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Stability of infinite ranges and kernels
by

K.-H. FORSTER (Berlin) and V. MULLER (Praha)

Abstract. Let A(-) be a regular function defined on a connected metric space G
whose values are mutually commuting essentially Kato operators in a Banach space. Then
the spaces R°°(A(z)) and N>°(A(z)) do not depend on z € G. This generalizes results of
B. Aupetit and J. Zemaéanek.

Denote by B(X) the set of all bounded linear operators on a complex
Banach space X. For T' € B(X) denote by N(T') the kernel (null space) and
by R(T) the range of T

We also write R®(T) = (N, R(T*) and N°°(T) = [J;—, N(T*), and
call these linear submanifolds of X the infinite range and infinite kernel of
T, respectively. It is well known that R> (T — zI) and N°°(T — zI) remain
constant for all z in a (punctured) neighbourhood of zero for various classes
of operators although the ranges R(T —zI) and kernels N (T'—zI) do change
(see [GK1], [H], [MO]). As observed by B. Aupetit and J. Zemének [AZ],
this phenomenon is closely related to the concept of regular functions.

Denote by v(T') = inf{||Tz|| : dist{x, N(T)} = 1} the reduced minimum
modulus of T'. Tt is well known that v(T*) = v(T'), and v(T') > 0 if and only
if T' has closed range.

Let G be a metric space, w € G, and let A(-) : G — B(X) be a continuous
operator-valued function. We say that A(-) is regular at w if R(A(w)) is
closed and A(-) satisfies one of the following equivalent conditions:

(1) the function z — (A(z)) is continuous at w;
(2) liminf, ., v(A(z)) > 0;
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(3) the function z — R(A(z)) is continuous at w in the gap topology;
(4) the function z — N(A(z)) is continuous at w in the gap topology.

_ Recall that the gap between two subspaces M,L C X is defined by
6(M, L)=max{d(M, L),5(L, M)} where 6(M, L) =sup ¢, ||z <1 dist{z, L}.
For basic properties of the gap (and of other related distances) see [Ka2,
p. 198].

Regular functions have been studied by a number of authors (see e.g.
[Ma], [Kal], [K], [F], [B], [T], [J], [S], [M2]). By property (2), the set of all
regularity points is open.

The regular functions are closely connected with the important class of
Kato operators (sometimes also called semiregular operators). An operator
T € B(X) is called Kato if the function z +— T — z is regular at 0. It is
well known (see e.g. [M2, pp. 113 and 119]) that the following conditions
are equivalent for an operator 1" with closed range:

(1) T is Kato;

(2) N(T) € R=(T);
(8) N*(T) € R(T);

(4) N*(T) € R=(T);

(5) N(T) C Vg N(T — 2I);

(6) R(T) 2.0 B(T = 2I)
(where \/ denotes the closed linear span).

It is known that the spaces R*(T — z) and N>°(T — z) are constant
on each connected subset of the set {z € C : T — z is Kato}; moreover,
R>(T — z) is closed whenever T — z is Kato. This result was generalized in
[AZ] to any regular analytic function whose values are mutually commuting
semi-Fredholm operators.

The aim of this note is to show that the assumption of analyticity is
not necessary. Moreover, semi-Fredholm operators can be replaced by the
more general class of essentially Kato operators (see below). Thus the spaces
R>*(A(z)) and N>°(A(z)) are constant for z in each connected set for each
regular function whose values are mutually commuting essentially Kato op-
erators.

The regularity of analytic operator functions can be characterized by
spaces of Jordan chains generalizing the infinite kernel and the infinite range
of a single operator (see [B], [F], [T]). These spaces can also be used to
generalize the concepts of Kato operators and essentially Kato operators
(see the stability number in [B] and the property P(A,,k) in [F]); for the
case of an operator pencil of the type T'— 25, see [Kal], and for the property
P(k,S), see [K], [G1], [G2].
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The authors would like to thank to J. Zemanek for fruitful discussions
about the paper.

We start with two results that complement [M2, Theorems 12.15 and
12.21].

LEMMA 1. LetT € B(X) be a Kato operator. Then T(N>°(T'))= N>(T)
and T=Y(N>°(T)) = N>°(T).

Proof. Clearly T(N*>°(T)) = N°°(T) if T is a Kato operator.

