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Abstract. We present, discuss and apply two reiteration theorems for triples of quasi-
Banach function lattices. Some interpolation results for block-Lorentz spaces and triples of
weighted Lp-spaces are proved. By using these results and a wavelet theory approach we
calculate (θ, q)-spaces for triples of smooth function spaces (such as Besov spaces, Sobolev
spaces, etc.). In contrast to the case of couples, for which even the scale of Besov spaces
is not stable under interpolation, for triples we obtain stability in the frame of Besov
spaces based on Lorentz spaces. Moreover, by using the results and ideas of this paper, we
can extend the Stein–Weiss interpolation theorem known for Lp(µ)-spaces with change of
measures to Lorentz spaces with change of measures. In particular, the results obtained
show that for some problems in analysis the three-space real interpolation approach is
really more useful than the usual real interpolation between couples.

0. Introduction. The absence of genuine applications and the un-
clear situation in the theory of real interpolation of more than two spaces
(cf. Section 2) have given many people a negative attitude towards all ques-
tions related to interpolation of several spaces. The main idea of this paper is
to show that at least for some problems in analysis the three-space approach
can be really useful. The first problem is connected with spaces of smooth
functions. For this we combine reiteration and wavelet approach from which
it follows that many important Banach spaces are isomorphic to a Banach
lattice. For example, Besov spaces are just isomorphic to weighted lp spaces
with certain weights and a special measure space.
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On the other hand, from the papers of Asekritova–Krugljak [AK] and
Sparr [S] it follows that for a triple of Banach function lattices the analogue
of the famous Lions–Peetre reiteration formula for couples

(0.1) (Xθ0,q0 ,Xθ1,q1)θ,q = X(1−θ)θ0+θθ1,q (θ0 6= θ1)

holds. These tools are used to prove the main result of the paper:
Let X0, X1, X2 be a triple of smooth function spaces, where Xi has

smoothness index σi and integration exponent pi, i = 0, 1, 2 (cf. Section 5).
In particular, the Besov spaces Bσipi and Sobolev spaces W σi

pi have smooth-
ness σi and integration exponent pi, i = 0, 1, 2.

The main result yields: If 1 < p0, p1, p2 <∞ and

(0.2) the points (σi, 1/pi), i = 0, 1, 2, are not collinear,

then

(0.3) (X0,X1,X2)(θ1,θ2),q = Bσ,qp,q ,

where

(0.4) (σ, 1/p) = (1− θ1 − θ2)(σ0, 1/p0) + θ1(σ1, 1/p1) + θ2(σ2, 1/p2)

and Bσ,qp,q := Bσ,q(Lp,q) is a generalized Besov space based on the Lorentz
spaces Lp,q. As a consequence we obtain similar results for triples of Besov
and Sobolev spaces. The assumption (0.2) is necessary and appears as a
consequence of a two-dimensional analogue of the assumption θ0 6= θ1 in the
Lions–Peetre reiteration formula for couples (cf. (0.1) and the discussion in
Section 2).

It is interesting to note that triples are important here since for couples
(Bσ0

p0
, Bσ1

p1
) of Besov spaces the real interpolation spaces (Bσ0

p0
, Bσ1

p1
)θ,q are

rather complicated and, except the diagonal case, they fall outside the scale
of Besov spaces (see e.g. [P], [Pe], [MP]). Moreover, if we consider the cou-
ples (Bσ0,q0

p0
, Bσ1,q1

p1
) with the third (thinner) parameters qi, then the spaces

(Bσ0,q0
p0

, Bσ1,q1
p1

)θ,q will indeed depend on q0 and q1 (see [Kr]). This means
that families of smooth functions are not in general stable under real inter-
polation of couples and as we see from our main result in (0.3) the situation
is quite different when we interpolate between triples of smooth spaces.

Another application of the analogue of the Lions–Peetre reiteration theo-
rem for triples of Banach function lattices is connected with the Stein–Weiss
interpolation theorem for Lp-spaces with different measures. In 1958 Stein
and Weiss [SW] proved a very useful interpolation theorem, which can be
written (see also [BL], Th. 5.4.1 and 5.5.1) as

(0.5) (Lp0(w0dµ), Lp1(w1dµ))θ,p = Lp(wdµ),

where
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0 < p0, p1 <∞, 0 < θ < 1, 1/p = (1− θ)/p0 + θ/p1,
(0.6)

w = w
(1−θ)p/p0
0 w

θp/p1
1 .

In this connection it is natural to ask for an analogue of formula (0.5) if we
replace Lp-spaces by Lorentz Lp,q-spaces. We note that the nice formula

(Lp0,q0(w0dµ), Lp1,q1(w1dµ))θ,q = Lp,q(wdµ),
(0.7)

1/q = (1− θ)/q0 + θ/q1,

is not true in general (cf. Counterexample 6.3). In this paper we show that
in fact the space

(0.8) L = (Lp0,q0(w0dµ), Lp1,q1(w1dµ))θ,q

is a block-Lorentz space with norm equivalent to

(0.9)
(∑

k∈Z
(‖fχΩk‖Lp,q(wdµ))

q
)1/q

,

where
Ωk = Ωk(w0, w1) = {x ∈ Ω : 2k ≤ w0(x)/w1(x) < 2k+1}, k ∈ Z,

and powers and weights are related by (0.6) and 0 < q0, q1 ≤ ∞, 1/q =
(1− θ)/q0 + θ/q1. The appearance of blocks is essential and it is easy to see
that on the space of functions which are constant on Ωk, L is just the usual
weighted lq-space.

In the proof of the above statement, an essential part is to first consider
a Lions–Peetre reiteration type formula for triples of Banach function lat-
tices (cf. the second reiteration theorem in Section 2) since to calculate the
space L directly seems to be quite difficult or even impossible because in
the description we need to take rearrangements of different measures.

This paper is organized in the following way: In Section 1 we collect
some preliminaries concerning real interpolation of couples and triples. In
Section 2 the Lions–Peetre reiteration formula for triples of Banach function
lattices is presented and discussed. Moreover, a second reiteration theorem
(Theorem 2.2) is stated. The proof of this theorem is fairly technical and
for the reader’s convenience the details are presented in Section 7. In Sec-
tion 3 we introduce a special family of weighted Lp-spaces and prove some
interpolation results concerning these spaces which are useful later on and
which are also of independent interest. In Section 4 we prove our main in-
terpolation result for triples of weighted Lp-spaces (see Theorem 4.1). By
using this result, reiteration and the results from Sections 2 and 3 we can
state and prove the above mentioned main result for “generalized” Besov
type spaces (see Theorem 5.2). Section 6 is devoted to a generalization of
the Stein–Weiss theorem to the case of Lorentz spaces. The last Section 7
is reserved for an appendix with the proof of Theorem 2.3.
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1. Preliminaries on real interpolation and quasi-Banach func-
tion lattices. In applications to smooth function spaces we will need to
consider both the Banach and quasi-Banach spaces. We recall that a quasi-
Banach space X = (X, ‖ · ‖) is a complete metrizable real or complex vector
space whose topology is given by a quasi-norm ‖ · ‖ satisfying the following
three conditions: ‖x‖ > 0, x ∈ X, x 6= 0; ‖λx‖ = |λ| · ‖x‖, x ∈ X, λ ∈ R or
C; ‖x1 + x2‖ ≤ C(‖x1‖+ ‖x2‖), x1, x2 ∈ X, where C is a positive constant
independent of x1, x2.

Let X = (X0,X1) be a Banach or quasi-Banach couple, i.e., there exists
a Hausdorff topological vector space X such that Xi, i = 0, 1, are Banach
or quasi-Banach spaces linearly and continuously embedded in X . Then the
Peetre K-functional is defined, for t > 0 and x ∈ X0 +X1, by

K(t, x;X) = inf{‖x0‖X0 + t‖x1‖X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1}.
The real interpolation spaces Xθ,q are defined, for 0 < q ≤ ∞ and 0 < θ < 1,
as the set of all x ∈ X0 +X1 for which the norms (quasi-norms)

‖x‖θ,q =
(∞�

0

(t−θK(t, x;X))q
dt

t

)1/q

are finite, and with the usual supremum interpretation for q =∞.
Let now X = (X0,X1,X2) be a Banach or quasi-Banach triple, i.e.,

Xi, i = 0, 1, 2, are Banach or quasi-Banach spaces linearly and continu-
ously embedded in a Hausdorff topological vector space X . Then we can
analogously define the corresponding K-functional, for t1, t2 > 0 and x ∈
X0 +X1 +X2, by

K(t1, t2, x;X) = inf{‖x0‖X0 + t1‖x1‖X1 + t2‖x2‖X2 :

x = x0 + x1 + x2, x0∈X0, x1 ∈ X1, x2 ∈ X2}.
Let

(1.1) H = {(θ1, θ2) : θ1 > 0, θ2 > 0 and θ1 + θ2 < 1}.
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The spaces Xθ,q = X(θ1,θ2),q (sometimes we also denote them by Xθ,q;K or
X(θ1,θ2),q;K) are defined, for 0 < q ≤ ∞ and θ = (θ1, θ2) ∈ H, analogously
as the set of all x ∈ X0 +X1 +X2 for which the quasi-norms

‖x‖θ,q =
(∞�

0

∞�

0

(t−θ11 t−θ22 K(t1, t2, x;X))q
dt1
t1

dt2
t2

)1/q

are finite, and with the usual modification for q =∞.
On the other hand, we let Xθ,q;J = X(θ1,θ2),q;J be the space of all those

elements x ∈ X0 +X1 +X2 which can be represented in the form

(1.2) x =
∞�

0

∞�

0

u(t1, t2)
dt1
t1

dt2
t2

(convergence in X0 +X1 +X2),

where u(t1, t2) is a strongly measurable X0 ∩X1 ∩X2-valued function and
satisfies

(1.3)
(∞�

0

∞�

0

(t−θ11 t−θ22 J(t1, t2, u(t1, t2);X))q
dt1
t1

dt2
t2

)1/q

<∞

with J(t1, t2, u;X) = max(‖u‖X0 , t1‖u‖X1 , t2‖u‖X2), u ∈ X0 ∩X1 ∩X2.
The norm ‖x‖θ,q;J in Xθ,q;J is the infimum of the values of the integral

(1.3) over all such representations (1.2) of x.
Concerning K- and J-interpolation methods between two Banach or

quasi-Banach spaces we refer to the books [BL], [BK] and [KPS], and for
K- and J-interpolation methods between three or more spaces to [S], [AK]
and [E].

We only mention here that in contrast to the classical case of Banach or
quasi-Banach couples, where K- and J-methods coincide to within equiv-
alence of quasi-norms, it is not true in general that Xθ,q;K coincides with
Xθ,q;J for more than two spaces.

