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From geometry to invertibility preserversby
Hans Havlicek (Wien) and Peter Šemrl (Ljubljana)Abstrat. We haraterize bijetions on matrix spaes (operator algebras) preservingfull rank (invertibility) of di�erenes of matrix (operator) pairs in both diretions.1. Introdution. Marus and Purves [19℄ proved that every unital in-vertibility preserving linear map on a matrix algebra is either an inner auto-morphism or an inner anti-automorphism. One of the equivalent formulationsof the Gleason�Kahane��elazko theorem [6, 16, 25℄ states that every unitallinear funtional on a omplex unital Banah algebra A sending every in-vertible element to a nonzero salar is multipliative. Equivalently, if a linearfuntional f : A → C maps every element a ∈ A into its spetrum σ(a), then

f is multipliative. These two results motivated Kaplansky to formulate thequestion under whih onditions an invertibility preserving linear unital mapbetween two algebras must be a Jordan homomorphism [17℄. A lot of workhas been done on this problem (see the surveys [1, 3, 22℄). We will mentionhere only the results that are relevant to our paper.Let X be a omplex Banah spae and B(X) the algebra of all boundedlinear operators on X. In 1986 Jafarian and Sourour [15℄ proved that everysurjetive unital linear map φ : B(X) → B(X) preserving invertibility inboth diretions, i.e., having the property that A is invertible if and only if
φ(A) is invertible, is either of the form φ(A) = TAT−1, A ∈ B(X), for someinvertible T ∈ B(X), or of the form φ(A) = TA′T−1, A ∈ B(X), for someinvertible bounded linear operator T : X ′ → X. Here, A′ denotes the adjointof A and X ′ the dual of X. Under the additional assumption of injetivitythe assumption of preserving invertibility in both diretions an be relaxedto preserving invertibility in one diretion only [23℄. The proof of the resultof Jafarian and Sourour was simpli�ed in [21℄. It is rather easy to see that2000 Mathematis Subjet Classi�ation: 47B49, 15A04.Key words and phrases: adjaeny, full rank, invertibility, preserver.The �rst author aknowledges the hospitality of the Department of Mathematis atthe University of Ljubljana where most of the work was arried out. The seond authorwas partially supported by a grant from the Ministry of Siene of Slovenia.[99℄



100 H. Havliek and P. �emrla linear map φ : B(X) → B(X) is unital and preserves invertibility in bothdiretions if and only if φ preserves the spetrum, that is, σ(φ(A)) = σ(A)for every A ∈ B(X).An interesting extension of the Gleason�Kahane��elazko theorem wasobtained by Kowalski and Sªodkowski [18℄. They proved that every funtional
f on a omplex Banah algebra A (they did not assume the linearity of f)satisfying f(a)− f(b) ∈ σ(a− b), a, b ∈ A, is linear and multipliative up tothe onstant f(0). Thus, they replaed the two onditions in the Gleason�Kahane��elazko theorem, linearity and the ondition f(a) ∈ σ(a), a ∈ A,by a single weaker assumption and got essentially the same onlusion.In view of this result it is natural to ask if we an do the same withthe above mentioned results on invertibility preserving maps on matrix andoperator algebras. Can we replae linearity and invertibility preserving by asingle weaker ondition similar to the one in the Kowalski�Sªodkowski theo-rem? More preisely, an we haraterize bijetive maps on matrix algebrasand operator algebras satisfying the ondition that φ(a) − φ(b) is invertibleif and only if a− b is?The result of Kowalski and Sªodkowski depends heavily on deep resultsfrom analysis. We will answer the above question using results from geome-try. We should �rst mention that there is an essential di�erene between the�nite and in�nite-dimensional ases. In the �nite-dimensional ase our on-dition will imply, up to a translation, the semilinearity of the maps underonsideration, while in the in�nite-dimensional ase the elementary auto-mati ontinuity methods will imply the linearity or onjugate-linearity upto a translation. Moreover, in the �nite-dimensional ase it makes sense toextend our result from matrix algebras of square matries to spaes of retan-gular matries. Then, of ourse, the ondition of invertibility will be replaedby the ondition of being of full rank.Our strategy when onsidering bijetive maps φ on matrix spaes (op-erator algebras) satisfying the ondition that φ(A) − φ(B) is of full rank(invertible) if and only if A − B is of full rank (invertible) will be to prove�rst that suh maps preserve adjaeny in both diretions. Reall that twomatries or operators A and B are adjaent if A−B is of rank one. Then wewill apply the so alled fundamental theorem of geometry of matries (or itsanalogue for operators) to omplete the proof. This onnets our results withthe geometry of Grassmann spaes. Let us brie�y desribe this onnetion.LetMm,n,m,n ≥ 2, be the linear spae of allm×nmatries over a �eld F.If σ is an automorphism of the �eld F and A = [aij] ∈Mm,n then we denoteby Aσ the matrix obtained from A by applying σ entrywise, Aσ = [σ(aij)].The fundamental theorem of geometry of matries states that every bijetivemap φ : Mm,n → Mm,n preserving adjaeny in both diretions is of the