Therefore T(N>°(T')) C N>°(T). Let y € N>°(T'). From the first step it
follows that there exists a sequence (w;) in N°°(T) such that (Tw;) con-
verges to y. Since T" has a closed range, there exists a sequence (u;) in N (T')
such that (w; 4+ u;) converges to an element x in X. Clearly, (w; 4+ u;) is in

N°°(T), therefore y = Tz € T(N>°(T)).
The second equality is now clear, since N(T') is a subset of N*°(T). m

We will use the following notations: let 7" be a linear operator in X and
let L and M be T-invariant subspaces of X with L C M. Then we denote
by Ty the restriction (more precisely the compression) of 7' to M and by
T/ the operator induced by T in the quotient space M /L. By [-]ar/1, we
denote the quotient map from M onto M /L. Therefore

TM/L[w]M/L:[Tw]M/L for all w € M.

The following proposition contains a variant of the Apostol representa-
tion introduced by P. W. Poon (see [P, Definition 4.4.5, Theorem 4.4.6]).
Note that P. W. Poon calls Kato operators semiregular operators (see [P,
Definition 4.3.6]).

PROPOSITION 2. Let T € B(X). Then T is a Kato operator if and only
if there exist closed T-invariant subspaces L and M of X with L C M such
that

(1) Ty, is surjective,
(2) Tryr is bijective,
(3) Tx/anr is bounded below.

As L and M one can take N°(T') and R (T), respectively; these spaces are
T-hyperinvariant, i.e., they are invariant for each operator which commutes
with T.

Proof. Let T be a Kato operator. Then L = N°°(T) and M = R>(T)
are closed T-hyperinvariant subspaces. The operators T}, and T, are sur-
jective by Lemma 1 and by [M2, Theorem 12.15(iii)], respectively. Since
T-Y(L) =L by Lemma 1, Taryr is bijective. Since T-Y(M) = M by [M2,
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Theorem 12.15(ii), (iii)], T'x/as is injective and

1T jne @) xpne | = T ) xjar | = |7z — ]| - 0 € M}
= inf{||T(x —u)|| : uw € M}
>A(T) - inf{]lz —u—w|:ue M,we N(T)}
=(T) - l]x/nmll
Therefore (1)—(3) are fulfilled.

Now suppose (1)—(3) hold. Then N°°(T) C L by (2) and (3). Further
L= R(Ty) = R(TF) C R(T*) for k =0,1,.... Therefore N>(T) C R*(T).
It remains to show that the range of T" is closed. It follows from (1) and (2)
that T is surjective and then that R(T) = {y € X : [ylx/m € R(Tx/m)}-
By (3), R(Tx/n) is closed, therefore R(T) is closed. m

For an essential version of Kato operators we use the following notation.

For subspaces M, L C X write M C L if dim M/(LNM) < oo; equivalently,
dim(M + L)/L < oc.

An operator T' € B(X) is called essentially Kato if R(T) is closed and
T satisfies any of the following equivalent conditions (see e.g. [M2, Theorem
21.3)):

(1) N(T) € R>(T);
(2) N>(T) C R(T);

(3) N>(T) C R®(T);

(4) N(T) C Vo N(T = 2);
(5) Nao R(T — 2) C R(T).

In particular, any semi-Fredholm operator is essentially Kato.

Below we summarize the basic properties of essentially Kato operators
(see [M2, pp. 183-187]).

THEOREM 3.

(1) Let T € B(X) be essentially Kato. Then R(T*) is closed for all k.
Consequently, R (T) is closed.

(2) T € B(X) is essentially Kato if and only if T* € B(X™) is.

(3) T € B(X) is essentially Kato if and only if there exists a closed
subspace M C X such that Ty is lower semi-Fredholm and Ty is
upper semi-Fredholm. As M one can take M = R*>(T); in this case
Ty s even surjective.

(4) Let T € B(X) be essentially Kato. Then the limit lim,, o, v(T™)/"
exists and is positive. Moreover,

lim (T™)Y" = max{r : T — z is Kato for 0 < |z| < r}.

n—oo
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In the proof of our main theorem we need the following characterization
of essentially Kato operators.

PROPOSITION 4. Let T € B(X). Then T is an essentially Kato operator
if and only if there exist closed T-invariant subspaces L and M of X with
L C M such that

(1) Ty, is surjective,

(2) Ty is a Browder operator, i.c., a Fredholm operator with finite
ascent and finite descent,

(3) Tx/ar is bounded below.

