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Growth of (frequently) hypercyclic functions
for differential operators

by

Hans-Peter Beise and Jürgen Müller (Trier)

Abstract. We investigate the conjugate indicator diagram or, equivalently, the in-
dicator function of (frequently) hypercyclic functions of exponential type for differential
operators. This gives insights into growth conditions for these functions on particular rays
or sectors. Our research extends known results in several respects.

1. Introduction. A continuous operator T : X → X, with X a topo-
logical vector space, is called hypercyclic if there exists a vector x ∈ X such
that the orbit {Tnx : n ∈ N} is dense in X. Such a vector x is said to
be a hypercyclic vector. By HC(T,X), we denote the set of all hypercyclic
vectors for T (on X). The operator is called frequently hypercyclic if there
exists some x ∈ X such that for every non-empty open set U ⊂ X the set
{n : Tnx ∈ U} has positive lower density. The vector x is called a frequently
hypercyclic vector in this case and the set of all these vectors will be denoted
by FHC(T,X). We recall that the lower density of a discrete set Λ ⊂ C is
defined by

lim inf
r→∞

#{λ ∈ Λ : |λ| ≤ r}
r

=: dens(Λ).

We are only concerned with spaces consisting of holomorphic functions and
therefore the (frequently) hypercyclic vectors are called (frequently) hyper-
cyclic functions in this work.

In [10], G. Godefroy and J. H. Shapiro show that for every non-constant
entire function ϕ(z) =

∑∞
n=0 cnz

n of exponential type, the induced differen-
tial operator

ϕ(D) : H(C)→ H(C), f 7→
∞∑
n=0

cnf
(n),(1.1)
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where H(C) is endowed with the usual topology of locally uniform con-
vergence, is hypercyclic. This result also applies to the case of frequent
hypercyclicity as is shown in [7]. Actually, in both articles [10] and [7], the
outlined results are given for the case of H(CN ). The possible rate of growth
of the corresponding (frequently) hypercyclic functions has been widely in-
vestigated (cf. [4], [5], [7], [8], [9], [11]). It turns out that the level set

Cϕ := {z : |ϕ(z)| = 1}(1.2)

plays a crucial role in this context. More precisely, under certain additional
assumptions, for τϕ := dist(0, Cϕ) there are functions of exponential type
τϕ that belong to HC(ϕ(D), H(C)), while no function of exponential type
less than τϕ belongs to HC(ϕ(D), H(C)) (cf. [4]). Moreover, for every ε > 0
there are functions in FHC(ϕ(D), H(C)) that are of exponential type at
most τϕ + ε (cf. [7]).

In the following, we abbreviate the exponential function z 7→ eαz by eα,
for α some complex number. Using the Taylor series of eα, it is easily seen
that the translation operator f 7→ f(· + α) equals the differential opera-
tor eα(D).

For the translation operator e1(D) and the ordinary differentiation op-
erator D, more precise growth conditions than for arbitrary ϕ are known;
see [9], [8], [11] and [5]. However, all investigations in this direction have
in common that the rate of growth is measured with respect to the maxi-
mum modulus Mf (r) := max|z|=r |f(z)| or with respect to the Lp-averages
Mf,p(r) := ((2π)−1

	2π
0 |f(reit)|p dt)1/p, where p ∈ [1,∞). We extend some

of these results by considering growth conditions with respect to rays ema-
nating from the origin.

For the sake of completeness, we recall that an entire function f is said
to be of exponential type τ if

lim sup
r→∞

logMf (r)
r

=: τ(f) = τ,

where we set log(0) := −∞, and f is said to be of exponential type when
the above lim sup is not equal to +∞. The indicator function of an entire
function of exponential type is defined by

hf (θ) := lim sup
r→∞

log |f(reiθ)|
r

, θ ∈ [−π, π].

Let K be a compact convex subset of C. Then

HK(z) := sup{Re(zu) : u ∈ K}, z ∈ C,

is the support function of K. Some elementary properties of HK are collected
in the next section. It is known that hf is determined by the support function
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HK(f) of a compact convex set K(f) ⊂ C, to be more specific, for z = reiθ,

rhf (θ) = HK(f)(z)

(cf. [3]). The set K(f) is called the conjugate indicator diagram of f . Note
that for f ≡ 0, we have K(f) = ∅. A more direct approach to the conjugate
indicator diagram via the so called Borel transform is given at the beginning
of the next section.

In this paper we give necessary and sufficient conditions concerning the
location and the size of the conjugate indicator diagram of (frequently)
hypercyclic functions for differential operators ϕ(D). According to the above
relations, this yields information about the growth on particular rays or
sectors in terms of the indicator function. Since

max
θ∈[−π,π]

hf (θ) = max
u∈K(f)

|u| = τ(f),

this also includes information about the possible exponential type. In par-
ticular, f is of exponential type zero if and only if K(f) = {0}.

For α = τeiψ ∈ C the indicator function of eα is given by

heα(θ) = τ cos(θ + ψ)

and the conjugate indicator diagram is the singleton {α}. From [6, Theorem
5.4.12] it follows that for an entire function f of exponential type we have
K(f) = {α} if and only if there is some entire function f0 of exponential type
zero with f = f0eα. In that sense, functions which have singleton conjugate
indicator diagram are close to the corresponding exponential function. In
particular, the indicator functions of f and eα coincide, which implies that
f decreases exponentially in each closed subsector of the half-plane |arg(z)
+ ψ| > π/2 if α 6= 0.

Our first result shows that the conjugate indicator diagrams of hyper-
cyclic functions for differential operators are not restricted with respect to
their size and shape.

Theorem 1.1. Let ϕ be a non-constant entire function of exponential
type. Then for every compact convex set K ⊂ C that intersects Cϕ there
exists an f ∈ HC(ϕ(D), H(C)) that is of exponential type with K(f) = K.

