
STUDIA MATHEMATICA 174 (1) (2006)

On spetral ontinuity of positive elementsbyS. Mouton (Stellenbosh)Abstrat. Let x be a positive element of an ordered Banah algebra. We prove arelationship between the spetra of x and of ertain positive elements y for whih either
xy ≤ yx or yx ≤ xy. Furthermore, we show that the spetral radius is ontinuous at x,onsidered as an element of the set of all positive elements y ≥ x suh that either xy ≤ yxor yx ≤ xy. We also show that the property ̺(x+y) ≤ ̺(x)+̺(y) of the spetral radius ̺an be obtained for positive elements y whih satisfy at least one of the above inequalities.1. Introdution. The subjet of spetral ontinuity has been studiedfor more than �fty years, and several authors have ontributed; in partiular,by providing di�erent types of su�ient onditions for spetral ontinuity.In her survey paper [2℄ of 1994, L. Burlando gave an extensive aount ofthese results, and supplied many useful referenes.It is well known that if A is a nonommutative Banah algebra, thenthe spetrum and spetral radius funtions are only upper semiontinuouson A, while if A is a ommutative Banah algebra, then these funtions areuniformly ontinuous on A. More generally, if x ∈ A, then Sp(y) ⊂ Sp(x) +
̺(x− y) for all y ∈ {x}c (see [1, Theorem 3.4.1℄), and hene |̺(y)− ̺(x)| ≤
̺(x − y) for all y ∈ {x}c (where Sp denotes the spetrum, ̺ the spetralradius and {x}c the ommutant {y ∈ A : yx = xy} of x), so that thespetral radius is ontinuous at x, onsidered as an element of {x}c.In this paper we investigate ertain spetral ontinuity properties of pos-itive elements. Some spetral theory of positive elements in ordered Banahalgebras was developed in [8℄ and [7℄, and later in [4℄�[6℄. We reall some ofthis information in Setion 3. In Setion 4 we show that if x is a positiveelement of an ordered Banah algebra, then the results mentioned above anbe obtained under the weaker ondition that either xy ≤ yx or yx ≤ xy,provided that x ≤ y and (for some results) one of a number of additionalspetral properties is assumed. In Setion 5 we give examples to show thatthese spetral properties are quite natural.2000 Mathematis Subjet Classi�ation: 46H05, 47A10, 47B65, 06F25.Key words and phrases: ordered Banah algebra, positive element, spetrum.[75℄



76 S. MoutonAnother well known spetral property is that if x and y ommute, then
̺(x + y) ≤ ̺(x) + ̺(y) and ̺(xy) ≤ ̺(x)̺(y). It is already known (see [8,Proposition 4.4℄) that the latter inequality an still be obtained for positiveelements x and y if, instead of ommuting, they satisfy at least one of theinequalities xy ≤ yx and yx ≤ xy. The problem of �nding onditions underwhih ̺(x+y) ≤ ̺(x)+̺(y) will hold, for positive elements x and y satisfyingat least one of the inequalities xy ≤ yx and yx ≤ xy, was investigated in[3℄ and in [10℄, where x and y were bounded linear operators on a partiallyordered Banah spae and on a Banah lattie, respetively. Furthermore,in [11℄, the same problem was studied for the loal spetral radius (insteadof the spetral radius) of a bounded linear operator. We show (in Setion 4)that if either xy ≤ yx or yx ≤ xy with x and y positive, then ̺(x + y) ≤
̺(x) + ̺(y) always holds, provided that the algebra one is normal. Theresult is appliable, for instane, in the ase of the bounded linear operatorson the Banah lattie lp (any p)�see Example 5.2.2. Preliminaries. Throughout, A will be a omplex Banah algebrawith unit 1. The spetrum of an element x in A will be denoted by Sp(x),the spetral radius of x in A by ̺(x), and the distane d(0, Sp(x)) from 0 tothe spetrum of x by δ(x). We reall that if α 6∈ Sp(x), then d(α, Sp(x)) =
1/̺((α1 − x)−1) ([1, Theorem 3.3.5℄). If K is a ompat set in C and r > 0,then K + r denotes the set {z ∈ C : d(z, K) ≤ r}, and C(0, r) the irle inthe omplex plane with entre 0 and radius r. If r = 0, then C(0, r) denotesthe one-point set {0}. Finally, we need the following lemma:Lemma 2.1 ([1, proof of Corollary 3.2.10℄). Let a and b be elements of aBanah algebra A, and let λ, µ ∈ C and n ∈ N ∪ {0}. Then:(1) ∥
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)1/n.(2) If ̺(a) < 1, ̺(b) < 1 and γn = max{‖a2n−k‖ ‖bk‖ : 0 ≤ k ≤ 2n}, thenthere exists an N ∈ N suh that (γn) is dereasing for n ≥ N .3. Ordered Banah algebras. In [8, Setion 3℄ we de�ned an algebraone C of a Banah algebra A and showed that C indued on A an orderingwhih was ompatible with the algebrai struture of A. Suh a Banahalgebra is alled an ordered Banah algebra. We now reall those de�nitionsand also the additional properties that C may have.Let A be a omplex Banah algebra with unit 1. Suppose that A ontainsa subset C with the following properties:(1) C + C ⊆ C,(2) λC ⊆ C for all λ ≥ 0,



