orbits into Td are large, hen
e one 
an expe
t the 
losed Γ -orbits in Td tobe �nite unions of spe
ial manifolds, as 
onje
tured in [24℄.Let us now 
onsider, for c > 1, the fa
tor spa
e Pd−1

c of V \ {0} by thesubgroup of homotheties with ratio ±ck (k ∈ Z). The a
tion of g ∈ G =
GL(d,R) on v ∈ Pd−1

c will be denoted v 7→ g.v. Let µ be a probabilitymeasure on Γ ⊂ GL(d,R) whose support generates Γ. Then we 
an de�nean asso
iated Markov operator Pµ on Pd−1
c by the formula

Pµ(v, ·) =
\
δg.v dµ(g).The iterates Pnµ of Pµ de�ne a random walk on Pd−1

c .The following des
ribes the asymptoti
 behavior of the iterates Pnµ ; it isan essential tool in the proof of Theorem 1.2, hen
e of Theorem 1.1.Theorem 1.3. Assume that Γ ⊂ GL(d,R) is a subsemigroup whi
h isstrongly irredu
ible and 
ontains a proximal element. With the above nota-tions, the Markov operator Pµ on Pd−1
c has a unique stationary measure ̺,the support S̺ of ̺ is the unique 
losed Γ -invariant minimal subset of Pd−1

c ,and for any v ∈ Pd−1
c the sequen
e of measures Pnµ (v, ·) 
onverges to ̺.Moreover , the traje
tories of Pµ starting from v 
onverge a.e. to S̺.



Semigroup a
tions on tori 37Along the way, we get some new results and fa
ts. For example, we showa priori that the weak ID-property (that is, the 
losures of the orbits Γx,
x ∈ Td, are either �nite or equal to Td itself) and the ID-property areequivalent, a fa
t impli
itly used in previous papers, but apparently unprovedin the literature.We also 
larify the relations between a fundamental 
o
y
le equationon Γ × Pd−1 and an aperiodi
ity 
ondition for the dominant eigenvalues ofproximal elements in Γ whi
h o

urs in [22℄ and whi
h also has a geometri
interpretation in terms of lengths of 
losed geodesi
s (see [8℄).Furthermore, the result in Theorem 1.3 extends results of [17℄ but is newin this generality.Also the result of Theorem 1.1 is not 
overed by [19℄ sin
e, in our setting,
Γ is allowed to be a subsemigroup of Minv(d,Z) (d > 1). We are led to provea result of independent interest: Γ 
an be supposed to be �nitely generated(see Proposition 2.6).The stru
ture of the paper is as follows. In Se
tion 2 we set the notationand give all ne
essary de�nitions. In parti
ular, we de�ne a dominant ve
tor,a proximal element and state our two hypothesis (H1) (strong irredu
ibility)and (H2) (proximality), under whi
h we prove Theorem 1.3. We introdu
ehypothesis (H0), i.e. the unboundedness of Γ -orbits in V \ {0}. Under (H1)and (H2), this 
ondition is equivalent (see Proposition 2.4) to the existen
eof a proximal and quasi-expanding element in Γ , whi
h allows us to proveTheorems 1.1 and 1.2. It is 
lear that this 
ondition is ne
essary for thevalidity of the ID-property.We observe that 
onditions (H0), (H1) and (H2) are analogous to thoseused in [16, Theorem 2.5℄ in order to get a homogeneous behavior at in�nityof the potential measure in Ṽ asso
iated with µ, hen
e also of the Γ -orbitsat in�nity in Ṽ . (See also [10℄ for the 
ase of a�ne a
tions.)In Se
tion 3 we prove the equivalen
e of the weak ID-property and ID-property (Proposition 3.1).In Se
tion 4 we study the Γ -a
tions on various spa
es, namely on theproje
tive spa
e P(V ), the 
ompa
t homogeneous spa
e Pc(V ) and V itself.We de�ne the asymptoti
 sets for Γ -a
tions and we study their properties.We also 
larify the role of aperiodi
ity hypotheses of Γ 
onsidered by Kestenin [22℄ and Eberlein in [11℄ (see Corollary 4.8 and Proposition 4.6).Se
tion 5 develops the random walks te
hniques whi
h are used in theproof of the main new result of this se
tion whi
h is Theorem 5.19. Thistheorem together with the method presented in [12℄ allow us to prove Theo-rem 1.1 in Se
tion 6. Theorem 5.19 follows from a detailed study of randomwalks on V and various Γ -spa
es, governed by a measure µ sitting on Γand su
h that the 
onvolution iterations µ∗k �ll Γ. Some of these results



38 Y. Guivar
'h and R. Urbanare well known but we have in
luded the proofs in order to make the paperself-
ontained. Some others are new.Finally, in Se
tion 6 we give the proof of Theorem 1.1.2. Proximality, irredu
ibility, expansivity. In what follows, Γ willdenote a subsemigroup of GL(d,R). We 
onsider the a
tions of Γ on theve
tor spa
e V = Rd, on the asso
iated proje
tive spa
e Pd−1 = P(V ), andon Ṽ = V/{Id, σ} = V/{±Id}. We denote by π the proje
tion of V \ {0} on
Pd−1 = P(V ) and we identify P(V ) with the unit sphere Sd−1 divided by thesymmetry σ : x 7→ −x. Also K = SO(d,R) will denote the spe
ial orthogonalgroup and m the unique K-invariant probability measure on P(V ).The a
tion of the matrix g on the ve
tor x ∈ V is denoted by (g, x) 7→ gx,whereas for the a
tion of g on the proje
tive spa
e P(V ) we write g.π(x) =
π(gx).A matrix γ ∈ GL(d,R) is said to be proximal if it has an eigenvalue λγsu
h that |λγ | > |λ| for all other eigenvalues λ of γ. Thus λγ ∈ R. For su
ha γ an eigenve
tor vγ ∈ V 
orresponding to the eigenvalue λγ is 
alled adominant eigenve
tor or simply dominant ve
tor of γ. By ∆Γ we denote theset of all proximal elements in Γ. An element γ ∈ GL(d,R) is said to bequasi-expanding if it has an eigenvalue λ su
h that |λ| > 1.More generally, for u∈End(V ), we denote by |λu| the spe
tral radius of u.If γ ∈ ∆Γ then we de�ne γ+ ∈ P(V ) as a point 
orresponding to the linein V generated by vγ . By V <

γ we denote the unique γ-invariant hyperplane
omplementary to V max
γ = Rvγ .We 
onsider the following assumptions.

(H0) For every v ∈ V \ {0}, the orbit Γv is unbounded.
(H1) The Γ -a
tion is strongly irredu
ible (for short, Γ is strongly irre-du
ible), that is, no �nite union of proper subspa
es is Γ -invariant.
(H2) Γ 
ontains a matrix γ whi
h is proximal.Remark 2.1. (i) Condition (H1) 
an be equivalently formulated as fol-lows. A subsemigroup Γ of GL(V ) a
ts strongly irredu
ibly on V if every�nite index subgroup H of the group 〈Γ, Γ−1〉 a
ts irredu
ibly on V, that is,every H-invariant subspa
e of V is either 0 or V.(ii) If Γ is a subsemigroup of SL(d,R), then 
onditions (H1) and (H2)imply (H0), sin
e otherwise the determinant of the proximal element γ wouldbe stri
tly less than 1. The same is true, using the same argument, if Γ isa subsemigroup of Minv(d,Z), sin
e det γ, γ ∈ Γ, is a nonzero integer (seeProposition 2.4 below).(iii) Condition (H1) (resp. (H2)), if valid for Γ, is also valid for Γ t, thetransposed semigroup a
ting on the dual spa
e V ∗.



Semigroup a
tions on tori 39(iv) Conditions (H0), (H1) for Γ imply 
ondition (H0) for Γ t. This willbe used in the proof of Theorem 1.1 and 
an be seen as follows. Let W ⊂ V ∗be the subspa
e of ve
tors with bounded Γ t-orbits. Then W is Γ t-invariant,hen
e (iii) implies W = {0} or W = V ∗. In 
ase W = V ∗, Γ t is relatively
ompa
t in End(V ∗), hen
e Γ is relatively 
ompa
t in End(V ). This 
ontra-di
ts 
ondition (H0) for Γ.The 
on
ept of Zariski 
losure, de�ned below, will be freely used whendealing with the above 
onditions (see [27℄).Let Γ be a subset of GL(d,R).We re
all that the Zariski 
losure Z
(Γ ) of
Γ is the set of zeros of all real polynomials in the 
oe�
ients of g ∈ GL(d,R)and (det g)−1, whi
h vanish on Γ.If Γ is a subsemigroup of GL(d,R) then Z
(Γ ) is a group whi
h 
ontains
Γ, is 
losed and has a �nite number of 
onne
ted 
omponents in the realtopology (see [27℄). The 
onne
ted 
omponent of the identity in the Zariskitopology is a subgroup of �nite index whi
h will be denoted by Z
0(Γ ).We have the following generalization of Lemma 2.8 in [6℄ to the 
ase ofsemigroups.Lemma 2.2. Let Γ ⊂ GL(V ) be a subsemigroup. The Γ -a
tion satis�es
ondition (H1) if and only if the orbit Γv of no non-zero ve
tor v is 
ontainedin a �nite union of proper ve
tor subspa
es of V.Proof. Suppose (H1) to be valid and v ∈ V be su
h that Γv ⊂

⋃n
j=1 Vjwhere Vj are proper subspa
es of V. Let W be a �nite union of subspa
esof V su
h that Γv ⊂ W , and W the set of su
h W. We observe that Γv ⊂⋂

W∈W W. Sin
e a stri
tly de
reasing family of elements of W is �nite we seethat ⋂
W∈W W also belongs to W , in other words W0 :=

⋂
W∈W W is theminimum element in W . We write W0 =

⋃m
j=1 Vj ; we are going to show that

W0 is preserved by Γ. Sin
e W ∈ W is algebrai
 we have Z
(Γ )v ⊂ W, inparti
ular 〈Γ, Γ−1〉v ⊂W. It follows that, for any γ ∈ Γ ,
γW ⊃ γ〈Γ, Γ−1〉v ⊃ Γv.Hen
e, γW ∈ W . Sin
e W0 is the minimum element of W , we have γW0 ⊃

W0, so γW0 = W0; hen
e, ΓW0 = W0. Condition (H1) says that this isimpossible.Conversely, suppose Vj (1 ≤ j ≤ n) is a family of proper subspa
es whi
his preserved by Γ. Let v ∈ V1; then Γv ∈
⋃n
i=1 Vi. From the hypothesis thisis impossible, hen
e 
ondition (H1) is satis�ed.Let X be a 
ompa
t metri
 spa
e with distan
e fun
tion δ. We say thatthe a
tion of a semigroup Γ of 
ontinuous transformations ofX is proximal if,given x, y ∈ X, there exists a sequen
e {γn} ⊂ Γ su
h that δ(γn.x, γn.y) → 0as n→ ∞.



