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Transplantation operators and Cesaro operators
for the Hankel transform

by

YuicHr KANJIN (Kanazawa)

Abstract. The transplantation operators for the Hankel transform are considered.
We prove that the transplantation operator maps an integrable function under certain
conditions to an integrable function. As an application, we obtain the L!-boundedness
and H!'-boundedness of Cesaro operators for the Hankel transform.

1. Introduction and results. The Hankel transform H, f of order p
of a function f on the open half line (0, 00) is defined by
o0

Huf(y) = | FOVYETu(yt)dt,  y >0,

0
where J, is the Bessel function of the first kind of order p. The Bessel
functions with y = —1/2 and p = 1/2 are J_;/5(2) = /2/(72)cos z and
J1/2(2) = \/2/(mz)sin z, and the Hankel transforms H_; o f and H, /o f are

the cosine and sine transforms:

27 27 L
H_1/2f(y) = \/;S f(t)cosytdt, Hipf(y) = \/;S f(t)sinyt dt.
0 0
It is known that for 4 > —1/2, ‘H,, is an isometry on L?(0,00) (Parseval’s

theorem for the Hankel transform) and H,H,, = I (the inversion formula for
the Hankel transform), where I is the identity operator and L?(0,cc) is the
Lebesgue space of functions on (0, 00) with || f]l2 = ({5 |f(x)]? dx)'/? < oo.
From now on, we let u, v > —1/2 unless otherwise stated explicitly. We put

1 T e dy
(1) Ti@)=—{fwdy, Sf) =1 f() Rl

0 T
Then T and S are bounded operators on L?(0,00) because of the Hardy
integral inequalities:
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T Pdx . ‘1 x)|Pdx
2 [T s < = f i
(3) | 1Sf(@)|%de < ¢ | |f(2)|? da,

0 0

where 1 < p < coand 1 < g < oo (cf. [3, Corollary 6.21]). For f € L?(0, c0),
its Hankel transform #,, f of order v is in L?(0, 00), and so TH,, f € L?(0, 00).
Let us define the function Cf € L?(0,00) so that its Hankel transform
H,u(C} f) of order p is TH, f, that is,
xT
Hu(CL ) () = % [Hof(t)dt, o> 0.
0
The objects of our study are the composition 7,7 = H;/H, and the opera-
tor C,; initially defined on L?(0,00). We call 7, the transplantation operator
for the Hankel transform from v to p, and C;; the Cesaro operator for the
Hankel transform with index (v, u).
Let Hg be the Hilbert transform of a function g on the line (—o0, 00):

1 t
Hg(z) = lim — S &dt, —00 <z < 00.
0—+0 T r—1
lx—t|>0

We denote by Rg the restriction of g to the half-open interval (0,00): Rg =
9l(0,5); and denote by ge, go the even and odd parts of g, that is, ge(r) =
(g(x) + g(—2))/2, go(z) = (g9(x) — g(—x))/2. We see that Hg, and H g, are
odd and even, respectively, and that for g € L?(—o0, c0),

—1/2 1/2
7,y (Rge) (@) + T{7,(Rgo) () (ae. 2> 0),

Hg(x) =
9t) T, (Rge) (=) + T'{7,(Rgo)(—x) (ae. & < 0),

and in particular Hge(z) = ’2'1721/2(Rge)(m) and Hgo(z) = T_%%(Rgo)(m) for
a.e. x > 0. Therefore, the transplantation operators 7;” are generalizations

of the Hilbert transform H. Hardy [11]| proved the following:
[A] (Hardy [11]). Suppose that

| l9(@)de <00, | |2 ldg(x)| < oc.

Then H g, is integrable, and Hge = (2/(w|x])) §; ge(t) dt+h with an integrable
function h.