Spetral ontinuity of positive elements 77(3) C · C ⊆ C,(4) 1 ∈ C.Then C is alled an algebra one of A, and A, or more spei�ally (A, C),is alled an ordered Banah algebra (OBA). We say that A is ordered by thealgebra one C. If, in addition, C ∩ −C = {0}, then C is alled proper.An algebra one C of A indues an ordering �≤� on A in the followingway:
x ≤ y if and only if y − x ∈ C(x, y ∈ A). This ordering is re�exive and transitive. Furthermore, C is properif and only if the ordering has the additional property of being antisymmetri.Considering the ordering that C indues we �nd that C = {x ∈ A : x ≥ 0}and therefore we all the elements of C positive.An algebra one C of A is alled losed if it is a losed subset of A.Furthermore, C is said to be normal if there exists a onstant α > 0 suhthat it follows from 0 ≤ x ≤ y in A that ‖x‖ ≤ α‖y‖. It is well known thatif C is normal, then C is proper. Moreover, C is said to be inverse-losed ifit has the property that if x ∈ C and x is invertible, then x−1 ∈ C.The following lemma is immediate:Lemma 3.1. Let (A, C) be an OBA, and let x, y ∈ A be suh that xy ≤ yx.(1) If x is invertible with x−1 ∈ C, then yx−1 ≤ x−1y.(2) If y is invertible with y−1 ∈ C, then y−1x ≤ xy−1.The next result follows by indution:Lemma 3.2. Let (A, C) be an OBA, and let x, y ∈ C. If yx ≤ xy, then
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xm+1−kyk.We will also need the following results:Theorem 3.3 ([8, Theorem 4.1(1)℄). Let (A, C) be an OBA with C nor-mal. If x, y ∈ A are suh that 0 ≤ x ≤ y, then ̺(x) ≤ ̺(y).We refer to the above property by saying that the spetral radius ismonotone.Theorem 3.4 ([8, Proposition 5.1℄). Let (A, C) be an OBA with C losedand normal. If x ∈ C, then ̺(x) ∈ Sp(x).Theorem 3.5 ([8, Proposition 4.4℄). Let (A, C) be an OBA with Cnormal. If x, y ∈ C are suh that xy ≤ yx, then ̺(xy) ≤ ̺(x)̺(y) and
̺(yx) ≤ ̺(x)̺(y).Proposition 3.6 ([5, Proposition 4.6)℄). Let (A, C) be an OBA with Closed. If x ∈ C and λ > ̺(x), then (λ1 − x)−1 ≥ 0.Finally, the following lemma follows from Theorem 3.4:Lemma 3.7. Let (A, C) be an OBA with C losed and normal. If x ∈ Cand α ∈ R

