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On weighted weak type norm inequalities for
one-sided oscillatory singular integrals
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Zunwei Fu (Linyi), Shanzhen Lu (Beijing), Shuichi Sato (Kanazawa)
and Shaoguang Shi (Beijing and Linyi)

Abstract. We consider one-sided weight classes of Muckenhoupt type and study the
weighted weak type (1, 1) norm inequalities for a class of one-sided oscillatory singular
integrals with smooth kernel.

1. Introduction. Oscillatory integrals have been an essential part of
harmonic analysis; three chapters are devoted to them in Stein’s celebrated
book [ST]. Many important operators in harmonic analysis are some ver-
sions of oscillatory integrals, such as the Fourier transform, the Bochner–
Riesz means, the Radon transform in CT technology and so on. For a more
complete account on oscillatory integrals in classical harmonic analysis, we
refer the interested reader to [G], [L1], [L2], [LDY], [LZ], [PS] and refer-
ences therein. Another early impetus for the study of oscillatory integrals
came with their application to number theory [B]. In more recent times, the
operators fashioned from oscillatory integrals, such as pseudo-differential
operators in PDE theory, have become another motivation to study them.
Based on the estimates of some kinds of oscillatory integrals, one can estab-
lish the well-posedness theory of a class of dispersive equations; for some of
this work, we refer to [CM], [KPV1], [KPV2].

This paper is focused on a class of oscillatory singular integrals related
to the one defined by Ricci and Stein [RS]

Tf(x) = p.v.
�

R
eiP (x,y)K(x− y)f(y) dy,

where P (x, y) is a real valued polynomial defined on R×R, andK∈C1(R\{0})
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is a Calderón–Zygmund kernel which satisfies

|K(x)| ≤ C/|x|, |∇K(x)| ≤ C/|x|2,(1.1) �

a<|x|<b

K(x) dx = 0 for all a, b (0 < a < b).(1.2)

Obviously, K is an odd function under the condition (1.2).

Theorem 1.1 ([RS]). Suppose K satisfies (1.1), (1.2). Then for any
real polynomial P (x, y), the oscillatory singular integral operator T is of
type (Lp(R), Lp(R)), 1 < p <∞, with operator norm bounded by a constant
depending on the total degree of P , but not on the coefficients of P in other
respects.

Let Ap (1 < p < ∞) denote the Muckenhoupt classes [CF]. This class
consists of positive locally integrable functions (weight functions) w for
which

sup
I

(
1
|I|

�

I

w(x) dx
)(

1
|I|

�

I

w(x)1−p
′
dx

)p−1

<∞,

where the supremum is taken over all intervals I ⊂ R and 1/p+ 1/p′ = 1.
In 1992, Lu and Zhang [LZ] gave a weighted version of Theorem 1.1.

Theorem 1.2. Suppose K satisfies (1.1), (1.2). Then for any real poly-
nomial P (x, y), the oscillatory singular integral operator T is of type (Lp(w),
Lp(w)), where w ∈ Ap, 1 < p <∞, and the operator norm is bounded by a
constant depending on the total degree of P , but not on the coefficients of P
in other respects.

For the case p = 1, Chanillo and Christ [CC] gave a supplement for
Theorem 1.1.

Theorem 1.3. Under the same assumptions as in Theorem 1.1, we have

‖Tf‖L1,∞ ≤ C‖f‖L1 ,

where L1,∞ denotes the weak L1 space, and the constant C is independent
of P if the total degree of the polynomial is fixed.

Let A1 be the class of weight functions w satisfying Mw(x) ≤ Cw(x)
a.e., where M denotes the Hardy–Littlewood maximal operator

Mf(x) = sup
h>0

1
2h

x+h�

x−h
|f(y)| dy.

We write w(E) =
	
E w for a measurable set E. The third author of this

paper gave a weighted version of Theorem 1.3.
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Theorem 1.4 ([SA]). Under the same assumptions as in Theorem 1.1,
if w ∈ A1, then

sup
λ>0

λw({x ∈ R : |Tf(x)| > λ}) ≤ C‖f‖L1(w)

where C depends on the total degree of P and, in other respects, is indepen-
dent of the coefficients of P .