From geometry to invertibility preservers 101form A 7→ TAσS + R, where T is an invertible m × m matrix, S is aninvertible n × n matrix, R is an m × n matrix, and σ is an automorphismof the underlying �eld. If m = n, then we have the additional possibilitythat φ(A) = TAt
σS + R where T, S,R and σ are as above, and At denotesthe transpose of A. This theorem and its analogues for hermitian matries,symmetri matries, and skew-symmetri matries were proved by Hua [7℄�[14℄ under some mild tehnial assumptions that were later proved to besuper�uous (see [24℄).Let m,n be integers ≥ 2. We will onsider the Grassmann spae whose�points� are vetor subspaes of F

m+n of dimension m. Chow [4℄ studiedbijetive maps on the Grassmann spae preserving adjaent pairs of points inboth diretions. Reall that m-dimensional subspaes U and V are adjaentif dim(U +V ) = m+1. Now, to eah m-dimensional subspae U of F
m+n wean assoiate an m× (m+ n) matrix whose rows are oordinates of vetorsthat form a basis of U . Eah m × (m + n) matrix will be written in blokform [X Y ], where X is an m × n matrix and Y is an m ×m matrix. Twomatries [X Y ] and [X ′ Y ′] are assoiated to the same subspae U (theirrows represent two bases of U) if and only if [X Y ] = P [X ′ Y ′] for someinvertible m × m matrix P . If this is the ase, then Y is invertible if andonly if Y ′ is invertible. So, we have assoiated to eah point in a Grassmannspae a (not uniquely determined) matrix [X Y ]. If Y is singular, we say thatthe orresponding point in the Grassmann spae is at in�nity. Otherwise, weobserve that this point an also be represented by the matrix [Y −1X I]. Thematrix Y −1X is uniquely determined by the point in the Grassmann spae.So, if U and V are two m-dimensional subspaes that are �nite points in theGrassmann spae, then they an be represented by two uniquely determined

m × n matries T and S, and it is easy to see that the subspaes U and
V are adjaent if and only if the matries T and S are adjaent. Using thisonnetion it is possible to dedue the result of Chow on bijetive mapson a Grassmann spae preserving adjaeny in both diretions from thefundamental theorem of geometry of matries (see [24℄).If we onsider the speial ase when m = n and replae, in the funda-mental theorem of geometry of matries, the ondition of preserving adja-ent pairs of matries by our assumption of preserving the pairs A,B with
rank(A − B) = n, then this orresponds to the study of bijetive maps onthe Grassmann spae of all vetor subspaes of F

2n of dimension n that pre-serve the omplementarity of subspaes. Suh maps were studied by Blunkand the �rst author [2℄. We suspet that this result an be dedued fromour result and the other way around, but we also believe that it is easier toprove eah of them separately. Namely, to prove any of these two impliationsseems to be di�ult beause of the points at in�nity.