40 Y. Guivar
'h and R. UrbanDe�ne the distan
e fun
tion δ on P(V ) as follows:
δ(u, v) = ‖u ∧ v‖/‖u‖‖v‖, u, v ∈ P(V ),where u and v are the 
orresponding ve
tors in the ve
tor spa
e V.Proposition 2.3 (Theorem 2.9 in [14℄). Let Γ be a subsemigroup of

GL(V ). Then the following are equivalent :(a) Γ satis�es (H1) and (H2).(b) Γ a
ts proximally on P(V ) and is strongly irredu
ible.Proof. ((a)⇒(b)) We 
onsider a proximal element γ ∈ Γ and de�ne
u = lim

n
‖γ2n‖−1γ2n, z = Keru ⊂ P(V ∗).Then if x, y ∈ P(V ) do not belong to Keru, we have limn γ

n.x = γ+,
limn γ

n.y = γ+. Hen
e, limn δ(γ
n.x, γn.y) = 0.In general, if x, y ∈ P(V ) are given we 
an �nd h ∈ Γ su
h that h.x 6∈Keru and h.y 6∈ Keru, otherwise, passing to the dual spa
e V ∗, transposingmaps, and using the hyperplanes x⊥ and y⊥ of V ∗ de�ned by x and y, onewould have

∀h ∈ Γ, ht.z ⊂ x⊥ or ht.z ⊂ y⊥.But Remark 2.1(iii) and Lemma 2.2 say that this is impossible under 
ondi-tion (H1).((b)⇒(a)) It follows from proximality of Γ on the 
ompa
t metri
 spa
e
P(V ) (see [13℄) that, given a �nite subset E ⊂ P(V ), there exist a sequen
e
{gn} ⊂ Γ and x ∈ P(V ) su
h that

∀y ∈ E, lim
n
gn.y = x.We 
onsider a �nite system E = {x1, . . . , x2d−1} of 2d − 1 points in P(V )su
h that any d-subsystem 
onsists of independent points.We 
onsider the linear maps un = gn/‖gn‖ and using a 
onvergent subse-quen
e, we 
an assume that un 
onverges towards u ∈ End(V ) with ‖u‖ = 1.We show that u has rank one.From the de�nition of E it follows that at least d points of E do notbelong to Keru. We repla
e these points, as well as x, by the 
orrespondingunit ve
tors in V, say x̃1, . . . , x̃d, x̃. Then we obtain

ux̃i = λix̃, 1 ≤ i ≤ d,where λi 6= 0; the points {x̃i} form a basis of V, hen
e the rank of u isone, i.e., dimKeru = d − 1. We 
an moreover suppose that Imu 6⊂ Keru,sin
e otherwise we 
ould repla
e gn by ggn, where g ∈ Γ satis�es Im gu =
g(Imu) 6⊂ Keru and Ker gu = Keru. The existen
e of g ∈ Γ su
h that
g(Imu) 6⊂ Keru = Ker gu follows from Lemma 2.2.
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tions on tori 41Under this 
ondition, u is proportional to the proje
tion on Imu alongthe hyperplane Keru. In parti
ular, u has a unique non-zero eigenvalue λ.Sin
e the sequen
e gn/‖gn‖ − u 
onverges to zero, we 
on
lude that for nlarge, gn/‖gn‖ also has a unique dominant eigenvalue 
lose to λ. The sameis true for gn, hen
e Γ satis�es (H2).Proposition 2.4. Let Γ be a subsemigroup of GL(V ). Then the follow-ing are equivalent :(a) Γ satis�es (H1), (H2) and the element γ in 
ondition (H2) satis�es
|λγ | > 1.(b) Γ is unbounded and satis�es (H1) and (H2).(
) Γ satis�es (H0), (H1) and (H2).(d) Γ satis�es (H1), (H2) and there exists γ ∈ Γ su
h that |λγ | > 1.Proof. ((d)⇒(b)) Let γ ∈ Γ be a quasi-expanding element in Γ, hen
e

|λγ | > 1. Then ‖γn‖ ≥ |λγ |
n. Hen
e limn ‖γ

n‖ = ∞, i.e., Γ is unbounded.((b)⇒(a)) We will use the basi
 [1, Theorem 4.1℄, whi
h allows us to
onstru
t new proximal maps and whi
h implies the following. If Γ ⊂ GL(V )satis�es (H1) and (H2) there exist ε > 0, r > 1 and a �nite subset M ⊂ Γ,su
h that, for any g ∈ GL(V ), there exist a ∈ M su
h that ag is proximal,the distan
e in P(V ) of (ag)+ to V <
ag is at least ε, and

|λag| ≥ r‖(ag)|V <
ag
‖.Sin
e Γ is unbounded, there exists a sequen
e {γn} ⊂ Γ su
h that

lim
n

‖γn‖ = ∞.Using a subsequen
e of γn we 
an suppose that, for some a ∈ M, aγn isproximal, (aγn)
+, (V <

aγn
resp.) 
onverges to x ∈ P(V ) (Wn = V <

aγn

onvergesto the hyperplane W of P(V ), resp.). We have x 6∈ W, sin
e the distan
e of

(aγn)
+ to Wn is at least ε. We 
an also suppose that aγn/‖aγn‖ 
onvergesto u ∈ End(V ) with ‖u‖ = 1. Clearly, V is the dire
t sum of the hyperplane

W and of the line generated by x. Furthermore,
|λu| = lim

n

|λaγn |

‖aγn‖
, ‖u|W ‖ = lim

n

1

‖aγn‖
‖(aγn)|Wn‖.Sin
e u 6= 0 preserves the above dire
t sum we have |λu| > 0. Then the
ondition |λaγn | ≥ r‖(aγn)|Wn‖ implies

|λu| ≥ r‖u|W‖, |λu| > ‖u|W‖.In parti
ular, u has a dominant eigenvalue whi
h is simple. Sin
e ∥∥u− aγn

‖aγn‖

∥∥
onverges to zero, for n large we have
|λaγn | ≥ ‖aγn‖ |λu|/2.
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ondition limn ‖γn‖ = ∞ implies
lim
n

‖aγn‖ ≥ lim
n

‖a−1‖−1‖γn‖ = ∞.In parti
ular, for n large, |λaγn | > 1, hen
e aγn is proximal and quasi-expanding, i.e., (a) is valid.((b)⇒(
)) We 
onsider the subspa
e W ⊂ V of ve
tors in V having abounded Γ -orbit. Clearly, this subspa
e is Γ -invariant. Then 
ondition (H1)implies W = V or W = {0}. In the se
ond 
ase (H0) has been proved.The �rst 
ase does not o

ur sin
e it 
ontradi
ts the hypothesis that Γ isunbounded.((
)⇒(b)) and ((a)⇒(d)) are trivial.The following is a useful 
hara
terization of strong irredu
ibility in termsof Zariski 
losure.Proposition 2.5. Let Γ be a subsemigroup of GL(V ). Then Γ satis�es
(H1) if and only if Zc0(Γ ) a
ts irredu
ibly on V.Proof. Assume that Γ satis�es (H1) and let W ⊂ V be a non-zeroZ
0(Γ )-invariant subspa
e. For some �nite set F ⊂ Γ we have Γ ⊂ Z
(Γ ) =⋃
γ∈F γZ
0(Γ ), hen
e ΓW =

⋃
γ∈F γW. Sin
e Γ satis�es (H1) we getW = V,hen
e Z
0(Γ ) a
ts irredu
ibly on V.Assume that Z
0(Γ ) a
ts irredu
ibly on V and let W be a non-zerosubspa
e of V, and F a �nite subset of Γ su
h that ΓW =

⋃
γ∈F γW. Sin
e

ΓW is an algebrai
 manifold, Z
(Γ ) leaves ΓW invariant, hen
e permutesthe subspa
es γW (γ ∈ Γ ). Sin
e Z
0(Γ ) is 
onne
ted, for any γ ∈ F wehave
Zc0(Γ )γW = γW.From the irredu
ibility of the a
tion of Zc0(Γ ) on V, we get W = V.The following will be essential in the proof of Theorem 1.1.Proposition 2.6. Assume that the semigroup Γ ⊂ GL(V ) satis�es (H1)and (H2). Then Γ 
ontains a �nitely generated subsemigroup whi
h satis�es

(H1) and (H2).The proof of the above proposition depends on the followingLemma 2.7. Assume that Γ satis�es (H1), (H2). Denote by D (resp. C)the 
ommutator subgroup (resp. 
onne
ted 
enter) of Zc0(Γ ). Then Zc0(Γ ) isthe almost dire
t produ
t of D and C. Furthermore, D is semisimple without
ompa
t fa
tors and C 
onsists of homotheties.Proof. Sin
e Γ a
ts irredu
ibly on V, Zc(Γ ) is an R-redu
tive group (see[27℄), hen
e D is semisimple and Zc0(Γ ) is the almost dire
t produ
t of Cand D. We 
an write D as the almost dire
t produ
t D = D1D2, where
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D1 is 
ompa
t and D2 is semisimple without 
ompa
t fa
tor. Sin
e Γ 
on-tains a proximal element and Zc(Γ )/Zc0(Γ ) is �nite, Zc0(Γ ) also 
ontainsa proximal element. We denote this element by γ and write γvγ = λγvγ ,
γ = cd1d2 with c ∈ C, d1 ∈ D1, d2 ∈ D2. Sin
e d1 and γ 
ommute, and thedire
tion of vγ is uniquely determined by γ, d1vγ is proportional to vγ . Sin
e
D1 is 
ompa
t we have d1vγ = ±vγ , hen
e cd2 is also proximal with dom-inant eigenve
tor vγ . Sin
e C 
ommutes with cd2, and vγ is cd2-dominant,there exists an R-
hara
ter χ of C su
h that gvγ = χ(g)vγ for every g ∈ C.Sin
e the subspa
e W = {v : cv = χ(c)v, ∀c ∈ C} is Γ -invariant, 
on-tains vγ , and the a
tion of Γ is irredu
ible, it follows that cv = χ(c)v forall v ∈ V and c ∈ C. Thus, C 
onsists of homotheties, D1D2 also a
tsirredu
ibly on V , and vγ is d2-dominant. Sin
e D1 
ommutes with d2 weinfer, as above, that D1 preserves the dire
tion of vγ . Sin
e D1 is 
ompa
tand 
onne
ted, vγ is D1-invariant. Sin
e D1 
ommutes with CD2, the sub-spa
e of D1-invariant ve
tors is preserved by the a
tion of CD1D2. From theirredu
ibility of Zc0(Γ ), we 
on
lude that D1 = Id, hen
e Zc0(Γ ) = CD2.Proof of Proposition 2.6. We 
onsider the semigroup Γ (S) generated bythe �nite set S ⊂ Γ. Clearly, if S ⊂ S′, then Γ (S) ⊂ Γ (S′).We take a totallyordered family Si (i ∈ I) su
h that Γ =

⋃
i∈I Γ (Si); we denote by Gi0 the
onne
ted 
omponent of the identity in Zc(Γ (Si)). Then, sin
e Gi0 ⊂ Gj0 if