Theorem 1.1 implies that for every α ∈ Cϕ there exists some f0 of ex-
ponential type zero such that f = f0eα ∈ HC(ϕ(D), H(C)). Consequently,
if Cϕ contains the origin, there is a function f ∈ HC(ϕ(D), H(C)) of ex-
ponential type zero. For the translation operator f 7→ f(· + 1) (that is, for
e1(D)) a much stronger result is due to S. M. Duyos-Ruiz. She proved that
functions f ∈ HC(e1(D), H(C)) can have arbitrary slow transcendental rate
of growth, that is, for every q : [0,∞) → [1,∞) such that q(r) → ∞ as r
tends to infinity, there is f ∈ HC(e1(D), H(C)) such that Mf (r) = O(rq(r))
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(cf. [9]). In [8], this result is extended to Hilbert spaces consisting of entire
functions of slow growth.

In Section 3 we will introduce a transform that quasi-conjugates differen-
tial operators and which enables us to extend the result of S. M. Duyos-Ruiz
to the whole class of differential operators in the following sense.

Theorem 1.2. Let ϕ be a non-constant entire function of exponential
type and let α ∈ Cϕ with ϕ′(α) 6= 0. Then for every q : [0,∞) → [1,∞)
such that q(r)→∞ as r →∞, there is an entire function f0 with Mf0(r) =
O(rq(r)) and f0eα ∈ HC(ϕ(D), H(C)).

The above results fail to hold in the case of frequent hypercyclicity. Here,
some expansion of the conjugate indicator diagram is required.

Theorem 1.3. Let ϕ be a non-constant entire function of exponential
type.

(1) If K ⊂ C is a compact convex set such that the intersection of K and
Cϕ contains a continuum, then there is a function f ∈ FHC(ϕ(D),
H(C)) of exponential type with K(f) ⊂ K.

(2) There is no function f ∈ FHC(ϕ(D), H(C)) of exponential type and
such that K(f) is a singleton.

In particular, the second part of the above result states that, in contrast
to the case of hypercyclicity, a function f of exponential type zero is never
frequently hypercyclic for any differential operator ϕ(D) (on H(C)). For
the case of the translation operator e1(D) this also follows from the results
of [5].

Example 1.4. We consider the differentiation operator D.

(1) Let q : [0,∞)→ [1,∞) be such that q(r)→∞ as r →∞. Then, by
Theorem 1.2, there exists a function f0 such that Mf0(r) = O(eq(r))
and f := f0e1 ∈ HC(D,H(C)). In particular, this implies the exis-
tence of a hypercyclic function for the differentiation operator that is
of exponential type 1 and such that f(z) tends to zero exponentially
in each closed subsector of the half-plane {z : |arg(z)| > π/2}.

(2) Let K be the convex hull of {eiβ : |β| ≤ α} for some π/2 > α > 0.
Then, by Theorem 1.3(1), there exists f ∈ FHC(D,H(C)) that is of
exponential type with K(f) ⊂ K. This implies the existence of a fre-
quently hypercyclic function for the differentiation operator that is
of exponential type 1 and such that f(z) tends to zero exponentially
in each closed subsector of {z : |arg(z)| > π/2 + α}.

The proofs of Theorem 1.1, 1.2 and 1.3 will be given in the following
three sections.
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2. Hypercyclicity of differential operators. We first introduce some
convenient terminology. Let Ω ⊂ C be a domain and K a compact subset
of Ω. A cycle Γ in Ω \K is called a Cauchy cycle for K in Ω if indΓ (u) = 1
for every u ∈ K and indΓ (w) = 0 for every w ∈ C\Ω. The existence of such
a cycle is always guaranteed, and the Cauchy integral formula

f(z) =
1

2πi

�

Γ

f(ξ)
ξ − z

dξ

is valid for every z ∈ K and f ∈ H(Ω) (see [17, Theorem 13.5, Theorem
10.35]). By |Γ | we denote the trace of Γ and len(Γ ) :=

	b
a |Γ

′(t)| dt is the
length of Γ . In the following, the complement of K with respect to the
extended plane is always a simply connected domain. In this case, Γ may
be chosen to be a simple closed path.

For a given compact convex set K ⊂ C, we denote by Exp(K) the space
of all entire functions f of exponential type that satisfy K(f) ⊂ K. This
space naturally appears in the context of analytic functionals (cf. [14], [15],
[3]). In what follows, differential operators are mainly considered on Exp(K),
which turns out to be very convenient.

For a function f of exponential type,

Bf(z) :=
∞∑
n=0

f (n)(0)/zn+1

is called the Borel transform of f . The Borel transform is a holomorphic
function on some neighbourhood of infinity that vanishes at infinity. It is
known that the conjugate indicator diagram K(f) is the smallest compact
convex set such that Bf admits an analytic continuation to C \K(f), and
that the inverse of the Borel transform is given by

f(z) =
1

2πi

�

Γ

Bf(ξ)eξz dξ

where Γ is a Cauchy cycle for K(f) in C (cf. [6], [3]). This integral formula
is known as the Pólya representation.

Finally, we make use of the following notation: C∞ is the extended com-
plex plane C ∪ {∞}, D := {z : |z| < 1} and T := {z : |z| = 1}. If A ⊂ C,
then A−1 := {z : 1/z ∈ A}, where as usual 1/0 := ∞, A is the closure
of A, A◦ is the interior of A and conv(A) is the convex hull of A. For an
open set Ω ⊂ C∞ the space of functions holomorphic on Ω and vanishing
at ∞ (if ∞ ∈ Ω) endowed with the topology of uniform convergence on
compact subsets is denoted by H(Ω). Recall that a function f is said to be
holomorphic at infinity if f(1/z) is holomorphic at the origin.

For the proof of the next proposition, we refer to the first chapter of [15].
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Proposition 2.1. Let K ⊂ C be a compact convex set.

(1) For every n ∈ N,

‖f‖K,n := sup
z∈C
|f(z)|e−HK(z)−n−1|z|

defines a norm ‖ · ‖K,n on Exp(K), and an entire function f belongs
to Exp(K) if and only if ‖f‖K,n < ∞ for all n. Moreover, Exp(K)
endowed with the topology induced by the sequence {‖ · ‖K,n : n ∈ N}
is a Fréchet space.