In this paper, we shall extend this result to all the transplantation op-
erators '];j’, and as an application we shall obtain the L'-boundedness and
H'-boundedness of the Cesaro operators Cl’j.
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Historically, to get the Marcinkiewicz type multiplier theorem for the
Hankel transform, Guy [9] proved that the operators 7,7, initially defined
on L?(0,00), extend to bounded operators on the LP-spaces, 1 < p < oc.
His result is called the transplantation theorem for the Hankel transform,
and it is the first of the transplantation theorem for classical expansions.
Schindler [23]| showed a refined version of Guy’s result by getting an explicit
representation of 'ZL”. We recall it here for later convenience.

Let T}, , be the operator defined by
(4) Tuwf(@) = lim — \ ) uo(@,y) dy + k(p,v)f(2),

d—+40
|lx—y|>6

k(p,v) = cos((p — v)m/2),
where

= y\" 1 v—p ptv y?
(5) Im,,(m,y):KM,m/xy<;> F( 5 0 g ;1/+1;;>

22 — o2

vH1/2 f 1 _ 2
=27'K,, ¥ + FlY “’“_"’_V;,,le;y_ :
T\ x—y x+y 2 2 x?

o 2(utv+2)/2)
"= T+ DE((n—1)/2)

for 0 <y <z, and

I,U«,I/(xv y) = Il/,,u(y) 33)
for y > x > 0. Here, F(a, 3;7; z) is the hypergeometric function, that is,

F(a, B;7; 2) 22%&

k=0
where (Mo =1,(A)s =AA+1)---(A+k—1),k>1.
[B] (Schindler |23]).

(i) For f € C°(0,00), 7/ f(x) = Typ f(x) a.e. x > 0, where C°(0, 00)
18 the space of infinitely differentiable functions of compact support
in (0,00).

(i) Let 1 <p < oo and —1/p < a <1—1/p. If {7 | f(x)[Px? dx < oo,
then the value T, , f(x) exists for a.e. x > 0, and

|z] <1,

[ 1T f (@) P2 do < C § | f(2)P2" da,
0 0

with a constant C independent of f.

It follows from the theorem that 7 =T}, on L?(0,00), and so we also
call T}, , the transplantation operator for the Hankel transform from v to u.
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Our first theorem is stated in terms of 7}, , and will be proved in the next
section.

THEOREM 1. Let f be a function on (0,00) of bounded variation on every
interval [a,b] C (0,00). Put
oo

A=\ |f@)ldz, B= sup | zldf(z),
0 0<a<b<oo (a,b]

and suppose that A, B < oo, where S(a K |df (z)| is the Lebesque—Stieltjes in-
tegral with respect to the total variation |df| of the Lebesgue—Stieltjes measure

df gemerated by f modified so as to be right continuous.
(i) If u>—1/2 and v > —1/2, then T, f € L*(0,00) and

(6) \ | f (@)l de < C(A+ B)
0
with a positive constant C' depending only on p and v.
(i) If u > —1/2, then
K,y _12¢
Ty 1o f (@) = =2 f(8) dt + ()
0
for a.e. x > 0 with a function h € L'(0,00) satisfying (6) with h
instead of T}, , f.

There are transplantation theorems for other orthogonal expansions, e.g.,
Askey and Wainger [2], Askey [1], Gilbert [7], Muckenhoupt [22], Kanjin [12]
and Miyachi [19], [20]. The author [14] quite recently proved the transplan-
tation theorem for the Hankel transform on the real Hardy space, which will
be used in our consideration of the Cesaro operators C;;. Let us recall it here.

Let Hl(Ri) be the Hardy space on the upper half plane R%— ={z =
x +it; t > 0}, that is, the space of analytic functions F'(z) on Ri such that
HF”Hl(Ri) = sup;~q " |F(z+it)| dz < oo. The real Hardy space H'(R) is
the space of the boundary functions f(z) = RF(z) of the real parts RF(2)
of F € H'(R3) with the norm || f|| 1) = ||FHH1(R2+). Let H'(0,00) be the
space defined by

