
STUDIA MATHEMATICA 174 (1) (2006)

Transplantation operators and Cesàro operatorsfor the Hankel transformby
Yuichi Kanjin (Kanazawa)Abstra
t. The transplantation operators for the Hankel transform are 
onsidered.We prove that the transplantation operator maps an integrable fun
tion under 
ertain
onditions to an integrable fun
tion. As an appli
ation, we obtain the L1-boundednessand H1-boundedness of Cesàro operators for the Hankel transform.1. Introdu
tion and results. The Hankel transform Hµf of order µof a fun
tion f on the open half line (0,∞) is de�ned by

Hµf(y) =

∞\
0

f(t)
√
yt Jµ(yt) dt, y > 0,where Jµ is the Bessel fun
tion of the �rst kind of order µ. The Besselfun
tions with µ = −1/2 and µ = 1/2 are J−1/2(z) =

√
2/(πz) cos z and

J1/2(z) =
√

2/(πz) sin z, and the Hankel transforms H−1/2f and H1/2f arethe 
osine and sine transforms:
H−1/2f(y) =

√
2

π

∞\
0

f(t) cos yt dt, H1/2f(y) =

√
2

π

∞\
0

f(t) sin yt dt.It is known that for µ ≥ −1/2, Hµ is an isometry on L2(0,∞) (Parseval'stheorem for the Hankel transform) and HµHµ = I (the inversion formula forthe Hankel transform), where I is the identity operator and L2(0,∞) is theLebesgue spa
e of fun
tions on (0,∞) with ‖f‖2 = (
T∞
0 |f(x)|2 dx)1/2 < ∞.From now on, we let µ, ν ≥ −1/2 unless otherwise stated expli
itly. We put(1) Tf(x) =

1

x

x\
0

f(y) dy, Sf(x) =

∞\
x

f(y)
dy

y
, x > 0.Then T and S are bounded operators on L2(0,∞) be
ause of the Hardyintegral inequalities:2000 Mathemati
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∞\
0

|Tf(x)|p dx ≤
(

p

p− 1

)p ∞\
0

|f(x)|p dx,(2)
∞\
0

|Sf(x)|q dx ≤ qq
∞\
0

|f(x)|q dx,(3)where 1 < p ≤ ∞ and 1 ≤ q <∞ (
f. [3, Corollary 6.21℄). For f ∈ L2(0,∞),its Hankel transformHνf of order ν is in L2(0,∞), and so THνf ∈ L2(0,∞).Let us de�ne the fun
tion Cν
µf ∈ L2(0,∞) so that its Hankel transform

Hµ(Cν
µf) of order µ is THνf , that is,

Hµ(Cν
µf)(x) =

1

x

x\
0

Hνf(t) dt, x > 0.The obje
ts of our study are the 
omposition T ν
µ = HµHν and the opera-tor Cν

µ initially de�ned on L2(0,∞). We 
all T ν
µ the transplantation operatorfor the Hankel transform from ν to µ, and Cν
µ the Cesàro operator for theHankel transform with index (ν, µ).Let Hg be the Hilbert transform of a fun
tion g on the line (−∞,∞):

Hg(x) = lim
δ→+0

1

π

\
|x−t|>δ

g(t)

x− t
dt, −∞ < x <∞.

We denote by Rg the restri
tion of g to the half-open interval (0,∞): Rg =
g|(0,∞), and denote by ge, go the even and odd parts of g, that is, ge(x) =
(g(x) + g(−x))/2, go(x) = (g(x)− g(−x))/2. We see that Hge and Hgo areodd and even, respe
tively, and that for g ∈ L2(−∞,∞),

Hg(x) =





T −1/2
1/2 (Rge)(x) + T 1/2

−1/2(Rgo)(x) (a.e. x > 0),

−T −1/2
1/2 (Rge)(−x) + T 1/2

−1/2(Rgo)(−x) (a.e. x < 0),and in parti
ular Hge(x) = T −1/2
1/2 (Rge)(x) and Hgo(x) = T 1/2

−1/2(Rgo)(x) fora.e. x > 0. Therefore, the transplantation operators T ν
µ are generalizationsof the Hilbert transform H. Hardy [11℄ proved the following:[A℄ (Hardy [11℄). Suppose that

∞\
−∞

|g(x)| dx <∞,

∞\
−∞

|x| |dg(x)| <∞.Then Hgo is integrable, and Hge = (2/(π|x|))
Tx
0 ge(t) dt+h with an integrablefun
tion h.In this paper, we shall extend this result to all the transplantation op-erators T ν

µ , and as an appli
ation we shall obtain the L1-boundedness and
H1-boundedness of the Cesàro operators Cν

µ.