Let (Ω,Σ, µ) be a σ-finite measure space. A Banach or quasi-Banach
function lattice on (Ω,µ) [also known as a Banach or quasi-Banach ideal
space on (Ω,µ), sometimes also called a Banach or quasi-Banach function
space on (Ω,µ)] will mean a Banach or quasi-Banach subspace X = (X, ‖·‖)
of L0 (the space of classes of real or complex measurable functions defined
on the measure space (Ω,Σ, µ)) which is an ideal, i.e., if y ∈ X, x ∈ L0 and
|x| ≤ |y| µ-a.e. on Ω, then x ∈ X and ‖x‖ ≤ ‖y‖.

A couple (or triple) of Banach or quasi-Banach function lattices on Ω
will mean two (or three) Banach or quasi-Banach function lattices on (Ω,µ),
respectively.

Let w be a fixed weight function on Ω, i.e., a positive measurable function
on Ω. For σ ∈ R and 0 < p ≤ ∞ we consider the family of quasi-Banach
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function lattices Lσp = Lp(wσ) defined by the finiteness of the quasi-norms

(1.4) ‖f‖Lσp =
( �

Ω

|f(x)w(x)σ|p dµ
)1/p

with the usual (supremum) interpretation for p = ∞. The importance of
this particular family of Banach (quasi-Banach in the case p < 1) function
lattices on Ω is that the Besov spaces Bσp can be represented in terms of
wavelets as a special case of such spaces (see our Section 5).

The weighted Lorentz spaces Lp,q(w,µ) on Ω (for 0 < p, q ≤ ∞ and with
the convention that q =∞ when p =∞) are determined by the quasi-norm

‖f‖Lp,q(w,µ) =
(∞�

0

(t1/p(f ·w)∗µ(t))q
dt

t

)1/q

with the usual supremum modification for q = ∞. Here by g∗µ we denote
the decreasing rearrangement of the function g on Ω with respect to the
measure µ.

2. On the Lions–Peetre reiteration formula for triples. In 1964
Lions and Peetre [LP] proved one of the most important theoretical result in
interpolation theory, the so-called reiteration formula for couples of Banach
spaces:
(2.1) (Xθ0,q0 ,Xθ1,q1)λ,q = Xθ,q, θ = (1− λ)θ0 + λθ1,

where
(2.2) θ0 6= θ1.

This formula also holds for quasi-Banach spaces (cf. [BL], Th. 3.11.5). It
shows not only the stability of the spaces Xθ,q but it also gives a possi-
bility to calculate the interpolation spaces for rather complicated couples
(Xθ0,q0 ,Xθ1,q1) by using a simpler initial couple X = (X0,X1) and the
result does not depend on the parameters q0 and q1.

The classical proof of the formula (2.1) is based on the so-called equiva-
lence theorem for the K- and J-methods:

(2.3) Xθ,q;K = Xθ,q;J ,

which is valid for any couple X = (X0,X1) of quasi-Banach spaces (cf. [BL],
Th. 3.11.3). Sparr (1974) defined the K-, J-functionals and the correspond-
ing interpolation spaces for (n+ 1)-tuples X = (X0,X1, . . . ,Xn), n ≥ 1, of
Banach spaces which were analogous to the case of couples and showed that
we always have the imbedding

Xθ,q;J ⊂ Xθ,q;K .

Moreover, Sparr [S] tried to extend the reiteration formula (2.1) to (n+ 1)-
tuples and he showed that if an analogue of the equivalence theorem is
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valid for a triple X = (X0,X1,X2), then an analogue of the Lions–Peetre
reiteration formula is also true. But there are troubles with the equiva-
lence theorem for n > 1. We should mention that earlier Yoshikawa (1970)
considered the spaces of means for n-tuples. Yoshikawa (1970) and Sparr
(1974) gave counterexamples to the equivalence theorem which means in
fact that the above imbedding is strict for n > 1. Their counterexample
could be considered somewhat “artificial” since it has the property that
the intersection of the spaces is equal to {0}. In 1987 Cwikel and Janson
[CJ] constructed a “non-degenerate” 3-tuple H = (H0,H1,H2) of Hilbert
spaces with the intersection H0 ∩H1 ∩H2 dense in each Hi and such that
the imbedding Hθ,2;J ⊂ Hθ,2;K is strict, i.e., the equivalence theorem is
not valid. Thus we conclude that even for a good triple, such as a triple of
Hilbert spaces, the classical method of proving the reiteration theorem does
not work.

There was another way to prove the Lions–Peetre reiteration formula
based on the K-divisibility property of couples (cf. [BK], Th. 3.3.11). The
well known Brudny̆ı–Krugljak result from 1981 states that any Banach or
quasi-Banach couple is K-divisible but as observed by Asekritova [A] in 1988
the K-divisibility property is not valid for triples, even for simple triples such
as (L1, L1(1/t1), L1(1/t2)).

These examples gave an impression that an analogue of the reiteration
theorem for triples was valid only for a very narrow class of triples, and
even for simple triples such as weighted Lp-spaces (Lp0(w0dµ), Lp1(w1dµ),
Lp2(w2dµ)) it was not clear if it was true or not. This unclear situation and
absence of genuine applications has made people rather pessimistic about
real interpolation of several spaces.

In this situation it was natural to try to prove that the reiteration the-
orem can be valid for wide and important classes of triples and to find
interesting applications.

In 1997 Asekritova and Krugljak [AK] showed that the equivalence theo-
rem is in fact valid for any n-tuple of Banach function lattices on Ω. In par-
ticular, it holds for triples (Lp0(w0dµ), Lp1(w1dµ), Lp2(w2dµ)) of weighted
Lp-spaces.

The proof of Asekritova–Krugljak’s result is rather complicated and it
uses significantly the structure of Banach function lattices on Ω. Their the-
orem for triples (X0,X1,X2) of Banach function lattices on Ω, together
with Sparr’s theorem ([S], Th. 9.1, p. 285) for n = 2 give the reiteration
theorem in the case of Banach function lattices. Moreover, from these inves-
tigations it can be seen that it is enough to require that Xi, i = 0, 1, 2, are
quasi-Banach function lattices on Ω so from [AK] and [S] we can derive the
following first reiteration theorem (this theorem is valid even for n-tuples
but for our purpose it is enough to have the simplest case of triples):
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Theorem 2.1 (First Reiteration Theorem). Let X = (X0,X1,X2) be
a triple of Banach or quasi-Banach function lattices on Ω and let λ =
(λ1, λ2) ∈ H, θi = (θi1, θ

i
2) ∈ H, i = 0, 1, 2. Then

(2.4) (Xθ0,q0
,Xθ1,q1

,Xθ2,q2
)λ,q = Xθ,q, θ = (1−λ1−λ2)θ0+λ1θ1+λ2θ2

whenever

(2.5) the vectors θ0, θ1, θ2 are not collinear.

Fig. 1

The formula (2.4) has a simple geometrical interpretation. Let us draw
a triangle ∆ in the plane (see the outer triangle in Figure 1) correspond-
ing to the triple X = (X0,X1,X2). Identify the space X(θ1,θ2),q with the
point of ∆ with barycentric coordinates (1− θ1− θ2, θ1, θ2). Then the triple
(Xθ0,q0

,Xθ1,q1
,Xθ2,q2

) corresponds to a triangle ∆′ inside ∆. If B is a fixed
point in ∆′, then the following two spaces correspond to it:

(X0,X1,X2)(θ1,θ2),q from the initial triple (X0,X1,X2)

and

(Xθ0,q0
,Xθ1,q1

,Xθ2,q2
)(λ1,λ2),q

from the other triple (Xθ0,q0
,Xθ1,q1

,Xθ2,q2
).

The First Reiteration Theorem states that these two spaces coincide and the
parameters are connected by the usual geometrical relations for barycentric
coordinates.

Remark 2.2. (a) The condition (2.5) is just the analogue of the neces-
sary condition θ0 6= θ1 for the reiteration formula (2.1) for couples to hold
and it means that the vertices of the triangle ∆′ are not collinear.

(b) In the definition of the spaces X(θ1,θ2),q we supposed that θ0, θ1 > 0
and θ0 + θ1 < 1. It is possible to give a meaning to these spaces also for
θ0, θ1 ≥ 0, θ0 + θ1 ≤ 1 and then the reiteration formula (2.4) will be valid
even in such cases (see [S] and [AK]).
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We will also need the following theorem which shows that in some cases
the space obtained by successive interpolation of couples can be obtained
by interpolation of triples. We will call this theorem the second reiteration
theorem.

Theorem 2.3 (Second Reiteration Theorem). Let (X0,X1,X2) be a
triple of Banach or quasi-Banach function lattices on Ω. If 0 < q0, q1, q <∞
and 1/q = (1− µ)/q0 + µ/q1, then

(2.6) ((X0,X2)α0,q0 , (X1,X2)α1,q1)µ,q = (X0,X1,X2)(θ1,θ2),q,

where
(2.7) θ1 = (1− α1)µ, θ2 = α0(1− µ) + α1µ.

Fig. 2

The proof of Theorem 2.3 is rather long and it will be given, for the
convenience of the reader, in Appendix 7.

Remark 2.4. For the case of q0 = q1, α0 = α1 and for a triple of Banach
spaces for which the equivalence theorem holds, the result of Theorem 2.3
was also pointed out by Yoshikawa [Y], Prop. 4.1, 4.2 (see also Sparr [S],
Th. 9.3, p. 292, and in the particular case n = 2, m = 1, p. 291).

Remark 2.5. In the case when α1 = 0, i.e., when instead of the space
(X1,X2)α1,q1 we have the space X1, then the formula (2.6) is not true in
general. In fact, in Example 4.6 we will consider the triple of weighted Lp-
spaces for weighted spaces X0, X1, X2 such that

((X0,X2)α0,q0 ,X1)µ,q 6= (X0,X1,X2)(µ,α0(1−µ)),q.

Note that in Theorem 2.3 the second space in the couples (X0,X2) and
(X1,X2) is the same space, and this is essential since the formula

((X0,X2)α0,q0 , (X1,X3)α1,q1)µ,q = (X0,X1,X2,X3)((1−α1)µ,α0(1−µ),α1µ),q

is not true in general (the definition of real interpolation spaces between
four spaces is similar to that for three spaces, see e.g. Sparr [S]). Indeed, if
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we take X1 = X3, then

(X0,X1,X2,X3)((1−α1)µ,α0(1−µ),α1µ),q = (X0,X1,X2)(µ,α0(1−µ)),q

and, as noted before, this is different from

((X0,X2)α0,q0 ,X1)µ,q = ((X0,X2)α0,q0 , (X1,X3)α1,q1)µ,q.

Theorem 2.3 also gives the possibility to calculate (X0,X1,X2)(θ1,θ2),q if
we can calculate the interpolation spaces for some couples.