We point out that Theorems 1.1–1.4 also hold for dimension n ≥ 2.
The study of weights for one-sided operators was motivated not only as

the generalization of the theory of both-sided ones but also by their natural
appearance in harmonic analysis; for example, they are required when we
treat the one-sided Hardy–Littlewood maximal operator [SAW]

M+f(x) = sup
h>0

1
h

x+h�

x

|f(y)| dy,(1.3)

and

M−f(x) = sup
h>0

1
h

x�

x−h
|f(y)| dy,(1.4)

arising in the ergodic maximal function. The classical Dunford–Schwartz
ergodic theorem can be considered as the first result about weights for (1.3)
and (1.4). In [SAW], Sawyer introduced the one-sided Ap classes A+

p , A−p ;
they are defined by the following conditions:

A+
p : A+

p (w) := sup
a<b<c

1
(c− a)p

b�

a

w(x) dx
( c�
b

w(x)1−p
′
dx
)p−1

<∞,

A−p : A−p (w) := sup
a<b<c

1
(c− a)p

c�

b

w(x) dx
( b�
a

w(x)1−p
′
dx
)p−1

<∞,

when 1 < p <∞; also, for p = 1,

A+
1 : M−w ≤ Cw,

A−1 : M+w ≤ Cw,
for some constant C. The smallest constant C for which the above inequali-
ties are satisfied will be denoted by A+

1 (w) and A−1 (w). The number A+
p (w)

(resp. A−p (w)), p ≥ 1, will be called the A+
p (resp. A−p ) constant of w.

Theorem 1.5 ([SAW]). Let M+ be as in (1.3).

(i) Let 1 ≤ p <∞. Then there exists C > 0 such that the inequality

sup
λ>0

λpw({x ∈ R : |M+f(x)| > λ}) ≤ C‖f‖pLp(w)

holds for all f if and only if w ∈ A+
p .
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(ii) Let 1 < p <∞. Then there exists C > 0 such that the inequality

‖M+f‖Lp(w) ≤ C‖f‖Lp(w)

holds for all f ∈ Lp(w) if and only if w ∈ A+
p .

Remark. Similar results can be obtained for the left-hand-side operator
with the condition A+

p replaced by A−p .

Together with the characterizations of the weighted inequalities for M+

and M−, Sawyer obtained some properties of the classes A+
p and A−p .

Proposition 1.6 (see also [SAW]).

(i) If w ∈ A+
1 , then w1+ε ∈ A+

1 for some ε > 0.
(ii) w ∈ A+

p for 1 < p < ∞ if and only if there exist w1 ∈ A+
1 and

w2 ∈ A−1 such that w = w1(w2)1−p.
(iii) If 1 ≤ p <∞, then Ap = A+

p ∩A−p , Ap ⊂ A+
p , Ap ⊂ A−p .

(iv) A+
p ⊂ A+

r , A−p ⊂ A−r if 1 ≤ p ≤ r.
Perhaps it is worth pointing out that these classes not only control the

boundedness of M+ and M−, but also they are the right weight classes
for one-sided singular integrals [AFM], and they also appear in PDE the-
ory [GS].

We say a Calderón–Zygmund kernel K is a one-sided Calderón–Zygmund
kernel (OCZK) if K satisfies (1.1) and

(1.5)
∣∣∣ �

a<|x|<b

K(x) dx
∣∣∣ ≤ C, 0 < a < b,

with support in R− = (−∞, 0) or R+ = (0,+∞). The smallest constant for
which (1.1) and (1.5) hold will be denoted by C(K). An example is

K(x) =
sin(log |x|)
(x log |x|)

χ(−∞,0)(x),

where χE denotes the characteristic function of a set E. In [AFM], Aimar,
Forzani and Mart́ın-Reyes studied the one-sided Calderón–Zygmund singu-
lar integrals defined by

T̃+f(x) = lim
ε→0+

∞�

x+ε

K(x− y)f(y) dy

and

T̃−f(x) = lim
ε→0+

x−ε�

−∞
K(x− y)f(y) dy

where K is a OCZK.

Theorem 1.7 ([AFM]). Let K be a OCZK with support in R−. Then

(i) T̃+ is bounded on Lp(w) (1 < p <∞) if w ∈ A+
p .