Hankel transform 31Histori
ally, to get the Mar
inkiewi
z type multiplier theorem for theHankel transform, Guy [9℄ proved that the operators T ν
µ , initially de�nedon L2(0,∞), extend to bounded operators on the Lp-spa
es, 1 < p < ∞.His result is 
alled the transplantation theorem for the Hankel transform,and it is the �rst of the transplantation theorem for 
lassi
al expansions.S
hindler [23℄ showed a re�ned version of Guy's result by getting an expli
itrepresentation of T ν

µ . We re
all it here for later 
onvenien
e.Let Tµ,ν be the operator de�ned by
Tµ,νf(x) = lim

δ→+0

\
|x−y|>δ

f(y)Ĩµ,ν(x, y) dy + k(µ, ν)f(x),(4)
k(µ, ν) = cos((µ− ν)π/2),where

(5) Ĩµ,ν(x, y) = Kµ,ν
√
xy

(
y

x

)ν 1

x2 − y2
F

(
ν − µ

2
,
µ+ ν

2
; ν + 1;

y2

x2

)

= 2−1Kµ,ν

(
y

x

)ν+1/2( 1

x− y
+

1

x+ y

)
F

(
ν − µ

2
,
µ+ ν

2
; ν + 1;

y2

x2

)
,

Kµ,ν =
2Γ ((µ+ ν + 2)/2)

Γ (ν + 1)Γ ((µ− ν)/2)for 0 < y < x, and
Ĩµ,ν(x, y) = Ĩν,µ(y, x)for y > x > 0. Here, F (α, β; γ; z) is the hypergeometri
 fun
tion, that is,

F (α, β; γ; z) =

∞∑

k=0

(α)k(β)k

(γ)kk!
zk, |z| < 1,where (λ)0 = 1, (λ)k = λ(λ+ 1) · · · (λ+ k − 1), k ≥ 1.[B℄ (S
hindler [23℄).(i) For f ∈ C∞

c (0,∞), T ν
µ f(x) = Tµ,νf(x) a.e. x > 0, where C∞

c (0,∞)is the spa
e of in�nitely di�erentiable fun
tions of 
ompa
t supportin (0,∞).(ii) Let 1 < p < ∞ and −1/p < α < 1 − 1/p. If T∞0 |f(x)|pxαp dx < ∞,then the value Tµ,νf(x) exists for a.e. x > 0, and
∞\
0

|Tµ,νf(x)|pxαp dx ≤ C

∞\
0

|f(x)|pxαp dx,with a 
onstant C independent of f .It follows from the theorem that T ν
µ = Tµ,ν on L2(0,∞), and so we also
all Tµ,ν the transplantation operator for the Hankel transform from ν to µ.



32 Y. KanjinOur �rst theorem is stated in terms of Tµ,ν and will be proved in the nextse
tion.Theorem 1. Let f be a fun
tion on (0,∞) of bounded variation on everyinterval [a, b] ⊂ (0,∞). Put
A =

∞\
0

|f(x)| dx, B = sup
0<a<b<∞

\
(a,b]

x |df(x)|,

and suppose that A,B <∞, where T(a,b] x |df(x)| is the Lebesgue�Stieltjes in-tegral with respe
t to the total variation |df | of the Lebesgue�Stieltjes measure
df generated by f modi�ed so as to be right 
ontinuous.(i) If µ ≥ −1/2 and ν > −1/2, then Tµ,νf ∈ L1(0,∞) and(6) ∞\

0

|Tµ,νf(x)| dx ≤ C(A+B)with a positive 
onstant C depending only on µ and ν.(ii) If µ ≥ −1/2, then
Tµ,−1/2f(x) =

Kµ,−1/2

x

x\
0

f(t) dt+ h(x)for a.e. x > 0 with a fun
tion h ∈ L1(0,∞) satisfying (6) with hinstead of Tµ,νf .There are transplantation theorems for other orthogonal expansions, e.g.,Askey and Wainger [2℄, Askey [1℄, Gilbert [7℄, Mu
kenhoupt [22℄, Kanjin [12℄and Miya
hi [19℄, [20℄. The author [14℄ quite re
ently proved the transplan-tation theorem for the Hankel transform on the real Hardy spa
e, whi
h willbe used in our 
onsideration of the Cesàro operators Cν
µ. Let us re
all it here.Let H1(R2

+) be the Hardy spa
e on the upper half plane R
2
+ = {z =

x+ it ; t > 0}, that is, the spa
e of analyti
 fun
tions F (z) on R
2
+ su
h that

‖F‖H1(R2
+

) = supt>0

T∞
−∞ |F (x+ it)| dx <∞. The real Hardy spa
e H1(R) isthe spa
e of the boundary fun
tions f(x) = ℜF (x) of the real parts ℜF (z)of F ∈ H1(R2

+) with the norm ‖f‖H1(R) = ‖F‖H1(R2
+

). Let H1(0,∞) be thespa
e de�ned by
H1(0,∞) = {h|(0,∞) ; h ∈ H1(R), supph ⊂ [0,∞)},where [0,∞) is the 
losed half line, and we endow the spa
e with the norm

‖f‖H1(0,∞) = ‖h‖H1(R), where h ∈ H1(R), supph ⊂ [0,∞) and f = h|(0,∞).We remark that H1(0,∞) = {h|(0,∞) ; h ∈ H1(R), even} and c1‖h‖H1(R) ≤
‖f‖H1(0,∞) ≤ c2‖h‖H1(R) with positive 
onstants c1 and c2, where f = h|(0,∞)and h ∈ H1(R) is even. For this fa
t, see [4, Chapter III, Lemma 7.40℄.