H'(0,00) = {h|(0,00) ; h € H'(R), supph C [0,00)},
where [0, 00) is the closed half line, and we endow the space with the norm
£t 0,00) = 1Pl zr1.(my, Where h € H'(R), supph C [0,00) and f = h(g,c0)-
We remark that H'(0,00) = {h|(o,cc) ; h € H'(R), even} and ¢1[|h[| g gy <
Il 1 0,00) < c2llPl| i1 ) With positive constants 1 and c2, where f = hl(g o)
and h € H'(R) is even. For this fact, see [4, Chapter III, Lemma 7.40].
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[C] (Kanjin [14]).
(i) Letp > —1/2 andv > —1/2. Then T, initially defined on H'(0, cc)
NL%(0,00), uniquely extends to a bounded operator on H'(0,00), still
denoted by T/, so that

177 fll 0,000 < Cll 1 0,00)
for f € H*(0,00) with a constant C depending only on p and v.

(ii) Ifu > —1/2, then 7;171/2 uniquely extends to a bounded operator from
H'(0,00) to L*(0,00), that is,

17,2 Fll 2 (0,00) < ClLF Il e (0,00
for f € HY(0,00) with a constant C depending only on p and v.

We now turn to our Cesaro operators C;;. Let Fg be the Fourier transform
of g: Fg(&) = (1/v2m) > g(t)e " dt, and F~'g be the inverse Fourier
transform: F~1g(¢) = (1/v2m) {*_ g(t)e'"® dt. The classical Cesaro operator

C is defined as follows:
Y

1
FCo)ly) = ) Fg()ds,  —o0 <y <o
0
One of the results on the operator C is the following:

[D] (Giang and Méricz [6]).

(i) The Cesaro operator C satisfies Cg(xz) = Sg(z) and Cg(—z) =
S(g(=))(x) for a.e. x> 0 and for all g € L*(—oc, 00). In particular,
C uniquely extends to a bounded operator on LP(—o00,00), 1 < p < c0.
(ii) C uniquely extends to a bounded operator on H'(R), and so does S.

It follows that Fg. and F~lg. are even, and Fg, and F~'g, are odd.
Further, we see that for g € L*(R), Fge(y) = H_12(Rge)(y), F 'ge(y) =

H_1/2(Rge)(y), Fgoly) = His2(Rgo)(y), and Flgo(y) = —Hy2(Rgo)(y)
for a.e. y > 0. The function (1/z) §; g(y) dy of x is even or odd for g even or
odd, respectively. It follows from these facts that for g € L?(R),

C ™15 (Rge) () + Cy)a(Rgo)(x)  (ae. @ >0),

Cqg(x) =
o CZ1)3(Rge)(—2) = €1/ (Rgo)(—z)  (ae. @ <0),

and in particular Cge(z) = C:ll//g(Rge)(x) and Cgo(z) = Ci//s(Rgo)(a:) for

a.e. x > 0. Thus, the Cesaro operators C;; for the Hankel transform are ge-
neralizations of the classical Cesaro operator C, and the two operators C:ll//g
and Cll//g which are equal to S are bounded on LP(0,00), 1 < p < oo, and
on H'(0,00) by [D]. This inspires us to investigate the boundedness of Cy.
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By Theorem 1, the following simple lemma combining the Cesaro operators
with the transplantation operators allows us to get our next theorem; their
proofs will be given in the next section.

LEMMA. Let pu,v > —1/2. Then C, = T!S on L*(0,00), where S is
defined in (1).

THEOREM 2.

(i) Letp > —1/2 andv > —1/2. If 1 < p < oo, then C,;, initially defined

on LP(0,00) N L?(0,00), uniquely extends to a bounded operator on

LP(0,00), still denoted by C,, so that

1€ fllze0.00) < ClIf Nl 2r(0,00)
for f € LP(0,00) with a constant C' depending only on p,v and p.
Further, Cy;, initially defined on H'(0,00) N L%(0,00), uniquely ex-
tends to a bounded operator on H'(0,00), that is,

1C fll 10,000 < Cllf I F1(0,00)
for f € HY(0,00) with a constant C' depending only on i and v.