(ii) T̃+ maps L1(w) into L1,∞(w) if w ∈ A+
1 .
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Also, a converse of Theorem 1.7 is given in [AFM]. Inspired by [CC],
[SA] and [SAW], we will study the one-sided version of Theorem 1.4 by us-
ing induction, Calderón–Zygmund decomposition, estimates for oscillatory
integrals in the unweighted case and interpolation of operators with change
of measures. In the following, the letter C will stand for a positive constant
which may vary from line to line.

2. Main results. We first give the definition of one-sided oscillatory
singular integral operators T+, T−:

T+f(x) = lim
ε→0+

∞�

x+ε

eiP (x,y)K(x− y)f(y) dy = p.v.
∞�

x

eiP (x,y)K(x− y)f(y) dy

and

T−f(x) = lim
ε→0+

x−ε�

−∞
eiP (x,y)K(x−y)f(y) dy = p.v.

x�

−∞
eiP (x,y)K(x−y)f(y) dy,

where P (x, y) is a real polynomial defined on R×R, and K is a OCZK with
support in R− and R+, respectively. Now, we formulate our result:

Main Theorem 2.1. If w ∈ A+
1 , then there exists a constant C depend-

ing on the total degree of P , C(K) and A+
1 (w) such that

sup
λ>0

λw({x ∈ R : |T+f(x)| > λ}) ≤ C‖f‖L1(w)(2.1)

for f ∈ S(R) (the Schwartz class).

We shall prove Theorem 2.1 by induction, as in [LZ], [RS] and [SA].
Suppose P (x, y) is a real polynomial in x and y. First, we assume that
the conclusion of Theorem 2.1 is valid for all polynomials which are sums
of monomials of degree less than k in x and of any degree in y, and of
monomials which are of degree k in x and of degree less than l in y. Let

P (x, y) = aklx
kyl +R(x, y)

with

R(x, y) =
∑
α<k,β

aαβx
αyβ +

∑
β<l

akβx
kyβ

satisfying the above induction assumption.
Let us now prove that (2.1) holds for P (x, y). Arguing as in [RS, p. 188],

with the aid of weighted theory of one-sided Calderón–Zygmund operators,
without loss of generality, we may assume k > 0, l > 0 and |akl| 6= 0 (for
if |akl| = 0, then (2.1) holds by the induction assumption). By dilation
invariance of the operators and weights, we only need to consider the case
|akl| = 1.
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We split the kernel K as

K(x− y) = K(x− y)χ{|x−y|≤1}(y) +K(x− y)χ{|x−y|>1}(y) = K0 +K∞,

and consider the corresponding splitting T+ = T+
0 + T+

∞:

T+
0 f(x) = p.v.

∞�

x

eiP (x,y)K0(x− y)f(y) dy,

T+
∞f(x) =

∞�

x

eiP (x,y)K∞(x− y)f(y) dy.

In Section 4, we will prove the following proposition under the induction
assumption.

Proposition 2.2. If w ∈ A+
1 , then there exists a constant C depending

on the total degree of P , C(K) and A+
1 (w) such that

sup
λ>0

λw({x ∈ R : |T+
0 f(x)| > λ}) ≤ C‖f‖L1(w)(2.2)

and

sup
λ>0

λw({x ∈ R : |T+
∞f(x)| > λ}) ≤ C‖f‖L1(w).(2.3)

Obviously, this will complete the proof of Theorem 2.1.
The rest of this paper is devoted to the argument for Proposition 2.2.

Section 3 contains some preliminaries which are essential to our proof. In
Section 4, we prove Proposition 2.2; this part is partially motivated by [LZ]
and [SA].

3. Preliminaries. Let w ∈ A+
1 and f ∈ S(R). We perform the following

Calderón–Zygmund decomposition at height λ > 0.