(2) The Borel transform

B = BK : Exp(K)→ H(C∞ \K), f 7→ Bf |C∞\K ,
is an isomorphism.

In order to facilitate the calculations concerning Exp(K), we provide
some elementary properties of the support function HK . Let K1,K2 and K
be nonempty compact convex subsets of the complex plane. Then

(1) HK1+K2 = HK1 +HK2 ,
(2) HλK = λHK for λ ≥ 0,
(3) HK1 ≤ HK2 if and only if K1 ⊂ K2

(see, e.g. [3, Proposition 1.3.14]). From HD(z) = |z| it follows in particular
that for λ ≥ 0 we have

HK+λD(z) = HK(z) + λ|z|.
Moreover, the following property of Exp(K) will be useful.

Lemma 2.2. Let K ⊂ C be a compact convex set and (Kn) a sequence
of compact convex supersets of K such that K◦n ⊃ Kn+1 and

⋂
n∈NKn = K.

Then Exp(K) =
⋂
n∈N Exp(Kn) set-theoretically and topologically, where the

right hand side is endowed with the projective limit topology.

Proof. The set-theoretic equality is clear. That the spaces also coincide
in the topological sense is an immediate consequence of the observation that
for a given l ∈ N, we have ‖·‖Kn,j ≤ ‖·‖K,l for a suitable choice of n, j ∈ N.

By differentiation of parameter integrals, the Pólya representation yields

f (n)(z) =
1

2πi

�

Γ

Bf(ξ)ξneξz dξ.

Inspired by this formula, we introduce a class of operators on Exp(K) by
replacing ξn in the above integral by a function holomorphic on some neigh-
bourhood of K. We define H(K) to be the space of germs of holomorphic
functions on K, where K ⊂ C is some compact set. To simplify notation, an
element of H(K) will always be identified with some of its representatives
ϕ which is defined on an open neighbourhood Ωϕ of K. In the case where
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K is convex we always assume Ωϕ to be simply connected (actually we may
even suppose Ωϕ to be convex).

Now, for a fixed compact convex set K ⊂ C and ϕ ∈ H(K), we define

ϕ(D)f(z) :=
1

2πi

�

Γ

Bf(ξ)ϕ(ξ)eξz dξ(2.1)

where Γ is a Cauchy cycle for K in Ωϕ. Obviously, this definition is indepen-
dent of the choice of Γ . If ϕ extends to an entire function ϕ(z) =

∑∞
n=0 cnz

n,
the interchange of integration and summation immediately yields

∞∑
n=0

cnf
(n)(z) =

1
2πi

�

Γ

Bf(ξ)ϕ(ξ)eξz dξ.

Consequently, the operators ϕ(D) from (2.1) are a natural extension of the
differential operators in (1.1) and this justifies the notation.

Proposition 2.3. Let K be a compact convex set in C and ϕ ∈ H(K).
Then ϕ(D) defined by (2.1) is a continuous operator on Exp(K).

Proof. For a given positive integer n, we choose Γ such that |Γ | ⊂
n−1D+K. Then Hconv(|Γ |) ≤ HK+n−1D and so Re(ξz)−HK(z)−n−1|z| ≤ 0
for all ξ ∈ |Γ | and all z ∈ C. Hence, |eξz−HK(z)−n−1|z|| ≤ 1 for all z ∈ C and
all ξ ∈ |Γ |. As B : Exp(K)→ H(C∞ \K) is an isomorphism and |Γ | is com-
pact in C\K, there is an m ∈ N and a constant C > 0 such that sup{|Bf(ξ)| :
ξ ∈ |Γ |} ≤ C‖f‖K,m. With M := (2π)−1

	
Γ |ϕ(ξ)| dξ, we now obtain

‖ϕ(D)f‖K,n = sup
z∈C

∣∣∣∣ 1
2πi

�

Γ

ϕ(ξ)Bf(ξ)eξz dξ
∣∣∣∣e−HK(z)−n−1|z|

≤ sup
z∈C

1
2π

�

Γ

|ϕ(ξ)| |Bf(ξ)| |eξz−HK(z)−n−1|z|| dξ ≤MC‖f‖K,m.

This proves that ϕ(D) is a continuous self-mapping on Exp(K).

Now, our main result in this section is as follows:

Theorem 2.4. Let K be a compact convex subset of C and ϕ ∈ H(K)
non-constant. Then HC(ϕ(D),Exp(K)) 6= ∅ if and only if ϕ(K)∩T 6= ∅. Fur-
ther, if HC(ϕ(D),Exp(K)) 6= ∅, then the set of all f ∈ HC(ϕ(D),Exp(K))
with K(f) = K is residual in Exp(K) in the sense of Baire category.

Before giving the proof, we establish some auxiliary results for Exp(K)
and ϕ(D).

Proposition 2.5. Let K ⊂ C be a compact convex set.

(1) For any α ∈ K, the set {Peα : P polynomial} is dense in Exp(K).
(2) If A is an infinite subset of K, then span{eα : α ∈ A} is dense in

Exp(K).
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Proof. Let Σ denote the space of all polynomials. First assume that
0 ∈ K. For f ∈ Exp(K) we have B̃f := (1/·)Bf(1/·) ∈ H(C∞ \ K−1).
Since B : Exp(K) → H(C∞ \ K) is an isomorphism, so is B̃ : Exp(K) →
H(C∞ \K−1). Now, Σ is dense in H(C∞ \K−1) by Runge’s theorem and
observing that B̃−1(Σ) = Σ shows that Σ is dense in Exp(K).

Let now K be an arbitrary compact convex set, and let g = f/eα for
some f ∈ Exp(K) and α ∈ K. Since |e−αz| = eRe(−αz) = eH{−α}(z) we obtain

‖f‖K,n = sup
z∈C
|g(z)‖eαz|e−HK(z)−n−1|z| = sup

z∈C
|g(z)|e−HK(z)−H{−α}(z)−n−1|z|

= sup
z∈C
|g(z)|e−HK−{α}(z)−n−1|z| = ‖g‖K−{α},n,

which shows that f 7→ f/eα is an isometric isomorphism from Exp(K) to
Exp(K − {α}). Together with the first part, this implies (1).