As L and M one can take R (T) N N>°(T) and R>*(T)+ N>(T), respec-
tively; these spaces are T-hyperinvariant.

Proof. Let T be essentially Kato then by Theorem 3(1) both spaces
L =R*(T)NN>(T) and M = R*(T) + N°>°(T) are closed, and they are
evidently T-hyperinvariant.

Let X = X7 & X5 be the Kato decomposition of X with respect to T
(see [M2, Theorem 21.3]), i.e., X7 and X are closed T-invariant subspaces,
dim X; < 0o, the compression T} of T' to X} is nilpotent and the compression
Ty of T to Xs is a Kato operator. Then N>°(T) = X; @ N*° (1), N=(T) =

X186 N> (Ty), and R®(T) = R>(T>) is closed. Therefore M = X1 & R*(T3)

and L = N>°(Ty).
By Lemma 1, the operator T}, is surjective. The space X/M is isomor-
phic to X3 /R>(13) and Tx,p is similar to (T2) x, /gec(7,); the similarity is

established by the operator [z1 @ 2] x/m — [22]x, /R (1;)- By Proposition
2(3), the last operator is bounded below. Similarly, M /L is isomorphic to
X1 ® (R*(T2)/N>*(13)) and Ty is similar to 71 @ (12) gee (1, Fo 775
In this direct sum the first operator is a nilpotent operator in a finite-
dimensional space and the second is bijective by Proposition 2(2). There-

fore Tt & (12) gee (1) /w773y @nd hence Ty y, are Browder operators by [M2,
Proposition 20.8].

Now let L and M be closed subspaces of X with properties (1)—(3). By
(1), we have R(Tys) D L, and so R(Tn) = {u € M : [u]pyr € R(Thy)}-
Hence codim R(T) < 00, i.e., Ty is lower semi-Fredholm. By (3), T'x /s is
upper semi-Fredholm. Therefore T is essentially Kato by Theorem 3(3). m

The following example shows that for the stability of the infinite range
and infinite kernel it is not sufficient to assume that the values A(z) commute
with A(w) for a fixed w, even for matrix-valued analytic regular functions.
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ExAMPLE 5. Let X = C3. For z € C let

0 0 O
Az)=[1 0 =z
z 0 22

Clearly z — A(z) is an analytic function and rank A(z) = 1 for all z € C.
It is easy to see that A(-) is regular. Moreover, A(0)A(z) = A(z)A(0) for all
z e C.

We have A(0)2 = 0, and so R*(A(0)) = {0}. On the other hand,

0 0
A) 1] =2211],
z

and so dim R (A(z)) =1 for all z # 0.

Similarly, N*°(A(0))=X and N*°(A(z))# X for 2#0. Hence R>*(A(z))
and N°°(A(z)) are not constant on a neighbourhood of 0.

Moreover, R(A(0)*) = {0} and R(A(z)*) # {0} for all z # 0 and k > 2.
So the function z — A(z)¥ is not regular at 0 for k > 2 (cf. [AZ, Example
on p. 26]).

Note that A(z) does not commute with A(z’) for 2,2 # 0, z # 2.

REMARK 6. By [FK], the limit limy,_, o v(A(2)¥)'/* exists for each z € C
and
klim Y(A(2)")V*F = max{r > 0 : dim N(A(z) — u) is constant
forallu e C, 0 < |u] <r}.

Hence the previous example also shows that z ~— lim~(A(2)")Y/" is not

continuous at z = 0 although z +— y(A(z)) is continuous and A(z) commutes
with A(0) for all z.

For our main theorem we need the following finite-dimensional lemma.
LEMMA 7. Let dim X < oo.

(1) Let (Aj) be a sequence of mutually commuting operators in B(X)
converging to Ay and let rank A; = rank Ag for all j. Suppose that
Ag is nilpotent. Then Aj is nilpotent for all j large enough.

(2) Let G be a metric space and let A(-) be a map from G into B(X)
which is reqular at w € G and has mutually commuting values, and
A(w) is nilpotent. Then A(z) is nilpotent for all z in a neighbourhood
of w.

Proof. We prove statement (1) by induction on the dimension of X.
The statement is clear if dim X = 1. Let dim X = k£ > 1 and suppose
that the statement is true for all spaces with dimension < k.
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Suppose that there exists a j such that A; is not nilpotent. Let M; =
N>°(A;) and My = R*(A;). Then X = M; & My is the spectral decom-
position of X with respect to the Aj-spectral sets {0} and C\ {0}. By
the assumptions, dim M; < dim X and dim My < dim R(A4;) = rank A; =
rank Ag < dim X. Clearly the spaces M1, M> are invariant with respect to
all operators A;.