Corollary 2.6. Let (X0,X1,X2) be a triple of Banach or quasi-
Banach function lattices on Ω and 0 < q <∞. Then

(2.8) (X0,X1,X2)(θ1,θ2),q = ((X0,X2)θ2,q, (X1,X2)θ2,q)θ,q,

where θ = θ1/(1− θ2).

This follows immediately from Theorem 2.3 by putting α0 = α1 = θ2,
q1 = q2 = q and µ = θ1/(1− θ2).

We finish this section with an example which shows that even for rather
simple and important triples the reiteration theorems above are not valid in
general.

Example 2.7. Let us call a triple (X0,X1,X2) “good” if both our re-
iteration theorems (the first and second) are true for it. Then the triple
(W
◦

1
2,W

1
2 , L2) is not good, where all spaces consist of functions on the disc

D = {(x, y) : x2 +y2 < 1} and W
◦

1
2 is the closure in W 1

2 of the C∞ functions
with a compact support.

Indeed, the proof of statement (a) of Theorem 3 in [AK] shows that if
the triple (X0,X1,X2) is good and the equality

(X0,X2)θ,q = (X1,X2)θ,q

holds for some parameters θ, q, then it holds for all θ, q. However, according
to a result of Lions–Magenes (see [LM], Th. 11.1, p. 55) we have

(W
◦ 1

2, L2)θ,2 = (W 1
2 , L2)θ,2 for 1/2 < θ < 1,

but

(W
◦ 1

2, L2)θ,2 6= (W 1
2 , L2)θ,2 for 0 < θ ≤ 1/2,

which shows that the triple (W
◦

1
2,W

1
2 , L2) is not good.

This example once again shows the importance of a common order struc-
ture of the spaces. This situation was also observed, for example, by Ma-
ligranda [M] who showed that the equality

(X0,X1 ∩X2)θ,q = (X0,X1)θ,q ∩ (X0,X2)θ,q

is true for Banach function lattices but, as was known from counterexamples,
not for general Banach spaces.



Reiteration formulas for triples 229

3. Interpolation of a family of block-Lorentz spaces. Let w be a
fixed weight function on Ω and consider the weighted spaces Lσp = Lp(wσ),
for σ ∈ R and 0 < p ≤ ∞, on Ω defined by the finiteness of the quasi-norms
(1.4). Then, according to the Stein–Weiss interpolation theorem (see [BL],
Th. 5.5.1), in the diagonal case, i.e., when 1/p = (1− θ)/p0 + θ/p1, we have

(3.1) (Lσ0
p0
, Lσ1

p1
)θ,p = Lσp , σ = (1− θ)σ0 + θσ1.

If we now identify the spaces Lσipi with the points (σi, 1/pi), i = 0, 1, in the
upper half-plane, then the interpolation space Lσp will be identified with the
point (σ, 1/p) on the straight line between (σ0, 1/p0) and (σ1, 1/p1).

Let us now introduce the sets

(3.2) Ωk = Ωk(w) = {x ∈ Ω : 2k ≤ w(x) < 2k+1}, k ∈ Z,
and define, for σ ∈ R and 0 < p, q, r ≤ ∞, the block-Lorentz spaces Lσ,qp,r =
Lσ,qp,r(w) by the finiteness of the quasi-norm

‖f‖Lσ,qp,r =
(∑

k∈Z
(‖fwσχΩk‖Lp,r)q

)1/q

with the standard modification for q = ∞. Here, Lp,r denotes the usual
Lorentz spaces (with the convention that r = ∞ when p = ∞). It is clear
that Lσ,pp,p = Lσp and in what follows we also use the notation Lσ,qp := Lσ,qp,p.

In the case when r = p and w(x) = |x| on Rn \ {0}, the spaces Lσ,qp,r are
the so-called homogeneous Herz spaces Kσ,q

p (cf. Herz [H] and Baernstein–
Sawyer [BS]).

According to the next lemma (due to Gilbert [G], Th. 3.7), for p0 =
p1 = p we can calculate the interpolation spaces (Lσ0

p0
, Lσ1

p1
)θ,q even in the

non-diagonal case.

Lemma 3.1. If σ0 6= σ1, then

(Lσ0
p , L

σ1
p )θ,q = Lσ,qp , where σ = (1− θ)σ0 + θσ1.

Proof. For the reader’s convenience we give another and, in our opinion,
clearer proof than that in [G]. It is enough to consider the case σ1 > σ0.
The other case is obtained by just interchanging the spaces.

Set

ak =
( �

Ωk

|f(x)w(x)σ0 |p dµ
)1/p

, k ∈ Z.

According to the definition of Ωk we have the equivalence

(3.3) w(x)σ1−σ0 ≈ 2k(σ1−σ0) for x ∈ Ωk,
or more precisely the estimates

2k(σ1−σ0) ≤ w(x)σ1−σ0 ≤ 2(k+1)(σ1−σ0) for x ∈ Ωk.
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By using these estimates we find that

‖f‖Lσ1
p

=
(∑

k∈Z

�

Ωk

|f(x)w(x)σ0 |pw(x)(σ1−σ0)p dµ
)1/p

≥
(∑

k∈Z
(2k(σ1−σ0)ak)p

)1/p
= ‖{ak}‖lσ1−σ0

p

and

‖f‖Lσ1
p
≤ 2σ1−σ0‖{ak}‖lσ1−σ0

p
,

where

‖{ak}‖lsp :=
(∑

k∈Z
(2ks|ak|)p

)1/p
for s ∈ R and 0 < p ≤ ∞.

The above estimates give

(3.4) K(t, f ;Lσ0
p , L

σ1
p ) ≈ K(t, {ak}; lp, lσ1−σ0

p ).

In fact, if f = f0 + f1 with fi ∈ Lσip (i = 0, 1), then for

ak,i =
( �

Ωk

|fi(x)w(x)σ0 |p dµ
)1/p

,

we have {ak,0} ∈ lp, {ak,1} ∈ lσ1−σ0
p and ak ≤ 2max(0,1/p−1)(ak,0 + ak,1) for

all k ∈ Z. Hence

K(t, {ak}; lp, lσ1−σ0
p ) ≤ 2max(0,1/p−1)(‖{ak,0}‖lp + t‖{ak,1}‖lσ1−σ0

p
)

≤ 2max(0,1/p−1)(‖f0‖Lσ0
p

+ t‖f1‖Lσ1
p

)

and so

K(t, {ak}; lp, lσ1−σ0
p ) ≤ 2max(0,1/p−1)K(t, f ;Lσ0

p , L
σ1
p ).

On the other hand, if ak = bk + ck with {bk} ∈ lp and {ck} ∈ lσ1−σ0
p , then

by putting

fχΩk = fχΩk
bk
ak

+ fχΩk
ck
ak

when ak 6= 0

we obtain

K(t, f ;Lσ0
p , L

σ1
p ) ≤

∥∥∥∥
∑

k∈Z
fχΩk

bk
ak

∥∥∥∥
L
σ0
p

+ t

∥∥∥∥
∑

k∈Z
fχΩk

ck
ak

∥∥∥∥
L
σ1
p

=
(∑

k∈Z

�

Ωk

(∣∣∣∣
bk
ak
f(x)w(x)σ0

∣∣∣∣
)p

dµ

)1/p
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+ t

(∑

k∈Z

�

Ωk

(∣∣∣∣
ck
ak
f(x)w(x)σ1

∣∣∣∣
)p

dµ

)1/p

≤ ‖{bk}‖lp + t

(∑

k∈Z

�

Ωk

(∣∣∣∣
ck
ak
f(x)w(x)σ02(k+1)(σ1−σ0)

∣∣∣∣
)p

dµ

)1/p

= ‖{bk}‖lp + t2σ1−σ0‖{2k(σ1−σ0)ck}‖lp
or

K(t, f ;Lσ0
p , L

σ1
p ) ≤ 2σ1−σ0K(t, {ak}; lp, lσ1−σ0

p ).

The equivalence (3.4) and the well known interpolation formula

(lp, lσ1−σ0
p )θ,q = lθ(σ1−σ0)

q

(see e.g. [BL], Th. 5.6.1) give

‖f‖(Lσ0
p ,L

σ1
p )θ,q ≈ ‖{ak}‖lθ(σ1−σ0)

q
,

and going back from the sequence {ak} to the function f we obtain

‖{ak}‖lθ(σ1−σ0)
q

=
(∑

k∈Z
(2kθ(σ1−σ0)ak)q

)1/q

=
(∑

k∈Z
2kqθ(σ1−σ0)

( �

Ωk

|f(x)w(x)σ0 |p dµ
)q/p)1/q

≥ 2σ0−σ1

(∑

k∈Z

( �

Ωk

|w(x)θ(σ1−σ0)f(x)w(x)σ0 |p dµ
)q/p)1/q

= 2σ0−σ1‖f‖Lσ,qp
and, similarly,

‖{ak}‖lθ(σ1−σ0)
q

≤ ‖f‖Lσ,qp ,

which means that
(Lσ0

p , L
σ1
p )θ,q = Lσ,qp

with equivalent norms. The proof is complete.

Next we prove that if p0 6= p1, then the spaces Lσ,qp,r are stable under
diagonal interpolation.

Lemma 3.2. If p0 6= p1, 0 < q0, q1 < ∞ and 1/q = (1 − θ)/q0 + θ/q1,
then

(3.5) (Lσ0,q0
p0,r0 , L

σ1,q1
p1,r1 )θ,q = Lσ,qp,q ,

where σ = (1− θ)σ0 + θσ1 and 1/p = (1− θ)/p0 + θ/p1.

Proof. Denote the interpolation space (Lσ0,q0
p0,r0 , L

σ1,q1
p1,r1 )θ,q by L and let

gk(x) = f(x)w(x)σ0χΩk(x), where Ωk, k ∈ Z, are defined by (3.2).
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Then, as q0, q1 <∞, we can use the power theorem (see e.g. [BL], Th. 3.11.6)
to obtain

(3.6) Lq = ((Lσ0,q0
p0,r0 )q0 , (Lσ1,q1

p1,r1 )q1)η,1, where η = θq/q1.

Moreover,

(3.7) (‖f‖Lσ0,q0
p0,r0

)q0 =
∑

k∈Z
(‖fwσ0χΩk‖Lp0,r0

)q0 =
∑

k∈Z
(‖gk‖Lp0,r0

)q0

and, according to (3.3),

(‖f‖Lσ1,q1
p1,r1

)q1 =
∑

k∈Z
(‖fwσ1χΩk‖Lp1,r1

)q1(3.8)

=
∑

k∈Z
(‖wσ1−σ0fwσ0χΩk‖Lp1,r1

)q1

=
∑

k∈Z
2k(σ1−σ0)q1(‖gk‖Lp1,r1

)q1 .