Si ⊂ Sj , for some ι ∈ I we get
H0 := Gι0 =

⋃

i∈I

Gi0 = Gk0 if Sk ⊃ Sι.We 
an suppose that Gi0 = Gι0 for any i ∈ I. It follows that H0 is normal in
Zc(Γ (Si)) for any i ∈ I, hen
e H0 is normal in Zc(Γ ). In parti
ular, H0 ⊂
Zc0(Γ ).We observe thatH0 has �nite index in Zc(Γ (Si)), hen
e L = Zc0(Γ )/
H0 is an algebrai
 group whi
h is the Zariski 
losure of the union of the �nitesubgroups Φi 
orresponding to Zc0(Γ (Si)). In view of Lemma 2.7 we knowthat the algebrai
 group L has the same stru
ture as Zc0(Γ ), in parti
ularis redu
tive. We write it as the almost dire
t produ
t of its 
onne
ted 
enter
C ′ ⊂ R∗ and its 
ommutator subgroup D′. Passing to the fa
tor group L/
D′, using the �nite subgroups Φi, we get C ′ = {Id}, L = D′. We 
onsider afaithful, irredu
ible representation of the adjoint group of L in a real ve
torspa
e V ′. Then ea
h �nite subgroup Φi leaves invariant a positive de�nitequadrati
 form qi. We 
an suppose that the forms qi are normalized and wedenote by q a 
luster value of the (qi)i∈I . Then q is invariant under the a
tionof the topologi
al 
losure Φ of ⋃

i∈I Φi. Sin
e Zc(
⋃
i∈I Φi) = L = Zc(Φ),we see that Φ a
ts irredu
ibly on V ′, as L itself. Sin
e the kernel of q is

Φ-invariant, it is trivial, hen
e q is positive de�nite. It follows that Φ is
ompa
t. Sin
e Zc(Φ) = L, we 
on
lude that L = Φ is 
ompa
t, hen
e fromLemma 2.7, L = {Id}. It follows that H0 = Zc0(Γ ) = Zc0(Γ (Sι)). We 
an



44 Y. Guivar
'h and R. Urbansuppose that Γ (Sι) 
ontains a proximal element from Γ ∩ Zc0(Γ ). Then
Γ (Sι) is �nitely generated, and satis�es (H2). From Proposition 2.5 we seethat 
ondition (H1) is also satis�ed by Γ (Sι), sin
e Zc0(Γ (Sι)) = Zc0(Γ )a
ts irredu
ibly on V.Remark 2.8. We will see in Lemma 3.3 below that 
ondition (H0) alsoremains valid after passing to a 
onvenient �nitely generated subsemigroup.However, in Proposition 2.6, this property 
annot be a
hieved with 
ondi-tion (H1) alone. A simple 
ounterexample is the following: suppose Γ is thesemigroup of rational rotations of the Eu
lidean plane, 
entered at the ori-gin. Then any �nitely generated subsemigroup Γ ′ preserves a regular polygonins
ribed in the unit 
ir
le. Hen
e, 
ondition (H1) is not satis�ed by Γ ′.This explains why we 
onsider (H1) and (H2) simultaneously in Propo-sition 2.6.3. Equivalen
e of the weak ID-property and ID-property. Let usre
all the de�nitions of the weak ID-property and ID-property on
e again,in the 
ontext of subsemigroups of Minv(d,Z) a
ting in the usual way on
d-dimensional tori. We say that a subsemigroup Γ of Minv(d,Z) has theID-property if every in�nite Γ -invariant subset of Td is dense in Td. This isof 
ourse equivalent to the fa
t that every in�nite 
losed Γ -invariant subsetof Td is Td itself.We say that a subsemigroup Γ of Minv(d,Z) a
ting on the d-dimensionaltorus has the weak ID-property if for every x ∈ Td, the 
losure of the orbit
Γx is either �nite or the whole Td.Here it is 
onvenient to use 
ondition (H0) whi
h is weaker than thehypothesis in Theorem 1.1.Proposition 3.1. Let Γ be a subsemigroup of Minv(d,Z) a
ting on Tdand satisfying 
ondition (H0). Then Γ has the weak ID-property if and onlyif Γ has the ID-property.To prove the above equivalen
e we need the following three lemmas.Lemma 3.2. Suppose S is a �nite subset of GL(d,R) whi
h generates asemigroup Γ whi
h satis�es (H0). De�ne

C = sup{‖s‖ : s ∈ S}.Then for every x ∈ V with ‖x‖ ≤ 1 there exists an element g ∈ Γ su
h that
1 < ‖gx‖ ≤ C.Proof. Note that C > 1, sin
e Γ is unbounded. We 
onsider a sequen
e

sk ∈ S su
h that the sequen
e sn . . . s1x, ‖x‖ ≤ 1, is unbounded, and de�ne
k = sup{n ∈ N : ‖sn . . . s1x‖ ≤ 1}.
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‖sk+1‖ ≤ C, ‖sk . . . s1x‖ ≤ 1, ‖sk+1 . . . s1x‖ > 1.It follows that

1 < ‖sk+1sk . . . s1x‖ ≤ C‖sk . . . s1x‖ ≤ C.Then the 
on
lusion follows with g = sk+1 . . . s1.Lemma 3.3. Let Γ be a subsemigroup of GL(d,R) whi
h satis�es 
on-dition (H0). Then Γ 
ontains a �nitely generated subsemigroup whi
h satis-�es (H0).Proof. For any �nite subset S ⊂ Γ, we denote by Γ (S) the semigroupgenerated by S, and by V (S) the subspa
e of ve
tors v ∈ V su
h that Γ (S)vis bounded. We observe that the in
lusion S ⊂ S′ implies V (S′) ⊂ V (S).We 
onsider a totally ordered family of �nite subsets Sι (ι ∈ I) su
h that
Γ =

⋃
ι∈I Γ (Sι). Then W =

⋂
ι∈I V (Sι) is of the form V (Sj) for some j ∈ Iand we have V (Sι) = V (Sj) if Sι ⊃ Sj . It follows that W is Γ -invariant.Furthermore, for any v ∈W and ι ∈ I, Γ (Sι)v is bounded.We show that, if W 6= {0}, then Γv is bounded, for some v ∈ W \ {0}.Hen
e W = {0} by 
ondition (H0). This implies that 
ondition (H0) issatis�ed by Γ (Sj).We 
onsider the 
omplexi�ed ve
tor spa
e WC ⊂ V C, a Γ -irredu
iblesubspa
e U ⊂WC, and the a
tion of Γ (Sι) on U. Sin
e every Γ (Sι)-orbit in

W is bounded for any γ ∈ Γ (Sι) we have |λγ | ≤ 1, hen
e |Tr γ|U | ≤ dimUfor any γ ∈ Γ .Sin
e the a
tion of Γ on U is irredu
ible, Burnside's theorem implies thatthe algebra End(U) is generated by Γ , i.e. there exist γ1, . . . , γr in Γ su
hthat the linear forms f1, . . . , fr on End(U) de�ned by
fk(w) = Tr(γkw) (1 ≤ k ≤ r)form a basis of (End(U))∗. Sin
e |fk(γ)| ≤ dimU for every γ ∈ Γ, and thefamily {fk} forms a basis of (End(U))∗, we dedu
e that Γ |U is bounded. Thenany Γ -orbit in U is bounded. Hen
e the same is true for the 
onjugate spa
e

U ⊂ V C, and for the sum U + U ⊂ V C. In parti
ular, any v ∈ (U + U) ∩ Vhas a bounded Γ -orbit. Hen
e from 
ondition (H0), (U + U) ∩ V = {0},
U = {0}, W = {0}.Let Bε ⊂ Rd denote the ball with radius ε and 
enter 0. For ε < 1/2, wealso denote by Bε the homeomorphi
 image of Bε ⊂ Rd under the 
anoni
alquotient map p : Rd → Td = Rd/Zd.Lemma 3.4. Let Γ be a subsemigroup of Minv(d,Z) whi
h satis�es (H0).Then there exists ε = εΓ > 0 su
h that for every 0 6= x ∈ Td,

Γx ∩ Td \Bε 6= {0}.
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an �nd C > 1 su
h that forany x ∈ Bε ⊂ Rd, ε < 1/2, there exists g ∈ Γ su
h that
ε ≤ ‖gx‖ ≤ Cε.If εΓ = 1/2C < 1/2 we see that Γx 6⊂ Bε for every x ∈ Bε ⊂ Td. If forsome y 6∈ Bε we had Γy ⊂ Bε, then x = γy ∈ Bε for some γ ∈ Γ ; hen
e,from the above observation, Γx 6⊂ Bε; in parti
ular, sin
e Γx ⊂ Γy, we have

Γy 6⊂ Bε, and this is a 
ontradi
tion.Now we are ready to prove Proposition 3.1.Proof of Proposition 3.1. It is obvious that the ID-property implies theweak ID-property. Therefore we have to prove the 
onverse, i.e. any in�nite
losed subset Σ with ΓΣ ⊂ Σ is equal to Td.If Γx is in�nite for some x ∈ Σ, then the hypothesis implies Γx=Td=Σ.Hen
e we 
an suppose that Σ is in�nite, Σ =
⋃
x∈Σ Γx and ea
h Γx with

x ∈ Σ is �nite. It follows that Σ ⊂ p(Qd), hen
e Σ is 
ountable.Now 
onsider the sequen
e of derived sets,(3.5) Σ0 = Σ ⊃ Σ1 ⊃ · · · ⊃ Σn ⊃ · · · ,that is, Σn+1 is the set of limit points of Σn. A
tually, the sequen
e (3.5)terminates, i.e. there is an index n su
h that Σn = ∅. If not we 
onsider
Σ∞ :=

⋂∞
n=0Σ

n. Clearly, Σ∞ is a 
losed 
ountable set su
h that the set
(Σ∞)a
 of limit points of Σ∞ is equal to Σ∞. This means that Σ∞ is anon-void and 
ountable perfe
t set. Sin
e every point of Σ∞ is 
losed andhas empty interior in Σ∞, the Baire theorem says that Σ∞ also has emptyinterior in Σ∞, whi
h is impossible. Therefore, there is n ∈ N su
h that

Σ0 = Σ ⊃ Σ1 ⊃ · · · ⊃ Σn = ∅.Without loss of generality we may assume n = 2. It follows that Σ1 is �nite.In fa
t, otherwise Σ2 would not be an empty set. Let {x1, . . . , xn} = Σ1 ⊂
p(Qd) be the set of limit points of Σ and let q be a 
ommon denominator of
xi, 1 ≤ i ≤ n. Then 0 ∈ qΣ1 is the unique limit point of qΣ. Consider a ball
Bε around 0 with ε < εΓ given by Lemma 3.4. Then the points of qΣ outside
Bε have no limit point, hen
e form a �nite set F. Now we 
an 
onsider the
Γ -orbits of these points, i.e. Γx, x ∈ F. They form a Γ -invariant �nite set
F ′ =

⋃
x∈F Γx that we 
an ex
lude from qΣ without 
hanging its properties.Therefore, now we have the new set Σ′ = qΣ \ F ′ whi
h is 
losed, in�nite,