Since rank is a lower semicontinuous function, we have rank(A;)n;, >
rank(Ao)|as, and rank(A;)a, > rank(Ag)as, for all i large enough. Thus

rank Ay = rank A; = rank(A;) s, + rank(A4;)as,
> rank(Ao) ar, + rank(Ap)a, = rank Ap.

Hence rank(A4;)n, = rank(Ag)ny, and rank(A;)a, = rank(Ag)a,. By the
induction assumption, A; is nilpotent for all 7 large enough.

For the proof of statement (2) note that in finite-dimensional spaces an
operator function A(-) is regular at a point if and only if the rank of A(z)
is constant in a neighbourhood of that point. =

Example 5 above shows that in Lemma 7 the assumption that the opera-
tors are mutually commuting cannot be replaced by the assumption that the
A; commute with Ay, or that the A(z) commute with A(w), respectively.

We do not know whether the order of nilpotency of the operators in
Lemma 7 is also preserved.

The following result was proved by A. Ja. Livéak [L]; implicitly it is also
contained in papers of M. A. Gol’ldman and S. N. Krackovskii. However,
the existing proofs of the result [L], [AZ] refer for the most difficult step
of the proof to [GK2, Theorem 3|, where it is stated in fact without proof.
Therefore we find it convenient to give a complete proof here. Moreover, we
give a quantitative bound for the norm of the perturbation S.

Let A be essentially Kato. We can write N*°(A) = F 4+ (R*(A4) N
N°(A)), where F is a finite-dimensional subspace and F' N R>*(A) = {0}.
As F+R>(A) N N>(A) is closed, we have N*(A) = F+R>®(A) N N>(A).
Since R>*(A) N N>(A) C R*(A), we have

(1) R®(A) N N>(A) = R=(A) N N>(A).

Similarly one can show that

* *

(2) R®(A*)NN>®(4*)" = R®(A*)N N®(A*)"

THEOREM 8 (Livcak). Let A € B(X) be essentially Kato, let S € B(X),
SA = AS and ||S| < lim~(A*)V/*. Then A+ S is essentially Kato and

R®(A+S)NN=(A+ S) = R°(A) N N=(4),
R®(A+S)+ N®(A+ S) = R°(A) + N©(A).
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Proof. We prove the statement in several steps.

(a) A+ S is essentially Kato.

Proof. Set M = R*(A). Then M is a closed subspace of X invariant
with respect to A and S. By Theorem 3(3), Ay is onto and Ax /s is upper
semi-Fredholm. Moreover,

klim Y(AR)E = min{klim 7((AM)k)1/k7klim '7((AX/M)k)1/k}

(see [KM]). Clearly ||Sa]| < |IS] < limg—oo 7((AM)k)1/k and || Sx /| <
I1S] < limg—oo fy((AX/M)k)l/k. By [Z], A+ S is onto and Ax/p + Sx/m
is upper semi-Fredholm. By Theorem 3, A + S is essentially Kato.

(b) R®(A) C R®(A+ S).

Proof. Since (A+ S)M = M, we have R®(A+ S) > M = R®(A).
(c) N*(A+S) c N*(A).

Proof. We have

R®(A) = ﬁ R(AF) = ﬁ EN(AF) =+ [j N(A™F) = tN>(A¥)

and

D)

N = LV (4)) =+ () Vi) =2 () Bars)
k=0

k=0

= TR (A%).

The analogous equalities are also true for the operator A + S. By a duality
argument we have

N><(A) = *R®(A*) D tR™®(A* + %) = N<(A + S).
(d) R°(A+ S)NN>(A+S) C R™(A).