Hankel transform 33[C℄ (Kanjin [14℄).(i) Let µ ≥ −1/2 and ν > −1/2. Then T ν
µ , initially de�ned on H1(0,∞)

∩L2(0,∞), uniquely extends to a bounded operator on H1(0,∞), stilldenoted by T ν
µ , so that

‖T ν
µ f‖H1(0,∞) ≤ C‖f‖H1(0,∞)for f ∈ H1(0,∞) with a 
onstant C depending only on µ and ν.(ii) If µ ≥ −1/2, then T −1/2

µ uniquely extends to a bounded operator from
H1(0,∞) to L1(0,∞), that is,

‖T −1/2
µ f‖L1(0,∞) ≤ C‖f‖H1(0,∞)for f ∈ H1(0,∞) with a 
onstant C depending only on µ and ν.We now turn to our Cesàro operators Cν

µ. Let Fg be the Fourier transformof g: Fg(ξ) = (1/
√

2π)
T∞
−∞ g(t)e−itξ dt, and F−1g be the inverse Fouriertransform: F−1g(ξ) = (1/
√

2π)
T∞
−∞ g(t)eitξ dt. The 
lassi
al Cesàro operator

C is de�ned as follows:
F(Cg)(y) =

1

y

y\
0

Fg(ξ) dξ, −∞ < y <∞.One of the results on the operator C is the following:[D℄ (Giang and Móri
z [6℄).(i) The Cesàro operator C satis�es Cg(x) = Sg(x) and Cg(−x) =
S(g(−·))(x) for a.e. x > 0 and for all g ∈ L2(−∞,∞). In parti
ular,
C uniquely extends to a bounded operator on Lp(−∞,∞), 1 ≤ p <∞.(ii) C uniquely extends to a bounded operator on H1(R), and so does S.It follows that Fge and F−1ge are even, and Fgo and F−1go are odd.Further, we see that for g ∈ L2(R), Fge(y) = H−1/2(Rge)(y), F−1ge(y) =

H−1/2(Rge)(y), Fgo(y) = H1/2(Rgo)(y), and F−1go(y) = −H1/2(Rgo)(y)for a.e. y > 0. The fun
tion (1/x)
Tx
0 g(y) dy of x is even or odd for g even orodd, respe
tively. It follows from these fa
ts that for g ∈ L2(R),

Cg(x) =





C−1/2
−1/2(Rge)(x) + C1/2

1/2(Rgo)(x) (a.e. x > 0),
C−1/2
−1/2(Rge)(−x) − C1/2

1/2(Rgo)(−x) (a.e. x < 0),and in parti
ular Cge(x) = C−1/2
−1/2(Rge)(x) and Cgo(x) = C1/2

1/2(Rgo)(x) fora.e. x > 0. Thus, the Cesàro operators Cν
µ for the Hankel transform are ge-neralizations of the 
lassi
al Cesàro operator C, and the two operators C−1/2

−1/2and C1/2
1/2 whi
h are equal to S are bounded on Lp(0,∞), 1 ≤ p < ∞, andon H1(0,∞) by [D℄. This inspires us to investigate the boundedness of Cν

µ.



34 Y. KanjinBy Theorem 1, the following simple lemma 
ombining the Cesàro operatorswith the transplantation operators allows us to get our next theorem; theirproofs will be given in the next se
tion.Lemma. Let µ, ν ≥ −1/2. Then Cν
µ = T ν

µ S on L2(0,∞), where S isde�ned in (1).Theorem 2.(i) Let µ ≥ −1/2 and ν > −1/2. If 1 ≤ p <∞, then Cν
µ, initially de�nedon Lp(0,∞) ∩ L2(0,∞), uniquely extends to a bounded operator on

Lp(0,∞), still denoted by Cν
µ, so that

‖Cν
µf‖Lp(0,∞) ≤ C‖f‖Lp(0,∞)for f ∈ Lp(0,∞) with a 
onstant C depending only on µ, ν and p.Further , Cν

µ, initially de�ned on H1(0,∞) ∩ L2(0,∞), uniquely ex-tends to a bounded operator on H1(0,∞), that is,
‖Cν

µf‖H1(0,∞) ≤ C‖f‖H1(0,∞)for f ∈ H1(0,∞) with a 
onstant C depending only on µ and ν.(ii) Let µ ≥ −1/2. If 1 < p < ∞, then C−1/2
µ uniquely extends to abounded operator on Lp(0,∞), that is,

‖C−1/2
µ f‖Lp(0,∞) ≤ C‖f‖Lp(0,∞)for f ∈ Lp(0,∞) with a 
onstant C depending only on µ and p. Inthe 
ase p = 1, it follows that C−1/2

µ uniquely extends to a boundedoperator from H1(0,∞) to L1(0,∞), that is,
‖C−1/2

µ f‖L1(0,∞) ≤ C‖f‖H1(0,∞)for f ∈ H1(0,∞) with a 
onstant C depending only on µ.For related topi
s, see Goldberg [8℄, Georgakis [5℄, Móri
z [21℄, Li�yandand Móri
z [17℄, and Kanjin [13℄.Another motivation for studying the Cesàro operators Cν
µ is the seriesof results on the periodi
 
ase: Hardy [10℄ proved that if ∑∞

n=0 an cosnx isthe Fourier series of a fun
tion in Lp(0, π), then so is ∑∞
n=0(Ta)n cosnxfor 1 ≤ p < ∞, where (Ta)0 = a0, (Ta)n = (a1 + · · · + an)/n, n =