Without loss of generality, we may assume 0 /∈ A. It is easily seen that
Beα = 1/(· − α) and thus B(span{eα : α ∈ A}) = span{1/(· − α) : α ∈ A}.
Since A has an accumulation point in K, a variant of Runge’s theorem
(see [13, Theorem 10.2]) implies that span{1/(· − α) : α ∈ A} is dense
in H(C∞ \ K). As B : Exp(K) → H(C∞ \ K) is an isomorphism, this
shows (2).

A germ ϕ ∈ H(K) is said to be zero-free if there exists a representative ϕ
which is zero-free on some open neighbourhood of K. In this case, we always
assume that Ωϕ is so small that ϕ is zero-free on Ωϕ and thus 1/ϕ ∈ H(Ωϕ).

Proposition 2.6. Let K ⊂ C be a compact convex set and let ϕ,ψ be
in H(K). Then

ϕ(D)ψ(D) = ϕψ(D).

In particular, if ϕ is zero-free, then

ϕ(D)(1/ϕ)(D) = (1/ϕ)(D)ϕ(D) = idExp(K)

and hence ϕ(D) is invertible with ϕ(D)−1 = (1/ϕ)(D).

Proposition 2.6 is an immediate consequence of

Lemma 2.7. Let K be a compact convex set in C, f ∈ Exp(K) and
ϕ ∈ H(K). Then for all h ∈ H(Ωϕ),

�

Γ

Bf(ξ)ϕ(ξ)h(ξ) dξ =
�

Γ

B(ϕ(D)f)(ξ)h(ξ) dξ

where Γ is a Cauchy cycle for K in Ωϕ.

Proof. It is well known that E := span{eα : α ∈ C} is dense in H(C)
(see, e.g., [10, p. 259]), hence in H(Ωϕ) since Ωϕ is simply connected.
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We consider the functional

〈Λ, h〉 :=
�

Γ

(Bf(ξ)ϕ(ξ)− B(ϕ(D)f)(ξ))h(ξ) dξ

on H(Ωϕ). By the Pólya representation for ϕ(D)f ,

1
2πi

�

Γ

B(ϕ(D)f)(ξ)eξα dξ = ϕ(D)f(α) =
1

2πi

�

Γ

Bf(ξ)ϕ(ξ)eξα dξ.

Hence 〈Λ, eα〉 = 0 for all α ∈ C and consequently Λ|E = 0. As E is dense in
H(Ωϕ), we have Λ = 0.

Proposition 2.8. Let K ⊂ C be a compact convex set. Then the set of
all f ∈ Exp(K) with K(f) = K is residual in Exp(K).

Proof. Let M ⊂ H(C∞ \ K) be the set of functions that are exactly
holomorphic in C∞ \K, that is, for every w ∈ C \K the radius of conver-
gence of the Taylor series with centre w equals dist(w,K). By a result of
V. Nestoridis (see [16, Theorem 4.5]), M is a dense Gδ-set in H(C∞ \K).
Since B−1(M) ⊂ {f ∈ Exp(K) : K(f) = K} and B : Exp(K)→ H(C∞ \K)
is an isomorphism, we obtain the assertion.

Proof of Theorem 2.4. Firstly, assume that ϕ(K) ⊂ D. Let Γ be a
Cauchy cycle for K in Ωϕ which is so close to K that |ϕ| < δ < 1 on |Γ |.
Then, by Proposition 2.6, for any f ∈ Exp(K) we have

|ϕ(D)nf(0)| =
∣∣∣∣ 1
2πi

�

Γ

Bf(ξ)ϕ(ξ)n dξ
∣∣∣∣ ≤ δn

2π

�

Γ

|Bf(ξ)| dξ → 0

as n→∞. Consequently, ϕ(D) cannot be hypercyclic on Exp(K). If ϕ(K) ⊂
C \ D, then ϕ is zero-free, as an element of H(K), and thus, by Proposi-
tion 2.6, ϕ(D) is invertible on Exp(K) with ϕ(D)−1 = (1/ϕ)(D). Now, since
(1/ϕ)(K) ⊂ D, we have HC((1/ϕ)(D),Exp(K)) = ∅, and this is equivalent
to HC(ϕ(D),Exp(K)) = ∅ (see [1, Corollary 1.3]).

Let us now assume that ϕ(K)∩T 6= ∅ and that K has non-empty interior.
Since ϕ is non-constant, we deduce that ϕ(K) has non-empty interior, and
thus span{eα : α ∈ K, |ϕ(α)| > 1} and span{eα : α ∈ K, |ϕ(α)| < 1} are
dense in Exp(K) by Proposition 2.5(2). As ϕ(D)eα = ϕ(α)eα, the Godefroy–
Shapiro Criterion (see [1, Corollary 1.10]) yields HC(ϕ(D),Exp(K)) 6= ∅.

As a consequence of Proposition 2.5(1), Exp(K) is dense in Exp(Kn) for
any compact convex sets K,Kn ⊂ C with K ⊂ Kn. Now, using Lemma 2.2
and [12, Corollary 12.19], the first part of the proof yieldsHC(ϕ(D),Exp(K))
6= ∅ for general compact convex sets K that satisfy ϕ(K) ∩ T 6= ∅.

Since Exp(K) is a Fréchet space, HC(ϕ(D),Exp(K)) 6= ∅ implies that
HC(ϕ(D),Exp(K)) is a dense Gδ-set in Exp(K) (see [12, Theorem 2.19]).
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From Proposition 2.8, we conclude that {f ∈ Exp(K) : K(f) = K} ∩
HC(ϕ(D),Exp(K)) is residual in Exp(K).

Proof of Theorem 1.1. As mentioned in the proof of Lemma 2.7, Exp(K)
is dense embedded in H(C) for every non-empty, compact and convex set
K ⊂ C. Now, if ϕ is an entire function of exponential type, we obtain
HC(ϕ(D),Exp(K)) ⊂ HC(ϕ(D), H(C)) and so Theorem 1.1 is an immediate
consequence of Theorem 2.4.