Note that the family {Ωk} covers Ω and that Ωk are not overlapping. There-
fore, by using (3.7) and (3.8), we see that

K(t, f ; (Lσ0,q0
p0,r0 )q0 , (Lσ1,q1

p1,r1 )q1) ≈
∑

k∈Z
K(t, gk; (Lp0,r0)q0 , (2k(σ1−σ0)Lp1,r1)q1).

In view of (3.6) and the additivity of the integral it follows that

(3.9) ‖f‖qL ≈
∑

k∈Z
‖gk‖Lk , where Lk := ((Lp0,r0)q0 , (2k(σ1−σ0)Lp1,r1)q1)η,1.

By using the power theorem once more we find that

(3.10) ((Lp0,r0)q0 , (2k(σ1−σ0)Lp1,r1)q1)η,1 = ((Lp0,r0 , 2
k(σ1−σ0)Lp1,r1)θ,q)q.

Next we recall that for any quasi-Banach couple,

‖x‖(X0,cX1)θ,q = cθ‖x‖(X0,X1)θ,q for any c > 0,

and therefore by the well known result on interpolation of Lorentz spaces
for p0 6= p1 (see [BL], Th. 5.3.1) we see that

(Lp0,r0 , 2
k(σ1−σ0)Lp1,r1)θ,q = 2kθ(σ1−σ0)Lp,q.

Hence, by using (3.3), (3.9), (3.10), we find that

‖f‖qL =
∑

k∈Z
(‖fwσ0χΩk‖2kθ(σ1−σ0)Lp,q

)q

≈
∑

k∈Z
(‖fwσ0wθ(σ1−σ0)χΩk‖Lp,q)q

=
∑

k∈Z
(‖fwσχΩk‖Lp,q )q = (‖f‖Lσ,qp,q )q

and (3.5) is proved.
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Remark 3.3. By analyzing the proof of Lemma 3.2 we find that the
formula (3.5) is true also for the case p0 = p1 if we impose the additional
condition

1/q = (1− θ)/r0 + θ/r1.

The following example will show that in the off-diagonal case, i.e., when
1/q 6= (1 − θ)/p0 + θ/p1, the spaces (Lσ0

p0
, Lσ1

p1
)θ,q do not belong in gen-

eral to the scale of Lσ,qp,r-spaces. This example will be used later on in the
construction of counterexamples.

Example 3.4. Let Ω be the set of natural numbers with the measure
µ({n}) = 1 and let the weight function w be defined by w(n) = 2n. If
p0 6= p1 and σ0 = σ1 = σ, then we have the usual weighted Lorentz spaces

(Lσp0
, Lσp1

)θ,q = Lp,q(wσ), 1/p = (1− θ)/p0 + θ/p1,

and

(3.11) ‖f‖Lp,q(wσ) = ‖{2nσf(n)}‖lp,q .
On the other hand, as Ωk = {k},

‖f‖Lσ0,q0
p0,r0

=
(∑

k∈Z
(‖fwσ0χΩk‖Lp0,r0

)q0
)1/q0

(3.12)

=
(∑

k∈N

( 1�

0

[t1/p0 |f(k)|2kσ0 ]r0
dt

t

)q0/r0)1/q0

= c
(∑

k∈N
(|f(k)|2kσ0)q0

)1/q0
.

If the norms (3.11) and (3.12) are equivalent, then we must have σ0 = σ,
and thus the second norm can be written as

‖f‖Lσ0,q0
p0,r0

= c
(∑

k∈N
(|f(k)|2kσ)q0

)1/q0
.

Hence, by setting bk = |f(k)|2kσ, we find that

‖{bn}‖lp,q ≈ ‖{bn}‖lq0 ,
which is possible only when p = q = q0, but this is not the case when
q 6= p. This contradiction shows that the norms in (3.11) and (3.12) are not
equivalent, i.e. (Lσp0

, Lσp1
)θ,q 6= Lσ0,q0

p0,r0 .

4. Interpolation of triples of weighted Lp-spaces. We first recall
that it was shown in Example 3.4 that in the off-diagonal case the spaces
(Lσ0

p0
, Lσ1

p1
)θ,q do not in general belong to the scale of Lσ,qp,r-spaces. According

to the main result of this section (Theorem 4.1), the situation is completely
different when we interpolate triples (Lσ0

p0
, Lσ1

p1
, Lσ2

p2
) of weighted Lp-spaces.



234 I. Asekritova et al.

Theorem 4.1. Let 0 < q < ∞. If the points (σi, 1/pi), i = 0, 1, 2, are
not collinear , then

(4.1) (Lσ0
p0
, Lσ1

p1
, Lσ2

p2
)(θ1,θ2),q = Lσ,qp,q ,

where

(σ, 1/p) = (1− θ1 − θ2)(σ0, 1/p0) + θ1(σ1, 1/p1) + θ2(σ2, 1/p2).

The description (4.1) also holds for the case q = ∞ if we impose the addi-
tional assumption that p0, p1, p2 ≥ 1.

Remark 4.2. Let us mention that in Theorem 4.1 we have implicitly
assumed that 0 < p < ∞ because if p = ∞, then p0 = p1 = p2 = ∞ and
the points (σi, 1/pi), i = 0, 1, 2, are on the same line, which contradicts the
assumption.

Remark 4.3. In the case when the points (σi, 1/pi), i = 0, 1, 2, lie on the
same line, Theorem 4.1 is not true in general. Let, for example, p1 < p2 < p0.
Then there exists λ ∈ (0, 1) such that

1/p2 = (1− λ)/p0 + λ/p1 and σ2 = (1− λ)σ0 + λσ1,

and from the Stein–Weiss theorem (see [BL], Th. 5.5.1) we have Lσ2
p2

=
(Lσ0

p0
, Lσ1

p1
)λ,p2 . Then, in view of Theorem 9.1 of Sparr [S], we have

(Lσ0
p0
, Lσ1

p1
, Lσ2

p2
)(θ1,θ2),q = (Lσ0

p0
, Lσ1

p1
)µ,q

with µ = θ1 + λθ2 and 1 ≤ q ≤ ∞. For 0 < q < ∞ this can also be shown
from our Corollary 2.6 and the reiteration theorem for couples:

(Lσ0
p0
, Lσ1

p1
, Lσ2

p2
)(θ1,θ2),q

= ((Lσ0
p0
, (Lσ0

p0
, Lσ1

p1
)λ,p2)θ2,q, (L

σ1
p1
, (Lσ0

p0
, Lσ1

p1
)λ,p2)θ2,q)θ1/(1−θ2),q

= (Lσ0
p0
, Lσ1

p1
)µ,q.

In the case when q is non-diagonal, i.e.,

1/q 6= (1− µ)/p0 + µ/p1 = (1− θ1 − θ2)/p0 + θ1/p1 + θ2/p2,

the space (Lσ0
p0
, Lσ1

p1
)µ,q is different from Lσ,qp,q so Theorem 4.1 is not true.

For the proof of Theorem 4.1 we need two lemmas.

Lemma 4.4. If q is diagonal , i.e., when 1/q = 1/p = (1− θ1 − θ2)/p0 +
θ1/p1 + θ2/p2, then the formula (4.1) holds even without the restriction that
the points (σi, 1/pi), i = 0, 1, 2, are not collinear.

Proof. From Sparr’s result [S, Th. 8.1] it follows that the right hand side
of (4.1) is equal to Lσp . Since q = p it follows that Lσp = Lσ,qp,q .

In the next lemma we consider two triples (Lσ0
p0
, Lσ1

p1
, Lσ2

p2
), (Lα0

r0 , L
α1
r1 , L

α2
r2 )

and the set of parameters from H given by (1.1).
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Lemma 4.5. Assume that the points (σi, 1/pi), i=0, 1, 2, are not collin-
ear and also the points (αi, 1/ri), i = 0, 1, 2, are not collinear. If (θ1, θ2),
(λ1, λ2) ∈ H and

(4.2) (1− θ1 − θ2)(σ0, 1/p0) + θ1(σ1, 1/p1) + θ2(σ2, 1/p2)

= (1− λ1 − λ2)(α0, 1/r0) + λ1(α1, 1/r1) + λ2(α2, 1/r2),

then

(4.3) (Lσ0
p0
, Lσ1

p1
, Lσ2

p2
)(θ1,θ2),q = (Lα0

r0 , L
α1
r1 , L

α2
r2 )(λ1,λ2),q.

Proof. Denote by ∆ the triangle with vertices (σi, 1/pi) and by ∆′ the
triangle with vertices (αi, 1/ri), i = 0, 1, 2. Then (4.2) and the assumption
(θ1, θ2), (λ1, λ2) ∈ H mean that the point

x∗ := (1− θ1 − θ2)(σ0, 1/p0) + θ1(σ1, 1/p1) + θ2(σ2, 1/p2)

= (1− λ1 − λ2)(α0, 1/r0) + λ1(α1, 1/r1) + λ2(α2, 1/r2)

belongs to the interior of both ∆ and ∆′. In the interior of ∆ ∩ ∆′, take
three points (δi, 1/qi), i = 0, 1, 2, such that x∗ belongs to the interior of the
triangle with these vertices. Thus, there are strictly positive numbers η0, η1

and η2 such that η0 + η1 + η2 = 1 and

x∗ := η0(δ0, 1/q0) + η1(δ1, 1/q1) + η2(δ2, 1/q2).

Moreover, since the points (δi, 1/qi) belong to the interior of both ∆ and
∆′, there exist vectors (θi1, θ

i
2), (λi1, λ

i
2) ∈ H, i = 0, 1, 2, such that

(δi, 1/qi) = (1− θi1 − θi2)(σ0, 1/p0) + θi1(σ1, 1/p1) + θi2(σ2, 1/p2)

= (1−λi1−λi2)(α0, 1/r0)+λi1(α1, 1/r1)+λi2(α2, 1/r2), i = 0, 1, 2.

According to our reiteration Theorem 2.1 we have

(4.4) (Lσ0
p0
, Lσ1

p1
, Lσ2

p2
)(θ1,θ2),q = (X0,X1,X2)(η1,η2),q,

where
Xi = (Lσ0

p0
, Lσ1

p1
, Lσ2

p2
)(θi1,θ

i
2),qi , i = 0, 1, 2,

and also

(4.5) (Lα0
r0 , L

α1
r1 , L

α2
r2 )(θ1,θ2),q = (Y0, Y1, Y2)(η1,η2),q,

where
Yi = (Lα0

r0 , L
α1
r1 , L

α2
r2 )(λi1,λ

i
2),qi , i = 0, 1, 2.

The desired relation (4.3) follows by comparing (4.4) with (4.5) and using
our Lemma 4.4 to conclude that Xi = Yi = Lδiqi = Lδi,qiqi,qi , i = 0, 1, 2. The
proof is complete.