(ii) Let p > —1/2. If 1 < p < oo, then C;1/2 uniquely extends to a
bounded operator on LP(0,00), that is,

1C 2 £l Lo (0,00) < ClF N Lo(0,00)

for f € LP(0,00) with a constant C depending only on p and p. In

the case p = 1, it follows that 0;1/2 uniquely extends to a bounded
operator from H'(0,00) to L'(0,00), that is,

1C 2 £l 11 (0,00) < CIF N1 (0,00)
for f € HY(0,00) with a constant C depending only on .

For related topics, see Goldberg [8], Georgakis [5], Moricz [21], Liflyand
and Moricz [17], and Kanjin [13].

Another motivation for studying the Cesaro operators C,; is the series
of results on the periodic case: Hardy [10] proved that if > °  a, cosnz is
the Fourier series of a function in LP(0,7), then so is > 7 ((Ta), cosnx
for 1 < p < oo, where (Ta)y = ag, (Ta), = (a1 + - + ap)/n, n =
1,2,..., and the same is true for sine series. These may correspond to

the boundedness of 6:11//3 and Cll//s Kinukawa and Igari [15] showed that

if >°>°, bysinnz is a Fourier series, then Y ° (Tb), cosnz is a Fourier

1/2
Y2 - Loo [18] re-
marked that > > (T'a),sinnz is not necessarily a Fourier series even if

Y o2 apcosnx is one, which may be the reason why we discuss the cases

series. This case may correspond to the boundedness of C
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v > —1/2 and v = —1/2 separately. Siskakis [24] obtained the same type of
theorem in the Hardy space H! of the unit disc.

2. Proofs. We shall first give a proof of Theorem 1, and then of the
Lemma. Lastly, we shall prove Theorem 2 by using Theorem 1 and the
Lemma.

Proof of Theorem 1. Let p,v > —1/2. We may suppose p # v. It is
enough to consider the part

lim | f(y)lu(2,y)dy
of the operator T}, ,, of (4). Suppose that

= S |f(x)|dx < oo, B= sup S z|df (z)] < 0.
0 0<a<b<oo (o

Let x > 0 and let § be an arbitrarily small positive number such that 0 <
0 < x/2. We divide the integral into three parts:
x/2 ()
0§ twhueydy={]+ |+ § Oy
0<|z—y| 0 0<|z—yl<z/2 3x/2
— L(z) + I5(z) + U(2), say.
We first estimate

, z/2 y v+1/2 1 1
L :27 K v - + F v 9 d 9
0=2"% 1 (1) (525 * i) Fuste w0

where we put

2

v—p ptv y
Fu,u(ﬂc,y)=F< 5 g ;V+1;§>

for simplicity. If 0 < y < x/2, then 1/(z —y) < 2/x, 1/(z +y) < 1/z and
|Fuu(z,y)| < C. This leads to

/2 v+1/2
c” Y
L < = Z dy.
Lol< SV (5) ol
Here and below, C' denotes a positive constant depending only on u and v
which may be different at different occurrences, even in the same chain of
inequalities.
We remark that
=\ (—) f(y)dy|d
T\

® | c | 7o)l

0
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where o > 0. For, by inverting the order of integration, we see that the
integral on the left-hand side is bounded by

| § et de | f(y)ly* dy,

0y
which is (1/a) {5 |f(y)| dy if @ > 0. By (8), L(x) is integrable and
(9) | 1L(z)|dz < CA

0
when > —1/2 and v > —1/2.
Let us discuss the case v = —1/2 for L(z). We write
/2 z/2

L) = 8,2 | o f )+ 8 | (2 = L) Rl f)
0 0
x/2
+ K, | (xiy - é)FH(w,y)f(y) dy

0
= Li(z) + La(z) + Ls(z), say,
where K, = K, _1/5/2 and F,(x,y) = F,, _12(%,y). Since [1/(z—y)—1/z| <
2y/2%, |1/ (z+y)—1/z| < y/x* and |F,(z,y)| < C for 0 < y < x/2, it follows
that
C xz/2 y
L@ + L@ < & § L sy
0

By (8) with @ = 1, we see that La(x) and L3(z) are integrable, and that
§o |Lj(2)|dz < CA, j = 2,3. We decompose Ly (z) as follows:

T x/2

L) = 250 fly)dy+ 2R )y + K2 | (Fuey) — 1)) dy
0 x/2 0
= 27” X f(y)dy + Li1(x) + Li2(z),  say.