Γ -invariant and fully in
luded in Bε, and this 
ontradi
ts Lemma 3.4.4. Dominant ve
tors, a 
ohomologi
al equation and the spe
-trum of Γ . As in Se
tion 2, Γ is a subsemigroup of GL(V ) = GL(d,R) andwe 
onsider its a
tion on V and P(V ) = π(V \ {0}).
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 sets:
LΓ = {π(v0) : v0 is a dominant ve
tor for Γ},
L̃Γ = {v 6= 0 : π(v) ∈ LΓ } = π−1(LΓ ).We start with the following proposition whi
h is a semigroup version ofa result of Guivar
'h and Conze (
f. [6, Proposition 3.2℄).Proposition 4.1. Let Σ be a Γ -invariant subset of V \ {0} su
h that

0 ∈ Σ. Then, under assumptions (H0), (H1) and (H2), for any proximal andquasi-expanding element γ ∈ Γ there exists a γ-dominant ve
tor u0 su
h that(4.2) γZu0 := {γku0 : k ∈ Z} ⊂ Σ.Proof. Let V = V max
γ ⊕ V <

γ be the de
omposition of V relative to aproximal and quasi-expanding element γ ∈ Γ.Let xi ∈ Σ and xi → 0 as i → ∞. Then there exists a sequen
e {αi} ofreals and w ∈ V su
h that αixi → w as i → ∞. We will show that withoutloss of generality we 
an assume that w 6∈ V <
γ . In fa
t, sin
e Γ a
ts stronglyirredu
ibly on V, by Lemma 2.2 one 
an �nd an element h ∈ Γ su
h that

hw 6∈ V <
γ , i.e. w 6∈ h−1V <

γ . De�ne
Γ1 = h−1Γh, γ1 = h−1γh ∈ Γ1, Σ1 = h−1Σ.Then γ1 is proximal in Γ1, w 6∈ h−1V <

γ = V <
γ1 , and Σ1 is a Γ1-invariant subsetthat 
ontains 0 as a limit point. Assume that we have found a non-zero ve
tor

u0 ∈ V max
γ1 su
h that γZ

1 u0 ⊂ Σ1. Then h−1γZhu0 ⊂ h−1Σ, i.e., γZhu0 ⊂ Σ.But hu0 ∈ V max
γ and we are done.Thus from the very beginning we 
an assume that w 6∈ V <

γ .Let e1, . . . , en be a basis of V su
h that e1 ∈ V max
γ , ‖e1‖ = 1 and

e2, . . . , en ∈ V <
γ . Let φj : V → R be linear forms su
h that

x =
n∑

j=1

φj(x)ej, x ∈ V.Let Φ : V = V max
γ ⊕ V <

γ → V max
γ be the proje
tion along V <

γ , i.e., Φ(x) =

φ1(x)e1. Sin
e w 6∈ V <
γ , it follows without loss of generality that Φ(xi) 6= 0(sin
e αixi → w 6∈ V <
γ ). Sin
e |λγ | = λ > 1, there exists a sequen
e {pi} ofintegers su
h that pi → ∞ and

1 ≤ λpi |φ1(xi)| ≤ λ.Now passing to a subsequen
e if ne
essary one 
an �nd a γ-dominant ve
-tor u0 ∈ V max
γ su
h that γpi(Φ(xi)) → u0 as i → ∞. We will prove that

γpi(xi) → u0 as i→ ∞.Clearly, it is enough to show that(4.3) φj(xi)γ
pi(ej) → 0 as i→ ∞, for any j > 1.
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t, γpi(xi) → u0 if γpi(
∑n

j=1 φj(xi)ej) =
∑n

j=1 φj(xi)γ
pi(ej) → u0 andso we are led to (4.3).Therefore, we are going to prove (4.3). One has

φj(xi)γ
pi(ej) =

φj(xi)

|φ1(xi)|

γpi(ej)

λpi
‖γpi(Φ(xi))‖,where the �rst fra
tion tends to φj(w)/|φ1(w)|, the se
ond one tends to zero,and the third term tends to ‖u0‖ as i→ ∞.Sin
e xi ∈ Σ and γpi ∈ Γ for every i ∈ N it follows that u0 ∈ Σ.Sin
e limi γ

pi(xi) = u0, we infer that γ−m(u0) = limi γ
pi−m(xi).We see that

γpi−m(xi) ∈ Σ for almost all i, thus γ−mu0 ∈ Σ.Remark 4.4. Noti
e that the 
ondition (4.2) implies that 0 ∈ Σ. In fa
t,simply take a sequen
e Z ∋ kn su
h that kn → −∞.Proposition 4.5. Under 
onditions (H1) and (H2), the set LΓ is theunique minimal Γ -invariant 
losed subset of P(V ).Proof. We �rst show that LΓ is Γ -invariant. Consider g ∈ ∆Γ , and
u = limn g

2n/‖g2n‖, where the limit exists in End(V ) by proximality of g.Consider a de
omposition V = V <
g ⊕ V max

g . Then u is a multiple of theproje
tion of V onto V max
g along V <

g .On the other hand, we 
onsider γ ∈ Γ and want to show that γ.g+ ∈ LΓ .We observe that for any δ ∈ Γ, we have
lim
n

∥∥∥∥γ
g2n

‖g2n‖
δ − γuδ

∥∥∥∥ = 0.We have Im(γuδ) = γ(Imu) and Ker(γuδ) = δ−1(Keru). We note that
γuδ has rank one, like u, hen
e γuδ will be a multiple of a one-dimensionalproje
tion if γ(Imu) 6⊂ δ−1(Keru), i.e. δ(Im(γu)) 6⊂ Keru.Sin
e Γ is strongly irredu
ible, Lemma 2.2 shows that su
h a δ ∈ Γexists. Then, as in the proof of Proposition 2.3, perturbation theory showsthat for n large, γ(g2n/‖g2n‖)δ has a simple dominant eigenvalue and the
orresponding eigenve
tor is 
lose to γ(vg). In other words,

γg2mδ ∈ ∆Γ , γ.g+ = lim
m

(γg2mδ)+.Hen
e γLΓ ⊂ LΓ .Now let Λ be a 
losed Γ -invariant subset of P(V ) and let us show that
Λ ⊃ LΓ . Sin
e Γ is strongly irredu
ible, Λ is not 
ontained in a propersubspa
e. In parti
ular Λ 6⊂ V <

γ , hen
e there exists x ∈ Λ with x 6∈ V <
γ .Then γ+ = limn γ

n.x ∈ Λ. Sin
e Λ is 
losed, we have LΓ ⊂ Λ. This showsthat LΓ is minimal and is the unique minimal subset of P(V ).Proposition 4.6 (Proposition 2.2 in [7℄). Let Γ be a subsemigroup of
GL(d,R), d > 1, satisfying 
ondition (H1) and (H2). Let S be a generating
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ontinuous fun
tion on Pd−1, t is real and
θ ∈ [0, 2π), then the equation

∀ γ ∈ S, ∀x ∈ LΓ , ϕ(γ.x)‖γx‖it = eiθϕ(x)has no solution, unless θ = 0, t = 0, ϕ(x) ≡ const on LΓ .Proof. Clearly we 
an suppose that |det γ| = 1 for γ ∈ Γ. Consider thefun
tion ψ(v) de�ned on L̃Γ by the formula ψ(v) = ϕ(π(v))‖v‖it. Then therelation for ϕ 
an be written as
∀γ ∈ S, ψ(γv) = eiθψ(v).Suppose that t 6= 0 and put log ̺ = 2π/|t|. Then additionally we have

ψ(±̺kv) = ψ(v) and the 
ondition ψ(λv) = ψ(v) for some v ∈ L̃Γ and some
λ ∈ R∗

+ implies that λ = ±̺k, where k ∈ Z.Let c be any of the values of ψ and put Lc = ψ−1({c}) ⊂ L̃Γ . Then, sin
e
ψ is 
ontinuous, Lc is a non-empty 
losed subset of L̃Γ whi
h satis�es

∀γ ∈ S, γ(Lc) ⊂ Lceiθ .For every λ ∈ H̺, whi
h is the group of homotheties of the form ±̺k, k ∈ Z,we also have
λLc = Lc.If now u ∈ End(Rd) satis�es u = limk ̺

−nkγk with γk ∈ Γ, ̺−1 ≤ ‖u‖ < 1,then we have |detu| = limk ̺
−nkd = 0 and u(Lc) ⊂ Lceiα ∪ {0} with α ∈ R.From 
ondition (H2) we 
an 
hoose γk = γk ∈ Γ with W = Keru 6= 0having 
odimension 1. Sin
e Imu = Rvγ = Ra, a 6= 0, we �nd that u(Lc) ⊂

H̺a ∪ {0}. Sin
e u−1(a) = b + W with b ∈ Rd \ {0} we dedu
e that Lc ⊂
W ∪H̺(b+W ). It follows that, in the quotient spa
e Rd/W, Lc is proje
tedonto a set whi
h is 
ountable and H̺-invariant. If Wi, 1 ≤ i ≤ r, is a familyof su
h subspa
es then ⋂r

i=1Wi has the same property. In fa
t V/⋂r
i=1Wi
an be identi�ed with the diagonal subspa
e of V/W1 × · · · × V/Wr, andso the proje
tion of Lc into V/⋂r

i=1Wi 
an be identi�ed with a subset ofthe produ
t of the proje
tions of Lc. Hen
e, su
h a proje
tion is 
ountableand H̺-invariant. Sin
e the interse
tion of any family of subspa
es withthe above properties is a �nite interse
tion, there exists a unique minimalsubspa
e W0 whi
h has these properties. This subspa
e is un
hanged when
c is repla
ed by ceiα. As a 
onsequen
e, the 
ondition γ(Lc) ⊂ Lceiθ for
γ ∈ Γ implies that γ(W0) = W0. Sin
e π(Lc) = LΓ and LΓ is un
ountable(see Lemma 5.1), W0 is proper. This 
ontradi
ts the irredu
ibility of Γ, andso t = 0, e−iθϕ(γ.x) = ϕ(x) for all x ∈ LΓ and γ ∈ S. Therefore, forevery n, all γi ∈ S, and all x ∈ LΓ we have e−inθϕ(γ1 . . . γn.x) = ϕ(x). Sin
e
Γ =

⋃∞
n=0 S

n satis�es (H2), we dedu
e that ϕ ≡ 
onst on LΓ , and eiθ = 1.In fa
t, suppose that there are two di�erent points x and y in LΓ su
h that
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ϕ(x) 6= ϕ(y). Then