Lemma 3.1. We have a collection {I} of non-overlapping closed inter-
vals in R and functions g, b on R such that

f = g + b,(3.1)

λ ≤ |I|−1
�

I

|f | ≤ Cλ,(3.2)

w
(⋃

I
)
≤ Cλ−1‖f‖L1(w),(3.3)

‖g‖L1(w) ≤ C‖f‖L1(w),(3.4)

‖g‖∞ ≤ Cλ,(3.5)

b =
∑
I

bI , supp(bI) ⊂ I,
�
bI = 0, ‖bI‖L1 ≤ Cλ|I|.(3.6)
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Proof. Let

{x ∈ R : M+f(x) > λ} =
⋃
I ′

be the component decomposition. Let I be the closure of I ′. By Lemma 2.1
of [SAW] we see that |I|−1

	
I |f | ≥ λ, which proves (3.2). Define bI =

(f − |I|−1
	
I f)χI , b =

∑
I bI and g = fχF +

∑
I |I|−1(

	
I f)χI , where

F = R \
⋃
I. Then we only need to prove (3.3) and (3.4) because (3.1),

(3.5) and (3.6) are straightforward.
Let I be one of the intervals obtained above. By Lemma 1 of [MOT] and

Lemma 2.1 of [SAW], for any positive increasing function UI on I we have�

I

UI ≤ λ−1
�

I

UI |f |.(3.7)

Also, since w ∈ A+
1 , by Lemma 2 of [MOT] there exists a positive increasing

function Vw,I on I such that

Vw,I ≤ Cw a.e. on I,
�

I

w ≤
�

I

Vw,I ,(3.8)

where C is independent of I. By (3.7) and (3.8) with Vw,I in place of UI , we
can prove (3.3) as follows (see [MOT, p. 520]):

w
(⋃

I
)
≤
∑ �

I

w ≤
∑ �

I

Vw,I

≤ λ−1
∑ �

I

Vw,I |f | ≤ Cλ−1
∑ �

I

|f |w ≤ Cλ−1‖f‖L1(w).

The estimate (3.4) can be proved similarly:

‖g‖L1(w) ≤
�

F

|f |w +
∑
|I|−1

∣∣∣ �
I

f
∣∣∣ �
I

w ≤
�

F

|f |w + Cλ
∑ �

I

Vw,I

≤
�

F

|f |w + C
∑ �

I

Vw,I |f | ≤
�

F

|f |w + C
∑ �

I

|f |w ≤ C‖f‖L1(w).

We decompose K∞(x, y) = eiP (x,y)K∞(x− y) =
∑∞

j=0Kj(x, y), where

Kj(x, y) = ϕ(2−j(x− y))K∞(x, y),

and ϕ ∈ C∞0 (R) is such that supp(ϕ) ⊂ {1/2 ≤ |x| ≤ 2} and
∑∞

j=0 ϕ(2−jx)
= 1 if |x| ≥ 1. For j ≥ 0, we define

W+
j (f)(x) =

�
Kj(x, y)f(y) dy.(3.9)

Let

W+(f)(x) =
∞∑
j=1

W+
j (f)(x).
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Then T∞ = W+
0 +W+. We set

Bi =
∑

2i−1<|I|≤2i

bI (i ≥ 1), B0 =
∑
|I|≤1

bI

and put E =
⋃
Ĩ, where Ĩ denotes the interval with the same right end point

as I and with length 100 times that of I. When x ∈ R \ E , we have

W+(b)(x) = W+
(∑
i≥0

Bi
)

(x) =
∑
i≥0

∑
j≥1

�
Kj(x, y)Bi(y) dy

=
∑
s≥1

∑
j≥s

W+
j (Bj−s)(x).

Lemma 3.2. Suppose that w ∈ A+
1 and s is a positive integer. For α > 0,

put

Esα =
{
x ∈ R :

∣∣∣∑
j≥s

W+
j (Bj−s)(x)

∣∣∣ > α
}
.

Then there exists ε > 0 such that

w(Esλ) ≤ Cλ−12−εs
�
|f(x)|w(x) dx.

Lemma 3.2 will be proved by applying a variant of the interpolation argu-
ment of [V] (see [FS1, FS2]). We first give some lemmas which are essential
to our analysis. Some of them are almost the same as their counterparts
in [CC], [FS1], [FS2] and [SA]. Our results differ from the previous ones
only in that we set them up based on one-sided singular integrals and the
weight w ∈ A+

1 . We use some results and notation of [SA]. Let λ > 0 and
{Gj}j≥0 be a family of measurable functions such that�

I

|Gj | ≤ λ|I|

for all intervals I in R with length |I| = 2j .

Lemma 3.3 (see also [SA]). Suppose
∑

j≥0 ‖Gj‖L1 < ∞. Then, for any
positive integer s, we have∥∥∥∑

j≥s
W+
j (Gj−s)

∥∥∥2

L2
≤ Cλ2−s

∑
j≥0

‖Gj‖L1 .