We are now ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1. (a) The case q <∞. When q = p the result holds
according to Lemma 4.4 so we assume that q 6= p.
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From Lemma 4.5 it follows that it is sufficient to find points (αi, 1/ri),
i = 0, 1, 2, such that

(4.6) (σ, 1/p) = (1− λ1 − λ2)(α0, 1/r0) + λ1(α1, 1/r1) + λ2(α2, 1/r2)

and for which

(4.7) (Lα0
r0 , L

α1
r1 , L

α2
r2 )(λ1,λ2),q = Lσ,qp,q .

We construct them in the following way: first take M = (σ/2, 1/q) (see
Figure 3). Since q < ∞ we can find points (α0, 1/r0) and (α2, 1/r2) such
that α0 = α2 = σ/2 and as 0 < p <∞ (cf. Remark 4.2),

1/r0 < min(1/p, 1/q) ≤ max(1/p, 1/q) < 1/r2.

Fig. 3

Then, according to (3.1) we have

(4.8) (Lα0
r0 , L

α2
r2 )λ,q = (Lσ/2r0 , Lσ/2r2 )λ,q = Lσ/2q

provided

(4.9) (1− λ)/r0 + λ/r2 = 1/q, i.e., λ = (1/q − 1/r0)/(1/r2 − 1/r0).

Now consider the straight line L through M and (σ, 1/p). Moreover, we
denote by N the point of intersection of L and the horizontal line through
(1/r2, σ/2) if 1/p > 1/q, and through (1/r0, σ/2) if 1/p < 1/q (see Figure 3).

It is sufficient to consider the first case because the second can be dealt
with in an analogous way. The first coordinate σ∗ of the pointN = (σ∗, 1/r2)
can easily be calculated by using the obvious symmetry of triangles:

(4.10)
σ∗ − σ
σ∗ − σ/2 =

1/r2 − 1/p
1/r2 − 1/q

.
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We also consider the line L′, parallel to L and passing through (σ/2, 1/r0).
The intersection of L′ and the horizontal line through (σ/2, 1/r2) and N
will be our third required point (α1, 1/r1), and so we have

(4.11) 1/r1 = 1/r2 and (1− λ)α1 + λσ/2 = σ∗

with the same λ as in (4.9) (because L′ is parallel to L). Since r1 = r2 it
follows from Lemma 3.1 and (4.11) that

(4.12) (Lα1
r1 , L

α2
r2 )λ,q = (Lα1

r2 , L
σ/2
r2 )λ,q = L(1−λ)α1+λσ/2,q

r2 = Lσ
∗,q
r2 ,

where σ∗ is the first coordinate of N (see (4.10)).
If we take η such that

(1− η)σ/2 + ησ∗ = σ,

then as the points (σ/2, 1/q), (σ, 1/p) and (σ∗, 1/r2) lie on the same line L
we have

(1− η)/q + η/r2 = 1/p

and Lemma 3.2 shows that

(4.13) (Lσ/2q , Lσ
∗,q
r2 )η,q = Lσ,qp,q .

Thus, according to (4.13), (4.8) and (4.12), we have

(4.14) Lσ,qp,q = (Lσ/2q , Lσ
∗,q
r2 )η,q = ((Lα0

r0 , L
α2
r2 )λ,q, (Lα1

r2 , L
σ/2
r2 )λ,q)η,q.

We now put λ1 = (1− λ)η and λ2 = λ and use (4.14) and our Corollary 2.6
to conclude that

Lσ,qp,q = (Lα0
r0 , L

α1
r1 , L

α2
r2 )(λ1,λ2),q,

and thus, according to Lemma 4.5, we see that (4.1) holds and the proof of
the case q <∞ is complete.

(b) The case q = ∞ with the additional assumption p0, p1, p2 > 1. In
this case we can use the well known duality

(L−σiqi )∗ = Lσipi , 1/qi + 1/pi = 1, i = 0, 1, 2.

For q = 1 we have proved above that

(L−σ0
q0 , L−σ1

q1 , L−σ2
q2 )(θ1,θ2),1 = L−σ,1q,1 ,

where (σ, 1/q) = (1−θ0−θ1)(σ0, 1/q0)+θ1(σ1, 1/q1)+θ2(σ2, 1/q2). Therefore
by using the duality of K- and J-methods (see [CFMR], Th. 3.4) and the
equivalence of K- and J-methods for Banach function lattices on Ω (see
[AK], Th. 1) we obtain

(Lσ0
p0
, Lσ1

p1
, Lσ2

p2
)(θ1,θ2),∞ = ((L−σ0

q0 , L−σ1
q1 , L−σ2

q2 )(θ1,θ2),1)∗ = (L−σ,1q,1 )∗.

It only remains to prove that

(L−σ,1q,1 )∗ = Lσ,∞p,∞, 1/p+ 1/q = 1,
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but this formula follows at once from the well known duality of Lorentz
spaces [Lq,1(w−σ)]∗ = Lp,∞(wσ) and the definition of the spaces L−σ,1q,1 .
Indeed, L−σ,1q,1 = l1[Lq,1(w−σ)] in the sense that

‖f‖L−σ,1q,1
=
∑

k∈Z
‖fw−σχΩk‖Lq,1 =

∑

k∈Z
‖ak‖Lq,1(w−σ), ak = fχΩk .

The sets Ωk do not intersect and therefore

(L−σ,1q,1 )∗ = {l1[Lq,1(w−σ)]}∗ = l∞[{Lq,1(w−σ)}∗] = l∞[Lp,∞(wσ)] = Lσ,∞p,∞.

(c) The case where q =∞ and at least one of p0, p1 and p2 is equal to 1.
The case p0 = p1 = p2 = 1 is not possible since our points are then on one
line. In the case when some pi > 1 (i = 0, 1, 2) we consider the triangle ∆
with vertices (σi, 1/pi) and take the points (αi, 1/ri) in its interior. Then
from Lemma 4.5 it follows that it is enough to calculate the interpolation
spaces for the triple (Lα0

r0 , L
α1
r1 , L

α2
r2 ) with ri > 1, i = 0, 1, 2, which was

already done before.

We finish this part by using Theorem 4.1 for calculations which will
show that the restrictions in the Second Reiteration Theorem are essential
(cf. Remark 2.5).

Example 4.6. Let X0 = Lσ0
p0

, X1 = Lσ1
p1

and X2 = Lσ2
p0

with σ1 =
(1− α0)σ0 + α0σ2. Then

(X0,X2)α0,p0 = (Lσ0
p0
, Lσ2

p0
)α0,p0 = Lσ1

p0

and so

((X0,X2)α0,p0 ,X1)µ,q = (Lσ1
p0
, Lσ1

p1
)µ,q = Lp,q(wσ1)

with 1/p = (1 − µ)/p0 + µ/p1. On the other hand, from Theorem 4.1 it
follows that

(X0,X1,X2)(µ,α0(1−µ)),q = (Lσ0
p0
, Lσ1

p1
, Lσ2

p0
)(µ,α0(1−µ)),q = Lσ1,q

p,q ,

but the last block-Lorentz space Lσ1,q
p,q is different in general from the

weighted Lorentz spaces Lp,q(wσ1) (cf. Example 3.4) and so

((X0,X2)α0,p0 ,X1)µ,q 6= (X0,X1,X2)(µ,α0(1−µ)),q.

5. Wavelets and stability of smooth function spaces. It is known
that the norms in the Besov spaces Bσp can be expressed in terms of the
wavelet coefficients of the function (see [Me], [Ky], [JM]). For simplicity we
first consider the case when the spaces considered are homogeneous and we
denote them by Ḃσp .



Reiteration formulas for triples 239

Let {Ψ iI} (I is a dyadic cube in Rd, i = 1, . . . , 2d−1) be an orthonormal
wavelet basis. Then (see [HJLY], p. 431)

‖f‖Ḃσp ≈
(∑

i,I

( 〈f, Ψ iI〉
|I|σ/d+1/2−1/p

)p)1/p

where |I| denotes the volume of I and 〈f, Ψ iI〉 are the wavelet coefficients
of f . For our purposes it is useful to rewrite this representation as

‖f‖Ḃσp ≈
(∑

i,I

( 〈f, Ψ iI〉|I|−σ/d
|I|1/2

)p
|I|
)1/p

.

Moreover, we denote by Ω the discrete set of pairs (I, i) and introduce
a measure µ on it by putting µ(I, i) = |I|. We also consider the weight
w : Ω → R+ given by w(I, i) = |I|−1/d. Thus we have

(5.1) ‖f‖Ḃσp ≈
(∑

i,I

(〈f, Ψ iI〉
|I|1/2 w(I, i)σ

)p
dµ(I, i)

)1/p

.

Therefore the operator S defined by

Sf(I, i) = 〈f, Ψ iI〉|I|−1/2

is a linear isomorphism between the spaces Ḃσp and Lσp = Lp(Ω,wσdµ) on
Ω with µ(I, i) = |I| and the weight w(I, i) = |I|−1/d. We remark that a
similar representation also holds in the non-homogeneous case, only the set
Ω must be a little different (see [Me]). We denote this set by Ω ′ and the
corresponding operator by S′. Thus S′ is a linear isomorphism between Bσp
and Lσp on Ω′.

Definition 5.1. Let X be a Banach or quasi-Banach space on Rd. We
say that X has smoothness index σ and integration exponent p (σ ∈ R, 0 <
p ≤ ∞) if we have continuous imbeddings

Bσ,1p,1 ⊂ X ⊂ Bσ,∞p,∞ .
The class of all such spaces will be denoted C(σ, p).

Here and in what follows, Bσ,qp,r := Bσ,q(Lp,r) is a generalized Besov space
based on the Lorentz spaces Lp,r (which Peetre even calls the Lorentz–Besov
spaces—cf. [P], pp. 57–58).

We note that the Besov spaces Bσ,qp and the Sobolev spaces W k
p belong

to the classes C(σ, p) and C(k, p), respectively, since

Bσ,1p,1 ⊂ Bσ,1p ⊂ Bσ,qp ⊂ Bσ,∞p ⊂ Bσ,∞p,∞
and

Bk,1p,1 ⊂ Bk,1p ⊂W k
p ⊂ Bk,∞p ⊂ Bk,∞p,∞ .

The main result of this section reads:
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Theorem 5.2. Let Xi be Banach or quasi-Banach function spaces on Rd
such that Xi ∈ C(σi, pi), i = 0, 1, 2, and assume that the points (σi, 1/pi),
i = 0, 1, 2, are not collinear. If 0 < q ≤ ∞ and 1 < p0, p1, p2 <∞, then

(5.2) (X0,X1,X2)(θ1,θ2),q = Bσ,qp,q ,

where

(σ, 1/p) = (1− θ1 − θ2)(σ0, 1/p0) + θ1(σ1, 1/p1) + θ2(σ2, 1/p2).