1, 2, . . . , and the same is true for sine series. These may 
orrespond tothe boundedness of C−1/2
−1/2 and C1/2

1/2 . Kinukawa and Igari [15℄ showed thatif ∑∞
n=1 bn sinnx is a Fourier series, then ∑∞

n=1(Tb)n cosnx is a Fourierseries. This 
ase may 
orrespond to the boundedness of C1/2
−1/2

. Loo [18℄ re-marked that ∑∞
n=1(Ta)n sinnx is not ne
essarily a Fourier series even if∑∞

n=1 an cosnx is one, whi
h may be the reason why we dis
uss the 
ases
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ν > −1/2 and ν = −1/2 separately. Siskakis [24℄ obtained the same type oftheorem in the Hardy spa
e H1 of the unit dis
.2. Proofs. We shall �rst give a proof of Theorem 1, and then of theLemma. Lastly, we shall prove Theorem 2 by using Theorem 1 and theLemma.Proof of Theorem 1. Let µ, ν ≥ −1/2. We may suppose µ 6= ν. It isenough to 
onsider the part

lim
δ→+0

\
δ<|x−y|

f(y)Ĩµ,ν(x, y) dyof the operator Tµ,ν of (4). Suppose that
A =

∞\
0

|f(x)| dx <∞, B = sup
0<a<b<∞

\
(a,b]

x |df(x)| <∞.

Let x > 0 and let δ be an arbitrarily small positive number su
h that 0 <
δ < x/2. We divide the integral into three parts:\

δ<|x−y|

f(y)Ĩµ,ν(x, y) dy =
{x/2\

0

+
\

δ<|x−y|<x/2

+

∞\
3x/2

}
f(y)Ĩµ,ν(x, y) dy(7)

= L(x) + Iδ(x) + U(x), say.We �rst estimate
L(x) = 2−1Kµ,ν

x/2\
0

(
y

x

)ν+1/2( 1

x− y
+

1

x+ y

)
Fµ,ν(x, y)f(y) dy,where we put

Fµ,ν(x, y) = F

(
ν − µ

2
,
µ+ ν

2
; ν + 1;

y2

x2

)

for simpli
ity. If 0 < y < x/2, then 1/(x − y) ≤ 2/x, 1/(x + y) ≤ 1/x and
|Fµ,ν(x, y)| ≤ C. This leads to

|L(x)| ≤ C

x

x/2\
0

(
y

x

)ν+1/2

|f(y)| dy.Here and below, C denotes a positive 
onstant depending only on µ and νwhi
h may be di�erent at di�erent o

urren
es, even in the same 
hain ofinequalities.We remark that(8) ∞\
0

∣∣∣∣
1

x

x\
0

(
y

x

)α

f(y) dy

∣∣∣∣ dx ≤ 1

α

∞\
0

|f(x)| dx,



36 Y. Kanjinwhere α > 0. For, by inverting the order of integration, we see that theintegral on the left-hand side is bounded by
∞\
0

∞\
y

x−(α+1) dx |f(y)|yα dy,whi
h is (1/α)
T∞
0 |f(y)| dy if α > 0. By (8), L(x) is integrable and(9) ∞\

0

|L(x)| dx ≤ CAwhen µ ≥ −1/2 and ν > −1/2.Let us dis
uss the 
ase ν = −1/2 for L(x). We write
L(x) = Kµ

2

x

x/2\
0

Fµ(x, y)f(y) dy +Kµ

x/2\
0

(
1

x− y
− 1

x

)
Fµ(x, y)f(y) dy

+Kµ

x/2\
0

(
1

x+ y
− 1

x

)
Fµ(x, y)f(y) dy

= L1(x) + L2(x) + L3(x), say,whereKµ = Kµ,−1/2/2 and Fµ(x, y) = Fµ,−1/2(x, y). Sin
e |1/(x−y)−1/x| ≤
2y/x2, |1/(x+y)−1/x| ≤ y/x2 and |Fµ(x, y)| ≤ C for 0 < y < x/2, it followsthat

|L2(x)| + |L3(x)| ≤
C

x

x/2\
0

y

x
|f(y)| dy.By (8) with α = 1, we see that L2(x) and L3(x) are integrable, and thatT∞

0 |Lj(x)| dx ≤ CA, j = 2, 3. We de
ompose L1(x) as follows:
L1(x) =

2Kµ

x

x\
0

f(y) dy +
−2Kµ

x

x\
x/2

f(y) dy +Kµ
2

x

x/2\
0

(Fµ(x, y) − 1)f(y) dy

=
2Kµ

x

x\
0

f(y) dy + L11(x) + L12(x), say.It follows from |Fµ(x, y)−1| ≤ C(y/x)2 that T∞0 |L12(x)| dx ≤ CA by (8) with
α = 2. The estimate |L11(x)| ≤ C