ϕ(x) = e−inθϕ(γ1 . . . γn.x) 6= e−inθϕ(γ1 . . . γn.y) = ϕ(y)and so,(4.7) 0 < |ϕ(x) − ϕ(y)| = |ϕ(γ1 . . . γn.x) − ϕ(γ1 . . . γn.y)|for every n ∈ N and all γi ∈ S. By proximality of Γ on P(V ) (see Proposition2.3) there exists a sequen
e {γi}
∞
i=1 su
h that

lim
n
δ(γ1 . . . γn.x, γ1 . . . γn.y) = 0.By 
ontinuity of ϕ we a get a 
ontradi
tion to (4.7).Now we 
onsider the set SΓ = {log |λg| : g ∈ ∆Γ}, the so-
alled spe
trumof Γ ([8℄).The following 
orollary, whi
h is a 
omplement to Proposition 4.6 above,
lari�es the 
onne
tions between the aperiodi
ity hypotheses on Γ 
onsideredby Kesten in [22℄, Guivar
'h and Raugi in [17℄ (Proposition 3 and Lemmap. 45), Lalley in [23℄ (Corollaries 11.3, 11.4) and the geometri
 
onditions
onsidered by Eberlein in [11℄ and Dal'bo in [8℄ in the 
ontext of lengths of
losed geodesi
s in the 
ase of negative 
urvature. For an extension of theseresults and their use in the more general setting of semisimple groups see [3℄and [19℄. The 
orollary below also explains why aperiodi
ity 
onditions arenot expli
itly stated in Theorem 1.1, as in [4℄ and [26℄.Corollary 4.8. Suppose Γ ⊂ GL(d,R) is a subsemigroup whi
h satis-�es (H1), (H2) and de�ne SΓ = {log |λg| : g ∈ ∆Γ}. Then SΓ generates adense subgroup of R.For the proof, whi
h uses standard arguments of thermodynami
 for-malism, we need three lemmas, the �rst of them being well known (see [5,pp. 90�94℄).Lemma 4.9. Let A be a �nite set , Ω the 
ompa
t metri
 spa
e AN, and θthe shift transformation on Ω given by (θω)k = ωk+1, k ∈ N. For a fun
tion

ϕ on Ω de�ne
Snϕ(ω) =

n−1∑

k=0

ϕ ◦ θk(ω).Suppose ϕ is Hölder 
ontinuous, and for any periodi
 point ω of period p,the sum Spϕ(ω) belongs to Z. Then there exists a Hölder Z-valued fun
tion
ϕ′ on Ω and a Hölder fun
tion ψ su
h that ϕ = ϕ′ + ψ − ψ ◦ θ.Lemma 4.10. Suppose g, h ∈ GL(d,R) are su
h that h is proximal and
g.h+ 6∈ V <

h . Then, for n = 2p large, ghn is proximal and
lim
n

(ghn)+ = g.h+, lim
n
V <
ghn = V <

h .
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onsider the sequen
e of linear maps un = hn/‖hn‖ and ob-serve that un 
onverges towards a map πh whi
h is proportional to the pro-je
tion on Rvh along the subspa
e V <
h . Hen
e gun 
onverges towards gπh.We have Im(gπh) = Rg.h+, Ker(gπh) = V <

h .Hen
e, if g.h+ 6∈ V <
h , then gπh is 
ollinear to a proje
tion onto a one-dimen-sional subspa
e. Sin
e gπh has a simple dominant eigenvalue, the same is truefor gun for n large. Therefore, for n large, gun is proximal, and moreover,we have the required 
onvergen
e.Lemma 4.11. Suppose Γ ⊂ GL(V ) is a subsemigroup and satis�es 
on-ditions (H1), (H2). Then there exist a, b ∈ ∆Γ su
h that a+ 6= b+, V <

a 6= V <
band a+ 6∈ V <

b , b
+ 6∈ V <

a .Proof. We 
onsider the transposed semigroup Γ t a
ting on the dual spa
e
V ∗ and the proje
tive spa
e P(V ∗). From Remark 2.1(iii) 
onditions (H1) and
(H2) remain valid for Γ t and we 
an 
onsider the 
orresponding asymptoti
set LΓ t = L∗

Γ . We �x a ∈ ∆Γ and observe that we 
an �nd b ∈ ∆Γ su
hthat V <
b 6= V <

a , a
+ 6∈ V <

b . Otherwise there would be a dense subset of L∗
Γ
ontained in the union of the two proje
tive subspa
es de�ned by V <

a and
a+ in P(V ∗). Hen
e L∗

Γ itself would be 
ontained in su
h a union. But, fromLemma 5.1 below, this is impossible. If b+ 6∈ a+ ∪ V <
a , we have found therequired pair (a, b). If not, we 
onsider g ∈ Γ and the sequen
e gbn, n ∈ 2N.In view of Lemma 2.2 we 
an 
hoose g ∈ Γ su
h that

g.b+ 6∈ V <
b ∪ V <

a ∪ a+.Then we 
an apply Lemma 4.10 and repla
e b by gbn = b′ for n large. Underthis 
ondition, V <
b′ is 
lose to V <

b and the relations are still satis�ed. Sin
e
(b′)+ is 
lose to g.b+ and g.b+ 6∈ a+ ∪ V <

a , the 
ondition (b′)+ 6∈ a+ ∪ V <
a isalso satis�ed. Hen
e, we 
an take (a, b′) as the required pair.Proof of Corollary 4.8. Sin
e Γ satis�es (H1) and (H2) we 
an 
hoose

a1, a2 in Γ a

ording to Lemma 4.11. Let C1, C2 be 
losed and disjointneighborhoods of a+
1 , a

+
2 in P(V ) su
h that (C1 ∪C2)∩ (V <

a1
∪ V <

a2
) = ∅, andlet o be a point outside V <

a1
∪ V <

a2
∪ C1 ∪ C2. Then, for i = 1, 2,

lim
n
ani .(C1 ∪ C2) = a+

i , lim
n
ani .o = a+

i .If we take n large and set a = an1 , b = an2 , we have(4.12) a.o ∈ C1, b.o ∈ C2, a.(C1 ∪ C2) ⊂ IntC1, b.(C1 ∪ C2) ⊂ IntC2.It follows from (4.12) that the semigroup Γ (a, b) generated by a, b is free. Inorder to prove Corollary 4.8 we 
an suppose Γ = Γ (a, b). We 
onsider thetrivial metri
 δ on {a, b} and endow Ω = {a, b}N with the metri
 δ(ω, ω′) =∑∞
k=1 2−kδ(ωk, ω

′
k). We de�ne a homeomorphism z between Ω and LΓ as
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e a1 . . . an.o 
onverges to z(ω) ∈ C1 ∪C2. It is easy toverify that z is a bi-Hölder homeomorphism, hen
e we 
an transfer propertiesof (Ω, θ) to the a
tion of Γ on LΓ . We 
onsider z(ω) as a unit ve
tor in Vand observe that, by de�nition of z,
a1(ω)z(θω) = ε(ω)‖a1(ω)z(θω)‖z(ω),with ε(ω) = +1 or −1. It follows that, if we set

ϕ(ω) = log ‖a1(ω)z(θω)‖, Snϕ(ω) =
n−1∑

k=0

ϕ(θkω),we have, with γ = a1 . . . an−1 ∈ Γ and x = z(θnω) ∈ LΓ ,

Snϕ(ω) = log ‖γx‖.Given a Hölder fun
tion ψ on Ω we de�ne a Hölder fun
tion ψ on LΓ by
ψ[z(ω)] = ψ(ω) and we also have ψ(ω)−ψ(θnω) = ψ(γ.x)−ψ(x). In parti
-ular, if ω ∈ Ω is periodi
 with period p (θpω = ω), then z(ω) is a dominanteigenve
tor of γ = a1 . . . ap−1 and the 
orresponding eigenvalue λγ satis�es

log |λγ | = Spϕ(ω).If SΓ does not generate a dense subgroup of R, then for some positive c wehave SΓ ⊂ cZ, hen
e Spϕ(ω) ∈ cZ for any periodi
 point ω and we 
an applyLemma 4.9 to the fun
tion (1/c)ϕ. In parti
ular, the fun
tion e2iπϕ/c 
an bewritten in the form e2iπ(ψ−ψ◦θ), where ψ is a Hölder fun
tion on Ω. We 
ande�ne ψ on LΓ as above and write u(x) = e2iπψ. Then u is 
ontinuous andwe obtain, with γ = a1 . . . an, x = z(θnω),
‖γx‖2iπ/c =

u(γ.x)

u(x)
.We extend u to P(V ) as a 
ontinuous fun
tion, again denoted by u. Thenwe have

∀x ∈ LΓ , ∀γ ∈ Γ, ‖γx‖2iπ/c =
u(γ.x)

u(x)
.In view of Proposition 4.6, this implies 2iπ/c = 0, u = 1, and this is impos-sible.5. Random walks on a ve
tor spa
e and its fa
tor spa
es. In thisse
tion, relying strongly on [13℄, [17℄ (see also [18℄), we develop the randomwalk approa
h to the study of Γ -orbits on V \{0} and other related Γ -spa
es.The main new results are Theorems 5.10 and 5.19 and their 
orollaries.They give Theorems 1.3 and 1.2 of the Introdu
tion. In parti
ular, Corollary5.22 is one of the main tools for the study of Γ -orbits on the torus Td if

Γ ⊂ Minv(d,Z), i.e., for Theorem 1.1.
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tions on tori 53Let µ be a probability measure on G = GL(V ), and Γµ the 
losed sub-semigroup generated by the support Sµ of µ. We denote by M1(X) the setof probability measures on a given Polish spa
e X. We set Ω = SN
µ and we
onsider the probability measure Pµ = µ⊗N on Ω; the shift θ on Ω given by

(θω)k = ωk+1 (k ∈ N) preserves Pµ and the 
omponents ωk = gk(ω) of ωare i.i.d. G-valued random variables of law µ. From the Markov�Kakutanitheorem, there exists a probability measure ν on P(V ) whi
h is µ-stationary,i.e.,
µ ∗ ν =

\
g.ν dµ(g) = ν.We are going to establish that [P(V ), ν] is a µ-boundary (see [13℄), i.e.,

lim
n
g1g2 . . . gn.ν = δzω ,where zω ∈ P(V ). This will allow us to derive some properties of the typi
alsequen
es

Sn = gngn−1 . . . g1 and Xn = g1g2 . . . gn,and of the transposed maps Stn and Xt
n.Lemma 5.1. Assume that Γ = Γµ satis�es 
ondition (H1), and let ν bea µ-stationary measure. Then ν gives zero mass to every proje
tive subspa
e.Furthermore, if Γ also satis�es (H2), then LΓ is not 
ontained in a 
ountableunion of subspa
es.Proof. Let W be a proje
tive subspa
e of minimal dimension su
h that