Remark 5.3. The assumption that the points (σi, 1/pi), i = 0, 1, 2, do
not lie on the same line is essential. Indeed, from Remark 4.3 and the
fact that S′ is an isomorphism between Bσp and Lσp it follows that in this
case the space (Bσ0

p0
, Bσ1

p1
, Bσ2

p2
)(θ1,θ2),q coincides with some space of the form

(Bδ0q0 , B
δ1
q1 )µ,q and it is known that for q0 6= q1 and q non-diagonal this space

is not in the scale of Besov spaces.

The proof of Theorem 5.2 is based on the following proposition.

Proposition 5.4. Assume that the points (σi, 1/pi), i = 0, 1, 2, are not
collinear. If 0 < q ≤ ∞ and 1 ≤ p0, p1, p2 ≤ ∞, then

(5.3) (Bσ0
p0
, Bσ1

p1
, Bσ2

p2
)(θ1,θ2),q = Bσ,qp,q ,

where

(σ, 1/p) = (1− θ1 − θ2)(σ0, 1/p0) + θ1(σ1, 1/p1) + θ2(σ2, 1/p2).

Proof. Since S′ is a linear isomorphism between Bσp and Lσp it follows
that S′ is also a linear isomorphism between (Bσ0

p0
, Bσ1

p1
, Bσ2

p2
)(θ1,θ2),q and

(Lσ0
p0
, Lσ1

p1
, Lσ2

p2
)(θ1,θ2),q. Moreover, according to Theorem 4.1, the last space

coincide with Lσ,qp,q , and thus it remains to prove that S′ is a linear isomor-
phism between Bσ,qp,q and Lσ,qp,q .

First of all note that from the assumptions 1/p = (1 − θ1 − θ2)/p0 +
θ1/p1 + θ2/p2 and 1 ≤ p0, p1, p2 ≤ ∞ it follows that 1 ≤ p ≤ ∞. Moreover,
since the points (σi, 1/pi), i = 0, 1, 2, do not lie on one straight line, not all
pi are 1 and not all pi are ∞, and it follows that 1 < p <∞.

Let us now prove that S′ is a linear isomorphism between Bσ,qp,q and Lσ,qp,q .
We first note that from the well known equality (see [BL], Th. 6.4.5, (1))

(Bα0
r , Bα1

r )θ,q = Bα,qr , α = (1− θ)α0 + θα1,

and Lemma 3.1:

(Lα0
r , Lα1

r )θ,q = Lα,qr , α = (1− θ)α0 + θα1,

it follows that S′ is an isomorphism between Bα,qr and Lα,qr .
Now, we choose β0, β1, r ≥ 1 and η ∈ (0, 1) such that

(1− η)β0 + ηβ1 = σ and (1− η)/q + η/r = 1/p
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(the last equality is possible because 1 < p < ∞). Then, according to a
result of Peetre (see [P], Th. 6, p. 106, equality (6))

(Bβ0
q , Bβ1,q

r )η,q = Bσ,qp,q ,

and since, in view of Lemma 3.2,

(Lβ0
q , L

β1,q
r )η,q = Lσ,qp,q ,

it follows that S′ is an isomorphism between Bσ,qp,q and Lσ,qp,q . The proof is
complete.

Proof of Theorem 5.2. Consider the triangle ∆ with vertices (σi, 1/pi),
i = 0, 1, 2. Since 1 < p0, p1, p2 <∞ it follows that there exists a triangle ∆′

with vertices (αi, 1/ri), i = 0, 1, 2, and 1 < r0, r1, r2 < ∞ such that ∆ lies
in the interior of ∆′. Thus Proposition 5.4 yields

Bσi,qipi,qi = (Bα0
r0 , B

α1
r1 , B

α2
r2 )(λi1,λ

i
2),qi , Bσipi = (Bα0

r0 , B
α1
r1 , B

α2
r2 )(λi1,λ

i
2),pi

for some parameters (λi1, λ
i
2) ∈ H, i = 0, 1, 2. Therefore, by the First Reit-

eration Theorem, we have

(Bσ0,1
p0,1 , B

σ1,1
p1,1 , B

σ2,1
p2,1 )(θ1,θ2),q = (Bσ0

p0
, Bσ1

p1
, Bσ2

p2
)(θ1,θ2),q = Bσ,qp,q

and

(Bσ0,∞
p0,∞ , B

σ1,∞
p1,∞ , B

σ2,∞
p2,∞ )(θ1,θ2),q = (Bσ0

p0
, Bσ1

p1
, Bσ2

p2
)(θ1,θ2),q = Bσ,qp,q .

Since for the spaces Xi we have the imbeddings

Bσi,1pi,1 ⊂ Xi ⊂ Bσi,∞pi,∞ , i = 0, 1, 2,

the above equalities imply (5.2) and the proof is complete.

Example 5.5. Assume that the points (σi, 1/pi), i = 0, 1, 2, are not
collinear. If 0 < q ≤ ∞ and 1 < p0, p1, p2 <∞, then

(5.4) (Bσ0,q0
p0

, Bσ1,q1
p1

, Bσ2,q2
p2

)(θ1,θ2),q = Bσ,qp,q

and

(5.5) (W k0
p0
,W k1

p1
,W k2

p2
)(θ1,θ2),q = Bσ,qp,q ,

where 1/p = (1 − θ1 − θ2)/p0 + θ1/p1 + θ2/p2 and σ = (1 − θ1 − θ2)σ0 +
θ1σ1 + θ2σ2 or σ = (1− θ0 − θ1)k0 + θ1k1 + θ2k2, respectively.

Remark 5.6. It would be interesting, and seems possible, to extend The-
orem 5.2 to the whole range 0 < p0, p1, p2 ≤ ∞.

6. Stein–Weiss interpolation theorem for Lorentz spaces with
change of measures. In 1958 Stein and Weiss [SW] proved a very useful
interpolation theorem, which can be written (see also [BL], Th. 5.4.1 and
5.5.1) as

(6.1) (Lp0(w0dµ), Lp1(w1dµ))θ,p = Lp(wdµ),
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where 0 < p0, p1 <∞, 0 < θ < 1 and

1/p = (1− θ)/p0 + θ/p1 and w = w
(1−θ)p/p0
0 w

θp/p1
1 .

In this connection it is natural to ask for an analogue of formula (6.1) if we
replace Lp-spaces by Lorentz Lp,q-spaces. However the “natural” formula

(Lp0,q0(w0dµ), Lp1,q1(w1dµ))θ,q = Lp,q(wdµ),
(6.2)

1/q = (1− θ)/q0 + θ/q1,

is not true in general (cf. Example 6.3).
We are interested in describing the space

(6.3) L = (Lp0,q0(w0dµ), Lp1,q1(w1dµ))θ,q.

We will obtain the description as a corollary of a more general result. Let
w be a weight function on Ω and the sets Ωk be defined by

(6.4) Ωk = Ωk(w) = {x ∈ Ω : 2k ≤ w(x) < 2k+1}, k ∈ Z,
and let the Lorentz spaces Lp,q(wα, wδdµ) be given as in the Preliminaries
with α and δ some fixed real numbers.

The main result of this part is the theorem below in which we will need
the following conditions:

δ0 6= δ1,
α0 − α1

δ0 − δ1
≤ 0,

α0 − α1

δ0 − δ1
6= − 1

p0
,

α0 − α1

δ0 − δ1
6= − 1

p1
,(6.5)

1/p = (1− θ)/p0 + θ/p1, 1/q = (1− θ)/q0 + θ/q1,(6.6)

α = (1− θ)α0 + θα1, δ = (1− θ)δ0p/p0 + θδ1p/p1.(6.7)

Theorem 6.1. Let 0 < p0, p1, q0, q1 <∞, α0, α1, δ0, δ1 ∈ R and assume
that the conditions (6.5)–(6.7) are satisfied. Then the norm of the interpo-
lation space

L = (Lp0,q0(wα0 , wδ0dµ), Lp1,q1(wα1 , wδ1dµ))θ,q

satisfies

(6.8) ‖f‖L ≈
(∑

k∈Z
(‖fχΩk‖Lp,q(wα,wδdµ))

q
)1/q

,

where the sets Ωk are given by (6.4).

Corollary 6.2 (Stein–Weiss interpolation theorem for Lorentz spaces).
Let 0 < p0, p1, q0, q1 <∞. Then the interpolation space

L = (Lp0,q0(w0dµ), Lp1,q1(w1dµ))θ,q

is a block-Lorentz space with norm

‖f‖L ≈
(∑

k∈Z
(‖fχΩk‖Lp,q(wdµ))

q
)1/q

,
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where

Ωk = Ωk(w0, w1) = {x ∈ Ω : 2k ≤ w0(x)/w1(x) < 2k+1}, k ∈ Z,
and the powers and weights are related by 1/p = (1 − θ)/p0 + θ/p1, 1/q =
(1− θ)/q0 + θ/q1 and w = w

(1−θ)p/p0
0 w

θp/p1
1 .

Proof. We rewrite the space L in the form

L = (Lp0,q0(w0dµ), Lp1,q1(w1dµ))θ,q

=
(
Lp0,q0

(
w0

w1
dν

)
, Lp1,q1(dν)

)

θ,q

, dν = w1dµ.

Now we use Theorem 6.1 with α0 = α1 = δ1 = 0, δ0 = 1, w = w0/w1 and
measure ν instead of µ, to obtain

‖f‖L ≈
(∑

k∈Z
(‖fχΩk‖Lp,q((w0/w1)(1−θ)p/p0dν))

q
)1/q

=
(∑

k∈Z
(‖fχΩk‖Lp,q(wdµ))

q
)1/q

,

where Ωk is as in the statement.

Counterexample 6.3. Let us show that in general the formula

(Lp0,q0(w0dµ), Lp1,q1(w1dµ))θ,q = Lp,q(wdµ)

is not true. Here 1/p = (1 − θ)/p0 + θ/p1, 1/q = (1 − θ)/q0 + θ/q1 and
w = w

(1−θ)p/p0
0 w

θp/p1
1 .

For this we consider Ω = N with the measure µ({n}) = 1 and the
weights w0(n) = 2nθp/p1 , w1(n) = 2−n(1−θ)p/p0 . Then w0(n)/w1(n) = 2n,
w(n) = w0(n)(1−θ)p/p0w1(n)θp/p1 = 1 and so Ωk = {k}, and wdµ = dµ.
Hence, from Corollary 6.2 it follows that

‖f‖(Lp0,q0 (w0dµ),Lp1,q1 (w1dµ))θ,q ≈
(∑

k∈Z
(‖fχΩk‖Lp,q(dµ))

q
)1/q

= c
(∑

k∈Z
|f(k)|q

)1/q
,

and since
‖f‖Lp,q(dµ) ≈ ‖{f(k)}‖lp,q

it follows that these norms are not equivalent.