T∞
x/2 |f(y)| dy/y implies T∞0 |L11(x)| dx ≤

CA. Therefore,(10) L(x) =
2Kµ

x

x\
0

f(y) dy + h(x)with some integrable fun
tion h satisfying T∞0 |h(x)| dx ≤ CA when ν = −1/2and µ ≥ −1/2.
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U(x) = 2−1Kν,µ

∞\
3x/2

(
x

y

)µ+1/2( 1

y − x
+

1

y + x

)
Fν,µ(y, x)f(y) dy

of (7) for µ ≥ −1/2 and ν ≥ −1/2. It follows that 1/(y − x) ≤ 3/y,
1/(x + y) ≤ 1/y and |Fν,µ(y, x)| ≤ C for 3x/2 < y, whi
h implies |U(x)| ≤
C
T∞
3x/2 |f(y)| dy/y. This leads to integrability of U(x) and

(11) ∞\
0

|U(x)| dx ≤ CA

for µ ≥ −1/2 and ν ≥ −1/2.We now turn to estimating Iδ(x) of (7). We put
F̃µ,ν(x, y) = 2−1Kµ,ν(y/x)

ν+1/2Fµ,ν(x, y)for 0 < y < x, and F̃µ,ν(x, y) = F̃ν,µ(y, x) for 0 < x < y, and then by thede�nition of the kernel Ĩµ,ν(x, y) we have
Iδ(x) =

x−δ\
x/2

F̃µ,ν(x, y)

x− y
f(y) dy +

3x/2\
x+δ

F̃µ,ν(x, y)

y − x
f(y) dy(12)

+

x−δ\
x/2

F̃µ,ν(x, y)

x+ y
f(y) dy +

3x/2\
x+δ

F̃µ,ν(x, y)

y + x
f(y) dy

= I1
δ (x) + I2

δ (x) + I3
δ (x) + I4

δ (x), say.We �rst deal with I3
δ (x) and I4

δ (x). Sin
e
lim

z→1−
F (α, β; γ; z) =

Γ (γ)Γ (γ − α− β)

Γ (γ − α)Γ (γ − β)for ℜ(γ−α−β) > 0 [16, (9.3.4)℄, it follows from ν+1−(ν−µ)/2−(ν+µ)/2 = 1and µ+ 1 − (µ− ν)/2 − (µ+ ν)/2 = 1 that
∣∣∣∣F

(
ν − µ

2
,
ν + µ

2
; ν + 1;

y2

x2

)∣∣∣∣ ≤ C, 0 < y < x,

∣∣∣∣F
(
µ− ν

2
,
µ+ ν

2
;µ+ 1;

x2

y2

)∣∣∣∣ ≤ C, 0 < x < y.We have |F̃µ,ν(x, y)| ≤ C for x, y > 0, whi
h implies that the integrandsin I3
δ (x) and I4

δ (x) are bounded by Cf(y)/y. Therefore, the following limitsexist for every x > 0:
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lim

δ→+0
I3
δ (x) =

x\
x/2

F̃µ,ν(x, y)

x+ y
f(y) dy = I3(x), say,

lim
δ→+0

I4
δ (x) =

3x/2\
x

F̃µ,ν(x, y)

y + x
f(y) dy = I4(x), say,and |I3(x)| ≤ C

T∞
x/2 |f(y)| dy/y and |I4(x)| ≤ C

T∞
x |f(y)| dy/y, whi
h showsthat I3(x) and I4(x) are integrable fun
tions and(13) ∞\

0

(|I3(x)| + |I4(x)|) dx ≤ CAfor µ ≥ −1/2 and ν ≥ −1/2.We turn to estimating the sum I1
δ (x) + I2

δ (x) in (12). We put K ′
µ,ν =

2[(ν − µ)Γ ((µ − ν)/2)Γ ((ν − µ)/2)]−1 for µ ≥ −1/2 and ν ≥ −1/2. Then,noting K ′
µ,ν = −K ′

ν,µ, we have
I1
δ (x)+I2

δ (x) = K ′
µ,ν

\
δ<|x−y|<x/2

f(y)

x− y
dy+I11

δ (x)+I12
δ (x)+I21

δ (x)+I22
δ (x),where

I11
δ (x) = 2−1Kµ,ν

x−δ\
x/2

((
y

x

)ν+1/2

− 1

)
Fµ,ν(x, y)

x− y
f(y) dy,

I21
δ (x) = 2−1Kν,µ

3x/2\
x+δ

((
x

y

)µ+1/2

− 1

)
Fν,µ(x, y)

y − x
f(y) dy,

I12
δ (x) =

x−δ\
x/2

(2−1Kµ,νFµ,ν(x, y) −K ′
µ,ν)

f(y)

x− y
dy,

I22
δ (x) =

3x/2\
x+δ

(2−1Kν,µFν,µ(x, y) −K ′
ν,µ)

f(y)

y − x
dy.We shall show that the limit fun
tion

Iij(x) = lim
δ→+0

Iij
δ (x)exists and T∞0 |Iij(x)| dx ≤ CA for i, j = 1, 2. Let us estimate I11

δ (x). Theintegrand in I11
δ (x) is estimated as follows:
∣∣∣∣
((

y

x

)ν+1/2

− 1

)
Fµ,ν(x, y)

x− y
f(y)