+, then ̺(x + α1) = ̺(x) + α.We onlude this setion with an important example. Let L(X) denotethe Banah algebra of all bounded linear operators on a Banah spae X.Example 3.8. Let E be a omplex Banah lattie and let C := {x ∈ E :
x = |x|}. If K := {T ∈ L(E) : TC ⊂ C}, then K is a losed , normal algebraone of L(E). Therefore (L(E), K) is an OBA.The nontrivial part of the above example follows from [9, Lemma 3℄.4. Spetral ontinuity. Let (A, C) be an OBA. De�ne, for eah x ∈ C,

A(x) = {y ∈ A : x ≤ y, xy ≤ yx or yx ≤ xy,

and d(̺(y), Sp(x)) ≥ d(α, Sp(x)) for all α ∈ Sp(y)}.Then x ∈ A(x), A(x) ⊂ C and A(0) = C. In fat, it follows from Lemma 3.7that if C is losed and normal, then A(α1) = C + α1 for all α ∈ R
+.It is well known that if x is any element of a Banah algebra, then Sp(y) ⊂

Sp(x) + ̺(x − y) for all y in the ommutant {x}c of x ([1, Theorem 3.4.1℄).Theorem 4.2 shows that this inlusion ontinues to hold for positive elements



Spetral ontinuity of positive elements 79
x of an OBA, if y is an element of the set A(x) rather than of {x}c. We needthe following lemma:Lemma 4.1. Let A be a Banah algebra, x, y ∈ A and α ∈ C. If α1 − xis invertible and ̺((α1 − x)−1(x − y)) < 1, then α1 − y is invertible.Proof. If ̺((α1−x)−1(x−y)) < 1, then 1+(α1−x)−1(x−y) is invertible,and sine α1 − y = (α1 − x)[1 + (α1 − x)−1(x − y)], the result follows.Theorem 4.2. Let (A, C) be an OBA with C losed and normal , andlet x ∈ C. Then Sp(y) ⊂ Sp(x) + ̺(x − y) for all y ∈ A(x).Proof. Let y ∈ A(x). Then 0 ≤ x ≤ y, so that ̺(x) ≤ ̺(y), by Theo-rem 3.3. If ̺(x) = ̺(y), then d(̺(y), Sp(x)) = 0, by Theorem 3.4, so that,by the assumption, d(α, Sp(x)) = 0 for all α ∈ Sp(y). This implies that
d(α, Sp(x)) ≤ ̺(x − y) for all α ∈ Sp(y), so that Sp(y) ⊂ Sp(x) + ̺(x − y).So suppose that ̺(x) < ̺(y), and suppose there exists an α ∈ Sp(y) suhthat d(α, Sp(x)) > ̺(x − y). By Theorem 3.4, ̺(y) ∈ Sp(y) and hene, bythe assumption, we may take α ∈ R

+ with α > ̺(x). Therefore(4.3) ̺((α1 − x)−1)̺(x − y) < 1,with α ∈ R
+ and α > ̺(x). It follows from Proposition 3.6 that (α1 − x)−1

