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Abstract. Let G be a locally compact group and B(G) the Fourier–Stieltjes alge-
bra of G. Pursuing our investigations of power bounded elements in B(G), we study the
extension property for power bounded elements and discuss the structure of closed sets
in the coset ring of G which appear as 1-sets of power bounded elements. We also show
that L1-algebras of noncompact motion groups and of noncompact IN-groups with poly-
nomial growth do not share the so-called power boundedness property. Finally, we give
a characterization of power bounded elements in the reduced Fourier–Stieltjes algebra of
a locally compact group containing an open subgroup which is amenable as a discrete
group.

Introduction. An element a of a Banach algebra A is said to be power
bounded if supn∈N ‖an‖ < ∞. Power bounded elements in Banach algebras,
especially power bounded operators on Banach spaces, have been studied by
several authors, with emphasis on the impact on spectra [1], [23], [30], [31].
Power boundedness of measures on the real line has first been dealt with
in [4] (see also [2] and [5] for related problems). For general locally compact
abelian groups G, the most comprehensive work on power boundedness in
the measure algebraM(G) and the L1-algebra L1(G) is due to Schreiber [34].
Actually, [34] has substantially influenced and inspired our previous inves-
tigations [20]–[22] on power boundedness in Fourier and Fourier–Stieltjes
algebras of locally compact groups, and also the present study. Naturally,
for nonabelian groups the proofs turn out to be much more involved.

In [20, Theorem 4.1] we have shown that if G is an arbitrary locally
compact group and u is any power bounded element of B(G), then the sets

Eu = {x ∈ G : |u(x)| = 1} and Fu = {x ∈ G : u(x) = 1}
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belong to the closed coset ring Rc(G) of G. These sets are important in the
study of power boundedness in B(G) as is, for instance, demonstrated by
the structure theorem [22, Theorem 4.5]. The first purpose of this paper is
to address the question of which sets in Rc(G) arise in this manner from
power bounded elements in B(G). As outlined in Section 1, this appears to
be a very difficult problem. Our main result (Proposition 1.3) concerns SIN-
groups and generalizes the corresponding result for locally compact abelian
groups [34, Theorem 6.20].

If H is a closed subgroup of G, then functions in A(H) always extend
to functions in A(G), whereas for B(H) and B(G) this is far from being
true in general. In Section 2 we study the extension problem for power
bounded elements. For an arbitrary locally compact group G, denoting by
G0 the connected component of the identity of G, we show that every power
bounded element of B(G0) admits a power bounded extension in B(G)
with the same norm (Theorem 2.5). Also, if D is a discrete subgroup of G,
then every power bounded function in A(D) extends to some such function
in A(G).

Note that every power bounded element has spectral radius ≤ 1. A Ba-
nach algebra A is said to have the power boundedness property (pb-property)
if conversely each element of A with spectral radius ≤ 1 is power bounded.
Improving on a result of [34], we show that if G is an IN-group of polynomial
growth, then L1(G) has the pb-property only if G is compact and abelian
(Theorem 3.4). The same conclusion is true for general motion groups, i.e.
semidirect products N oK, where N is abelian and K is compact (Theo-
rem 3.3).

Finally, extending [34, Theorem 6.22], we establish in Section 4 a char-
acterization of power bounded elements in Bλ(G), the dual space of the
reduced group C∗-algebra C∗λ(G), for locally compact groups G which have
an open subgroup which is amenable as a discrete group.

Preliminaries. Let G be a locally compact group. The Fourier–Stieltjes
algebra and the Fourier algebra of G, B(G) and A(G), have been introduced
and extensively studied by Eymard in his seminal article [8]. The space
B(G) is the linear span of the set P (G) of all continuous positive definite
functions on G and can be identified with the Banach space dual of the
group C∗-algebra C∗(G). For u ∈ B(G) and f ∈ L1(G), the pairing is
given by 〈u, f〉 =

	
G f(x)u(x) dx. With pointwise multiplication and the

dual space norm, B(G) is a commutative Banach algebra. Every u ∈ B(G) is
the coefficient function of some unitary representation of G. More precisely,
given u ∈ B(G), there exist a unitary representation π of G and ξ, η ∈ H(π),
the Hilbert space of π, such that u(x) = 〈π(x)ξ, η〉 for all x ∈ G and ‖u‖ =
‖ξ‖ · ‖η‖ [8, Lemme 2.14].
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The Fourier algebra A(G) is the closed ideal of B(G) generated by all

compactly supported functions on B(G). When G is abelian and Ĝ de-
notes the dual group of G, then via the Fourier and the Fourier–Stieltjes
transforms, A(G) and B(G) are isometrically isomorphic to the convolution

algebra L1(Ĝ) and the measure algebra M(Ĝ), respectively. For all this,
see [8].

