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An extremal problem in Banach algebras

by

Anders Olofsson (Stockholm)

Abstract. We study asymptotics of a class of extremal problems rn(A, ε) related to
norm controlled inversion in Banach algebras. In a general setting we prove estimates that
can be considered as quantitative refinements of a theorem of Jan-Erik Björk [1]. In the
last section we specialize further and consider a class of analytic Beurling algebras. In
particular, a question raised by Jan-Erik Björk in [1] is answered in the negative.

1. Introduction. Let A be a (unitary) topological Banach algebra (see
below) with norm ‖ · ‖ and denote by r(f) the spectral radius of f ∈ A. In
this note we study certain aspects of the extremal problem

(1) rn(A, ε) = sup{‖fn‖ : f ∈ A, ‖f‖ ≤ 1, r(f) ≤ ε} (n ≥ 1, 0 < ε < 1)

In particular, we are interested in the limit behavior of (1) as n→∞. One
motivation for the study of this extremal problem is its connection to norm
controlled inversion in Banach algebras (see [1], [2], [3], [4] and [6]). (1) can
also be found in [5].

In Section 2 we give asymptotic upper bounds for rn(A, ε) and the related
quantity rn(A) (see Definition 1, Remark 1 and Proposition 1) introduced
by Jan-Erik Björk in [1]. The main results in this section are Theorem 1,
Corollary 1 and Theorem 2. In Theorem 1 we give a universal upper bound
for the quantity limn→∞ rn(A, ε)1/n (for the existence of the limit see Re-
mark 1). In Corollary 1 a corresponding estimate for the quantities rn(A)
is given. Our Theorem 1 and Corollary 1 are quantitative refinements of a
theorem of J.-E. Björk in [1] (Theorem 3.1). (See also Remark 2.) In The-
orem 2 we give an estimate of limn→∞ rn(A, ε)1/n in terms of the quantity
δ1(A) (Definition 2), connected with a certain quantitative form of Wiener’s
lemma previously studied in [6], [3], [2] and [4]. The corresponding estimate
for limn→∞ rn(A) is also given. Theorem 2 is an extension of Théorème 3.1
in [2] and has a similar proof. The proofs of these results are completely
elementary.
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The material in Section 3 is inspired by [3] and [2]. We consider analytic
Beurling algebras A+

ω corresponding to Banach algebra weights ω on N (see
below) such that ω(n)→ c ∈ [1,∞) as n→∞. Of course, these algebras are
just certain renormings of the well known Wiener algebra A+ of absolutely
convergent Taylor series in the unit disc D. In Theorem 3 we compute the
quantities rn(A+

ω ) and K0(A+
ω ) (see Corollary 1) for such an algebra A+

ω .
Theorem 3 exemplifies a sensitivity of the numbers rn(A) and the problem
of norm controlled inversion for the particular choice of norm in A. In par-
ticular, Theorem 3 answers the following question raised in [1] (page 284,
line 1): For a commutative semisimple Banach algebra A, does rn(A) < 1 for
some n ≥ 2 imply rn(A)→ 0? In fact, under these circumstances, the limit
limn→∞ rn(A) exists and can be any number in the half-open interval [0, 1).
Examples are provided by suitable algebras A+

ω . (See also Remarks 5 and 6.)
The proof of Theorem 3 uses ideas from a construction of Y. Katznelson pre-
sented in [7] combined with a recent lemma of O. El-Fallah (Lemma 2 in
Section 3 below).
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holm University for his valuable suggestions regarding this manuscript. The
author also wants to thank Mats Erik Andersson of Stockholm University
for his careful reading of the manuscript. The author is also indebted to
Anders Dahlner of Lund University for many valuable discussions on the
subject of the present article.