Proof. Using (1) for A+S it is sufficient to show R*®(A+S)NN((A+S9)%)
C R>®(A) for k =1,2,.... We will do this by induction on k. The statement
is clear for k = 0. Let k > 1 and assume that the inclusion holds for £ — 1.
Let 29 € R®°(A+ S) N N((A+ S)*). Since A + S maps R*®(A + S) onto
itself, we can find an infinite sequence zg, z1,... in R*°(A + S) such that
(A+ S)x; =x;-1 (j =1,2,...). This Jordan chain is contained in N°°(A)
by (c). Since N*°(A) c R>*(A) = R>*(A) we obtain N>°(A) - R>(A), i.e.
m = dim N*°(A)/(R>*(A) N N>(A)) is finite. Thus o, ..., z,, are linearly
dependent, i.e. there exists a nontrivial linear combination z = Y ;" j a;x; €
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R>(A). Let I be such that a; # 0 and ; = 0 for j =1+1,...,m. We obtain
-1
(A+9) e =zo+_ a;(A+8) z; € cuzo+(N((A+S)F)NR®(A+89)).
§=0
Thus (A + S)'z € R®(A), since this subspace is invariant under A and S.
Therefore o € R*°(A) by the induction assumption.
(e) Let c be a positive number such that S’ = ¢S satisfies ||S'|| < 3v(Anr).
Then R®(A)NN>®(A) C N*(A+5').
Proof. By (1), it is sufficient to show that R*(A)NN(A")CN>*(A+ S5")
for all n.
Let n > 1 and zg € N(A™) N M, where M = R*(A). Since AM = M,
SM C M and ||S'|| < v(Anr), we have (A+ S")M = M and

1
V(A +5)w) = (An) = 1571 > 57 (Aw)-
Therefore we can find inductively vectors x1,z2,... € M such that
(A+ 8oy =1, |2kl < 2v(Ar) Hlze_1] for all k> 1.
For k > n set
n—1 k _ ‘
Yk = Ty — . A]S/kiyxk.

> ()

=
Then y;, € M and we have

—_

(A+ Sy, = (A+ S")rx ()myk%:_o
=0

S,

Thus yr € N> (A + S’) for all k. Moreover,
n—1

()Aﬂsfk | < ()w 1SR - fla]
=0

Jj= Jj=

() £

as k — oo. Thus zp € N*°(A + S’), which proves (e).

Proof of Theorem 8. By statements (b)—(e), the spaces R™(A + 25) N
N>(A+ zS) are constant for all complex numbers z with |z| small enough
(|z] <~v(An)/2|IS|)- By a standard argument, these spaces are constant on
each connected set for which A 4 25 is essentially Kato. In particular,

R¥(A+S)NN>®(A+S)=R>*(A)NN>(A).

lyr — zol| =

M
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The second statement can be obtained by a duality argument. As in (c),

*

[ — ]

we have N®°(A)1 = R®(A*) and R®(A)L = (L N>(4%))+ = N<(A*)
By (2), we have

N(A) + R*(A) == ((N*(A) + R¥(A))7) == (N¥(A) " nR*(A)")
= LR (AN N=(AY)" ) = L (R (A7) NN (A7) ™.
Similarly,
N*®(A+8)+R®(A+8) = -(R®(A" + S )N N>(A* + §))™",
and so
N*®(A+S)+ R*(A+S)=N>*(A)+ R>*(A). m

Now we are ready to prove our main result. Part (2) of the following the-
orem improves Theorem 3 of [AZ]. Compare part (1) with [AZ, Theorem 2].

THEOREM 9. Let G be a metric space and A : G — B(X) be a regular
function. Let w € G and let A(w) be essentially Kato. Then:

(1) if A(w) commutes with A(z) for all z € G, then there is a neighbour-
hood V' of w such that R®(A(z)) D R*(A(w)) and N>®(A(z)) C
N>*(A(w)) for all z € V;

(2) if the values of A are mutually commuting operators, then the spaces
R>*(A(z)) and N>*(A(z)) are constant for all z in a neighbourhood
of w.

Proof. 1t is sufficient to show both statements for the infinite ranges. The
statements for the infinite kernels then follow by duality, since N> (A(z)) =
LR>®(A*(2)) for all z € G and the function A(-)* satisfies the assumptions
of the theorem.

Suppose that A(w) commutes with A(z) for all z € G. Consider the
spaces L = R™®(A(w)) N N>®(A(w)) and M = R*(A(w)) + N*(A(w)). By
Proposition 4, A/ (w) is a Browder operator, therefore

(3) M/L = N*(Anyp(w)) ® R (Apr/p(w)),

where the first summand is finite-dimensional (see [M2, Theorem 20.10]).
We denote by N the first summand in (3) and by R the second one.