It follows from |F),(z,y)—1| < C(y/x)? that {;” [Li2(2)| dz < CAby (8) with
a = 2. The estimate |Li1(x)| < 08272 |f(y)| dy/y implies §;° |L11(2)| dz <
C A. Therefore,

2

(10) L(z) f(y) dy + h(zx)

0

with some integrable function h satisfying {;° |h(z)| dz < CA when v = —1/2
and p > —1/2.
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We next estimate

Ule) = 2K,y | @HH/Q( Loy )Fy,u@,x)f(y)dy

302 \Y y—z y+uw

of (7) for p > —1/2 and v > —1/2. It follows that 1/(y — z) < 3/y,

1/(x+y) <1/yand |F,,(y,z)| < C for 3z/2 < y, which implies |U(z)| <
C 832/2 |f(y)|dy/y. This leads to integrability of U(x) and

(11) | [U(2)de < CA
0
for p > —1/2 and v > —1/2.
We now turn to estimating Is5(x) of (7). We put

F%,,(ZL‘, y) = 2_1KM,I/(y/$)V+1/2F}L,V(x7 y)

for 0 < y < x, and ﬁﬂyy(aj,y) = flw(y,m) for 0 < x < y, and then by the

definition of the kernel I, ,(z,y) we have
r—0 = 3.17/2 ~
Fup(z,y) B,y
12 )= | 0D gy g | Tl g,
a2 U Y oys I
x—6 =~ 35(3/2 =~

Fuu(z,y) Fup(z,y)
+ I§2 Mfo(y) dy + %Sm Myﬁf(y) dy

= Ij(2) + (@) + Ii(w) + I3(z),  say.
We first deal with I$(z) and I}(z). Since
: NIy —a-p)
Iim F(a,B;7v;2) =
A AR

for R(y—a—pF) > 016, (9.3.4)], it follows from v+1—(v—p)/2—(v+un)/2 =1
and p+1—(u—v)/2—(n+v)/2=1 that

2

F V_M,V+M;V+1;y— <C, O<y<ux,
2 2 x?

_ 2
r(E V,M——W;,u—i-l;x— <C, O<z<y.
2 2 Y2

We have |I*~ju7,,(:c,y)| < C for z,y > 0, which implies that the integrands
in I3(x) and I}(z) are bounded by Cf(y)/y. Therefore, the following limits
exist for every x > 0:
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T

lim 13y = | 222009 p) gy = Ba),  say,

§—+0 /2 T+y
3z/2 ~
: Fuo(z,y)
lim I4(z) = Zwvm J) dy = I*
Jim I3 () | o JWdy=1I(), sy,

and |IP(2)] < C'§ 75, |f(y)| dy/y and |[I*(z)| < C 7| f(y)| dy/y, which shows
that I3(x) and I*(x) are integrable functions and

(13) V(1 (@) + |14 (2)]) dz < CA
0
for p > —1/2 and v > —1/2.
We turn to estimating the sum Ij(z) 4+ I§(x) in (12). We put K], , =
2[(v — ) I((p—v)/2)T((v — p)/2)] 7t for p > —1/2 and v > —1/2. Then,
noting K}, , = —Kj, ,, we have

v,
B +B@ =k, | I a2 1 @ 1),
0<|z—y|<z/2
where
z—6 v+1/2 Fo(x
() = 27K, | ((E) - 1)M 1) dy.
AN T —y
3z/2 p+1/2
_ x F,u(z,
Bw =, | ((2) 7 -1) e ) a
wrs N y—z
iy fy)
I§2(aj) = S (Q_IK,u,VF,u,V(xzy) - KZL,I/) o dy,
T —y
x/2
3z/2
_ fly
I (z) = X (27 'K, Fy u(z,y) — K, ) " (_ L dy.
z+3