Topological Banach algebras. By a topological Banach algebra we mean
a Banach space A equipped with a multiplication, continuous as a map
A×A→ A, in such a way that A becomes a commutative complex algebra
with unit. The unit element of A is denoted by e. We assume that the norm
of A is normalized by ‖e‖ = 1. The continuity of the multiplication can
equivalently be formulated by saying that the inequality

(2) ‖fg‖ ≤ C‖f‖ · ‖g‖, f, g ∈ A,

holds for some constant C ∈ [1,∞). As is well known, every topological
Banach algebra becomes a Banach algebra after a suitable renorming (pas-
sage to operator norm). In a topological Banach algebra A the spectral
radius formula holds in the ordinary sense, i.e.,

(3) r(f) = ‖f̂‖∞ = lim
n→∞

‖fn‖1/n, f ∈ A,

where f̂ denotes the Gelfand transform of f and ‖·‖∞ is the maximum norm
on the maximal ideal space of A. The validity of (3) is clear since either side
of (3) is unaffected by a renorming of A.
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Beurling algebras. By a Banach algebra weight ω on N = {0, 1, 2, . . .} we
mean a positive weight function ω such that

ω(0) = 1, ω(n+m) ≤ ω(n)ω(m), n,m ≥ 0.

The corresponding analytic Beurling algebra normed by

‖f‖ω =
∞∑

k=0

|ak|ω(k), f =
∞∑

k=0

akz
k,

is denoted by A+
ω . For ω ≡ 1 we write A+ = A+

ω and ‖ · ‖ = ‖ · ‖ω. Most
weights in this note are such that ω(k)1/k → 1. By this normalization the
maximal ideal space of A+

ω is canonically identified with the closed unit disc
D and r(f) = ‖f‖∞, where ‖ · ‖∞ denotes the maximum norm on D.

2. Topological Banach algebras. In the proof of Theorem 1 we use
the following lemma:

Lemma 1. Let A be a topological Banach algebra. For f ∈A with r(f)<1,
the following identity holds:(

n+ k

k

)
fn =

1
2π

�

T
e−inθ(e− eiθf)−k−1 dθ, n ≥ 1, k ≥ 0.

Proof. We have the power series expansion

1

(1− z)k+1 =
∞∑

n=0

(
n+ k

k

)
zn.

Substituting z = eiθf and integrating, we obtain the lemma.

Theorem 1. Assume that the topological Banach algebra A satisfies a
bounded inverse formula in the sense that there exist constants ε ∈ (0, 1)
and K = K(ε) ∈ [1,∞) such that

(4) ‖(e− f)−1‖ ≤ K if ‖f‖ ≤ 1 and r(f) ≤ ε.
Then

(5) lim
n→∞

rn(A, ε)1/n ≤ 1− 1
CK

,

where C ≥ 1 is given by (2). (For the existence of the limit see Remark 1.)

Proof. By Lemma 1 and (4) we have

(6)
(
n+ k

n

)
rn(A, ε) ≤ CkKk+1, n ≥ 1, k ≥ 0.

Using Stirling’s formula one verifies that, for c ∈ (0,∞),

lim
n→∞

|k/n−c|≤1/n

(
n+ k

n

)1/n

=
(1 + c)1+c

cc
.
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In the limit as n→∞, |k/n− c| ≤ 1/n, we deduce from (6) that

lim
n→∞

rn(A, ε)1/n ≤ 1
1 + c

(
c

1 + c

)c
CcKc.

Choosing c = 1/(CK − 1) in this inequality yields (5).

Definition 1 (J.-E. Björk [1]). Let A be a topological Banach algebra.
A sequence {fj} in A is called a spectral null sequence if ‖fj‖ ≤ 1 and
r(fj) → 0. If {fj} is a spectral null sequence and n ≥ 1, then rn({fj}) is
defined by rn({fj}) = lim supj→∞ ‖fnj ‖1/n. The number rn(A) is defined by
rn(A) = sup rn({fj}), where the supremum is taken over all spectral null
sequences {fj} in A.

Remark 1. It is immediate from the definition of the numbers rn(A)
that

rn+m(A)n+m ≤ Crn(A)nrm(A)m, n,m ≥ 1,

where C is given by (2). By this submultiplicativity type inequality,
limn→∞ rn(A) exists. The same argument establishes the existence of
limn→∞ rn(A, ε)1/n.

The relation between rn(A) and the extremal problem (1) is given by
the following proposition:

Proposition 1. In a topological Banach algebra A the following holds:

lim
ε→0

rn(A, ε)1/n = rn(A).