For each j ≥ 0, let Ij be a family of non-overlapping closed intervals I
such that |I| ≤ 2j . We assume I and J are non-overlapping if I ∈ Ii, J ∈ Ij
for i 6= j and

∑
j≥0

∑
I∈Ij |I| <∞. Put I =

⋃
j≥0 Ij . Let λ > 0. With each

I ∈ I, we associate fI ∈ L1 such that
	
|fI | ≤ λ|I| and supp(fI) ⊂ I. Define

Fi =
∑
I∈Ii

fI .
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Lemma 3.4. Let w ∈ A+
1 and s be a positive integer. Then∥∥∥∑

j≥s
W+
j (Fj−s)

∥∥∥
L1(w)

≤ Cwλ
∑
J∈I
|J | inf

J
w,

where infJ f = infx∈J f(x).

Proof. By the triangle inequality we have∥∥∥∑
j≥s

W+
j (Fj−s)

∥∥∥
L1(w)

≤
∑
j

∑
I∈Ij−s

�
|fI(y)|

( �
|Kj(x, y)|w(x) dx

)
dy.

We note that Kj(x, y) is supported in the interval [y − 2j+1, y − 2j−1] as a
function of x, for each fixed y, and

sup[y − 2j+1, y − 2j−1] ≤ inf I for all y ∈ I ∈ Ij−s.

Also, |Kj | ≤ C2−j . Thus we have
�
|fI(y)|

( �
|Kj(x, y)|w(x) dx

)
dy ≤ C

�
|fI(y)| inf

I
M−(w) dy ≤ Cλ|I| inf

I
w,

where M− is as in (1.4). Combining the results, we get the conclusion.

Let J denote the family of intervals arising from the Calderón–Zygmund
decomposition of Lemma 3.1.

Lemma 3.5. Let t > 0, w ∈ A+
1 and s be a positive integer. Let Bj , Esα

be as above. Then�

Esλ

min(w(x), t) dx ≤ C
∑
J∈J
|J |min

(
t2−s, inf

J
w
)
.(3.10)

Proof. Let

Jt =
{
J ∈ J : inf

J
w(x) < t2−s

}
and J ct = J \ Jt. For j > 0, put

B′j =
∑

2j−1<|J |≤2j , J∈Jt

bJ , B′′j =
∑

2j−1<|J |≤2j , J∈J ct

bJ ,

and

B′0 =
∑

|J |≤1, J∈Jt

bJ , B′′0 =
∑

|J |≤1, J∈J ct

bJ .

Then Bj = B′j + B′′j for j ≥ 0. Define

E′α =
{
x ∈ R :

∣∣∣∑
j≥s

W+
j (B′j−s)(x)

∣∣∣ > α
}
,

E′′α =
{
x ∈ R :

∣∣∣∑
j≥s

W+
j (B′′j−s)(x)

∣∣∣ > α
}
,
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for α > 0. Then Esλ ⊂ E′λ/2 ∪ E
′′
λ/2, and hence

�

Esλ

min(w(x), t) dx ≤
�

E′
λ/2

min(w(x), t) dx+
�

E′′
λ/2

min(w(x), t) dx

≤
�

E′
λ/2

w(x) dx+
�

E′′
λ/2

t dx.

By Lemmas 3.3 and 3.4, with Gj = C1B′′j and Fj = C2B′j , via Chebyshev’s
inequality, we have

�

E′
λ/2

w(x) dx ≤ C
∑
J∈Jt

|J | inf
J
w = C

∑
J∈Jt

|J |min
(
t2−s, inf

J
w
)
,

�

E′′
λ/2

t dx ≤ Ct2−s
∑
J∈J ct

|J | = C
∑
J∈J ct

|J |min
(
t2−s, inf

J
w
)
.

Combining these estimates, we conclude the proof of Lemma 3.5.