102 H. Havliek and P. �emrlNow we state our main results. In the �nite-dimensional ase we willonsider bijetive maps on m×n matries preserving pairs of matries whosedi�erene has a full rank. Of ourse, if we have suh a map φ then the map
ψ : Mn,m → Mn,m de�ned by ψ(A) = (φ(At))t has the same properties.Thus, when studying suh maps there is no loss of generality in assumingthat m ≥ n. We will do this throughout the paper. A matrix A ∈ Mm,n issaid to be of full rank if rankA = n. Let A,B ∈ Mm,n. We write A △ B if
A−B is of full rank.Theorem 1.1. Let F be a �eld with at least three elements and m,n inte-gers with m ≥ n ≥ 2. Assume that φ : Mm,n →Mm,n is a bijetive map suhthat for every pair A,B ∈Mm,n we have A △B if and only if φ(A) △ φ(B).Then there exist an invertible m ×m matrix T , an invertible n × n matrix
S, an m× n matrix R, and an automorphism σ : F → F suh that

φ(A) = TAσS +Rfor every A ∈Mm,n. If m = n, then we have the additional possibility that
φ(A) = TAt

σS +R, A ∈Mn,n,where T, S,R∈Mn,n with T and S invertible, and σ is an automorphism of F.Theorem 1.2. Let H be an in�nite-dimensional omplex Hilbert spaeand B(H) the algebra of all bounded linear operators on H. Assume that
φ : B(H) → B(H) is a bijetive map suh that for every pair A,B ∈ B(H)the operator A−B is invertible if and only if φ(A)−φ(B) is invertible. Thenthere exist R ∈ B(H) and invertible T, S ∈ B(H) suh that φ has one of thefollowing forms:

φ(A) = TAS +R,

φ(A) = TAtS +R,

φ(A) = TA∗S +R,

φ(A) = T (At)∗S +R,for every A ∈ B(H). Here, At and A∗ denote the transpose with respet toan arbitrary but �xed orthonormal basis, and the usual adjoint of A in theHilbert spae sense, respetively.The onverses of both theorems obviously hold true. In the seond setionwe will prove the �nite-dimensional ase and in the third one the in�nite-dimensional ase. These two setions an be read independently.2. The �nite-dimensional ase. In this setion we will onsider ma-tries over a �eld F with at least three elements. At a ertain point in theproof of our �rst main theorem we will identify m× n matries with linearoperators from F
n into F

m. For suh operators we have the following simplelemma.



From geometry to invertibility preservers 103Lemma 2.1. Let T, S : F
n → F

m be nonzero linear operators and as-sume that T has at least two-dimensional image. Then we an �nd linearlyindependent vetors x, y ∈ F
n suh that Tx and Sy are linearly independent.Proof. Take any y ∈ F

n suh that Sy 6= 0. The set of all vetors z ∈ F
nwith Tz and Sy linearly dependent is a proper subspae of F

n, sine theimage of T is not ontained in the span of Sy. There exist at least twolinearly independent vetors of F
n whih are not in this subspae. One ofthem is linearly independent of y and gives the required vetor x.We have two relations on Mm,n: adjaeny and △. The following resultonneting them is the key step in our proof. We believe it is of some inde-pendent interest.Proposition 2.2. Let A,B ∈Mm,n with A 6= B. Then the following areequivalent :1. A and B are adjaent.2. There exists R ∈Mm,n, R 6= A,B, suh that for every X ∈Mm,n therelation X △R yields X △A or X △B.Proof. Note that neither of the above onditions is a�eted if we replae

A and B by PAQ − C and PBQ − C, respetively, where P and Q areinvertible matries of the appropriate size and C is any m× n matrix. Thusif the rank distane between A and B equals r then we may assume with noloss of generality that A = 0 and
B =