Remark 2.9. Let ϕ be an entire function of exponential type. The proof
of Theorem 2.4 shows that ϕ(D)nf(0)→ 0 as n→∞ for each entire function
f of exponential type satisfying ϕ(K(f)) ⊂ D. Thus, for such ϕ actually
HC(ϕ(D), H(C)) ∩ Exp(K) is empty whenever ϕ(K) ⊂ D, that is, we can
exclude hypercyclicity also with respect to the weaker topology of H(C).
While Theorem 2.4 states that HC(ϕ(D),Exp(K)) is empty if ϕ(K) ⊂ C\D,
we do not know whether also HC(ϕ(D), H(C)) ∩ Exp(K) is empty in the
latter case.

3. (Quasi)-conjugacy of differential operators. Let T : X → X
and S : Y → Y be two continuous operators acting on topological vector
spaces X,Y . A useful tool to link the dynamics of such operators is to
show that they are (quasi-) conjugate. If one can find a continuous mapping
Φ : X → Y having dense range and such that Φ ◦ T = S ◦ Φ, that is, the
diagram

X

Φ
��

T // X

Φ
��

Y
S // Y

commutes, then S is said to be quasi-conjugate to T (by Φ). If Φ is bijective
and Φ−1 is continuous, then T and S are said to be conjugate.

Proposition 3.1. If S is quasi-conjugate to T by Φ, then Φ(HC(T,X))
⊂ HC(S, Y ) and Φ(FHC(T,X)) ⊂ FHC(S, Y ).

This follows immediately from the definition of quasi-conjugacy (cf. [12,
Propositions 2.24 and 9.4]).

In this section, we introduce a transform that quasi-conjugates the op-
erators from Section 2. Let K ⊂ C be a compact convex set and ϕ ∈ H(K).
As in the definition of the operators ϕ(D) (cf. 2.1), our starting point is the
Pólya representation. For f ∈ Exp(K), we set

Φϕf(z) :=
1

2πi

�

Γ

Bf(ξ)eϕ(ξ)z dξ(3.1)
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where Γ is a Cauchy cycle for K in Ωϕ. It is clear that this definition is
independent of the choice of Γ .

Proposition 3.2. Let K be a compact convex subset of C and let ϕ ∈
H(K) be non-constant. Then, for each f ∈ Exp(K), the function Φϕf
defined by (3.1) is an entire function of exponential type with K(Φϕf) ⊂
conv(ϕ(K(f))). Further

Φϕ : Exp(K)→ Exp(conv(ϕ(K)))

is a continuous operator that has dense range.

Proof. One immediately verifies that Φϕf is an entire function. We fix
some positive integer n and choose Γ such that ϕ(|Γ |) is contained in
conv(ϕ(K)) + n−1D. Then

Hconv(ϕ(|Γ )|)(z) ≤ Hconv(ϕ(K))+n−1D(z) = Hconv(ϕ(K))(z) +
1
n
|z|

and thus

(3.2) ‖Φϕf‖conv(ϕ(K)),n = sup
z∈C

∣∣∣∣ 1
2πi

�

Γ

Bf(ξ)eϕ(ξ)z dξ

∣∣∣∣e−Hconv(ϕ(K))(z)−n−1|z|

≤ len(Γ )
2π

sup
ξ∈|Γ |

|Bf(ξ)|eHconv(ϕ(|Γ |))(z)e−Hconv(ϕ(K))(z)−n−1|z|

≤ len(Γ )
2π

sup
ξ∈|Γ |

|Bf(ξ)| <∞.

As n was arbitrary, this shows that K(Φϕf) is contained in conv(ϕ(K)),
which in particular implies that Φϕf is of exponential type and Φϕf ∈
Exp(conv(ϕ(K))).

We proceed to the second assertion. Taking into account that for some
C <∞ and m ∈ N we have supξ∈|Γ | |Bf(ξ)| ≤ C‖f‖K,m due to the fact that
B : Exp(K) → H(C∞ \K) is an isomorphism, the continuity of Φϕ follows
from (3.2).

It remains to show that Φϕ(Exp(K)) is dense in Exp(conv(ϕ(K))). Let
(Kn) be a sequence of compact convex sets in Ωϕ such that K◦n ⊃ Kn+1 and
the intersection of these sets is K. As noted above, the Borel transform of
eα is given by ξ 7→ 1/(ξ − α). Inserting this in (3.1), the Cauchy integral
formula yields Φϕ(eα) = eϕ(α) for all α in some Kn. Consequently, for each
n ∈ N,

Φϕ(span{eα : α ∈ Kn}) = span{eϕ(α) : α ∈ Kn} ⊂ Exp(conv(ϕ(Kn))),

which implies that Φϕ : Exp(Kn)→ Exp(conv(ϕ(Kn))) has dense range by
Proposition 2.5(2) and the fact that ϕ is non-constant. Since Exp(K) is dense
in Exp(Kn), we deduce that Φϕ(Exp(K)) is dense in Exp(conv(ϕ(Kn))).
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Furthermore, we have⋂
n∈N

conv(ϕ(Kn)) = conv(ϕ(K))

and hence ⋂
n∈N

Exp(conv(ϕ(Kn))) = Exp(conv(ϕ(K)))

set-theoretically and topologically by Lemma 2.2. It is now obvious that
Φϕ(Exp(K)) is dense in Exp(conv(ϕ(K))).

In the formulation of Proposition 3.2, it is necessary to take the convex
hull in Exp(conv(ϕ(K))), since Exp(K) is only defined for convex sets K.
However, we show that the Borel transform of Φϕf actually admits an ana-
lytic continuation beyond C∞ \ conv(ϕ(K)). For that purpose, we introduce
a further notation. For a compact set K ⊂ C, the polynomially convex hull
K̂ is defined as the union of K with the bounded components of its com-
plement. Let K ⊂ C be a compact convex set, f ∈ Exp(K) and ϕ ∈ H(K).
For w ∈ C \ ϕ̂(K) we set

Hϕ(w) :=
1

2πi

�

Γ

Bf(ξ)
w − ϕ(ξ)

dξ

with Γ a Cauchy cycle for K ⊂ Ωϕ so near to K that ϕ(|Γ |) is contained
in a simply connected, compact set L ⊃ ϕ̂(K) such that w ∈ C \ L. This
definition is independent of the choice of Γ . Since ϕ(|Γ |) can be arbitrarily
near to ϕ(K), we obtain a function Hϕ ∈ H(C∞ \ ϕ̂(K)).