Proof. Let {fj} be a spectral null sequence in A. For j large we
have ‖fnj ‖ ≤ rn(A, ε). Taking limits and suprema we get rn(A) ≤
limε→0 rn(A, ε)1/n.

Let δ > 0. It is easily seen that there exists an ε > 0 such that ‖fn‖1/n ≤
rn(A) + δ if ‖f‖ ≤ 1 and r(f) ≤ ε. From this we have limε→0 rn(A, ε)1/n ≤
rn(A).

Corollary 1. Let A be a topological Banach algebra. For ε > 0 write

K(ε,A) = sup{‖(e− f)−1‖ : f ∈ A, ‖f‖ ≤ 1, r(f) ≤ ε},
K0 = K0(A) = lim

ε→0
K(ε,A).

Then

(7) lim
n→∞

rn(A) ≤ 1− 1
CK0

,

where C is given by (2).

Proof. By Proposition 1, the corollary follows from Theorem 1 upon
letting ε→ 0.
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Remark 2. There is an obvious converse to Theorem 1 and Corollary 1.
Assume (5) holds. For f ∈ A, ‖f‖ ≤ 1, r(f) ≤ ε, we have

‖(e− f)−1‖ =
∥∥∥
∞∑

n=0

fn
∥∥∥ ≤

∞∑

n=0

rn(A, ε) <∞.

Moreover, for any function g =
∑
anz

n analytic in an open set containing
(1− 1/(CK))D, we have

‖g(f)‖ ≤
∞∑

n=0

|an|rn(A, ε) <∞,

whenever ‖f‖ ≤ 1 and r(f) ≤ ε.
In [6], [7], [3], [2] and [4] a somewhat different quantitative Wiener

lemma, than the possibility of (4) to hold, is studied. Indeed, given ‖f‖ ≤ 1
and |f̂ | ≥ δ > 0, one wants to estimate ‖f−1‖. (f̂ denotes the Gelfand
transform of f .) This is formalized in the following definition.

Definition (N. K. Nikolski [3, 4]). Let A be a topological Banach al-
gebra. For 0 < δ ≤ 1 we define

c1(A, δ) = sup{‖1/f‖ : f ∈ A, ‖f‖ ≤ 1, |f̂ | ≥ δ},
δ1(A) = inf{δ ∈ (0, 1] : c1(A, δ) <∞}.

(We use the convention that inf ∅ =∞.)

The following theorem is an extension of Théorème 3.1 of [2].

Theorem 2. Let A be a topological Banach algebra and define

r(A) = lim
n→∞

rn(A).

Assume δ1(A) < 1. Then

lim
n→∞

rn(A, ε)1/n ≤ ε+ δ1(A)
1− δ1(A)

,(8)

r(A) ≤ δ1(A)
1− δ1(A)

,
r(A)

1 + r(A)
≤ δ1(A).(9)

Proof. It is straightforward to check that r(A) ≤ δ1(A)/(1 − δ1(A))
follows from (8) by letting ε → 0 and that the two inequalities in (9) are
equivalent. Hence, it suffices to prove (8).

Let f ∈ A, ‖f‖ ≤ 1 and r(f) ≤ ε. Let z ∈ C. Since the element
(e − zf)/(1 + |z|) is of norm ≤ 1 and has Gelfand transform of minimal
modulus ≥ (1− |z|ε)/(1 + |z|), we have

(1+ |z|)‖(e−zf)−1‖ ≤ c1
(
A,

1− |z|ε
1 + |z|

)
<∞ provided

1− |z|ε
1 + |z| > δ1(A).
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Write z = reiθ and assume r > 0 is such that (1−rε)/(1+r) > δ1(A). Since
rε < 1, we have (e− reiθf)−1 =

∑∞
n=0 e

inθrnfn in A, and

rnfn =
1

2π

�

T
e−inθ(e− reiθf)−1 dθ.

By an obvious estimate we have

rn‖fn‖ ≤ 1
1 + r

c1

(
A,

1− rε
1 + r

)

so that

rnrn(A, ε) ≤ 1
1 + r

c1

(
A,

1− rε
1 + r

)
.

Taking the nth roots and passing to the limit we obtain

lim
n→∞

rn(A, ε)1/n ≤ 1/r if
1− rε
1 + r

> δ1(A).