We shall show that the limit function
I9(z) = lim 1Y
(a) = Jim, 17(a)
exists and {° |1 (z)|dz < CA for i,j = 1,2. Let us estimate I{'(x). The
integrand in I}!(z) is estimated as follows:

v+1/2 F
<<g> B 1) #,y(fc,y)f(y)’ <c /()]
x T—y x
for 0 < y < x when y > —1/2 and v > —1/2. Here, we used the fact
|Fu(z,y)| < C for 0 <y < x and the simple inequalities 1 — u® < (1 —u)
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forO<u<lwhena>1l,andl—u*<1l—wufor0<u<1whenO<a<1.
Thus the limit I*!(z) exists for every x > 0, and

Y

x/2 v x/2 y
which leads to the integrability of I'!(z) and {;° [I'!(z)| dz < C'A for p >
—1/2 and v > —1/2.

For I}%(x), we use the following asymptotic formula [16, (9.7.5)]:
I'la+p+1)
I'a+1)I'(B+1)
—I(a+p+1) i (o + Dr(B+ 1
I'(a)I'(5) (k+1)k!

(14) Flo,fia+p+1;2) =

[Y(k+1)+ ¢k +2)

—Pla+k+1)—(B+Ek+1)—log(l—2)](1—2)",
lz—1] <1, |arg(l —2)| <7, n=0,1,2,..., a, 3 #0,—-1,-2,...,

where 1(z) = I''(2)/I'(z) is the logarithmic derivative of the gamma func-
tion. It is known that ¢¥(n+ 1) = —y + > 7, 1/k for n = 1,2,..., where
~ is Euler’s constant. We apply this formula to the term 2*1KH’VFH’V(x,y)
in I}%(x). Since a = (v — u)/2, B = (v + p)/2 and z = y?/2? in our case,
we see K/ s equal to the constant term of the asymptotic expansion of

8%
1.F(,M,,]?,W(bflJ°,y), and
2
Y
log(l — ?>'
T T

for 0 < y < x. Here, the following conditions must be satisfied:

a=w—-p)/2#0,-1,-2,..., B=w+pn)/2#0,-1,-2,....

Because of pu,v > —1/2 and p # v, the conditions above are equivalent to
v—pu# —2,—4,... and v+ pu # 0. But if v+ p = 0, then by the definition of
the hypergeometric functions F), , (x,y) is constantly 1, and 2~ KM v = K’
Thus, (15) holds trivially and so the integrand in I}?(z) is bounded by
Cllog(1—y/x)||f(y)|/x when p,v > —1/2 and v—p # —2,—4,. ... Consider
the integral

2
_ Yy
15) 2 K Falen) Kol < 1= 2

oolm
) ;)
0 0

10g<1 - %)’!f(y)\dydx,
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which is equal to

00 00 1 e’}
e log(l——) di | 7)) dy = | log(1 — D[t dt | |(y)|dy
0y 0 0
<C\Ifwldy.
0

This shows that the function |log(1—y/z)||f(y)|/x of y is integrable for a.e.
x > 0, and thus the limit I'?(z) exists for a.e. z > 0 and {° |[I'*(z)| dz < CA
where v — u # —2,— . Applying the same argument to I?'(z) and
I2%(x), we find that the hmlt functions I%/(z), j = 1,2, are integrable and
§o" [1%(2)|de < CAfor j =1,2 when p — v # —2,—4,.... Therefore,

(16)  tim () + B = Ky i | Dy,
0<|z—y|<z/2

with some integrable function h(x) satisfying §;* |h(z)| dz < CA provided
w—v#£ 2 +4,.