Proposition 3.3. The function Hϕ ∈ H(C∞\ϕ̂(K)) defines an analytic
continuation of B(Φϕf) ∈ H(C∞ \ conv(ϕ(K))).

Proof. Let Γ0 be a Cauchy cycle for conv(ϕ(K)) in C. Then we can
choose a Cauchy cycle Γ for K in Ωϕ so near to K that indΓ0(ϕ(u)) = 1 for
all u ∈ |Γ |. Then

1
2πi

�

Γ0

Hϕ(w)ewz dw =
1

2πi

�

Γ

Bf(ξ)
1

2πi

�

Γ0

ewz

w − ϕ(ξ)
dw dξ

=
1

2πi

�

Γ

Bf(ξ)eϕ(ξ)z dξ = Φϕf(z)

by the Cauchy integral formula. Considering that Bconv(ϕ(K)) is an isomor-
phism, we can conclude Hϕ|C∞\conv(ϕ(K)) = B(Φϕf)|C∞\conv(ϕ(K)).

We now show that Φϕ commutes with differential operators on Exp(K).
For that purpose, note that by our conventions, if ϕ ∈ H(K) is zero-free,
then Ωϕ is a simply connected domain that contains no zeros of ϕ. These
conditions ensure the existence of logϕ ∈ H(Ωϕ). Moreover, we have to
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introduce another notion: A germ ϕ ∈ H(K) is said to be biholomorphic if
Ωϕ can be chosen so that ϕ : Ωϕ → ϕ(Ωϕ) is biholomorphic. In this case,
we always assume Ωϕ to be so small that this property is ensured.

Proposition 3.4. Let K be a compact convex subset of C and let ϕ ∈
H(K).

(1) D : Exp(conv(ϕ(K))) → Exp(conv(ϕ(K))) is quasi-conjugate to
ϕ(D) : Exp(K)→ Exp(K) by Φϕ.

(2) If ϕ is zero-free then

e1(D) : Exp(conv(logϕ(K)))→ Exp(conv(logϕ(K)))

is quasi-conjugate to ϕ(D) : Exp(K)→ Exp(K) by Φlogϕ.
(3) If C is a compact convex subset of C and ψ ∈ H(C) is biholomorphic

and ψ(C) ⊃ ϕ(K) then

ψ(D) : Exp(conv(ψ−1 ◦ ϕ(K)))→ Exp(conv(ψ−1 ◦ ϕ(K)))

is quasi-conjugate to ϕ(D) : Exp(K)→ Exp(K) by Φψ−1◦ϕ.

Proof. Let f ∈ Exp(K). Interchanging integration and differentiation
yields

DΦϕf(z) =
1

2πi

�

Γ

Bf(ξ)ϕ(ξ)eϕ(ξ)z dξ.(3.3)

Invoking Lemma 2.7, we obtain

DΦϕf(z) =
1

2πi

�

Γ

B(ϕ(D)f)(ξ)eϕ(ξ)z dξ = Φϕϕ(D)f(z).

This proves (1).
Now, let ϕ be zero-free. Again, according to Lemma 2.7, we obtain

e1(D)Φlogϕf(z) =
1

2πi

�

Γ

Bf(ξ)e(z+1) logϕ(ξ) dξ

=
1

2πi

�

Γ

Bf(ξ)ϕ(ξ)ez logϕ(ξ) dξ

=
1

2πi

�

Γ

B(ϕ(D)f)(ξ)ez logϕ(ξ) dξ = Φlogϕϕ(D)f(z).

This is the assertion in (2).
In order to show (3), we consider an arbitrary z ∈ C \ C and choose a

Cauchy cycle Γ1 for K in Ωϕ such that ϕ(|Γ1|) ⊂ Ωψ−1 and ψ−1 ◦ϕ(|Γ1|) is
contained in some compact set L ⊂ Ωψ with z ∈ C \L. Further, let Γ2 be a
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Cauchy cycle for L in Ωψ. Then, by Lemma 2.7 and Proposition 3.3,

ψ(D)(Φψ−1◦ϕf)(z) =
1

2πi

�

Γ2

B(Φψ−1◦ϕf)(w)ψ(w)ewz dw

=
1

2πi

�

Γ2

1
2πi

�

Γ1

Bf(ξ)ψ(w)
w − ψ−1 ◦ ϕ(ξ)

dξ ewz dw

=
1

2πi

�

Γ1

Bf(ξ)
1

2πi

�

Γ2

ψ(w)ewz

w − ψ−1 ◦ ϕ(ξ)
dw dξ

=
1

2πi

�

Γ1

Bf(ξ)ϕ(ξ)eψ
−1◦ϕ(ξ)z dξ = Φψ−1◦ϕ(ϕ(D)f)(z).

Remark 3.5. If Exp(K) is endowed with the relative topology of H(C),
the transform Φϕ is no longer continuous. Thus, the quasi-conjugacy in
Proposition 3.4 is intimately linked with the topology of Exp(K).

As a first application of the transform introduced, we extend the result
of Duyos-Ruiz mentioned in the introduction. For that purpose, a further
fact has to be used:

In [8], K. C. Chan and J. H. Shapiro strengthened the result of Duyos-
Ruiz. Here, growth of entire functions is measured with respect to a so-called
admissible comparison function, i.e. an entire function a(z) =

∑∞
n=0 anz

n

such that an > 0, an+1/an → 0 as n→∞ and (n+ 1)an+1/an is decreasing.
For a comparison function a, Chan and Shapiro consider

E2(a) :=
{
f ∈ H(C) : ‖f‖2a :=

∞∑
n=0

|f (n)(0)/n!|2

a2
n

<∞
}
,

which is a Hilbert space of entire functions. They prove that the translation
eα(D) is hypercyclic on E2(a) for every admissible comparison function a
and every α ∈ C \ {0} (see [8, Theorem 2.1]). In [8], it is also shown that
f ∈ E2(a) implies Mf (r) = O(a(r)). From the corollary of [8, Theorem 2.1]
we can deduce the following:

Theorem (Duyos-Ruiz – Chan and Shapiro). For every admissible com-
parison function a there is an f ∈ HC(e1(D),Exp({0})) such that Mf (r) =
O(a(r)).