1. On the set {E ∈ Rc(G) : E = Fu for some power bounded u ∈
B(G)}. For any group H, the coset ringR(H) is the Boolean ring generated
by all cosets of subgroups of H. If H is a topological group, then the closed
coset ring Rc(H) is defined to be

Rc(H) = {E ∈ R(H) : E is closed in H}.
For a locally compact abelian group G, the elements of Rc(G) have been
completely described by Gilbert [11] and Schreiber [35]. Forrest [9] veri-
fied that the analogous description is valid for arbitrary locally compact
groups G. A subset E of G belongs to Rc(G) if and only if E is of the form

(1.1) E =
n⋃
i=1

(
xiHi \

ni⋃
j=1

yijKij

)
,

where xi, yij ∈ G, Hi is a closed subgroup of G and each Kij is either empty
or an open subgroup of Hi, n, ni ∈ N0, 1 ≤ i ≤ n, 1 ≤ j ≤ ni. Moreover,
every compact set in R(G) is a finite union of cosets of some subgroup of G.
For examples, see [11] and [33].

For any locally compact group G, let Epb(G) and Fpb(G) denote the
collection of sets of the form Eu and Fu, respectively, where u is a power
bounded element of B(G). Then Epb(G) = Fpb(G) since Fu = E 1

2
(1+u) =

F 1
2
(1+u) [20, Proposition 3.5] and Fpb(G) ⊆ Rc(G) [20, Theorem 4.1]. The

interesting question of which sets in Rc(G) belong to Fpb(G) has been ad-
dressed in [34, Section 6] for abelian groups. Even in this case, the problem
is far away from admitting a complete solution. In fact, in [34, Remark on
p. 421] it is mentioned that it is unknown whether the sets Z ∪ αZ, α irra-
tional, and {(z, w) ∈ T2 : z = 1 or w = 1} belong to Fpb(R) or Fpb(T2),
respectively.

In this section we extend the result of [34] to SIN-groups. However, before
doing so, we briefly discuss amenable groups G to point out that for such G
it suffices to consider closed subsets of G with empty interior.

Lemma 1.1. Let G be an amenable locally compact group and let
E ∈ Rc(G).

(i) The interior E◦ and the boundary ∂E of E both belong to Rc(G).
(ii) E◦ = Fu for some power bounded u ∈ B(G).
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Proof. By [10, Lemma 2.2], the ideal I(E) = {u ∈ A(G) : u|E = 0}
of A(G) has a bounded approximate identity, (eα)α say. Let v ∈ B(G) =
C∗(G)∗ be a w∗-cluster point of the net (eα)α. Then, using twice the fact that
multiplication in B(G) is separately w∗-continuous, it follows that vu = u
for every u ∈ I(E) and v2 = v. Moreover, regularity of A(G) implies that

v(x) = 1 for all x ∈ G\E and hence v = 1 on G \ E = G\E◦ by continuity.
On the other hand, v = 0 on E◦ since

〈v, f〉 = lim
α
〈eα, f〉 = lim

α

�

G

eα(x)f(x) dx = 0

for every f ∈ L1(G) ⊆ C∗(G) with support contained in E◦. So E◦ is closed
in G, and it is the support of the idempotent 1G− v ∈ B(G). Consequently,
E◦ ∈ Rc(G) [17] and hence also ∂E = E \E◦ ∈ Rc(G). This proves (i), and
(ii) is then clear since E◦ = F1G−v.

The following corollary shows that for an amenable group G determining
Fpb(G) reduces to identifying all nowhere dense subsets in Fpb(G).

Corollary 1.2. Let G be an amenable locally compact group and let
E ∈ Rc(G). Then E = Fu for some power bounded element u ∈ B(G) if
and only ∂E = Fv for some power bounded v ∈ B(G).