The condltlon B = SUP0<a<b<ooS z |df (z)] < oo implies the integra-
bility of the part lims_, ¢ S5<‘x_y‘<m/2 f( )/(z — y)dy in (16). The proof is

in [11, p. 2, lines 18-23|, but for the reader’s convenience we give it here. We
have

x/2 x/2
x—u)— fr+u du
T —y U U
0<|z—y|<z/2 0 0 (z—u,z+u]
which implies
z/2
du
P <] §
o<|z—yl<z/2 0 (z—u,z+u]
x/2
<{ | )! — =g(x), say.
0 (z—u,z+u)
The function g(x) is integrable. For, we have
z/2 z/2
du du
g@)="§ | —ldf)l+ § | —ldf(w)]
(z/2,z] T—w (z,3z/2] w—2
= | logg——df(w)
8 2|w — x| ’
(z/2,32/2)

and thus for 0 < @ < b < oo such that a is small enough and b is large
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enough, we have

b b

xr
Jo(@de=) | loggr—rldf(w)
a a(x/2,3z/2]

2w 2w b

e T T T T O O W 4 e T ]

2w — x|
(a/23a/2] @ (3a/2,b/2) 2w/3  (b/2,3b/2] 2w/3

2
< | log
2/3

dt | wldf(w)l.

t
21 — 1]
(a/2,3b/2)]

By the assumption S(a/273b/2} w|df (w)| < B and Sg/g log(t/(2|]1 — t|)) dt < oo,
we have {° g(x) dz < CB. Thus, lims_, ;g §6<|x—y\<x/2 f(y)/(x —y) dy exists
for a.e. z > 0, and the limit function, say fi(z), satisfies {;” | f1(z)|dz < CB.
This together with (13) and (16) implies that I(z) = lims_ o Is(z) exists
for a.e. z > 0 and

o0
(17) \ [I(z)|dz < C(A+ B)

0
if pv>—-1/2and v —p# £2,44,....

Let us summarize the results (9), (10), (11) and (17) that we have already

obtained: Suppose that

A= S |f(z)|de < 00, B= sup S x |df (z)| < oo.
0 0<a<b<oo 'y

Ifu—v+#+244,..., then

(18)  Jim - f(y) (. y) dy
6—+0
§<|z—y]
hl(.%‘) (,U, > _1/27 v> _1/2)7
0
for a.e. > 0, where hi(x) is an integrable function satisfying (17) with hy
instead of I, and similarly for hs.

We continue the proof of Theorem 1. Let us deal with the case p — v
= +2k for some positive integer k. Although the proof of this case is essen-
tially included in [23, Theorems 3 and 4|, we give it briefly. The representa-
tion (5) shows that for p =v +2k, k=1,2,...,
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LAy T2
~ 1 (Y 0
(19) Iy+2k,y($7?/) = X ]207j (m) ( <y< .fL‘),

0 0<z<y),
where 7; are constants and vy = 2I'(v + k + 1)/{I'(v + 1)I'(k)}, and for
p=v—2k k=1,2,...,
0 0<x<y),
)2(j—k)+1/+1/2

k—1
(20) Il/—2k‘,1/(aj7 y) = 1 Z ’Y;' (E
Y =0 Y

where 7} are constants (see [23, Section 5). Let 1 — v = —2k with a positive
integer k. We use the representation (20) to get

(0O<y<um),

N k=l 00y N 26—R) /2
Jin, § STy =Y 7§ 5 () 7o) dy
—+0 - Yy \Yy
o< |z—y] j=0 x
= hs(x), say,
for every x > 0. We note that
00|00 1/ o 00
- =) fly)dy de < ——\ |f(x)|dx
15(5) s < 5 Vs

for @ > —1, which is easily deduced by changing the order of integration.
This implies that {° |hs(z)|dz < CA. Suppose that y — v = 2k with a
positive integer k. The representation (19) leads to

2j+v+1/2
) f(y)dy

6——+0

k x
O dm | f@) sk y) dy = %5@
5<|z—y| j= 0

0
= h4(ZL‘), say.