∣∣∣∣ ≤ C
|f(y)|
xfor 0 < y < x when µ ≥ −1/2 and ν ≥ −1/2. Here, we used the fa
t

|Fµ,ν(x, y)| ≤ C for 0 < y < x and the simple inequalities 1− uα ≤ α(1− u)



Hankel transform 39for 0 < u < 1 when α ≥ 1, and 1−uα ≤ 1−u for 0 < u < 1 when 0 < α < 1.Thus the limit I11(x) exists for every x > 0, and
|I11(x)| ≤ C

x\
x/2

|f(y)|
x

dy ≤ C

∞\
x/2

|f(y)|
y

dy,

whi
h leads to the integrability of I11(x) and T∞0 |I11(x)| dx ≤ CA for µ ≥
−1/2 and ν ≥ −1/2.For I12

δ (x), we use the following asymptoti
 formula [16, (9.7.5)℄:
(14) F (α, β;α+ β + 1; z) =

Γ (α+ β + 1)

Γ (α+ 1)Γ (β + 1)

+
−Γ (α+ β + 1)

Γ (α)Γ (β)

∞∑

k=0

(α+ 1)k(β + 1)k

(k + 1)!k!
[ψ(k + 1) + ψ(k + 2)

− ψ(α+ k + 1) − ψ(β + k + 1) − log(1 − z)](1 − z)k+1,

|z − 1| < 1, |arg(1 − z)| < π, n = 0, 1, 2, . . . , α, β 6= 0,−1,−2, . . . ,where ψ(z) = Γ ′(z)/Γ (z) is the logarithmi
 derivative of the gamma fun
-tion. It is known that ψ(n + 1) = −γ +
∑n

k=1 1/k for n = 1, 2, . . . , where
γ is Euler's 
onstant. We apply this formula to the term 2−1Kµ,νFµ,ν(x, y)in I12

δ (x). Sin
e α = (ν − µ)/2, β = (ν + µ)/2 and z = y2/x2 in our 
ase,we see K ′
µ,ν is equal to the 
onstant term of the asymptoti
 expansion of

2−1Kµ,νFµ,ν(x, y), and
|2−1Kµ,νFµ,ν(x, y) −K ′

µ,ν | ≤ C

∣∣∣∣1 − y2

x2

∣∣∣∣
∣∣∣∣log

(
1 − y2

x2

)∣∣∣∣(15)
≤ C

|x− y|
x

∣∣∣∣log

(
1 − y

x

)∣∣∣∣for 0 < y < x. Here, the following 
onditions must be satis�ed:
α = (ν − µ)/2 6= 0,−1,−2, . . . , β = (ν + µ)/2 6= 0,−1,−2, . . . .Be
ause of µ, ν ≥ −1/2 and µ 6= ν, the 
onditions above are equivalent to

ν−µ 6= −2,−4, . . . and ν+µ 6= 0. But if ν+µ = 0, then by the de�nition ofthe hypergeometri
 fun
tions Fµ,ν(x, y) is 
onstantly 1, and 2−1Kµ,ν = K ′
µ,ν .Thus, (15) holds trivially and so the integrand in I12

δ (x) is bounded by
C|log(1−y/x)| |f(y)|/x when µ, ν ≥ −1/2 and ν−µ 6= −2,−4, . . . . Considerthe integral

∞\
0

1

x

x\
0

∣∣∣∣log

(
1 − y

x

)∣∣∣∣|f(y)| dy dx,
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h is equal to
∞\
0

∞\
y

1

x

∣∣∣∣log

(
1 − y

x

)∣∣∣∣ dx |f(y)| dy =

1\
0

|log(1 − t)|t dt
∞\
0

|f(y)| dy

≤ C

∞\
0

|f(y)| dy.This shows that the fun
tion |log(1−y/x)| |f(y)|/x of y is integrable for a.e.
x > 0, and thus the limit I12(x) exists for a.e. x > 0 and T∞0 |I12(x)| dx ≤ CAwhere ν − µ 6= −2,−4, . . . . Applying the same argument to I21

δ (x) and
I22
δ (x), we �nd that the limit fun
tions I2j(x), j = 1, 2, are integrable andT∞
0 |I2j(x)| dx ≤ CA for j = 1, 2 when µ− ν 6= −2,−4, . . . . Therefore,(16) lim

δ→+0
(I1

δ (x) + I2
δ (x)) = K ′

µ,ν lim
δ→+0

\
δ<|x−y|<x/2

f(y)

x− y
dy + h(x),

with some integrable fun
tion h(x) satisfying T∞0 |h(x)| dx ≤ CA provided
µ− ν 6= ±2,±4, . . . .The 
ondition B = sup0<a<b<∞

T
(a,b] x |df(x)| < ∞ implies the integra-bility of the part limδ→+0

T
δ<|x−y|<x/2 f(y)/(x− y) dy in (16). The proof isin [11, p. 2, lines 18�23℄, but for the reader's 
onvenien
e we give it here. Wehave\