ν(W ) > 0. De�ne(5.2) σ =
∑

k≥1

(1/2k)µ∗k

and 
onsider the fun
tion f(g) = g.ν(W ) = ν(g−1.W ). This fun
tion is
µ-harmoni
, i.e. satis�es\

f(gh) dµ(h) =
\
f(gh) dσ(h) = f(g),and rea
hes its maximum. In fa
t, the hypothesis on W gives ν(g.W ∩

g′.W ) = 0 if g.W 6= g′.W, so the set of g.W su
h that ν(g.W ) > δ is �nite forevery δ. Then if f(g0) = supg∈G f(g), the equation f(g0) =
T
f(g0h) dσ(h)gives f(g0h) = f(g0), σ-a.e. Let E be the set of subspa
es W ′ = g−1.W su
hthat ν(W ′) = f(g0). Then, from above, E is �nite and Γ−1-invariant. Hen
ethe strong irredu
ibility of Γ gives a 
ontradi
tion.If (H2) is also satis�ed by Γ, then LΓ is well de�ned. From the Markov�Kakutani theorem, we know that there exists a µ-stationary measure λ su
hthat λ(LΓ ) = 1, hen
e Sλ ⊂ LΓ . Sin
e λ gives zero measure to every sub-spa
e, the same is true for a 
ountable union of subspa
es, hen
e LΓ 
annotbe 
ontained in su
h a union.
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e g1 . . . gn.ν 
onverges Pµ-a.e. and for Pµ⊗η-a.e.
(ω, g) ∈ Ω ×G we have

lim
n
g1(ω) . . . gn(ω).ν = lim

n
g1(ω) . . . gn(ω)g.ν.Proof. For a 
ontinuous fun
tion ϕ, we set Fϕ(g) = g.ν(ϕ) and we ob-serve that the relation Tg.ν dµ(g) = ν gives TFϕ(gh) dµ(h) = Fϕ(g), and
onsequently Fϕ(Xn) = g1 . . . gn.ν(ϕ) is a bounded martingale. This martin-gale 
onverges and, letting ϕ vary in a dense 
ountable part of C(P(V )), weobtain the 
onvergen
e of g1 . . . gn.ν. In order to obtain the se
ond 
laim, itsu�
es to show that Fϕ(Xng)− Fϕ(Xn) 
onverges to zero Pµ ⊗ µ∗r-a.e. forevery r ≥ 1. But\

|Fϕ(Xng) − Fϕ(Xn)|
2 dµ∗r(g) dP(ω) = µ∗n+r(F 2

ϕ) − µ∗n(F 2
ϕ)be
ause TFϕ(Xng) dµ

∗r(g) = Fϕ(Xn). One dedu
es that\\p∑

n=0

|Fϕ(Xng) − Fϕ(Xn)|
2 dP(ω) dµ∗r(g) ≤ 2r‖ϕ‖2

∞for every r ≥ 1; this proves the 
onvergen
e P ⊗ µ∗r-a.e. of the series∑∞
n=0 |Fϕ(Xng)−Fϕ(Xn)|

2 and 
onsequently the 
onvergen
e of Fϕ(Xng)−
Fϕ(Xn) to zero.In what follows we are going to use 
on
epts introdu
ed in [13℄. Therefore,we re
all them brie�y.To every linear transformation of Rd is asso
iated a quasi-proje
tive trans-formation a
ting on the lines of Rd not 
ontained in the kernel of the trans-formation. So we have maps of Pd−1 de�ned outside a proje
tive subspa
e:these maps are 
ontinuous outside the ex
eptional subspa
e and are limits,outside this subspa
e, of a sequen
e of proje
tive transformations. Further-more, from every sequen
e of proje
tive transformations, we 
an extra
t asubsequen
e 
onverging to a quasi-proje
tive one, outside a proje
tive sub-spa
e.Theorem 5.4. Let ν be a µ-stationary measure on P(V ). Assume that
Γ = Γµ satis�es 
onditions (H1) and (H2). Then we have Pµ-a.e.

lim
n
g1g2 . . . gn.ν = δzω .In parti
ular ν is unique and its support is LΓ .Proof. The proof goes as in [17℄. For a �xed ω, we 
onsider the relationgiven by Proposition 5.3,

θ(ω) = lim
n
g1(ω) . . . gn(ω).ν = lim

n
g1(ω) . . . gn(ω)g.ν,
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h is true for Pµ ⊗ η-a.e. (ω, g). One 
an extra
t from g1(ω) . . . gn(ω) asubsequen
e 
onverging outside a proje
tive subspa
e to a quasi-proje
tivemap τ(ω). As ν gives zero measure to any proje
tive subspa
e (Lemma 5.1),from Proposition 5.3 above one has τ(ω).ν = τ(ω)γ.ν = θ(ω) for η-a.e. γ, andtherefore for all γ ∈ Γ . As Γ satis�es (H1) and (H2), one 
an �nd a sequen
e
γn ∈ Γ su
h that γn.ν 
onverges to a Dira
 measure δz with z belonging tothe open set of 
ontinuity of τ(ω). Then, in the limit θ(ω) = τ(ω).δz. Thisproves that θ(ω) is a Dira
 measure δzω . The law of the random variable z isne
essarily ν by the martingale 
onvergen
e theorem. Sin
e z is independentof the 
hoi
e of the µ-stationary measure ν we get the uniqueness of ν.Clearly, Sν is 
losed and Γ -invariant. Hen
e, Proposition 4.5 shows that
Sν ⊃ LΓ . The Markov�Kakutani theorem and uniqueness of ν give, as inthe proof of Lemma 5.1, ν(LΓ ) = 1, hen
e Sν = LΓ .Corollary 5.5. Let ̺ (̺∗ resp.) be a probability measure on P(V ) (P(V ∗)resp.) whi
h gives zero mass to every proje
tive subspa
e. Then we have Pµ-a.e.

lim
n
g1 . . . gn.̺ = δzω (lim

n
gt1 . . . g

t
n.̺

∗ = δz∗ω resp.).In parti
ular
lim
n
g1 . . . gn.m = δzω (lim

n
gt1 . . . g

t
n.m

∗ = δz∗ω resp.),where m (m∗ resp.) is the K-invariant probability measure on P(V ) (P(V ∗)resp.)Proof. We observe that g1 . . . gn/‖g1 . . . gn‖ ∈ End(V ) has norm one, and
onsider an arbitrary 
onvergent subsequen
e,
u = lim

k

g1 . . . gnk

‖g1 . . . gnk
‖
.Clearly u 6= 0, sin
e ‖u‖ = 1. We note that u de�nes a 
ontinuous map from

P(V )\Keru into P(V ).We will denote it again by u, and observe that, sin
e
̺(Keru) = 0, u.̺ is well de�ned, and from dominated 
onvergen
e,

u.̺ = lim
k
g1 . . . gnk

.̺.In parti
ular, from Theorem 5.4 and Lemma 5.1, u.ν = δzω . This means thatthe linear map u has rank one and satis�es u(P(V ) \ Keru) = δzω . Hen
e
u.̺ = δzω . The 
onvergent subsequen
e 
hosen above was arbitrary, hen
e

lim
n
g1 . . . gn.̺ = δzω .In parti
ular, we have the above 
onvergen
e for ̺ = m.The results for P(V ∗), ̺∗, m∗, z∗ω follow from Γµ∗ = (Γµ)

t and Remark2.1(iii).
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all m is the K-invariant probability measure on P(V ), where K =
SO(d,R). One says that a sequen
e fn ∈ GL(d,R) has the 
ontra
tion prop-erty on P(V ) towards z if the sequen
e of measures fn.m on P(V ) 
onvergesweakly towards δz. A point z ∈ P(V ) will be identi�ed with a ve
tor of normone, de�ned up to sign.We will use, as in [17℄ and [18℄, theKA+K de
omposition of g∈GL(d,R),

g = kak′, k and k′ are orthogonal matri
es and A+ ∋ a = diag(a1, . . . , ad)with a1 ≥ · · · ≥ ad. Let (e1, . . . , ed) denote the 
anoni
al basis of Rd. Inparti
ular, if g ∈ SL(d,R) then k, k′ ∈ K = SO(d,R) and a ∈ A+ =

{diag(a1, . . . , ad) : a1 ≥ · · · ≥ ad > 0 and ∏d
i=1 a

i = 1}.If one writes the polar de
omposition of fn as fn = knank
′
n, where

kn, k
′
n ∈ K, a ∈ A+, one sees that the 
ontra
tion property is equivalentto ain = o(a1

n), 1 < i ≤ d, limn kn.e1 = z.In the proposition below and its 
orollary, the point z ∈ P(V ∗) is 
onsid-ered as a unit ve
tor, hen
e |z(x)| is well de�ned for x ∈ V.Proposition 5.6. Assume that fn ∈ GL(V ) is a sequen
e su
h that f tnhas the 
ontra
tion property on P(V ∗) towards z ∈ P(V ∗). Then for any
x, y ∈ P(V ),

lim
n

‖fn(x)‖

‖fn‖
= |z(x)|, lim

n
z(x)z(y)

δ(fn.x, fn.y)

δ(x, y)
= 0.The se
ond 
onvergen
e is uniform when x, y belong to a 
ompa
t subset of

P(V ) \Ker z. If fn ∈ SL(V ), then limn ‖fn(x)‖ = +∞ for every x 6∈ Ker z.Proof. Re
all that the distan
e between u = π(u) and v = π(v) in P(V )is equal to δ(u, v) = ‖u ∧ v‖/‖u‖‖v‖.One writes fn = knank
′
n as above, with kn, k′n ∈ K and an ∈ A+. Fromthe 
ontra
tion property of f tn we get

lim
n
k′−1
n .e1 = z, ain = o(a1

n) (i > 1).Writing x =
∑d

i=1 xiei, we get
‖fnx‖

2 = ‖ank
′
nx‖

2 =
d∑

i=1

(ain)
2|〈k′nx, ei〉|

2 ≥ (a1
n)

2|〈k′nx, e1〉|
2.

Sin
e the norm of fn is a1
n, we get

lim
n

‖fnx‖
2

‖fn‖2
= lim

n
|〈x, k′−1

n e1〉|
2 + lim

n

∑

i>1

(
ain
a1
n

)2

|〈k′nx, e1〉|
2

= lim
n

|〈x, k′−1
n e1〉|

2 = |z(x)|2.
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‖fn(x) ∧ fn(y)‖

2 =
∑

i6=j

(aima
j
n)

2|〈k′n(x ∧ y), ei ∧ ej〉|
2,

‖fn(x) ∧ fn(y)‖ ≤ d2a1
na

2
n‖x ∧ y‖.Therefore,

δ(fn.x, fn.y)

δ(x, y)
=

‖fnx ∧ fny‖

‖fnx‖ ‖fny‖ ‖x ∧ y‖
≤ d2 a

2
n

a1
n

1

|〈k′nx, e1〉〈k
′
ny, e1〉|and

lim
n

|z(x)| |z(y)|
δ(fn.x, fn.y)

δ(x, y)
= 0.The uniformity of the required 
onvergen
e is 
lear from the previous formulaif z(x)z(y) 6≡ 0.In order to obtain the last assertion, it su�
es to show, in view of the�rst statement, that ‖fn‖ 
onverges to ∞. The relation a2

n = o(a1
n) implies

det fn =
∏d
i=1 a

i
n = o(a1

n). Sin
e det fn = 1, we 
on
lude that limn ‖fn‖ =
limn a

1
n = ∞.Now we are able to get information about the ve
tor Sn(ω)x, if x is �xed,as follows:Corollary 5.7 (see [17, 18℄). If µ, z∗ω are as in Theorem 5.4 and Corol-lary 5.5, then, as n tends to in�nity , we have uniformly in x, y ∈ P(V ),

lim
n
Eµδ(Sn.x, Sn.y) = 0,and Pµ-a.e.

lim
n

‖Snx‖

‖Sn‖
= |z∗ω(x)|.If µ ∈M1(SL(V )), then, for every x ∈ V and Pµ-a.e., limn ‖Snx‖ = ∞.Proof. Note that Corollary 5.5 implies that Stn(ω) has the 
ontra
tionproperty towards z∗ω. Hen
e Proposition 5.6 implies

lim
n

‖Snx‖

‖Sn‖
= |z∗ω(x)|.For the �rst 
onvergen
e it su�
es to show that for any sequen
e xn, yn ∈