Proof of Theorem 6.1. It is enough to prove the theorem under the ad-
ditional condition

(6.9) α0 = −α1, δ0 = −δ1.
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To see this, we set

f̃ = f · w(α0+α1)/2, dµ̃ = w(δ0+δ1)/2dµ.

Then for f̃ the condition (6.9) and the conditions of Theorem 6.1 are satis-
fied. Therefore if Theorem 6.1 is true under the additional condition (6.9),
then we can apply it to f̃ and µ̃, and coming back to f and µ we obtain
Theorem 6.1 without the restriction (6.9).

So assume that α0, α1, δ0 and δ1 also satisfy (6.9), so that the assumption
(6.5) can be written as

(6.10)
α0

δ0
=
α1

δ1
≤ 0.

Now, we will use the fact that any weighted Lorentz space is an inter-
polation space between a couple of weighted Lp-spaces. More precisely, we
will find three spaces (on the initial measure space (Ω,µ))

(6.11) Lr0(wσ0), Lr1(wσ1), Lr2

such that r0 6= r2, r1 6= r2 and

(6.12) Lpi,qi(w
αi , wδidµ) = (Lri(w

σi), Lr2)λ,qi , i = 0, 1.

Thus the required space L can be expressed in the form

(6.13) L = ((Lr0(wσ0), Lr2)λ,q0 , (Lr1(wσ1), Lr2)λ,q1)θ,q.

By using Theorem 2.3 we see that

(6.14) L = (Lr0(wσ0), Lr1(wσ1), Lr2)(θ(1−λ),λ),q.

If we apply the description from Theorem 4.1, then we will obtain the re-
quired result. This is the plan of the proof. To fulfil it we need first of all to
find a triple (6.11) such that the equalities (6.12) are satisfied.

From the Freitag–Lizorkin formula (see [Fr], Th. 1 and Th. 2; [L1], Th.
2 or [L2], Th. 2) it follows that (6.12) will be satisfied if we can solve the
system

1/pi = (1− λ)/ri + λ/r2, i = 0, 1,(6.15)

αi = −σi ri
r2−ri , i = 0, 1,(6.16)

δi = σir2
ri

r2−ri , i = 0, 1,(6.17)

under the restrictions

(6.18) λ ∈ (0, 1), r0 6= r2, r1 6= r2, r0, r1, r2 > 0, σ0, σ1 ∈ R.
To solve this system we first notice that in view of (6.16) the condition (6.17)
is equivalent to

(6.19) δi = −αir2, i = 0, 1.



Reiteration formulas for triples 245

According to (6.10) we obtain a solution of (6.19) by putting

(6.20) r2 = − δ0

α0
= − δ1

α1
> 0 (if α0 = α1 = 0, then we put r2 =∞)

and so (6.17) will follow from (6.16). Moreover, by the assumption (6.5) in
Theorem 6.1 and (6.20), we have

(6.21) r2 6= pi, i = 0, 1.

Moreover, if (6.16) holds, then

(6.22) r0 6= r2, r1 6= r2

automatically. Thus we only need to solve the system (6.15) and (6.16),
where the unknowns are λ ∈ (0, 1), r0, r1 > 0 and σ0, σ1 ∈ R. This system
can be easily solved.

In fact, fix λ ∈ (0, 1). Then, in view of (6.15),

(6.23)
1
ri

=
1

1− λ

(
1
pi
− λ

r2

)
, i = 0, 1,

and the conditions ri > 0 (i = 0, 1) will be satisfied if

(6.24) λ < r2/pi, i = 0, 1.

Since p0 and p1 are finite numbers it is enough to take any λ > 0 which is
less than min(1, r2/p0, r2/p1). Then the equality (6.16) follows immediately
if we choose

(6.25) σi = −αi
r2 − ri
ri

, i = 0, 1.

According to (6.15) we have

1/pi − 1/r2 = (1− λ)(1/ri − 1/r2)

and by using (6.23) we obtain better formulas for σi and ri:

σi = −αi
r2 − ri
ri

=
δi
r2
· r2 − ri

ri
= δi

(
1
ri
− 1
r2

)

= δi
1

1− λ

(
1
pi
− 1
r2

)
, i = 0, 1,

1
ri

=
1
r2

+
1

1− λ

(
1
pi
− 1
r2

)
, i = 0, 1.

Thus, we have found the following solution for the system (6.15)–(6.18):

r2 = − δ0

α0
= − δ1

α1
, λ any number from (0,min(1, r2/p0, r2/p1)),(6.26)

1
ri

=
1
r2

+
1

1− λ

(
1
pi
− 1
r2

)
, i = 0, 1,(6.27)
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σi = δi
1

1− λ

(
1
pi
− 1
r2

)
, i = 0, 1.(6.28)

The next step will be to apply to the right hand side of (6.14) the descrip-
tion from Theorem 4.1. Thus we need to prove that the points (σ0, 1/r0),
(σ1, 1/r1), (0, 1/r2) are not collinear. These points lie on one straight line
only if (see (6.27))

(6.29)
σ0

1/p0 − 1/r2
=

σ1

1/p1 − 1/r2
,

but from (6.28) it follows that (6.29) is equivalent to δ0 = δ1, which contra-
dicts the assumption δ0 6= δ1 in Theorem 6.1.

Therefore we can apply Theorem 4.1 to the right hand side of (6.14) to
obtain

(6.30) ‖f‖L ≈
(∑

k∈Z
(‖fwσχΩk‖Lr,q)q

)1/q
,

where Lr,q is the usual Lorentz space on Ω with initial measure µ,

σ = (1− θ)(1− λ)σ0 + θ(1− λ)σ1 + λ · 0,
1
r

=
(1− θ)(1− λ)

r0
+
θ(1− λ)

r1
+
λ

r2
.

Furthermore, according to (6.28) and (6.26), it follows that

σ = (1− θ)δ0

(
1
p0
− 1
r2

)
+ θδ1

(
1
p1
− 1
r2

)

= (1− θ) δ0

p0
+ θ

δ1

p1
− 1
r2

((1− θ)δ0 + θδ1)

= (1− θ) δ0

p0
+ θ

δ1

p1
+ (1− θ)α0 + θα1

and, in view of (6.15),

1
r

= (1− θ)
(

1− λ
r0

+
λ

r2

)
+ θ

(
1− λ
r1

+
λ

r2

)
=

1− θ
p0

+
θ

p1
.

Thus we have r = p and σ = σα + σδ, where

(6.31) σα = (1− θ)α0 + θα1, σδ = (1− θ) δ0

p0
+ θ

δ1

p1
.

To finish the proof we also need the following simple lemma:

Lemma 6.4. Let Lp,q(µ) be a Lorentz space on (Ω,µ). If c is a constant ,
then

(6.32) ‖cg‖Lp,q(µ) = ‖g‖Lp,q(ν), ν = cpµ.
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Proof. Indeed, since g∗ν(t) = g∗µ(t/cp) it follows that

‖g‖Lp,q(ν) =
(∞�

0

(t1/pg∗ν(t))q
dt

t

)1/q

=
(∞�

0

(t1/pg∗µ(t/cp))q
dt

t

)1/q

=‖cg‖Lp,q(µ)

and the proof of the lemma is finished.

We continue the proof of Theorem 6.1. Since wσδ on Ωk satisfies the
inequalities

2kσδ ≤ w(x)σδ ≤ 2(k+1)σδ , x ∈ Ωk,
it follows from Lemma 6.4 that up to the constant 2σδ we have

‖fwσχΩk‖Lr,q = ‖fwσχΩk‖Lp,q ≈ ‖fχΩk‖Lp,q(wσα ,wσδp dµ).

Now using (6.31) and (6.7) we find that

wσα = (wα0)1−θ(wα1)θ = wα and wσδp = [(wδ0/p0)1−θ(wδ1/p1)θ]p = wδ.

The proof is complete.

The restrictions (6.5) are due to the technique used in the proof based
on the Second Reiteration Theorem and Theorem 4.1. However, it is not
clear if they are really necessary.

Problem 6.5. Are the assumptions (6.5) in Theorem 6.1 necessary?

Remark 6.6. Note that in the Stein–Weiss theorem the assumption that
p is diagonal is essential: see for example Ferreyra [F], where it has been
shown that there exists a positive weight w such that

(Lp0(wα0), Lp1(wα1))θ,q 6= Lp,q(wα) when q 6= p.

7. Appendix: proof of Theorem 2.3. First we prove the following
lemma of independent interest:

Lemma 7.1. Let X = (X0,X1,X2) be a triple of quasi-Banach spaces.
If 0 < α0, α1, µ < 1, then

(a) (X0,X1,X2)(θ1,θ2),1;K ⊃ ((X0,X2)α0,1;K , (X1,X2)α1,1;K)µ,1;K

and

(b) (X0,X1,X2)(θ1,θ2),1;J ⊂ ((X0,X2)α0,1;J , (X1,X2)α1,1;J )µ,1;J

where θ1 = (1− α1)µ and θ2 = α0(1− µ) + α1µ.

Proof. (a) Let Yi = (Xi,X2)αi,1;K , i = 1, 2. For any ε > 0 we take an
“almost optimal decomposition” f = f0 + f1 with f0 ∈ Y0, f1 ∈ Y1 and

‖f0‖Y0 + t‖f1‖Y1 ≤ (1 + ε)K(t, f ;Y0, Y1).
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Note that

(7.1) K(t1, t2, f ;X0,X1,X2)

≤ C2[K(t2, f0;X0,X2) + t1K(t2/t1, f1;X1,X2)].

Indeed, if we take almost optimal decompositions f0 = f0
0 + f0

2 and f1 =
f1

1 + f1
2 such that

‖f0
0 ‖X0 + t2‖f0

2 ‖X2 ≤ (1 + ε)K(t2, f0;X0,X2)

and

‖f1
1 ‖X1 +

t2
t1
‖f1

2 ‖X2 ≤ (1 + ε)K
(
t2
t1
, f1;X1,X2

)
,

then f0
0 + f0

2 + f1
1 + f1

2 = f0 + f1 = f and so

K(t1, t2, f ;X0,X1,X2)

≤ ‖f0
0 ‖X0 + t1‖f1

1 ‖X1 + t2‖f0
2 + f1

2 ‖X2

≤ ‖f0
0 ‖X0 + C2t2‖f0

2 ‖X2 + t1‖f1
1 ‖X1 + C2t2‖f1

2 ‖X2

≤ C2(1 + ε)K(t2, f0;X0,X2) + C2(1 + ε)t1K(t2/t1, f1;X1,X2).