∈ C.If xy ≤ yx, then (y−x)(α1−x) ≤ (α1−x)(y−x), so (α1−x)−1(y−x) ≤
(y − x)(α1 − x)−1, by Lemma 3.1. It now follows from Theorem 3.5 that
̺((α1−x)−1(y−x)) ≤ ̺((α1−x)−1)̺(y−x). A similar argument yields theresult in ase yx ≤ xy.This together with 4.3 implies ̺((α1 − x)−1(y − x)) < 1. It follows fromLemma 4.1 that α 6∈ Sp(y), a ontradition. Therefore d(α, Sp(x)) ≤ ̺(x−y)for all α ∈ Sp(y), so that Sp(y) ⊂ Sp(x) + ̺(x − y).If x and y are ommuting elements of a Banah algebra, then ̺(x+ y) ≤
̺(x) + ̺(y). In an OBA we have the following result:Corollary 4.4. Let (A, C) be an OBA with C losed and normal , andlet x ∈ C. Then ̺(x+ y) ≤ ̺(x)+̺(y) for all y ∈ A suh that x+ y ∈ A(x).Proof. If λ ∈ Sp(x+y), then d(λ, Sp(x)) = |λ−µλ| for some µλ ∈ Sp(x).It follows from Theorem 4.2 that |λ| ≤ |λ − µλ| + |µλ| ≤ ̺(y) + ̺(x) for all
λ ∈ Sp(x + y), so that the result follows.Note that x + y ∈ A(x) if and only if y ∈ C, xy ≤ yx or yx ≤ xy and
d(̺(x + y), Sp(x)) ≥ d(α, Sp(x)) for all α ∈ Sp(x + y).Corollary 4.5. Let (A, C) be an OBA with C losed and normal , andlet x ∈ C. Then ̺(y) ≤ ̺(x) + ̺(y − x) for all y ∈ A(x).



80 S. MoutonCorollary 4.6. Let (A, C) be an OBA with C losed and normal , andlet x ∈ C. Then the spetral radius is ontinuous at x, onsidered as anelement of A(x).Proof. If y ∈ A(x), then ̺(x) ≤ ̺(y), so that it follows from Corollary 4.5that |̺(y) − ̺(x)| ≤ ̺(y − x) ≤ ‖y − x‖.The previous three orollaries an be strengthened. In fat, the followingtheorem illustrates that Corollary 4.4 ontinues to hold under omission ofthe spetral inequality in the de�nition of the set A(x).Theorem 4.7. Let (A, C) be an OBA with C normal , and let x, y ∈ Cbe suh that either xy ≤ yx or yx ≤ xy. Then ̺(x + y) ≤ ̺(x) + ̺(y).Proof. Let a = λ−1x and b = µ−1y, where λ > ̺(x) and µ > ̺(y). Then
̺(a) < 1 and ̺(b) < 1. Hene, by Lemma 3.2,
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N ) = λ + µ.Sine this holds for every λ > ̺(x) and µ > ̺(y), the result follows.Corollary 4.8. Let (A, C) be an OBA with C normal , and let x, y ∈ Cbe suh that x ≤ y and either xy ≤ yx or yx ≤ xy. Then ̺(y) ≤ ̺(x) +
̺(y − x).Proof. The ondition xy ≤ yx or yx ≤ xy implies that x(y−x) ≤ (y−x)xor (y − x)x ≤ x(y− x). Hene ̺(y) = ̺(x+ (y −x)) ≤ ̺(x) + ̺(y −x), sine
y − x ∈ C.



Spetral ontinuity of positive elements 81Corollary 4.9. Let (A, C) be an OBA with C normal , and let x ∈ C.Then the spetral radius is ontinuous at x, onsidered as an element of theset
{y ∈ A : x ≤ y, and xy ≤ yx or yx ≤ xy}.Unlike for the spetral radius funtion, ontinuity of the spetrum fun-tion Sp : A → K(C) (where K(C) denotes the set of ompat subsets of C)does not follow from Theorem 4.2, sine x and y annot be interhanged inthis theorem. In order to obtain ontinuity of the spetrum, further spetralonditions need to be imposed. This problem will not be investigated in thepresent note.For eah x ∈ C, onsider the set