Proof. If E = Fu, where u ∈ B(G) is power bounded, then v = u·1G\E◦ ∈
B(G) is power bounded and Fv = Fu∩(G\E◦) = ∂E. Conversely, if ∂E = Fv
then u = 1E◦ + v · 1G\E◦ is power bounded since un = 1E◦ + vn1G\E◦ for all
n ∈ N and u satisfies Fu = E◦ ∪ ∂E = E.

Recall that a locally compact group G is called an SIN-group (a group
with small invariant neighbourhoods) if there exists a neighbourhood basis
V of the identity such that x−1V x = V for all V ∈ V and all x ∈ G. The class
of SIN-groups in particular contains all groups with open centres as well as
every group which is compact modulo its centre. An important property of
such groups to be exploited later is a certain separation property of positive
definite functions.

The arguments used in the proofs of the following proposition and of
Corollary 1.4 below are refinements of those employed in the proofs of [19,
Proposition 2.2] and [9, Proposition 3.10].

Proposition 1.3. Let G be an SIN-group and let H and K be closed
subgroups of G such that K ⊆ H and K is open in H. Then, given any
neighbourhood U of e in G, there exist an invariant neighbourhood V of e
such that V ⊆ U and continuous positive definite functions u and v with the
following properties:

(i) u(x) = v(x) for all x ∈ V K.
(ii) u|H = 1, u = 0 outside of V H and v = 0 outside of V K.
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Proof. Since G is an SIN-group, G and H are unimodular, and hence
there exists an invariant measure µH on the left coset space G/H so that
Weil’s formula �

G

f(x) dx =
�

G/H

�

H

f(xh) dh dµH(xH),

f ∈ L1(G), holds. Since K is open in H, counting measure on H/K is
H-invariant and the assignment

g 7→
�

G/H

( ∑
h∈H/K

g(xhK)
)
dµH(xH),

g ∈ Cc(G), defines a G-invariant measure µK on G/K such that Weil’s
formula holds for G, K and G/K.

Using again the fact that K is open in H, there exists an open set W in G
such that W ∩H = K. Since G is an SIN-group, we find a symmetric, rela-
tively compact, invariant open neighbourhood V of e such that V 2 ⊆ U ∩W .
Then V ∩H = K and hence V K ∩H = K.

Let TK denote the map from L1(G) onto L1(G/K,µK) defined by

TKf(xK) =
�

K

f(xk) dk,

and similarly define TH . Choose a nonnegative function f in L1(G) such that
TKf = µK(V K/K)−1/2 on V K/K and TKf = 0 elsewhere. Then, since V
is relatively compact, TKf ∈ L2(G/K,µK) and TKf has norm 1.

Notice next that if x ∈ G and h1, h2 ∈ H are such that xh1, xh2 ∈ V K,
then

h−12 h1 ∈ H ∩ (V K)−1V K = H ∩ V 2K = K.

Thus xhK ∩ V K = ∅ if x 6∈ V H, and if x ∈ V H, then xH ∩ V K is a
singleton. It follows that

µK(V K/K) =
�

G/H

( ∑
h∈H/K

1V K/K(xhK)
)
dµH(xH)

=
�

V H/H

( ∑
h∈H/K

1V K/K(xhK)
)
dµH(xH) = µH(V H/H).

This implies that, for all x ∈ G,

THf(xH) =
∑

h∈H/K

TKf(xhK) = µK(V K/K)−1/2
∑

h∈H/K

1V K/K(xhK)

= µH(V H/H)−1/2
∑

h∈H/K

1V K/K(xhK)

= µH(V H/H)−1/21V H/H(xH).

In particular, THf has norm 1 in L2(G/H,µH).
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We now define functions u and v on G by setting, for x ∈ G,

u(x) =
�

G

f(y)THf(x−1yH) dy and v(x) =
�

G

f(y)TKf(x−1yH) dy.

Denoting by πH and πK the representations of G induced from the trivial
representations of H and K and realizing πH and πK in the Hilbert spaces
L2(G/H,µH) and L2(G/K,µK), respectively, it is straightforward to verify
that

u(x) = 〈πH(x)THf, THf〉 and v(x) = 〈πK(x)TKf, TKf〉

for all x ∈ G. Thus u and v are continuous positive definite functions and
u|H = 1 and v|K = 1. Since THf vanishes on G/H \(V H/H), it is clear that
u = 0 on G \ V H, and similarly v vanishes outside of V K. This proves (ii).