By means of the transform Φϕ, we show that this result extends to the
operators ϕ(D) as follows:

Theorem 3.6. Let K ⊂ C be a compact convex set and let ϕ ∈ H(K)
be non-constant. Then for every α ∈ K such that |ϕ(α)| = 1 and ϕ′(α) 6= 0
and every admissible comparison function a, there is an f0 ∈ Exp({0}) such
that Mf0(r) = O(a(r)) and f = f0eα ∈ HC(ϕ(D),Exp(K)).
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Lemma 3.7. Let K ⊂ C be a compact convex set, ϕ ∈ H(K) and α ∈ C.
Then for every f ∈ Exp(K), we have ϕ(D)f = eαϕα(D)(f/eα) where ϕα :=
ϕ(·+ α).

Proof. For λ ∈ K, we have ϕ(D)eλ = ϕ(λ)eλ and hence

ϕ(D)eλ = eαϕ(λ)eλ−α = eαϕ(λ− α+ α)eλ−α,

which shows the assertion for f = eλ, λ ∈ K. Since ϕ is holomorphic in a
neighbourhood of K, we can assume that K has non-empty interior. Then
span{eλ : λ ∈ K} is dense in Exp(K) by Proposition 2.5(2). Further, as
outlined in the proof of Theorem 2.5, f 7→ f/eα is an isometric isomorphism
from Exp(K) to Exp(K − {α}) and we conclude that the above equality
extends to all f ∈ Exp(K).

Proof of Theorem 3.6. Let a(z) =
∑∞

n=0 anz
n be an admissible com-

parison function. Without loss of generality a ∈ Exp({0}). By Lemma 3.7
we can assume that α = 0 and thus we only have to show the existence
of f ∈ HC(ϕ(D),Exp({0})) with Mf (r) = O(a(r)), r > 0. We define
b(z) :=

∑∞
n=0 bnz

n with bn := an/n!, which is again an admissible com-
parison function. Now, as outlined above, the results in [8] yield a function
g ∈ E2(b) ∩HC(e1(D),Exp({0})). By the definition of E2 and (bn),

∞∑
n=0

|g(n)(0)|2

(n!bn)2
=
∞∑
n=0

|g(n)(0)|2

a2
n

<∞.

This implies that G(z) :=
∑∞

n=0 |g(n)(0)|zn ∈ E2(a) and hence, as again
outlined above, MG(r) = O(a(r)).

Since ϕ′(0) 6= 0, ϕ is biholomorphic as an element of H({0}). We can
assume that ϕ(0) = 1, otherwise, replace e1 by ϕ(0)e1 in what follows and
notice that g ∈ HC(ϕ(0)e1(D),Exp({0})) (see [1, Corollary 3.3]). Then f :=
Φϕ−1◦e1g ∈ HC(ϕ(D),Exp({0})) by Propositions 3.1 and 3.4. We find some
small δ > 0 and 0 < c <∞ such that |ϕ−1(e1(ξ))| ≤ c|ξ| for all |ξ| < δ. We
fix an r > 0 with 1/r ≤ δ and such that for Γr : [0, 2π) → C, t 7→ r−1eit,
we have e1(|Γr|) ⊂ Ωϕ−1 . Now, as Bg(ξ) =

∑∞
n=0 g

(n)(0)/ξn+1 on every
compact subset of C \ {0}, we have

Mf (r) ≤ max
|z|=r

∣∣∣∣ 1
2πi

�

Γr

Bg(ξ)e(ϕ
−1◦e1)(ξ)z dξ

∣∣∣∣
≤ max
|z|=r

∞∑
n=0

|g(n)(0)|
∣∣∣∣ 1
2πi

�

Γr

e(ϕ
−1◦e1)(ξ)z

ξn+1
dξ

∣∣∣∣
≤
∞∑
n=0

|g(n)(0)| rne
c
r
r = ecG(r).

Thus, Mf (r) = O(MG(r)) = O(a(r)) and this completes the proof.



112 H.-P. Beise and J. Müller

Proof of Theorem 1.2. By the proof of Theorem 1.1, we have the inclu-
sion HC(ϕ(D),Exp(K)) ⊂ HC(ϕ(D), H(C)) provided that ϕ(D) extends to
a continuous operator on H(C). Now, the assertion of Theorem 1.2 follows
from Theorem 3.6 and the observation that for each q : [0,∞)→ [1,∞) with
q(r)→∞ as r →∞, there exists an admissible comparison function a such
that a(r) = O(rq(r)).

4. Frequent hypercyclicity of differential operators. In this sec-
tion we apply Φϕ to extend known results on frequently hypercyclic functions
for e1(D) to the whole class of differential operators ϕ(D) on Exp(K) as well
as on H(C).

In [2], the first author proved the following

Theorem. If K ⊂ C is a compact convex set that contains two distinct
points of the imaginary axis, then FHC(e1(D),Exp(K)) 6= ∅.

We can conclude that it is sufficient to require that e1(K)∩T contains a
continuum in order to have FHC(e1(D),Exp(K)) 6= ∅. Similarily, this result
holds in the general situation:

Theorem 4.1. Let K ⊂ C be a compact convex set and let ϕ ∈ H(K)
be non-constant such that ϕ(K) ∩ T contains a continuum. Then we have
FHC(ϕ(D),Exp(K))) 6= ∅.