D(x) = {y ∈ A : x ≤ y, xy ≤ yx or yx ≤ xy, and δ(y) ≥ ̺(x)}.Then D(x) ⊂ C, but x ∈ D(x) if and only if Sp(x) ⊂ C(0, ̺(x)). Fur-thermore, D(0) = C, and if x ∈ C is suh that C(0, ̺(x)) ⊂ Sp(x), then
D(x) ⊂ A(x). We thus have the following orollary:Corollary 4.10. Let (A, C) be an OBA with C losed and normal , andlet x ∈ C be suh that C(0, ̺(x)) ⊂ Sp(x). Then:(1) Sp(y) ⊂ Sp(x) + ̺(x − y) for all y ∈ D(x).(2) ̺(x + y) ≤ ̺(x) + ̺(y) for all y ∈ A suh that x + y ∈ D(x).(3) ̺(y) ≤ ̺(x) + ̺(y − x) for all y ∈ D(x).(4) If C(0, ̺(x)) = Sp(x), then the spetral radius is ontinuous at x,onsidered as an element of D(x).However, besides being inluded in Corollary 4.9, Corollary 4.10(4) isalso a onsequene of the following property:Proposition 4.11. Let A be a Banah algebra and let x ∈ A be suhthat Sp(x) ⊂ C(0, ̺(x)). Then the spetral radius is ontinuous at x.Proof. Let ε > 0, and Gε = {λ ∈ C : ̺(x) − ε < |λ| < ̺(x) + ε}. Then
Sp(x) ⊂ Gε. If xn → x, then by the upper semiontinuity of the spetrum,
Sp(xn) ⊂ Gε for all n ≥ N , say. Sine ̺(xn) = |λn| for some λn ∈ Sp(xn),it follows that ̺(x) − ε < ̺(xn) < ̺(x) + ε, i.e. |̺(x) − ̺(xn)| < ε for all
n ≥ N .To ontinue the disussion, de�ne, for eah x ∈ C,

B(x) = {y ∈ A : x ≤ y, xy ≤ yx or yx ≤ xy,and (α1 − x)−1 ∈ C for all α ∈ Sp(y)\Sp(x)}.Then x ∈ B(x), B(x) ⊂ C and B(0) = {y ∈ C : α1 ∈ C for all α ∈ Sp(y)}if C is inverse-losed. As in the ase of A(x) we have the following theorem:Theorem 4.12. Let (A, C) be an OBA with C normal , and let x ∈ C.Then Sp(y) ⊂ Sp(x) + ̺(x − y) for all y ∈ B(x).



82 S. MoutonProof. Let y ∈ B(x). Suppose there exists an α ∈ Sp(y) suh that
d(α, Sp(x)) > ̺(x − y). Then(4.13) ̺((α1 − x)−1)̺(x − y) < 1.If xy ≤ yx, then (y−x)(α1−x) ≤ (α1−x)(y−x), so that (α1−x)−1(y−x) ≤
(y − x)(α1 − x)−1, by Lemma 3.1. Sine y ∈ B(x), we have y − x ∈ Cand (α1 − x)−1 ∈ C, so Theorem 3.5 shows that ̺((α1 − x)−1(y − x)) ≤
̺((α1−x)−1)̺(y−x). A similar argument yields the result in ase yx ≤ xy.This together with (4.13) implies ̺((α1− x)−1(y − x)) < 1. By Lemma 4.1,
α 6∈ Sp(y), whih is a ontradition, and hene the result follows.Finally, for eah x ∈ C set

E(x) = {y ∈ A : x ≤ y, xy ≤ yx or yx ≤ xy,and x ≤ α1 for all α ∈ Sp(y)\Sp(x)}.Then x ∈ E(x) and E(x) ⊂ C. Furthermore, E(0) = {y ∈ C : α1 ∈ C for all
α ∈ Sp(y)}, and if C is inverse-losed, then E(x) = B(x).In onlusion, we have the following orollary:Corollary 4.14. Let (A, C) be an OBA with C normal , and let x ∈ C.If either C is inverse-losed or E(x) ⊂ B(x), then Sp(y) ⊂ Sp(x) + ̺(x− y)for all y ∈ E(x).5. Examples. As mentioned before, the results in Setion 4 are knownto hold for elements ommuting with x. Therefore, to show that these resultsare indeed appliable, we supply some examples showing that the sets de�nedin Setion 4 ontain elements whih do not ommute with x.Example 5.1. Let A be the set of upper triangular 2× 2 omplex matri-es, l∞(A) the set