(

I 0
0 0

)

where I is the r× r identity matrix and the zeros stand for zero matries ofappropriate size.Assume �rst that A and B are adjaent. So, without loss of generality, wehave A = 0 and B = E11. Set R = λE11, where λ is a salar di�erent from
0 and 1, and E11 denotes the matrix with the (1, 1)-entry equal to 1 and allother entries zero. Now let X △R. That means that X −R is of full rank, orequivalently, X−R has at least one invertible n×n submatrix. We onsidertwo possibilities. First assume that one of these submatries does not ontainthe �rst row. In this aseX is of full rank and thus X△A. Otherwise any suhsubmatrix ontains the �rst row and we hoose one of them. We will provethat at least one of the orresponding n× n submatries of X −A = X and
X −B is invertible. So we restrit our attention to these n×n submatries.In other words we deal only with the square ase m = n. Hene X − λE11is an invertible square matrix. If the �rst row of E11, i.e. (1, 0, . . . , 0), is inthe subspae spanned by rows 2, 3, . . . , n of X then X − λE11 − µE11 isinvertible for all µ ∈ F, otherwise this holds for all but one µ ∈ F. Therefore



104 H. Havliek and P. �emrl
X − λE11 − µE11 is invertible for µ = −λ or µ = −λ + 1. Equivalently, atleast one of X = X −A or X − E11 = X −B is invertible, as desired. Thisompletes the proof of the �rst impliation.To prove the other diretion we identify m×n matries with linear oper-ators from F

n into F
m. We assume that A = 0 and B : F

n → F
m is a linearoperator whose image is at least two-dimensional. Let R : F

n → F
m be anylinear operator, R 6= 0, B. We have to �nd a linear operator X : F
n → F

msuh that X −R is injetive while X and X −B are not.The �rst possibility we will treat is that B − R or R has rank at leasttwo. Then, by Lemma 2.1, we an �nd linearly independent x, y ∈ F
n suhthat Bx − Rx and Ry are linearly independent. We �rst de�ne X on thelinear span of x and y. We set Xx = Bx and Xy = 0. No matter how weextend X to the whole spae these two equalities guarantee that X −B and

X will not be injetive. Now, (X−R)x = Bx−Rx and (X−R)y = −Ry arelinearly independent. It is now obvious that we an extend X to the whole
F

n so that the resulting X −R is injetive.It remains to onsider the ase when both B −R and R are of rank one.By our assumption, B is of rank two. Hene B = R+ (B −R) implies thatthe ranges of B − R and R meet in 0 only. So, if we hoose any x, y ∈ F
nsuh that (B −R)x 6= 0 and Ry 6= 0 then (B −R)x and Ry will be linearlyindependent. Sine F has at least three elements, we an hoose these x and

y to be linearly independent. Now we an proeed as above.It is now easy to prove Theorem 1.1. Namely, if φ : Mm,n → Mm,n isa bijetive map preserving △ in both diretions, then by Proposition 2.2 itpreserves adjaeny in both diretions. Thus, the result follows diretly fromthe fundamental theorem of geometry of matries.Observe that in [2℄ there is no need to assume that F has at least threeelements, due to the presene of points at in�nity.3. The in�nite-dimensional ase. Let H be an in�nite-dimensionalomplex Hilbert spae and x, y ∈ H. The inner produt of x and y willbe denoted by y∗x. If x and y are nonzero vetors then xy∗ stands for therank one bounded linear operator de�ned by (xy∗)z = (y∗z)x, z ∈ H. Notethat every bounded rank one operator an be written in this form. Twooperators A,B ∈ B(H) are said to be adjaent if A − B is an operator ofrank one. We write A △B if A−B is invertible. We start with an analogueof Proposition 2.2.Proposition 3.1. Let A,B ∈ B(H) with A 6= B. Then the followingstatements are equivalent :1. A and B are adjaent.