If v >—1/2, then 2j + v+ 1/2 > 0 for j = 0,...,k — 1, and then the
inequality (8) implies that {;°|h4(z)|de < CA. Let us consider the case
v = —1/2. Every term with positive j on the right-hand side of (21) is
integrable by the same reason above. Thus, when y > —1/2, v = —1/2 and
p—v =2k k=1,2,..., by noting v0 = K, _1/» we have

xT

~ K, _
dm | f) D) dy = L2 1) dy+ hs(a),
d<|z—y| 0

where hs is some integrable function satisfying {° |hs(z)|dz < C'A. There-
fore, we see that (18) also holds for the case u — v = +2,+4,.... The proof
of Theorem 1 is complete.
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To get the boundedness of C/, we prove the Lemma which gives a relation
between 7, and C;.

Proof of Lemma. Let p,v > —1/2. We first show that TH,f = H,S.
Let f € L?(0,00) N L'(0,00). We note that H, f € L>(0,00). We have

THy, f(x) =

SN
O e 8B

1
Mo f(y) dy =\ Ho f (zu) du
0

f(s)vVzus J,(zus) ds du

) = O ey =
— 8 o

f(t/u)Vat J,(xt) dt %“.

=]
=]

The order of integration in the last iterated integral can be inverted since
100 du 100 du [e'¢)
V§ 17/t dy(at) de == < C V| f(tfu)] dt— = C | |f(y)]dy.
00 00 0
Here, we used the fact that |\/2.J,(2)| < C for z > 0. Thus, we have
ool
TH, f(x) = | | f(t/u) d—: Vat J, (xt) dt

00
00 00

= | Sf(y)%\/EJy(xt) dt = H,Sf(z).
0t

The operators T, S and H, are bounded on L%(0,00), and L2(0,00) N
L'(0,00) is dense in L?(0,00). This implies TH,, = H,,S on L?(0, c0).

Since ‘H,C;; = T'H, on L?(0,00) by the definition, it follows from the
inversion formula H,H, = I that C;; = H,T"H,, and hence the identity
TH, = H,S leads to CZ = H,H,S = ’ZL”S on L?(0,00), which completes
the proof of the Lemma.

Proof of Theorem 2. (i) Let u > —1/2 and v > —1/2. Suppose that
1 < p < oo. For f € LP(0,00) N L?(0,00), we infer by the Lemma and
Schindler’s representation that C, f(z) = T/Sf(z) = T,,Sf(x) for a.e.
x > 0. Thus, it follows from [B|(ii) and (3) that

”CZfHLP(O,oo) = HTM,VSfHLP(O,oo) < CHSfHLP(O,oo) < CHfHLP(O,oo)-
By the standard density argument, we complete the proof of the case 1 <
p < oo in part (i).
Let us treat the case p = 1. For f € L'(0,00) N L?(0,0), by the

same reason as above we have C f(z) = 7),,Sf(z) for a.e. x > 0. Since
(d/dx)Sf(z) = —f(x)/x for a.e. x > 0, it follows that z|d(Sf)(x)| = |f(z)|,
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and so Theorem 1(i) leads to

1CL A1 0,00) = N TS FllLr(0,00) < CUIS L1 (0,00) + 11 £1(0,00))
< Clfllz10,00)-
Therefore, C;; uniquely extends to a bounded operator on LY(0,00).
Let f € H'(0,00)NL*(0,00). By the Lemma, we have C}; f (z) = TS f ()
for a.e. z > 0. We know that S is a bounded operator on H'(0, 00). Thus, if
> —1/2 and v > —1/2, then [C](i) implies that

1CL 0,000 = 17 S FllEr(0,00) < CUSFllE (0,00) < ClF I E1(0,00)-
Then the density argument completes the proof of (i).

(ii) Let ¢ > —1/2 and 1 < p < oo. By the Lemma and Schindler’s
result, in the same way as in the case p > —1/2,v > —1/2 and 1 < p < ©

of part (i), we see that C;l/z uniquely extends to a bounded operator on
L?(0,00), and HC,:]-/QfHLp(O’OO) < O f]lfp(0,00)- For the case p =1, let f €
H'(0,00) N L?(0,00). By [C](ii) we have

1C 2 £l L1 0,000 = 1T 28 Fll110,00) < CUSFllar1(0,00) < ClLE a1 (0,00)-

The density argument allows us to get part (ii) of Theorem 2.
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