Letting (1− rε)/(1 + r)→ δ1(A) yields (8).

Remark 3. In all cases known to the author, equality holds in (9).

3. Analytic Beurling algebras. In the present section ‖ · ‖ always
denotes the norm of absolutely convergent Taylor series on D (see Section 1).
We begin with some preliminary lemmas needed in the proof of Theorem 3.

Definition 3 (O. El-Fallah [2]). Let ω be a Banach algebra weight on N.
For positive integers n, k the following quantities are considered:

a(k, n, ω) = sup
{(

ω(m1 + . . .+mn)
ω(m1) . . . ω(mn)

)1/n

: mj ≥ k, j = 1, . . . , n
}
,

a(n, ω) = lim
k→∞

a(k, n, ω).

Lemma 2 (O. El-Fallah [2], Lemme 5.3). Let ω and a be as in Defini-
tion 3. Assume ω(k)1/k → 1 as k → ∞. Then, for f ∈ A+

ω with ‖f‖ω ≤ 1,
the following inequality holds:

‖fn‖ω ≤ r(f)n
k−1∑

m=0

ω(m) + a(k, n, ω)n.

In particular , rn(A+
ω ) ≤ a(n, ω).

Proof. Since

fn =
( k−1∑

m=0

amz
m
)[
fn−1 + fn−2

( ∞∑

m=k

amz
m
)

+ . . .

+ f
( ∞∑

m=k

amz
m
)n−2

+
( ∞∑

m=k

amz
m
)n−1]

+
( ∞∑

m=k

amz
m
)n
,
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we have

‖fn‖ω ≤ n
∥∥∥
k−1∑

m=0

amz
m
∥∥∥
ω

+
∥∥∥
( ∞∑

m=k

amz
m
)n∥∥∥

ω
.

The first term is estimated by
∥∥∥
k−1∑

m=0

amz
m
∥∥∥
ω
≤ r(f)

k−1∑

m=0

ω(m)

and the last term is estimated by
∥∥∥
( ∞∑

m=k

amz
m
)n∥∥∥

ω
≤
∑

mj≥k
|am1 | . . . |amn |ω(m1 + . . .+mn) ≤ a(k, n, ω)n.

Lemma 3. Let n be a positive integer and ε > 0. Then there exists f ∈
A+ with ‖f‖ = ‖f2‖ = . . . = ‖fn‖ = 1 and ‖f‖∞ < ε. (In fact , f can be
chosen to be a polynomial.) In particular , rn(A+, ε) = 1 for all n ≥ 1 and
ε ∈ (0, 1).

Proof. Let g(z) = (1+z)(1−zn+1)/4. Now, g is a polynomial with ‖g‖ =
‖g2‖ = . . . = ‖gn‖ = 1 and ‖g‖∞ < 1. Setting f(z) = g(z)g(zn1) . . . g(znr)
for some 1 � n1 � . . .� nr we achieve ‖f‖ = ‖f2‖ = . . . = ‖fn‖ = 1 and
‖f‖∞ < ε.

Remark 4. In the above form, Lemma 3 is due to H. S. Shapiro and
G. Ryd, and has been communicated to the author by A. Dahlner. In [7] a
somewhat weaker version of Lemma 3 was used.

The following lemma is well known.

Lemma 4. Let fk ∈ A+, k = 0, 1, . . . , be such that
∑ ‖fk‖ <∞. Then

lim
N→∞

∥∥∥
∞∑

k=0

zkNfk

∥∥∥ =
∞∑

k=0

‖fk‖.

Theorem 3. Let ω be a Banach algebra weight on N such that ω(k)→
c ∈ [1,∞) as k →∞. Then, for the corresponding analytic Beurling algebra
A+
ω , the following holds:

rn(A+
ω ) = a(n, ω) = c1/n−1 for n ≥ 1,(10)

K0(A+
ω ) := lim

ε→0
K(ε,A+

ω ) = 1 + c/(c− 1) = (2c− 1)/(c− 1).(11)

For c = 1 the right hand side of (11) is to be interpreted as +∞.