From geometry to invertibility preservers 1052. There exists R ∈ B(H), R 6= A,B, suh that for every X ∈ B(H) therelation X △R yields X △A or X △B.Proof. Note that neither of the above onditions is a�eted if we replae
A and B by A−C and B −C, respetively, where C is any bounded linearoperator on H. Thus we may assume with no loss of generality that A = 0.Assume �rst that A = 0 and B are adjaent, that is, B is of rank one.Set R = 2B. Suppose that X − 2B is invertible. Then

X − 2B − λB = (X − 2B)(I − λ(X − 2B)−1B)is invertible if and only if I−λS is invertible, where S = (X−2B)−1B is anoperator of rank one. Every operator of rank one has at most one nonzeroomplex number in its spetrum. Hene, X−2B−(−2B) = X is invertible or
X−2B−(−B)=X−B is invertible. This ompletes the proof of one diretion.Assume now that A = 0 and B is an operator whose image is at leasttwo-dimensional. We have to prove that for every R ∈ B(H), R 6= 0, B,there exists X ∈ B(H) suh that X −R is invertible and X is singular and
X −B is singular. So, let R ∈ B(H) \ {0, B}.In the next step we will prove that there exist x, z ∈ H suh that x and
z are linearly independent and Bz−Rz and Rx are linearly independent. Itis enough to show that we an �nd x, z ∈ H suh that Bz −Rz and Rx arelinearly independent. For if x and z are linearly dependent, we an hoose
u ∈ H linearly independent of x. Then z+λu and x are linearly independentfor all nonzero λ, and for all λ's small enough the vetors B(z + λu) −
R(z+λu) = Bz−Rz+λ(Bu−Ru) and Rx are linearly independent as well.So, let us show that suh x and z exist. Assume on the ontrary that
Bz−Rz and Rx are linearly dependent for every x and z. Then B −R and
R are rank one operators with the same one-dimensional image. It followsthat B = 0 or B is of rank one, a ontradition.Now, we de�ne W to be the orthogonal omplement of the linear spanof x and z, where x and z are as in the previous paragraph, and Z to be theorthogonal omplement of Rx and Bz − Rz. Then there exists a boundedinvertible linear operator U : W → Z. De�ne X ∈ B(H) by

Xx = 0, Xz = Bz, Xu = Uu+Ru, u ∈W.Beause of the �rst two equalities the operators X and X −B are singular.Sine (X −R)x = −Rx, (X −R)z = Bz−Rz, and (X −R)u = Uu, u ∈W ,the operator X −R is invertible, as desired.We ontinue with some tehnial lemmas.Lemma 3.2. Let B,C ∈ B(H). Assume that for every invertible A ∈
B(H) the operator A − B is invertible if and only if A − C is invertible.Then B = C.



106 H. Havliek and P. �emrlProof. Let λ be any omplex number satisfying |λ| > ‖B‖, ‖C‖, and
x, y ∈ H any vetors suh that y∗x = 0. Then λ(I + xy∗) is invertiblebeause (I + xy∗)(I − xy∗) = I. Hene, λI + λxy∗ − B is invertible if andonly if λI + λxy∗ − C is. On the other hand,

λI + λxy∗ −B = (I + xy∗)(λI −B + xy∗B)

= (I + xy∗)(I + xy∗B(λI −B)−1)(λI −B)is invertible if and only if I+xy∗B(λI−B)−1 is. Thus, I+xy∗B(λI−B)−1 isinvertible if and only if I+xy∗C(λI−C)−1 is, or equivalently, for every salar
λ with |λ| > ‖B‖, ‖C‖, and every pair of vetors x, y ∈ H with y∗x = 0 wehave

y∗B(λI −B)−1x = −1 ⇔ y∗C(λI − C)−1x = −1.Fix λ. Then y∗Tx = 0 for every pair of orthogonal vetors x and y, where
T = B(λI −B)−1 −C(λI −C)−1. It follows that T = µI for some salar µ.Thus, for every λ with |λ| > ‖B‖, ‖C‖ we have

B(λI −B)−1 − C(λI − C)−1 = g(λ)Ifor some g(λ) ∈ C. Obviously, g(λ) is holomorphi outside the disk enteredat 0 with radius max{‖B‖, ‖C‖}. Expanding the above analyti funtions inseries and omparing the oe�ients we get
B = C + µIfor some omplex number µ. Our assumption implies that σ(B) \ {0} =