For (i), recall that THf(zH) = TKf(zK) whenever z ∈ V K. Thus, since
THf and TKf vanish on G\V H and G\V K, respectively, and both functions
are equal on V K/K, for every x ∈ G we have

u(x)− v(x) =
�

V H\V K

f(xy)TH(yH) dy = µH(V H/H)−1/2
�

V H\V K

f(xy) dy.

Therefore, it remains to show that the latter integral is zero whenever
x ∈ V K. Now, by Weil’s formula,

�

V H\V K

f(xy) dy =
�

(V H/K)\(V K/K)

TKf(xyK) d(yK).

Let x ∈ V K. If y = vh with v ∈ V and h ∈ H is such that xy ∈ V K, then
h ∈ V 3K ∩H = K and hence y ∈ V K. It follows that TKf(xyK) = 0 for
all y ∈ V H \ V K, as required.

Corollary 1.4. Let G, H and K be as in Proposition 1.3. In addition,
suppose that H is a Gδ-set. Then, given any neighbourhood U of the identity,
there exists a power bounded u ∈ B(G) such that Fu = H \ K and u = 0
ouside of U(H \K).

Proof. As in the proof of Proposition 1.3, we first choose an open sym-
metric neighbourhood V of e in G such that V 2 ⊆ U and V 2 ∩ H = K.
Since H is a Gδ-set, we find a decreasing sequence V = V1 ⊇ V2 ⊇ · · · of
open symmetric neighbourhoods of e in G such that

⋂∞
j=1 VjH = H. By

Proposition 1.3, for each j ∈ N there exist uj , vj ∈ P (G) with the following
properties:

(1) uj = vj on VjK;
(2) uj |H = 1, uj = 0 on G \ VjH;
(3) vj = 0 on G \ VjK.
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Now define u∞, v∞ ∈ P (G) by

u∞ =
∞∑
j=1

2−juj and v∞ =
∞∑
j=1

2−jvj .

Then u∞ and v∞ satisfy

(i) u∞|H = 1, u∞ = 0 outside of V H and v∞ = 0 outside of V K.
(ii) u∞ = v∞ on V K.

Item (i) is clear from (1)–(3); also u∞ = v∞ on K. Thus, let x ∈ V K\K and
let j ∈ N be maximal with the property that x ∈ VjK. Then ui(x) = vi(x)
for i ≤ j and x 6∈ Vi for any i > j because x ∈ ViH ∩ VjK for some such i
implies that x ∈ H ∩ V −1i VjK ⊆ H ∩ V 2

j K = K, which is a contradiction.
Consequently, ui(x) = vi(x) for i > j and hence u∞(x) = v∞(x). Thus (ii)
holds. Now let u = u∞ − v∞ ∈ B(G). Then, by (i) and (ii), u vanishes on
G \ V H and on V K.

Observe next that u is power bounded. Indeed, for any n ∈ N, we have
(u∞ − v∞)n = 0 = un∞ − vn∞ on V K and outside of V H, whereas for
x ∈ V H \ V K,

(u∞(x)− v∞(x))n = u∞(x)n = u∞(x)n − v∞(x)n.

Since u∞ and v∞ are power bounded, so is u.

It remains to show that Fu = H \K. If x ∈ H \K, then u∞(x) = 1. On
the other hand, since VjK ∩H ⊆ K, we see that x 6∈ VjK for every j and
hence v∞(x) = 0. Conversely, let x ∈ Fu. Since 0 ≤ uj , vj ≤ 1 for all j, we
have 0 ≤ u∞, v∞ ≤ 1, and therefore 1 = u(x) = u∞(x)− v∞(x) implies that
v∞(x) = 0 and uj(x) = 1 for all j. As uj vanishes on G \ VjH, it follows
that x ∈

⋂∞
j=1 VjH = H. Finally, as u = 0 on K, we get Fu ⊆ H \K.

Lemma 1.5. Let G be an SIN-group and H a closed subgroup of G such
that H is a Gδ-set. Then there exists u ∈ P (G) such that Fu = H.

Proof. In [34, Lemma 6.15] is was shown that if H is a closed normal
subgroup of a locally compact group G and H is a Gδ-set, then there exists
a (decreasing) sequence (Wn)n of open neighbourhoods of the identity e
in G such that

⋂∞
n=1Wn = H. However, inspection of the proof shows

that normality of H is not used at all. Now, since G is an SIN-group, for
each n we may choose an open symmetric neighbourhood Vn of e such that
VnH = HVn and V 2

n ⊆Wn.