In (11) we have written

K(ε,A+
ω ) = sup

{∥∥∥∥
1

1− f

∥∥∥∥
ω

: ‖f‖ω ≤ 1, r(f) ≤ ε
}
.

In the proof below this quantity is denoted by K(ε).
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Proof. We first prove (10). Since

ω(m1 + . . .+mn)
ω(m1) . . . ω(mn)

→ c

cn

as mj → ∞, by Lemma 2 we have rn(A+
ω )n ≤ a(n, ω)n = c/cn. Next we

prove rn(A+
ω )n ≥ c/cn. By Lemma 3 we can choose a sequence {fj} ⊂ A+

such that

(12) ‖fj‖ = . . . = ‖f jj ‖ = 1 and r(fj)→ 0.

Now ‖(fj/‖fj‖ω)‖ω = 1 and r(fj/‖fj‖ω)→ 0, whence

lim sup
j→∞

‖(fj/‖fj‖ω)n‖ω ≤ rn(A+
ω )n.

Observe that ‖fnj ‖ω → c as j →∞. Since

‖(fj/‖fj‖ω)n‖ω =
1
‖fj‖nω

‖fnj ‖ω →
c

cn
as j →∞,

we have rn(A+
ω )n ≥ c/cn.

Next we prove (11). Let ‖f‖ω ≤ 1, r(f) ≤ ε. Since

1
1− f =

∞∑

k=0

fk,

we have ∥∥∥∥
1

1− f

∥∥∥∥
ω

≤
∞∑

k=0

‖fk‖ω ≤ 1 +
∞∑

k=1

rk(A+
ω , ε).

Hence

K(ε) ≤ 1 +
∞∑

k=1

rk(A+
ω , ε).

Passing to the limit as ε → 0, using (10) and Proposition 1, we get K0 ≤
1 +

∑∞
k=1 rk(A+

ω )k = (2c− 1)/(c− 1).
Now we prove K0 ≥ (2c − 1)/(c − 1). Let {fj} ⊂ A+ be a sequence

satisfying (12). For j large we have

K(ε) ≥
∥∥∥∥
(

1− zNfj
‖zNfj‖ω

)−1∥∥∥∥
ω

=
∥∥∥∥
∞∑

k=0

1
‖zNfj‖kω

zkNfkj

∥∥∥∥
ω

.

Next we compute the limit as N →∞ of the right hand side in this inequal-
ity. Since

∞∑

k=0

(
1

‖zNfj‖kω
− 1
ck

)
zkNfkj → 0 in A+

ω , N →∞,
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we have
∥∥∥∥
∞∑

k=0

1
‖zNfkj ‖kω

zkNfkj

∥∥∥∥
ω

=
∥∥∥
∞∑

k=0

zkN (fj/c)k
∥∥∥
ω

+ o(1).

Now
∥∥∥
∞∑

k=0

zkN (fj/c)k
∥∥∥
ω

= 1+c
∥∥∥
∞∑

k=1

zkN (fj/c)k
∥∥∥+o(1) = 1+c

∞∑

k=1

1
ck
‖fkj ‖+o(1),

where in the last equality we have used Lemma 4. Summing up, we have
shown

K(ε) ≥ 1 + c
∞∑

k=1

1
ck
‖fkj ‖.

Letting j →∞ we get K(ε) ≥ 1 + c
∑∞
k=1 1/ck = (2c−1)/(c−1). From this

(11) follows.

Remark 5. In [1] (page 283, last paragraph), one more question besides
the one alluded to in the introduction is asked. Namely, for a unitary com-
mutative semi-simple Banach algebra A, does rn(A) < 1 for some n > 2
imply r2(A) < 1? Recently, in [2] (Remarque 5.7), O. El-Fallah has, for
given m ≥ 2, constructed a weighted analytic Beurling algebra A+

ω with
r1(A+

ω ) = r2(A+
ω ) = . . . = rm(A+

ω ) = 1 and rn(A+
ω ) = 0 for n > m.

Remark 6. Let A be a commutative semisimple Banach algebra with
unit element. Regarding the quantity limn→∞ rn(A) there is an amount of
slack between the upper bound in Corollary 1 and the examples in Theo-
rem 3. The right upper bound for the quantity limn→∞ rn(A) remains to be
found.
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