δ<|x−y|<x/2

f(y)

x− y
dy =

x/2\
δ

f(x− u) − f(x+ u)

u
du = −

x/2\
δ

\
(x−u,x+u]

df(w)
du

u
,

whi
h implies
∣∣∣∣

\
δ<|x−y|<x/2

f(y)

x− y
dy

∣∣∣∣ ≤
x/2\
δ

\
(x−u,x+u]

|df(w)| du
u

≤
x/2\
0

\
(x−u,x+u]

|df(w)| du
u

= g(x), say.
The fun
tion g(x) is integrable. For, we have

g(x) =
\

(x/2,x]

x/2\
x−w

du

u
|df(w)|+

\
(x,3x/2]

x/2\
w−x

du

u
|df(w)|

=
\

(x/2,3x/2]

log
x

2|w − x| |df(w)|,

and thus for 0 < a < b < ∞ su
h that a is small enough and b is large



Hankel transform 41enough, we have
b\
a

g(x) dx =

b\
a

\
(x/2,3x/2]

log
x

2|w − x| |df(w)|

=
{ \

(a/2,3a/2]

2w\
a

+
\

(3a/2,b/2]

2w\
2w/3

+
\

(b/2,3b/2]

b\
2w/3

}
log

x

2|w−x| dx |df(w)|

≤
2\

2/3

log
t

2|1 − t| dt
\

(a/2,3b/2]

w |df(w)|.

By the assumption T(a/2,3b/2]w |df(w)|≤B and T22/3 log(t/(2|1 − t|)) dt<∞,we have T∞0 g(x) dx ≤ CB. Thus, limδ→+0

T
δ<|x−y|<x/2 f(y)/(x− y) dy existsfor a.e. x > 0, and the limit fun
tion, say f1(x), satis�es T∞0 |f1(x)| dx ≤ CB.This together with (13) and (16) implies that I(x) = limδ→+0 Iδ(x) existsfor a.e. x > 0 and(17) ∞\

0

|I(x)| dx ≤ C(A+B)

if µ, ν ≥ −1/2 and ν − µ 6= ±2,±4, . . . .Let us summarize the results (9), (10), (11) and (17) that we have alreadyobtained: Suppose that
A =

∞\
0

|f(x)| dx <∞, B = sup
0<a<b<∞

\
(a,b]

x |df(x)| <∞.

If µ− ν 6= ±2,±4, . . . , then
(18) lim

δ→+0

\
δ<|x−y|

f(y)Ĩµ,ν(x, y) dy

=





h1(x) (µ ≥ −1/2, ν > −1/2),

Kµ,−1/2

x

x\
0

f(y) dy + h2(x) (µ ≥ −1/2, ν = −1/2),

for a.e. x > 0, where h1(x) is an integrable fun
tion satisfying (17) with h1instead of I, and similarly for h2.We 
ontinue the proof of Theorem 1. Let us deal with the 
ase µ − ν
= ±2k for some positive integer k. Although the proof of this 
ase is essen-tially in
luded in [23, Theorems 3 and 4℄, we give it brie�y. The representa-tion (5) shows that for µ = ν + 2k, k = 1, 2, . . . ,
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(19) Ĩν+2k,ν(x, y) =





1

x

k−1∑

j=0

γj

(
y

x

)2j+ν+1/2

(0 < y < x),

0 (0 < x < y),where γj are 
onstants and γ0 = 2Γ (ν + k + 1)/{Γ (ν + 1)Γ (k)}, and for
µ = ν − 2k, k = 1, 2, . . . ,
(20) Ĩν−2k,ν(x, y) =





0 (0 < x < y),

1

y

k−1∑

j=0

γ′j

(
x

y

)2(j−k)+ν+1/2

(0 < y < x),

where γ′j are 
onstants (see [23, Se
tion 5℄). Let µ−ν = −2k with a positiveinteger k. We use the representation (20) to get
lim

δ→+0

\
δ<|x−y|

f(y)Ĩν−2k,ν(x, y) dy =
k−1∑

j=0

γ′j

∞\
x

1

y

(
x

y

)2(j−k)+ν+1/2

f(y) dy

= h3(x), say,for every x > 0. We note that
∞\
0

∣∣∣∣
∞\
x

1

y

(
x

y

)α

f(y) dy

∣∣∣∣ dx ≤ 1

1 + α

∞\
0

|f(x)| dxfor α > −1, whi
h is easily dedu
ed by 
hanging the order of integration.This implies that T∞0 |h3(x)| dx ≤ CA. Suppose that µ − ν = 2k with apositive integer k. The representation (19) leads to
lim

δ→+0

\
δ<|x−y|

f(y)Ĩν+2k,ν(x, y) dy =
k−1∑

j=0

γj

x

x\
0

(
y

x

)2j+ν+1/2

f(y) dy(21)
= h4(x), say.If ν > −1/2, then 2j + ν + 1/2 > 0 for j = 0, . . . , k − 1, and then theinequality (8) implies that T∞0 |h4(x)| dx ≤ CA. Let us 
onsider the 
ase