Now fix W = Wn and let V = Vn, and let q : G→ G/H, µH and TH be
as in the proof of Proposition 1.3. Choose a nonnegative function v ∈ L1(G)
such that THv = 0 on G/H \ q(V ) and THv = µH(q(V ))1/2 on q(V ). Define
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a function u on G by

u(x) =
�

G

v(y)THv(x−1yH) dy, x ∈ G.

Then u ∈ P (G) and u|H = 1 (compare the proof of Proposition 1.3). More-
over, u = 0 outside of WH. In fact, if x ∈ G is such that u(x) 6= 0, then
THv(x−1yH) 6= 0 for some y ∈ V H and hence

x−1 ∈ V Hy−1 ⊆ V H(V H)−1 = V HV = V 2H ⊆WH.

Finally, for each n ∈ N, let un be as just constructed. Then the function
u =

∑∞
n=1 2−nun ∈ P (G) satisfies Fu = H since

⋂∞
n=1WnH = H.

The reader who is familiar with the notion of a neutral subgroup will have
observed that the proof of Lemma 1.5 goes through without any
changes when H is a neutral subgroup of any locally compact group G.

Let E and F be closed subsets of a locally compact group G. Following
[34, Definition 6.18], we say that E and F are uniformly separated if there
exists a neighbourhood V of the identity such that V E∩F = ∅. Replacing V
by a symmetric neighbourhood W of e such that W 2 ⊆ V , we may assume
that V E ∩V F = ∅ if necessary. As mentioned in [34, Proposition 6.19], two
closed subsets E and F of G are uniformly separated if either E is compact
and E ∩F = ∅, or E ⊆ C and F ⊆ D, where C and D are distinct cosets of
some closed subgroup of G.

In passing observe that every set of the form Fu for some u ∈ B(G) is a
Gδ-set. In fact,

Fu =
∞⋂
n=1

{x ∈ G : |u(x)− 1| < 1/n}.

Theorem 1.6. Let G be an SIN-group and let E be a closed Gδ-set
in R(G). Suppose that E =

⋃N
i=1Ei, where each Ei is of the form (1.1),

and that the Ei are pairwise uniformly separated. Then there exists a power
bounded u ∈ B(G) such that Fu = E.

Proof. To start with, notice that every closed subset of a Gδ-set is
also a Gδ-set. Suppose first that N = 1, so that E is of the form E =
a(H \

⋃m
j=1 bjKj), where H is a closed subgroup of G, each Kj is either

empty or an open subgroup of H, and a ∈ G, bj ∈ H, 1 ≤ j ≤ m. Then,
given any invariant neighbourhood U of e in G, by Corollary 1.4, for each
j = 1, . . . ,m, there exists a power bounded element uj of B(G) such that
Fuj = H \ Kj and uj = 0 outside of U(H \ Kj). If, for all 1 ≤ j ≤ m,

bjKj ∩ H = ∅, then E = aH, in which case by Lemma 1.5 there exists
u ∈ P (G) such that FLau = E. So we can assume that H ∩ bjKj 6= H



Power boundedness in Banach algebras 173

exactly for 1 ≤ j ≤ r, r ≤ m. Then bj ∈ H for 1 ≤ j ≤ r and

E = a
(
H \

r⋃
j=1

bjKj

)
=

r⋂
j=1

abj(H \Kj).

Let u =
∏r
j=1 Labjuj ∈ B(G), where Lxu(y) = u(x−1y) for x, y ∈ G and

any function u on G. Then

Fu =
m⋂
j=1

FLabjuj =
m⋂
j=1

abjFuj = E,

and since translating is an isometry of B(G), u is power bounded. Moreover,
u vanishes outside of

⋃m
j=1 abjU(H \Kj) = UE.

In the general case, since E1, . . . , EN are pairwise uniformly separated,
we find a neighbourhood U of e such that UEi ∩UEk = ∅ for 1 ≤ i, k ≤ N ,
i 6= k. In particular, each Ei is a Gδ-set since E is one. By the first part
of the proof, there exist power bounded elements u1, . . . , uN of B(G) with
Fui = Ei and ui = 0 on G \ UEi. Then u = u1 + · · ·+ uN ∈ B(G) vanishes
on G \UE, and u is power bounded since un = un1 + · · ·+ unN for all n ∈ N.