P(V ) we have Pµ-a.e.(5.8) lim
n
δ(Sn.xn, Sn.yn) = 0.Then the �rst formula will follow from dominated 
onvergen
e.One 
an suppose that limn xn = x and limn yn = y. From Corollary5.5 and Lemma 5.1, one knows that the law of z∗ω = limn S

t
n.m

∗ gives zeromeasure to every subspa
e. Hen
e, for almost every ω ∈ Ω, x and y are not
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ond formula in Proposition 5.6.The last assertion is proved as follows. If x is �xed, then Pµ-a.e. as above
|z∗ω(x)| 6= 0, hen
e from the �rst formula in Proposition 5.6 it follows that
limn ‖Snx‖ = ∞.Remark 5.9. In [18℄ (see Theorem 4.4) the �rst and the last 
on
lusionof Corollary 5.7 is proved under a weaker hypothesis, namely validity of (H2)is repla
ed by non-relative 
ompa
tness of Γ = Γµ. Su
h a result 
an also bededu
ed from Corollary 5.7, using wedge produ
ts.Now we are going to study stationary measures on fa
tor spa
es of V \{0}.Fix c > 1 and denote by Pc(V ) = Pd−1

c the fa
tor spa
e of V \ {0} by themultipli
ative subgroup
±cZ := {±cn : n ∈ Z}of R∗ and denote by Tc the 1-torus R∗/± cZ.We 
an 
onsider the proje
tion from V \ {0} to P(V ) × Tc given by

v 7→ (v, ‖v‖iα),where α = 2π/log c and we observe that Pc(V ) is then naturally identi�edwith P(V )× Tc. Hen
e a point of Pc(V ) will be written as v = (v, z), where
v ∈ P(V ) is the proje
tion of v and z = ‖v‖iα. The a
tion of g ∈ G = GL(V )on Pc(V ) 
an then be written as

g.v = g.(v, z) = (g.v, z‖gv‖iα).

R∗ a
ts also on this spa
e and the two a
tions 
ommute. The 
orrespondingformula is
t.(v, z) = (v, z|t|iα), t ∈ R∗.We denote by λc = dz the normalized Lebesgue measure on Tc andobserve that every measure of the form ν ⊗ λc, where ν ∈ M1(P(V )), isinvariant under the a
tion of R∗ on Pc(V ). Furthermore, if µ ∈ M1(G) and

ν ∈M1(P(V )) is µ-stationary, then ν⊗λc is also µ-stationary. If LΓ ⊂ P(V )is the asymptoti
 set of Γ (Γ = Γµ satis�es 
onditions (H1) and (H2)), then
LΓ (c) = LΓ × Tc is a 
losed and Γ -invariant subset of P(V ) × Tc.Theorem 5.10. Assume that µ ∈ M1(G) is su
h that Γ = Γµ satis�es
onditions (H1) and (H2). Then, with the above notations, for every ψ ∈
C(Pc(V )) the sequen
e µ̌∗n ∗ ψ 
onverges uniformly to (ν ⊗ λc)(ψ), where νis the µ-stationary measure on P(V ). Furthermore, for any v ∈ Pc(V ) wehave the following a.e. 
onvergen
e:

lim
n
δc(Sn(ω).v, LΓ (c)) = 0,
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e on P(V ) × Tc given by(5.11) δc(v, v′) = δ(v, v′) + |z − z′|,and v = (v, z), v′ = (v′, z′).Corollary 5.12. Assume Γ ⊂ G is a subsemigroup of G whi
h satis�es
onditions (H1) and (H2) and c > 1 is �xed. Then the 
losed Γ -invariantsubset LΓ (c) = LΓ × Tc of Pc(V ) is the unique minimal set. Furthermore,any µ ∈ M1(G) su
h that Γ = Γµ satis�es 
onditions (H1) and (H2) has aunique stationary measure on Pc(V ).Clearly, Theorem 5.10 and its 
orollary imply Theorem 1.3 of the Intro-du
tion.For the proof of Theorem 5.10 we need three lemmas.Lemma 5.13. If µ is as in Theorem 5.10 then for x, y ∈ V,

lim
y→x

lim sup
n

Eµ∣∣∣∣(‖Snx‖

‖Sny‖

)iα

− 1

∣∣∣∣ = 0.Proof. From Corollary 5.7 we know that if xn → x and yn → y, then
lim
n

‖Snxn‖

‖Snyn‖
=

|zω(x)|

|zω(y)|
.Hen
e, from dominated 
onvergen
e,

lim sup
n

Eµ∣∣∣∣(‖Snxn‖

‖Snyn‖

)iα

− 1

∣∣∣∣ = Eµ∣∣∣∣∣∣∣∣zω(x)

zω(y)

∣∣∣∣
iα

− 1

∣∣∣∣.The formula in the lemma 
orresponds to the spe
ial 
ase xn = x, y = x.Lemma 5.14. If µ is as in Theorem 5.10, then for every ψ ∈ C(Pc(V ))the sequen
e of fun
tions µ̌∗k ∗ ψ is uniformly equi
ontinuous.Proof. One 
onsiders the distan
e δc on Pc(V ) given by (5.11). Then, inview of the form of the a
tion of G on Pc(V ),
δc(Sn.v, Sn.v

′) = δ(Sn.v, Sn.v′) +

∣∣∣∣
(
‖Snv‖

‖Snv′‖

)iα

− 1

∣∣∣∣ + |z − z′|.From the proof of Lemma 5.13, we get
lim
n
δc(Sn.v, Sn.v

′) =

∣∣∣∣
∣∣∣∣
〈v, z∗ω〉

〈v′, z∗ω〉

∣∣∣∣
iα

− 1

∣∣∣∣ + |z − z′|.Hen
e, by dominated 
onvergen
e,(5.15) lim sup
n

Eµδc(Sn.v, Sn.v′) = |z − z′| +Eµ(∣∣∣∣
〈v, z∗ω〉

〈v′, z∗ω〉

∣∣∣∣
iα

− 1

)
.The right hand side of this formula is uniformly small when δc(v, v′) is small.Now, if ψ ∈ C(Pc(V )) is Lips
hitz, with 
oe�
ient [ψ], then

|µ̌∗n ∗ ψ(v) − µ̌∗n ∗ ψ(v′)| ≤ Eµ[δc(Sn.v, Sn.v′)][ψ].
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hitz fun
tions are dense in C(Pc(V )) the above inequality and(5.15) imply equi
ontinuity of the sequen
e µ̌∗n ∗ ψ(v) for ψ ∈ C(Pc(V )).Lemma 5.16. Suppose θ ∈ R, η ∈ C(P(V )) and η 6≡ 0 and satis�es theequation(5.17) \
η(g.v)‖gv‖iα dµ(g) = eiθη(v).Then α = 0, θ = 0 and η = const on P(V ).Proof. Passing to absolute values in (5.17) we get(5.18) |η(v)| ≤

\
|η(g.v)| dµ(g).LetM = {v ∈ P(V ) : |η(v)| = ‖η‖∞}. Then from (5.18) the 
ondition v ∈Mimplies g.v ∈ M µ-a.e. Hen
e from 
ontinuity of |η|, we have g.M ⊂ M forevery g ∈ Sµ and Γµ.M ⊂ M. Sin
e LΓ is the unique minimal subset in

P(V ) (see Proposition 4.5), we get LΓ ⊂ M. In parti
ular, |η(v)| = ‖η‖∞for every v ∈ LΓ . From strong 
onvexity of the unit dis
 in C and (5.17) weget
∀v ∈ LΓ , ∀g ∈ Sµ, η(g.v)‖gv‖iα = eiθη(v).From Proposition 4.6 it follows that α = 0, θ = 0 and η = 
onst on LΓ .Now on P(V ) we have \

η(g.v) dµ(g) = η(v).We 
an suppose η to be real and we 
onsider the set M ′ (M ′′ resp.) ofpoints where η attains its maximum (minimum resp.). As above we obtain
M ′ ⊃ LΓ . Repla
ing η by −η, we also obtain M ′′ ⊃ LΓ , hen
e M ′ = M ′′.We 
on
lude that

∀ v ∈ P(V ), η(v) = 
onst.Proof of Theorem 5.10. We use the following result of [28℄. Let P bea Markov operator on the 
ompa
t metri
 spa
e X, whi
h preserves C(X)and is equi
ontinuous, i.e., for any ψ ∈ C(X), the sequen
e P kψ, k ∈ N, isequi
ontinuous. Then if 1 is the only eigenvalue of modulus one in C(X),the sequen
e P kψ 
onverges uniformly. Here we have P (x, ·) = µ ∗ δx, and
X = Pc(V ). From Lemma 5.14 we know that P is equi
ontinuous. Supposethat η ∈ C(X) with η 6≡ 0 satis�es Pη = eiθη, i.e.,\

η(g.v) dµ(g) = eiθη(v)for any v in Pc(V ). Now we 
an 
onsider the Fourier 
oe�
ients (k ∈ Z)
ηk(v) =

\
η(v, z)zk dλc(z)and we obtain \

ηk(g.v)‖gv‖
ikα dµ(g) = eiθηk(v).
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onst. Hen
e
η = 
onst on Pc(V ). Now the result of [28℄, re
alled above, gives the uniform
onvergen
e of the sequen
e ψn = µ̌∗n ∗ ψ.Clearly, if limn ψn = η, one has Pη = µ̌∗η = η and η is 
ontinuous. Fromthe above result, we dedu
e η ≡ 
onst. Furthermore,

η = (ν ⊗ λc)(η) = lim
n

(ν ⊗ λc)(ψn) = (ν ⊗ λc)(ψ).Hen
e we obtain the formula η = (ν ⊗ λc)(ψ) and the required 
onvergen
e.In order to prove the se
ond statement of the theorem, noti
e that sin
e
LΓ (c) is the inverse image of LΓ in Pc(V ) we have

δc(Sn(ω).v, LΓ (c)) = δ(Sn(ω).v, LΓ ).Proposition 5.6 implies that, given v and w in P(V ), we have the a.e. 
on-vergen
e of the sequen
e δ(Sn(ω).v, Sn(ω).w) to zero. If we 
hoose w in LΓ ,then Sn(ω).w ∈ LΓ , hen
e
δ(Sn(ω).v, LΓ ) ≤ δ(Sn(ω).v, Sn(ω).w).It follows that limn δ(Sn(ω).v, LΓ ) = δ(Sn(ω).v, Sn(ω).w) = 0.Proof of Corollary 5.12. Suppose ξ ∈M1(Pc(V )) is another µ-stationarymeasure. Sin
e ψn = µ̌∗n ∗ ψ 
onverges uniformly to (ν ⊗ λc)(ψ), we get
ξ(lim

n
ψn) = lim

n
ξ(µ̌∗n ∗ ψ) = ξ(ψ).Hen
e, (ν ⊗ λc)(ψ) = ξ(ψ), ν ⊗ λc = ξ and the uniqueness follows.Suppose ∆ is a 
losed Γµ-invariant subset of Pc(V ). Then from the Mar-kov�Kakutani theorem, there is a µ-stationary measure 
arried by ∆. Fromthe uniqueness of the stationary measure we get