Proof. Our assumptions ensure the existence of a compact convex set
K̃ ⊂ K such that ϕ(K̃) contains some continuum of T and ϕ is biholomor-
phic as an element of H(K̃). We choose real numbers a < b so that e[ia,ib] ⊂
ϕ(K̃). The preceding result yields an f ∈ FHC(e1(D),Exp([ia, ib])), and,
by Propositions 3.1 and 3.4, we have

Φϕ−1◦e1f ∈ FHC(ϕ(D),Exp(K̃)) ⊂ FHC(ϕ(D),Exp(K)).

Our next result shows that to some extent the assumptions in Theorem
4.1 are sharp.

Theorem 4.2. Let λ be a complex number and let ϕ ∈ H({λ}). Then
the set FHC(ϕ(D),Exp({λ})) is empty.

Proof. According to Theorem 2.4 we can suppose that |ϕ(λ)| = 1. Then
ϕ is zero-free on a sufficiently small simply connected neighbourhood Ω of
λ, which implies the existence of a logarithm function of ϕ on Ω. Moreover,
we may choose a branch so that logϕ(λ) = 0. Then Proposition 3.4(2)
shows that e1(D) : Exp({0}) → Exp({0}) is quasi-conjugate to ϕ(D) :
Exp({λ}) → Exp({λ}) by Φlogϕ. From the results in [5] it follows that
FHC(e1(D), H(C)) ∩ Exp({0}) and thus FHC(e1(D),Exp({0}) is empty.
Now, according to Proposition 3.1 the assertion follows.
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Theorem 1.3(2) is stronger than the previous result since it excludes
frequent hypercyclicity with respect to the weaker topology of H(C). Unfor-
tunately, the transform Φϕ does not preserve (frequent) hypercyclicity with
respect to this topology. Thus, some extra argument is required to show
Theorem 1.3(2).

Proof of Theorem 1.3. The first part is an immediate consequence of
Theorem 4.1 since FHC(ϕ(D),Exp(K)) ⊂ FHC(ϕ(D), H(C)). Thus, there
is only (2) to prove.

We suppose there is some entire function f of exponential type such that
K(f) = {λ} for some λ ∈ C, and f ∈ FHC(ϕ(D), H(C)). Then necessarily,
|ϕ(λ)| ≥ 1 because otherwise ϕ(D)nf(0) → 0 as n → ∞ (see Remark 2.9).
Hence in some sufficiently small simply connected neighbourhood Ω of λ,
the function ϕ̃ := ϕ/ϕ(λ) is zero-free, which implies the existence of log ϕ̃ on
Ω with log ϕ̃(λ) = 0. We set h := Φlog ϕ̃f . Then K(h) = {0} by Proposition
3.2 and, applying Proposition 3.4(2) to ϕ̃, we have

h(n) =
1

ϕ(λ)n
ϕ(D)nf(0) for all n ∈ N ∪ {0}.(4.1)

By the Casorati–Weierstrass theorem, we can choose α ∈ C such that ϕ(α) is
close enough to eiπϕ(λ) to ensure that for a sufficiently small neighbourhood
U of 1 we have

ϕ(α)
ϕ(λ)

U ⊂ {z : |arg(z)− π| ≤ π/4}(4.2)

and ϕ(α) 6= 0. Now, by the continuity of ϕ(D) on H(C), for every ε > 0,
there are some r > 0 and δ > 0 such that for all g ∈ H(C) that satisfy

sup
z∈rD
|g(z)− eα(z)| < δ,(4.3)

we have
|ϕ(D)g(0)− ϕ(D)eα(0)| = |ϕ(D)g(0)− ϕ(α)| < ε.

We assume that δ, ε > 0 are so small that, whenever g satisfies (4.3),

g(0) ∈ U and ϕ(D)g(0) ∈ ϕ(α)U.(4.4)

Our assumption implies the existence of a sequence (nk)k∈N of positive in-
tegers with dens((nk)k∈N) > 0 such that supz∈rD |ϕ(D)nkf(z) − eα(z)| < δ
for all k ∈ N. The interpolating property of h in (4.1) combined with (4.4)
yields

h(nk) ∈
1

ϕ(λ)nk
U and h(nk + 1) ∈ ϕ(α)

ϕ(λ)nk+1
U for all k ∈ N.(4.5)

Condition (4.2) implies that the factor ϕ(α)/ϕ(λ) rotates U by an angle
larger than π/2 and less than 3π/2. Hence, from (4.5), it follows that for
each k ∈ N either Re(h) or Im(h) has a sign change in [nk, nk + 1]. The
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intermediate value theorem yields a sequence (wk)k∈N with wk ∈ (nk, nk+1)
and

Re(h(wk))Im(h(wk)) = 0 for all k ∈ N.(4.6)

Assuming that the Taylor series of h is given by
∑∞

ν=0(hν/ν!)zν , we set

h1(z) :=
∞∑
ν=0

Re(hν)
ν!

zν and h2(z) :=
∞∑
ν=0

Im(hν)
ν!

zν .

The functions h1, h2 are of exponential type zero since h is, and thus h1h2

is of exponential type zero. Since Re(h(x)) = h1(x) and Im(h(x)) = h2(x)
for every real x, we obtain h1h2(wk) = 0 for all k ∈ N by (4.6). As (wk)k∈N
has obviously the same lower density as (nk)k∈N, we infer that h1h2 is a
function of exponential type zero having zeros of positive lower density,
which is impossible unless it is constantly zero (cf. [6, Theorem 2.5.13]).

Remark 4.3. Theorem 1.3(2) implies Theorem 4.2. To see this, sup-
pose there exists some f ∈ FHC(ϕ(D),Exp({λ}). Then, by Propositions
3.1 and 3.4,

Φϕf ∈ FHC(D,Exp({ϕ(λ)})) ⊂ FHC(D,H(C)),

contradicting Theorem 1.3(2). Note that this proof does not use the results
from [5].

Remark 4.4. Let ϕ be an entire function of exponential type. Remark
2.9 shows that FHC(ϕ(D), H(C)) ∩ Exp(K) is empty whenever ϕ(K) ⊂ D,
and FHC(ϕ(D),Exp(K)) is empty if ϕ(K) ⊂ C \D. Again, we do not know
whether FHC(ϕ(D), H(C)) ∩ Exp(K) is empty in the latter case.
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