Since ε > 0 was arbitrary we obtain (7.1).
By using (7.1) we obtain

‖f‖(θ1,θ2),1;K

=
∞�

0

∞�

0

t−θ11 t−θ22 K(t1, t2, f ;X)
dt1
t1

dt2
t2

≤ C2

∞�

0

∞�

0

t−θ11 t−θ22 [K(t2, f0;X0,X2) + t1K(t2/t1, f1;X1,X2)]
dt1
t1

dt2
t2

= C2

∞�

0

∞�

0

(t1−α1
1 tα1−α0

2 )−µ[t−α0
2 K(t2, f0;X0,X2)]

dt1
t1

dt2
t2

+ C2

∞�

0

∞�

0

(t1−α1
1 tα1−α0

2 )1−µ[(t2/t1)−α1K(t2/t1, f1;X1,X2)]
dt1
t1

dt2
t2

= C2(I1 + I2).

In the first integral we make the change of variables

τ1 = t1−α1
1 tα1−α0

2 , τ2 = t2

with Jacobian J(τ1, τ2) = (1− α1)−1τ
α1/(1−α1)
1 τ

−(α1−α0)/(1−α1)
2 and so
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I1 = (1− α1)−1
∞�

0

∞�

0

τ−µ1 τ−α0
2 K(τ2, f0;X0,X2)

dτ1
τ1

dτ2
τ2

= (1− α1)−1
∞�

0

τ−µ1 ‖f0‖(X0,X2)α0,1;K

dτ1
τ1
.

In the second integral the change of variables

τ1 = t1−α1
1 tα1−α0

2 , τ2 = t2/t1

with Jacobian J(τ1, τ2) = (1− α0)−1τ
(1+α0)/(1−α0)
1 τ

2(α0−α1)/(1−α0)
2 gives

I2 = (1− α0)−1
∞�

0

∞�

0

τ1−µ
1 τ−α1

2 K(τ2, f1;X1,X2)
dτ1
τ1

dτ2
τ2

= (1− α0)−1
∞�

0

τ1−µ
1 ‖f1‖(X1,X2)α1,1;K

dτ1
τ1
.

Thus, setting γ = C2 max((1− α1)−1, (1− α0)−1), we have

‖f‖(θ1,θ2),1;K ≤ γ
∞�

0

τ−µ1 [‖f0‖(X0,X2)α0,1;K + τ1‖f1‖(X1,X2)α1,1;K ]
dτ1
τ1

= γ

∞�

0

τ−µ1 [‖f0‖Y0 + τ1‖f1‖Y1 ]
dτ1
τ1

[by (7.1)]

≤ γ(1 + ε)
∞�

0

τ−µ1 K(τ1, f ;Y0, Y1)
dτ1
τ1
,

which shows the required imbedding.
(b) Let Zi = (Xi,X2)αi,1;J , i = 1, 2. Assume f ∈ (X0,X1,X2)(θ1,θ2),1;J .

Then f can be represented in the form

f =
∞�

0

∞�

0

u(t1, t2)
dt1
t1

dt2
t2

(convergence in X0 +X1 +X2),

where u(t1, t2) is a strongly measurable X0 ∩X1 ∩X2-valued function and
satisfies
(∞�

0

∞�

0

(t−θ11 t−θ22 J(t1, t2, u(t1, t2);X))q
dt1
t1

dt2
t2

)1/q

≤ (1 + ε)‖f‖(θ1,θ2),1;J .

Put

(7.2) v(t1) =
1

1− α1

∞�

0

u(t1/(1−α1)
1 t

(α0−α1)/(1−α1)
2 , t2)

dt2
t2
.



250 I. Asekritova et al.

Then

f =
∞�

0

v(t1)
dt1
t1
.

In fact, the change of variables

τ1 = t
1/(1−α1)
1 t

(α0−α1)/(1−α1)
2 , τ2 = t2

has Jacobian J(τ1, τ2) = (1− α1)τ−α1
1 τα1−α0

2 and so

∞�

0

v(t1)
dt1
t1

=
1

1− α1

∞�

0

∞�

0

u(t1/(1−α1)
1 t

(α0−α1)/(1−α1)
2 , t2)

dt1
t1

dt2
t2

=
∞�

0

∞�

0

u(τ1, τ2)
dτ1
τ1

dτ2
τ2

= f.

Hence, by the definition of the space (Z0, Z1)µ,1;J and the J-functional we
obtain

‖f‖(Z0,Z1)µ,1;J ≤
∞�

0

t−µ1 J(t1, v(t1);Z0, Z1)
dt1
t1

≤
∞�

0

t−µ1 ‖v(t1)‖Z0

dt1
t1

+
∞�

0

t1−µ1 ‖v(t1)‖Z1

dt1
t1

= J1 + J2.

To estimate the first integral we use the definition of the norm in Z0 =
(X0,X2)α0,1;J and the representation (7.2) to get

J1 =
∞�

0

t−µ1 ‖v(t1)‖Z0

dt1
t1

≤ 1
1− α1

∞�

0

∞�

0

t−µ1 t−α0
2

× J(t2, u(t1/(1−α1)
1 t

(α0−α1)/(1−α1)
2 , t2);X0,X2)

dt2
t2

dt1
t1

≤ 1
1− α1

∞�

0

∞�

0

t−µ1 t−α0
2 [‖u(t1/(1−α1)

1 t
(α0−α1)/(1−α1)
2 , t2)‖X0

+ t2‖u(t1/(1−α1)
1 t

(α0−α1)/(1−α1)
2 , t2)‖X2 ]

dt2
t2

dt1
t1
.

Changing variables

τ1 = t
1/(1−α1)
1 t

(α0−α1)/(1−α1)
2 , τ2 = t2,
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with Jacobian J(τ1, τ2) = (1− α1)τ−α1
1 τα1−α0

2 , we obtain

J1 ≤
∞�

0

∞�

0

τ−θ11 τ−θ22 [‖u(τ1, τ2)‖X0 + τ2‖u(τ1, τ2)‖X2 ]
dτ2
τ2

dτ1
τ1

≤ 2
∞�

0

∞�

0

τ−θ11 τ−θ22 J(τ1, τ2, u(τ1, τ2);X0,X1,X2)
dτ2
τ2

dτ1
τ1

≤ 2(1 + ε)‖f‖(θ1,θ2),1;J .

The second integral can be estimated similarly. First we rewrite the
representation (7.2) in the form

v(t1) =
1

1− α1

∞�

0

u(t1/(1−α1)
1 s

(α0−α1)/(1−α1)
2 , s2)

ds2

s2

=
1

1− α0

∞�

0

u(t1/(1−α0)
1 t

(α0−α1)/(1−α0)
2 , t

1/(1−α0)
1 t

(1−α1)/(1−α0)
2 )

dt2
t2

and then

J2 =
∞�

0

t1−µ1 ‖v(t1)‖Z1

dt1
t1

≤ 1
1− α0

∞�

0

∞�

0

t1−µ1 t−α1
2

× J(t2, u(t1/(1−α0)
1 t

(α0−α1)/(1−α0)
2 ,

t
1/(1−α0)
1 t

(1−α1)/(1−α0)
2 );X1,X2)

dt2
t2

dt1
t1

≤ 1
1− α0

∞�

0

∞�

0

t1−µ1 t−α1
2

× [‖u(t1/(1−α0)
1 t

(α0−α1)/(1−α0)
2 , t

1/(1−α0)
1 t

(1−α1)/(1−α0)
2 )‖X1

+ t2‖u(t1/(1−α0)
1 t

(α0−α1)/(1−α0)
2 , t

1/(1−α0)
1 t

(1−α1)/(1−α0)
2 )‖X2 ]

dt2
t2

dt1
t1
.

Changing variables

τ1 = t
1/(1−α0)
1 t

(α0−α1)/(1−α0)
2 , τ2 = t

1/(1−α0)
1 t

(1−α1)/(1−α0)
2 ,

with Jacobian J(τ1, τ2) = (1− α0)τ−α1
1 τα1−α0

2 , we obtain

J2 ≤
∞�

0

∞�

0

τ−θ11 τ−θ22 τ1

[
‖u(τ1, τ2)‖X1 +

τ2
τ1
‖u(τ1, τ2)‖X2

]
dτ2
τ2

dτ1
τ1
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≤ 2
∞�

0

∞�

0

τ−θ11 τ−θ22 J(τ1, τ2, u(τ1, τ2);X0,X1,X2)
dτ2
τ2

dτ1
τ1

≤ 2(1 + ε)‖f‖(θ1,θ2),1;J .

By putting together all the above estimates we obtain

‖f‖(Z0,Z1)µ,1;J ≤ 4(1 + ε)‖f‖(θ1,θ2),1;J

and the lemma is proved.

Remark 7.2. In view of our proof above we see that Lemma 7.1 is true
even for triples of quasi-normed Abelian groups.

Proof of Theorem 2.3. By using the power theorem for quasi-Banach
couples (see [BL], Th. 3.11.6) we have

[((X0,X2)α0,q0 , (X1,X2)α1,q1)µ,q]q=([(X0,X2)α0,q0 ]q0 , [(X1,X2)α1,q1 ]q0)η,1,

where η = µq/q1 (or equivalently 1− η = (1− µ)q/q0).
We can find 0 < β0, β1 < 1 such that s2 = q0α0/β0 = q1α1/β1 and we

also put s0 = q0(1− α0)/(1− β0) and s1 = q1(1− α1)/(1− β1). We can do
this because if, for example, q1α1 ≥ q0α0, then we choose β1 ∈ [β0, 1) and
take β0 = β1q0α0/(q1α1). We see that β0 < 1. Again by the power theorem
for quasi-Banach couples we find that

([(X0,X2)α0,q0 ]q0 , [(X1,X2)α1,q1 ]q0)η,1 =((Xs0
0 ,Xs2

2 )β0,1, (X
s1
1 ,Xs2

2 )β1,1)µ,1.

By Lemma 7.1 together with the equivalence Theorem 1 of [AK] for quasi-
Banach function lattices, we find that

((Xs0
0 ,Xs2

2 )β0,1, (X
s1
1 ,Xs2

2 )β1,1)µ,1 = (Xs0
0 ,Xs1

1 ,Xs2
2 )(λ1,λ2),1,

where
λ1 = (1− β1)η and λ2 = β0(1− η) + β1η.

By using the power theorem of Sparr [S, Th. 7.1] for triples of quasi-normed
Abelian groups we obtain

(Xs0
0 ,Xs1

1 ,Xs2
2 )(λ1,λ2),1 = [(X0,X1,X2)(θ1,θ2),q]

q,

where θ1 = λ1s1/q, θ2 = λ2s2/q and 1− θ1 − θ2 = (1− λ1 − λ2)s0/q. Thus

((X0,X2)α0,q0 , (X1,X2)α1,q1)η,q = (X0,X1,X2)(θ1,θ2),q

with equivalent quasi-norms (observe that θ1 = λ1s1/q = (1−α1)µ and also
θ2 = λ2s2/q = α0(1− µ) + α1µ) and Theorem 2.3 is proved.
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