Now, we prove Lemma 3.2. Since
∞�

0

min(N, t)t−1+θ dt/t = CθN
θ,

for 0 < θ < 1, Cθ, N > 0, multiplying both sides of (3.10) by t−1+θ

(0 < θ < 1), then integrating them on (0,∞) with respect to the measure
dt/t, we get
�

Esλ

w(x)θ dx≤C
∑
J∈J
|J |2−(1−θ)s inf

J
wθ ≤Cλ−12−(1−θ)s

∑
J∈J

inf
J
wθ

�

J

|f(x)| dx

≤Cλ−12−(1−θ)s
�
|f(x)|w(x)θ dx.

By Proposition 1.6, if w ∈ A+
1 , then w1+δ ∈ A+

1 for some δ > 0. Therefore,
we complete the proof of Lemma 3.2 by substituting w1+δ for w and putting
θ = 1/(1 + δ) in the above inequalities.

Lemma 3.6. Let W+
j be as in (3.9). Suppose w ∈ A+

1 . There exist
C, δ > 0 such that

‖W+
j ‖L2(w) ≤ C2−jδ

for all j ≥ 1, where ‖ · ‖L2(w) denotes the operator norm on L2(w).

Before proving Lemma 3.6, we first give a lemma obtained by Ricci–Stein.

Lemma 3.7 ([RS]). For j ≥ 1, if k 6= l, we have

‖W+
j ‖L2 ≤ Ck,l2−j/2−min(l/k,k/l)j/2
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and if k = l,

‖W+
j ‖L2 ≤ Ck2−jj1/2.

To prove Lemma 3.6, we apply interpolation with change of mea-
sures [SW]. For j ≥ 1, since

|W+
j (f)| ≤ C

2j+1+x�

2j−1+x

|f(y)|
|x− y|

dy ≤ CM+(f)(x),

Theorem 1.5 and Proposition 1.6 imply that ‖W+
j ‖L2(w) ≤ C for w ∈ A+

1 .
Consequently,

‖W+
j ‖L2(w1+ε) ≤ C(3.11)

for some ε > 0 for which w1+ε ∈ A+
1 (see Proposition 1.6). So, Lemma 3.6

follows from Lemma 3.7 and (3.11) by interpolation with change of measures.
Lemmas 3.2 and 3.6 are essential to the proof of Proposition 2.2.

4. Proof of Proposition 2.2. We first prove (2.2). Take any h ∈ R,
and write

P (x, y) = akl(x− h)k(y − h)l +R(x, y, h),

where the polynomial R(x, y, h) satisfies the induction assumption for The-
orem 2.1, and the coefficients of R(x, y, h) depend on h. Write

T+
0 f(x) = T+

01f(x) + T+
02f(x),

where

T+
01f(x) = p.v.

1+x�

x

ei(R(x,y,h)+akl(y−h)k+l)K(x− y)f(y) dy,

T+
02f(x) = p.v.

1+x�

x

{eiP (x,y) − ei(R(x,y,h)+akl(y−h)k+l)}K(x− y)f(y) dy.

Now we split f into three parts as follows:

f = fχ{|y−h|<1/2}(y)+fχ{1/2≤|y−h|<5/4}(y)+fχ{|y−h|≥5/4}(y) = f1+f2+f3.

It is easy to see that |x− h| < 1/4 and |y − h| < 1/2 imply |y − x| < 1, and
hence

T+
01f1(x) = p.v.

�
ei(R(x,y,h)+akl(y−h)k+l)K(x− y)f1(y) dy.

Thus, from the induction assumption, it follows that

w({x ∈ I(h, 1/4) : |T+
01f1(x)| > λ}) ≤ C

λ

�

|y−h|<1/2

|f(y)|w(y) dy,(4.1)



148 Z. W. Fu et al.

where C is independent of h and of the coefficients of P (x, y). Here and
below, I(x, r) denotes the interval (x− r, x+ r).

Notice that if |x− h| < 1/4 and 1/2 ≤ |y− h| < 5/4, then |y− x| > 1/4.
Thus

|T+
01f2(x)| ≤

x+1�

x+1/4

|K(x− y)f2(y)| dy ≤ CM+(f2)(x).