ν = −1/2. Every term with positive j on the right-hand side of (21) isintegrable by the same reason above. Thus, when µ ≥ −1/2, ν = −1/2 and
µ− ν = 2k, k = 1, 2, . . . , by noting γ0 = Kµ,−1/2 we have

lim
δ→+0

\
δ<|x−y|

f(y)Ĩµ,ν(x, y) dy =
Kµ,−1/2

x

x\
0

f(y) dy + h5(x),

where h5 is some integrable fun
tion satisfying T∞0 |h5(x)| dx ≤ CA. There-fore, we see that (18) also holds for the 
ase µ− ν = ±2,±4, . . . . The proofof Theorem 1 is 
omplete.
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µ, we prove the Lemma whi
h gives a relationbetween T ν

µ and Cν
µ.Proof of Lemma. Let µ, ν ≥ −1/2. We �rst show that THνf = HνS.Let f ∈ L2(0,∞) ∩ L1(0,∞). We note that Hνf ∈ L∞(0,∞). We have
THνf(x) =

1

x

x\
0

Hνf(y) dy =

1\
0

Hνf(xu) du

=

1\
0

∞\
0

f(s)
√
xus Jν(xus) ds du

=

1\
0

∞\
0

f(t/u)
√
xt Jν(xt) dt

du

u
.The order of integration in the last iterated integral 
an be inverted sin
e

1\
0

∞\
0

|f(t/u)
√
xt Jν(xt)| dt

du

u
≤ C

1\
0

∞\
0

|f(t/u)| dt du
u

= C

∞\
0

|f(y)| dy.Here, we used the fa
t that |√zJν(z)| ≤ C for z > 0. Thus, we have
THνf(x) =

∞\
0

1\
0

f(t/u)
du

u

√
xt Jν(xt) dt

=

∞\
0

∞\
t

f(y)
dy

y

√
xt Jν(xt) dt = HνSf(x).The operators T , S and Hν are bounded on L2(0,∞), and L2(0,∞) ∩

L1(0,∞) is dense in L2(0,∞). This implies THν = HνS on L2(0,∞).Sin
e HµCν
µ = THν on L2(0,∞) by the de�nition, it follows from theinversion formula HµHµ = I that Cν

µ = HµTHν , and hen
e the identity
THν = HνS leads to Cν

µ = HµHνS = T ν
µ S on L2(0,∞), whi
h 
ompletesthe proof of the Lemma.Proof of Theorem 2. (i) Let µ ≥ −1/2 and ν > −1/2. Suppose that

1 < p < ∞. For f ∈ Lp(0,∞) ∩ L2(0,∞), we infer by the Lemma andS
hindler's representation that Cν
µf(x) = T ν

µ Sf(x) = Tµ,νSf(x) for a.e.
x > 0. Thus, it follows from [B℄(ii) and (3) that

‖Cν
µf‖Lp(0,∞) = ‖Tµ,νSf‖Lp(0,∞) ≤ C‖Sf‖Lp(0,∞) ≤ C‖f‖Lp(0,∞).By the standard density argument, we 
omplete the proof of the 
ase 1 <

p <∞ in part (i).Let us treat the 
ase p = 1. For f ∈ L1(0,∞) ∩ L2(0,∞), by thesame reason as above we have Cν
µf(x) = Tµ,νSf(x) for a.e. x > 0. Sin
e

(d/dx)Sf(x) = −f(x)/x for a.e. x > 0, it follows that x|d(Sf)(x)| = |f(x)|,



44 Y. Kanjinand so Theorem 1(i) leads to
‖Cν

µf‖L1(0,∞) = ‖Tµ,νSf‖L1(0,∞) ≤ C(‖Sf‖L1(0,∞) + ‖f‖L1(0,∞))

≤ C‖f‖L1(0,∞).Therefore, Cν
µ uniquely extends to a bounded operator on L1(0,∞).Let f ∈ H1(0,∞)∩L2(0,∞). By the Lemma, we have Cν

µf(x) = T ν
µ Sf(x)for a.e. x > 0. We know that S is a bounded operator on H1(0,∞). Thus, if

µ ≥ −1/2 and ν > −1/2, then [C℄(i) implies that
‖Cν

µf‖H1(0,∞) = ‖T ν
µ Sf‖H1(0,∞) ≤ C‖Sf‖H1(0,∞) ≤ C‖f‖H1(0,∞).Then the density argument 
ompletes the proof of (i).(ii) Let µ ≥ −1/2 and 1 < p < ∞. By the Lemma and S
hindler'sresult, in the same way as in the 
ase µ ≥ −1/2, ν > −1/2 and 1 < p < ∞of part (i), we see that C−1/2

µ uniquely extends to a bounded operator on
Lp(0,∞), and ‖C−1/2

µ f‖Lp(0,∞) ≤ C‖f‖Hp(0,∞). For the 
ase p = 1, let f ∈
H1(0,∞) ∩ L2(0,∞). By [C℄(ii) we have

‖C−1/2
µ f‖L1(0,∞) = ‖T −1/2

µ Sf‖L1(0,∞) ≤ C‖Sf‖H1(0,∞) ≤ C‖f‖H1(0,∞).The density argument allows us to get part (ii) of Theorem 2.
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