∆ ⊃ supp ν ⊗ λc = LΓ (c).Hen
e LΓ (c) is the unique Γ -minimal subset of Pc(V ).Theorem 5.19. Suppose that Γ is a subsemigroup of GL(d,R), d > 1,satisfying 
onditions (H0), (H1) and (H2), and let Σ be Γ -invariant subsetof Ṽ \ {0} su
h that 0 is a limit point of Σ. Then(5.20) Σ ⊃ L̃Γ /{Id, σ}.Proof. We denote by Σ′ the inverse image of Σ in V \ {0}. Let u0 be a
γ-dominant ve
tor as in Proposition 4.1, that is, satisfying(5.21) γZu0 := {γku0 : k ∈ Z} ⊂ Σ′.Applying Corollary 5.12 with c = λ, where λ is the unique eigenvalue of γ ofmaximum modulus, greater than 1 sin
e γ is quasi-expanding, we �nd thatif u0 denotes the proje
tion of u0 on Pc(V ) then Γu0 ⊃ LΓ (c). It followsthat if y ∈ LΓ (c) is given, then there is a sequen
e {γn} ⊂ Γ su
h that γn.u0
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onverges to y. This implies that there is a sequen
e {pn} of integers su
hthat λpnγnu0 → y ∈ V \ {0}, whi
h implies
γnλ

pnu0 = γnγ
pnu0 → y.But γpnu0 ∈ Σ′ by (5.21). Thus y ∈ Σ′. Sin
e y was an arbitrary point from

LΓ (c) we 
on
lude that L̃Γ ⊂ Σ′ and (5.20) is proved.Clearly, Theorem 5.19 gives Theorem 1.2 of the Introdu
tion.Theorem 5.19 will be used below in the following spe
ial 
ase. In view ofRemark 2.1(ii) 
ondition (H0) is satis�ed in this 
ase.Corollary 5.22. Let Γ be a subsemigroup of Minv(d,Z), d > 1, satis-fying (H1) and (H2). Let Σ be a Γ -invariant subset of Ṽ \ {0} su
h that 0is a limit point of Σ. Then Σ ⊃ L̃Γ /{Id, σ}.Theorem 5.19 does not give information on a general Γ -orbit 
losure
Γv, v ∈ Ṽ \ {0}, if 0 is not a limit point. On the other hand, Theorem5.10 and its 
orollary des
ribe the behavior of a general Γ -orbit in Pc(V ).Using more pre
ise information on produ
ts of random matri
es, i.e. therenewal theorem as in [19℄ (see also [22℄), one 
an go further and des
ribethe behavior at in�nity of a general orbit Γv ⊂ Ṽ \ {0} as follows. For any
c, d (1 ≤ c < d) we denote by Ṽ[c,d] ⊂ Ṽ \ {0} the �c-shell� Pd−1 × [c, d],and by L̃Γ,c ⊂ Ṽc := Pd−1 × [1, c] the 
losed subset LΓ × [1, c]. Then by themethods of [7℄ and [19℄ we 
an obtain the followingTheorem 5.23. Assume that the semigroup Γ ⊂ GL(d,R), d > 1, sat-is�es (H0), (H1) and (H2). With the above notations, for any c > 1 and
v ∈ Ṽ \{0} every 
luster value of the family of 
losed sets c−t(Γv∩ Ṽ[ct,ct+1])
ontains L̃Γ,c.This 
an be interpreted as �thi
kness� at in�nity, in the dire
tion of L̃Γ ,of the orbit 
losure Γv ⊂ Ṽ .Theorems 5.19 and Corollary 5.22 
an also be dedu
ed from Theorem5.23.Remark 5.24. The 
on
lusions in statements 5.19 to 5.23 are also validif d = 1, if one supposes the semigroup Γ of R∗ to be non-la
unary. The 
or-responding aperiodi
ity 
ondition in the statements above is automati
allysatis�ed if d > 1, be
ause of Corollary 4.8.6. Proof of Theorem 1.1. In order to prove the theorem, we use ideasof [12℄ and [4℄. The �rst step is to prove that if Σ ⊂ Td is a 
losed Γ -invariantsubset that 
ontains 0 ∈ Td as a limit point, then Σ = Td. Here we suppose
Γ ⊂ Minv(d,Z) and we apply Corollary 5.22 to the inverse image p−1(Σ) of
Σ in Rd.
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ase, we suppose Σ to be in�nite and we 
onstru
t other
losely related 
losed Γ -invariant subsets of Td whi
h 
ontain 0. Then weuse the spe
ial 
ase above to get information on Σ and we 
on
lude that
Σ = Td.6.1. The 
ase when 0 is a limit point of Σ. The statement Σ = Tdwill hold by Corollary 5.22 applied to p−1(Σ) if we are able to see that L̃Γ
ontains at least one ray whi
h is not 
ontained in a rational subspa
e. Butthe set of rational subspa
es is 
ountable and, by Lemma 5.1, LΓ is not
ontained in a 
ountable union of subspa
es. The result follows.We 
an observe that the set L̃Γ is very large, sin
e it was proved in [6℄that LΓ has stri
tly positive Hausdor� dimension.6.2. The general 
ase. In order to show that the spe
ial 
ase above isthe only one, we make use of previous ideas from [12℄ and [4℄.If γ ∈ Minv(d,Z) and m ∈ N is �xed we write

γ ≡ Id (mod m) ⇔ γ − Id = mA,with A ∈ M(d,Z) := {d× d matri
es with integer entries}.For a �xed m ∈ N de�ne
Γ (m) = {γ ∈ Γ : γ ≡ Id (mod m)}.We observe that Γ a
ts naturally on the �nite set (Z/mZ)d. We denote by

γ 7→ γ the 
orresponding homomorphism of Γ into the semigroup Λm,d ofmaps of (Z/mZ)d into itself and we write
Γm = {γ ∈ Λm,d : γ ∈ Γ}.The proof depends on the followingLemma 6.1. Assume that Γ ⊂ Minv(d,Z) is �nitely generated and satis-�es (H1) and (H2). Let m be a prime number not dividing the elements ofthe multipli
ative semigroup {det γ : γ ∈ Γ}. Then Γ a
ts on (Z/mZ)d as agroup of permutations and the semigroup Γ (m) = {γ ∈ Γ : γ ≡ Id (mod m)}satis�es (H1) and (H2).Proof. Here Z/mZ is a �nite �eld and for γ ∈ Γ, γ is an endomorphismof the ve
tor spa
e (Z/mZ)d. Then det γ is the 
ongruen
e 
lass of det γin Z/mZ. Sin
e m is a prime number not dividing det γ, we 
on
lude that

det γ 6= 0, hen
e γ ∈ GL(d,Z/mZ). Thus Γm is a semigroup 
ontainedin the �nite group GL(d,Z/mZ); it follows that Γm is a group. We write
Γm = {ai : ai ∈ Γ, i = 1, . . . , q}, and we observe that the inverse of ai is ofthe form ai′ with ai′ ∈ Γ and 1 ≤ i′ ≤ q. Sin
e for every γ ∈ Γ, we have
γ = ai for some i, we get ai′γ = Id, ai′γ ∈ Γ (m).
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ondition (H1) is not satis�ed by Γ (m); then for some subspa
e
W ⊂ V, the orbit Γ (m)W is �nite, hen
e so is the set {ai′γW : ai′ ∈ Γm,
γ ∈ Γ, ai′γ = Id}. It follows that the set {γW : γ ∈ Γ} is �nite, and this
ontradi
ts 
ondition (H1) for Γ. Hen
e Γ (m) satis�es 
ondition (H1).Let γ ∈ Γ be a proximal element of Γ. Sin
e the group Γm is �nite, itfollows that for k = |Γm|, we have γk = Id, hen
e γk ∈ Γ (m). Clearly, γk isproximal.The following lemma will also be used. Its proof is analogous to the
lassi
al 
ase of one endomorphism of Td (see for example [2℄). In this lemma,the torus Td is endowed with its normalized Haar measure, whi
h is Γ -invariant.Lemma 6.2. Assume Γ ⊂ Minv(d,Z) and Σ ⊂ Td is measurable, has pos-itive measure and satis�es ΓΣ ⊂ Σ. If any 
hara
ter χ 6= Id has unbounded
Γ t-orbit , then Σ has measure 1; in parti
ular Γ is ergodi
 on Td.In order to prove Theorem 1.1, we 
an suppose Γ to be �nitely gener-ated. In fa
t, Proposition 2.6 implies that Γ 
ontains a �nitely generatedsemigroup Γ1 whi
h satis�es (H1) and (H2).Sin
e Σ is in�nite and 
losed, it 
ontains limit points. We have two 
ases.
Case 1: Some limit point of Σ is rational. So, let p/q be a limit pointof Σ. Then the set qΣ is Γ -invariant and has 0 as its limit point. Therefore,by 
onsiderations in Subse
tion 6.1 we �nd that qΣ = Td. Hen
e, Σ haspositive Haar measure (greater than (1/q)d). Sin
e Γ satis�es (H1) and, byRemark 2.1(ii), also (H0), we infer from Remark 2.1(iv) that Γ t satis�es

(H0), hen
e Lemma 6.2 allows us to 
on
lude that Σ has measure 1. Sin
e
Σ is 
losed, we have Σ = Td.

Case 2: Every limit point of Σ is irrational. Let Σa
 be the set oflimit points of Σ. For m �xed and prime not dividing the elements of the�nitely generated semigroup {det γ : γ ∈ Γ}, let Σ(m) ⊂ Σa
 be a minimal
Γ (m)-invariant set. Sin
e Σa
 
onsists of irrational points, Σ(m) is in�nite,hen
e 0 is a limit point of the 
losed Γ (m)-invariant subset Σ(m) − Σ(m).From Lemma 6.1 above and 
onsiderations in Subse
tion 6.1 we dedu
e that
Σ(m) − Σ(m) = Td. Therefore, for every r = (r1, . . . , rd) ∈ Zd there are xand y in Σ(m) su
h that

x− y = (r1/m, . . . , rd/m) = r/m.De�ne
Σ(m)
r = {x ∈ Σ(m) : ∃y ∈ Σ(m), x− y = r/m}.Clearly, Σ(m)

r is 
losed and non-empty. Sin
e r/m is �xed by Γ (m) it follows
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r is Γ (m)-invariant. Thus, by minimality of Σ(m) we get Σ(m) =

Σ
(m)
r . Therefore, for every m ∈ N, x ∈ Σ(m) and r ∈ Zd we have

x+ r/m = y ∈ Σ(m).Hen
e Σ(m) is invariant under translations in Td by r/m, r ∈ Zd. It followsthat Σ(m) is 1/m-dense, hen
e Σa
 is 1/m-dense for every prime m as above.We observe that the set of su
h primes is in�nite, thus 1/m 
an be 
hosenarbitrarily small. Sin
e Σa
 is 
losed we have Σa
 = Td, whi
h 
ontradi
tsthe hypothesis. Thus, only Case 1 is possible, and hen
e Σ = Td.
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