σ(C) \ {0}. Here σ(B) denotes the spetrum of B. It follows that µ = 0, asdesired.Lemma 3.3. Let A,B ∈ B(H) be invertible operators. Assume that forevery rank one operator xy∗ ∈ B(H) the operator A − xy∗ is invertible ifand only if B − xy∗ is invertible. Then A = B.Proof. Our assumptions imply that for every pair of vetors x, y theoperator I − xy∗A−1 is invertible if and only if I − xy∗B−1 is, or equiv-alently, y∗A−1x = 1 if and only if y∗B−1x = 1. By linearity we have
y∗A−1x = y∗B−1x for any x, y ∈ H, and therefore, A−1 = B−1. It followsthat A = B.Reall that an additive map T : H → H is alled semilinear if there isan automorphism σ : C → C suh that T (λx) = σ(λ)Tx for every λ ∈ Cand every x ∈ H. Now we are ready to prove Theorem 1.2.Let φ : B(H) → B(H) be a bijetive map suh that for every pair
A,B ∈ B(H) the operator A−B is invertible if and only if φ(A)− φ(B) is.



From geometry to invertibility preservers 107After replaing φ by A 7→ φ(A) − φ(0) we may assume that φ(0) = 0. Then
φ(I) is invertible. Replaing φ by A 7→ φ(I)−1φ(A) we may further assumethat φ(I) = I.Aording to Proposition 3.1, φ preserves adjaeny in both diretions.Every rank one operator is adjaent to zero, every rank two operator isadjaent to some rank one operator, et. Consequently, φ maps the sub-spae F (H) ⊂ B(H) of all �nite rank operators onto itself. So, we anapply Theorem 1.5 from [20℄ to onlude that there exist bijetive semilin-ear maps T, S : H → H (with the same assoiated automorphism) suhthat either φ(xy∗) = (Tx)(Sy)∗, x, y ∈ H, or φ(xy∗) = (Sy)(Tx)∗, x, y ∈
H. The seond ase an be redued to the �rst one if we replae φ by
A 7→ φ(A)∗, A ∈ B(H). So, we may assume that the �rst possibility holdstrue.Using φ(I) = I and our assumptions we onlude that I−xy∗ is invertibleif and only if I − (Tx)(Sy)∗ is, for any x, y ∈ H. Thus, y∗x = 1 if and onlyif (Sy)∗(Tx) = 1, and by semilinearity,

(Sy)∗(Tx) = 0 ⇔ y∗x = 0, x, y ∈ H.Thus, the semilinear maps T and S and their inverses arry losed hy-perplanes (every losed hyperplane is the orthogonal omplement of somenonzero vetor) onto losed hyperplanes. Hene, by [5, Lemmas 2 and 3℄,
S and T are both linear bounded or both onjugate-linear bounded. Thus,we have φ(xy∗) = T (xy∗)R, where T and R = S∗ are bounded, invert-ible, and either both linear, or both onjugate-linear. Assume they are bothonjugate-linear. Choosing an orthonormal basis we de�ne K : H → H tobe the onjugate-linear bijetion whih maps eah vetor x into a vetorwhose oordinates are obtained from the oordinates of x by omplex on-jugation. Of ourse, K2 = I, the produt of two onjugate-linear maps islinear, and K(xy∗)K = ((xy∗)∗)t, where the transpose is taken with therespet to the hosen basis. Replaing φ by A 7→ (φ(A)t)∗, A ∈ B(H), weredue the onjugate-linear ase to the linear one.So, we may assume that φ(xy∗) = T (xy∗)R, where T and R = S∗ arebounded invertible linear operators. From (Sy)∗(Tx) = 1 ⇔ y∗x = 1 andlinearity we get (Sy)∗(Tx) = y∗x, x, y ∈ H, whih further implies that Tis the inverse of R. Composing φ with a similarity transformation we mayfurther assume that φ(xy∗) = xy∗, x, y ∈ H.Let A ∈ B(H) be invertible. Applying Lemma 3.3 with B = φ(A) we seethat φ(A) = A.Finally, let B ∈ B(H) be any operator and set C = φ(B). Using Lemma3.2 we onlude that φ(B) = B. This ompletes the proof.
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