So we have

w({x ∈ I(h, 1/4) : |T+
01f2(x)| > λ}) ≤ C

λ

�

|y−h|<5/4

|f(y)|w(y) dy(4.2)

for some constant C independent of h and of the coefficients of P (x, y).
Finally, if |x− h| < 1/4 and |y − h| ≥ 5/4, then |y − x| > 1, thus

T+
01f3(x) = 0.(4.3)

From (4.1)–(4.3), it follows that

w({x ∈ I(h, 1/4) : |T+
01f(x)| > λ}) ≤ C

λ

�

|y−h|<5/4

|f(y)|w(y) dy,(4.4)

where C is independent of h and of the coefficients of P (x, y).
Evidently, if |x− h| < 1/4 and 0 < y − x < 1, then

|eiP (x,y) − ei(R(x,y,h)+akl(y−h)k+l)| ≤ C|akl| |x− y| = C(y − x).

Therefore, when |x− h| < 1/4, we have

|T+
02f(x)| ≤ C

x+1�

x

|f(y)| dy ≤ CM+(f(·)χB(h,5/4)(·))(x).

It follows that

w({x ∈ I(h, 1/4) : |T+
02f(x)| > λ}) ≤ C

λ

�

|y−h|<5/4

|f(y)|w(y) dy(4.5)

for some constant C independent of h and of the coefficients of P (x, y). From
(4.4) and (4.5), it follows that the inequality

w({x ∈ I(h, 1/4) : |T+
0 f(x)| > λ}) ≤ C

λ

�

|y−h|<5/4

|f(y)|w(y) dy

holds uniformly in h ∈ R, which implies

w({x ∈ R : |T+
0 f(x)| > λ}) ≤ C

λ
‖f‖L1(w)

by integration with respect to h, where C is independent of the coefficients
of P (x, y). This completes the proof of (2.2).
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Now, we turn to the proof of (2.3). Recall that T+
∞ = W+

0 + W+. It is
easy to see that

‖W+
0 (f)‖L1(w) ≤ C‖f‖L1(w)(4.6)

for w ∈ A+
1 , since�

|W+
0 (f)(x)|w(x) dx ≤

��
|K0(x− y)|w(x) dx |f(y)| dy

≤ C
�
M−w(y)|f(y)| dy ≤ C

�
w(y)|f(y)| dy.

So, in the following, we only consider W+.
Now, we recall the decomposition f = g + b and the set E =

⋃
Ĩ of

Section 3, and we see that

w({x ∈ R \ E : |W+(f)(x)| > λ})
≤ w({x ∈ R \ E : |W+(g)(x)|>λ/2}) + w({x ∈ R \ E : |W+(b)(x)|>λ/2})

≤ Cλ−2‖W+(g)‖2L2(w) + w
({
x ∈ Rn :

∣∣∣∑
s≥1

∑
j≥s

W+
j (Bj−s)(x)

∣∣∣ > λ/2
})
.

From Lemma 3.6 we easily see that W+ is bounded on L2(w). It follows
that λ−2‖W+(g)‖2L2(w) is bounded by Cλ−1‖f‖L1(w) via (3.4) and (3.5).
Checking the constants appearing in the proof of Lemma 3.2 and replacing
K by c2δsK, we have

w(Escδ2−δsλ) ≤ cλ−12−τs‖f‖L1(w),

where δ and τ are positive constants depending on w, and cδ is a constant
satisfying

∑
s≥1 cδ2

−δs = 1/2. Thus, we have

w
({
x ∈ Rn :

∣∣∣∑
s≥1

∑
j≥s

W+
j (Bj−s)(x)

∣∣∣ > λ/2
})

≤
∑
s≥1

w(Escδ2−δsλ) ≤ Cλ−1‖f‖L1(w).

Therefore,

w({x ∈ R \ E : |W+(f)(x)| > λ}) ≤ Cλ−1‖f‖L1(w).(4.7)

On the other hand, by (3.3) and the estimate w(Ĩ) ≤ Cw(I), which is
easily proved for w ∈ A+

1 , we see that

w(E) ≤ Cλ−1‖f‖L1(w).(4.8)

By (4.7) and (4.8) for w ∈ A+
1 , we get

w({x ∈ R : |W+(f)(x)| > λ}) ≤ Cλ−1‖f‖L1(w).(4.9)

Now (4.6) and (4.9) imply

w({x ∈ R : |T+
∞(f)(x)| > λ}) ≤ Cλ−1‖f‖L1(w)
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for w ∈ A+
1 with a constant C independent of the coefficients of P (x, y),

which completes the proof of (2.3).
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