{x = (x1, x2, . . .) : xi ∈ A for all i ∈ N and ‖xi‖A ≤ Kx for all i ∈ N},and C the set
{(c1, c2, . . .) ∈ l∞(A) : ci has only nonnegative entries for all i ∈ N}.Then (l∞(A), C) is an (in�nite-dimensional) OBA, C is losed and normal ,and for at least some x ∈ C the sets E(x), B(x) and A(x) ontain elementswhih do not ommute with x.Proof. A proof of the fat that (l∞(A), C) is an OBA with C normal wasgiven in [4, Example 4.16℄. Closedness of C follows easily from the de�nitionof C. Let
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.



Spetral ontinuity of positive elements 83Then x ∈ C and Sp(x) = {0, 1}. Let
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.Then x ≤ y and Sp(y) = {1, 2}. Sine
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, . . .
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∈ C.Therefore y ∈ B(x). In fat, x ≤ 2 · 1, so that y ∈ E(x). Moreover, although
C is not inverse-losed, E(x) = B(x).Sine d(̺(y), Sp(x)) = 1 and {d(α, Sp(x)) : α ∈ Sp(y)} = {0, 1}, itfollows that y ∈ A(x) as well. Furthermore, it is easily heked that x + y ∈
A(x) ∩ E(x) ⊂ B(x).Consequently, the following results apply to (l∞(A), C): Theorem 4.2,Corollaries 4.4, 4.5 and 4.6, Theorem 4.7, Corollaries 4.8 and 4.9, Theorem4.12 and Corollary 4.14. (Alternatively, for l∞(A), Corollaries 4.6 and 4.9follow diretly from the fat that the spetrum of every element of l∞(A) istotally disonneted. This is Newburgh's Theorem [1, Corollary 3.4.5℄.)Example 5.2. Consider , for any p with 1 ≤ p ≤ ∞, the omplex Banahlattie lp, and let A = L(lp), C = {x ∈ lp : x = |x|} and K = {T ∈ L(lp) :
TC ⊂ C}. Then (A, K) is an OBA with K losed and normal , and forsome S ∈ K suh that Sp(S) = C(0, ̺(S)), the sets D(S) and A(S) ontainelements whih do not ommute with S.Proof. The �rst statement follows from Example 3.8. Let S(ξ1, ξ2, . . .)
= (0, ξ1/1, ξ2/2, . . .). Then S ∈ K and Sp(S) = {0} = C(0, ̺(S)). Let
T (ξ1, ξ2, . . .) = (0, ξ1, ξ2, . . .). Then S ≤ T and Sp(T ) = D(0, 1), so that
δ(T ) = 0 = ̺(S). Sine we have (ST )(ξ1, ξ2, . . .) = (0, 0, ξ1/2, ξ2/3, . . .)and (TS)(ξ1, ξ2, . . .) = (0, 0, ξ1/1, ξ2/2, . . .), it follows that ST ≤ TS, andtherefore T ∈ D(S). In addition, learly S+T ∈ D(S). (Hene, also T ∈ A(S)and S + T ∈ A(S).)In the ase of (A, K) of the above example, the appliable results are:Theorem 4.2, Corollaries 4.4, 4.5 and 4.6, Theorem 4.7 and Corollaries 4.8,4.9 and 4.10.Aknowledgements. The author thanks one of the referees for suggest-ing the existene of the stronger versions (Theorem 4.7 and Corollaries 4.8and 4.9) of Corollaries 4.4, 4.5 and 4.6.
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