By Theorem 8, there exists a neighbourhood U of w such that U C G and
L =R>®(A(z))NN>(A(z)) and M = R*®(A(z)) + N> (A(z)) for all z € U.
Therefore the operator function A/ (-) with Ay (2) = (A(z))ar is well de-
fined and continuous on U, and so are Az (-) and Az(-). Clearly Ay, (2)
and A/ (w) commute, and N and R are invariant under Ay r(z). We
denote By(z) and Bgr(z) the compressions of Ay;/r(2) to N and R, re-
spectively. The functions By (-) and Br(-) are continuous on U, By(w) is
nilpotent, and Br(w) is bijective.
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We will show that By(-) is regular at w. The function Aps(-) is regu-
lar on U, since M contains the kernel of A(z) and A(-) is regular. From
L C R*(A(z)) C R(Am(z)) for all z € U we deduce that R(Ay/r(2)) =
R(Ap(2))/L for all z in U. It is easy to check that §(R;/L,Rs/L) <
0(R1, Ry) for all closed subspaces Ry and R of M with L C R; N Rs.
Therefore 8(R(Au/z (). R(Ax2(v)) < S(R(An (=), R(An(y))) for al
z,y € U. Thus App/p(-) is regular on U. Now N(By(w)) = N(An/n(w))
and N(Bn(z)) = N(Anyr(2)) for z sufficiently close to w. Therefore

S(N(By(w)), N(Bn(2))) = 6(N(Anr/L(w)), N(Ar/L(2)))-
The function By (+) is regular at w by [M2, Theorem 10.21], since we know
that Ay () is regular at w.

Choose a neighbourhood V' of w such that Br(z) is bijective for all
z € V. Thus for z € V we have

R*(A(2)) = R™(Am(2)) ={y € M : [ylp/r € B> (Anmy/1(2))}
S{yeM:lylur € R} ={y € M : [ylu/r € R*(Apyr(w))}
= R*(A(w)).
If the values of A are mutually commuting, then we can use Lemma 7

to choose the neighbourhood V' of w in such a way that By(z) is nilpotent
and Bp(z) bijective for all z € V. Then for z € V' we have

R*(A(2)) = R™(Am(2)) ={y € M : [ylmyr € R™(Any(2))}
={yeM:[yluyr € Ry ={y e M : [ylnp/r € R™(Ap/r(w))}
= R™(A(w)).

The proof of the theorem is complete. m

REMARK 10. In fact, the functions z — A7(z) = (A(z))? are regular at w

for all j sufficiently large. Clearly this is true for all j satisfying B}, (w) = 0,
in particular, for j > dim((R*(A(w)) + N*°(A(w)))/R>*(A(w))).

COROLLARY 11. Let G be a connected metric space. Let A: G — B(X)
be a reqular operator-valued function whose values are mutually commuting
essentially Kato operators. Then the spaces R>™(A(z)) and N>°(A(z)) are
constant on G.

If the operator A(w) is even Kato, then the function A(-) is automatically
regular at w and a weaker version of commutativity is sufficient.

THEOREM 12. Let G be a metric space, w € G, let A : G — B(X) be
a continuous function, let the operator A(w) be Kato and let A(z)A(w) =
A(w)A(z) for all z € G. Then there is a neighbourhood U of w such that A(z)
is Kato and the spaces R (A(z)) and N>(A(z)) are constant for z € U.

Moreover, the function z — A*(2) is reqular on U for each k > 1.
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Proof. Set L = N> (A(w)) and M = R*(A(w)). These closed subspaces
of X are invariant under A(z) for all z € G. Therefore the operator function
Ap(-) is well defined and continuous on G, and so are Ay(-), Apr/r(-) and
Ax/n(+). It follows from Proposition 2 that for all z € G close to w, Ar(z)
is surjective, Aps/r(2) is bijective and Ax /() is bounded below, thus A(z)
is a Kato operator for these z by Proposition 2. Let U be an open connected
neighbourhood of w such that A(z) is Kato for all z € U (by [KM], one can
take U = {z € G : | A(z) — A(w)|| < lim~y(A*(w))'/*}).

Since N*°(A(z)) C R*(A(z)) for all z € U, by Theorem 8 the spaces
R>*(A(z)) and N>°(A(z)) are constant on U.

It follows easily that Aps(z) is surjective for z € U, and so is A%, () for
each k > 1. Therefore A%, (-) is regular on U. Thus the kernel N (4%, (z))
varies continuously in the gap topology. Since N(A4*(2)) = N(A%,(2)) for
z € U, the function A*(.) is regular on U. =
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