Clearly, Fu =
⋃N
i=1 Fui =

⋃N
i=1Ei = E.

We now show that every compact Gδ-set in R(G) belongs to Fpb(G).
More precisely, we have

Proposition 1.7. Let G be an arbitrary locally compact group, E a
compact set in R(G) and U an open set containing E. Then there exists a
power bounded u ∈ A(G) with E ⊆ Eu and suppu ⊆ U . If E is a Gδ-set,
then we may choose u so that Fu = E.

Proof. We start by considering a compact subgroup K of G and an open
neighbourhood U of K. Then there exists a symmetric compact neighbour-
hood V of e in G such that KV = V K and KV 2 ⊆ U . Let M = KV and
v = |M |−1(1M ∗ 1∗M ). Then v is a continuous positive definite function and

v(x) = |M |−1
�

G

1M (xy)1M (y) dy =
|M ∩ x−1M |
|M |

,

which is easily verified to be one for x ∈ K and zero for x 6∈ KV .

Suppose that, in addition, K is a Gδ-set and let U ⊇ U1 ⊇ U2 ⊇ · · ·
be a sequence of open subsets of G such that K =

⋂∞
n=1 Un. For each Un,

choose vn as in the preceding paragraph and put v =
∑∞

n=1 2−nvn. Then v
is a continuous positive definite function such that Fv = K and supp v ⊆ U .
It follows by translation that for any coset aK, a ∈ G, we obtain va ∈ A(G)
with ‖va‖ = 1, supp va ⊆ aU and Fva ⊆ aU (and Fva = aK when aK is a
Gδ-set).
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Let now C be an arbitrary compact set in R(G). Then there exist a
compact subgroup K of G and a1, . . . , an ∈ G such that C =

⋃n
i=1 aiK,

a disjoint union. Since the sets aiK are open in C and pairwise disjoint,
there exist pairwise disjoint open sets U1, . . . , Un in G such that Ui ⊆ U and
aiK ⊆ Ui. Clearly, if C is a Gδ-set, then so are the sets aiK. For each i,
let vi ∈ A(G) be as guaranteed by the first part of the proof, and put
v =

∑n
i=1 vi ∈ A(G). Then v is power bounded since vivj = 0 for i 6= j and

hence vk =
∑n

i=1 v
k
i for all k ∈ N. Obviously, v has all the other required

properties.

Example 1.8. Let G be a locally compact group with the property
that every proper closed subgroup of G is compact. Then, given any Gδ-set
E ∈ Rc(G), there exists a power bounded u ∈ B(G) with Fu = E.

To see this, let E =
⋃n
i=1Ei where each Ei is as on the right hand side

of formula (1.1) and 6= ∅. If all Hi are compact, then E is compact and the
existence of u follows from Proposition 1.7. So we may assume that Hi = G
for exactly 1 ≤ i ≤ m ≤ n. Then, for 1 ≤ i ≤ m, the subgroups Kij are
open and closed in G and F =

⋃m
i=1Ei ∈ R(G) is open and closed, whence

1F ∈ B(G).
Let C =

⋃n
i=m+1Ei\F , a compact set inR(G). Since G\F is an open set

containing C, and C, being open in E, is a Gδ-set, by Proposition 1.7 there
exists v ∈ A(G) such that Fv = C and v = 0 on F . Now u = 1F + v satisfies
Fu = E and u is power bounded since 1F v = 0 and hence un = 1F + vn for
all n ∈ N.

Locally compact groups as considered in the preceding example do ex-
ist. Actually, Ol’shanskĭı [29] has constructed infinite groups such that ev-
ery proper subgroup is finite and satisfying various additional conditions,
thereby answering a number of open questions in group theory. Building on
this construction, Losert [25] in the context of his investigation of the Maut-
ner phenomenon has produced an example of a locally compact group such
that every proper closed subgroup is compact and which is an IN-group, but
fails to be an SIN-group.

2. Extending power bounded functions. Let G be a locally com-
pact group and H a closed subgroup of G, and for any function u on G
let r(u) = u|H denote the restriction of u to H. Then r(B(G)) ⊆ B(H)
and r(A(G)) ⊆ A(H) [8]. McMullen [26] has shown that r(A(G)) = A(H).
More precisely, given v ∈ A(H), there exists u ∈ A(G) with u|H = v and
‖u‖ = ‖v‖. The problem of when r(B(G)) = B(H) has turned out to be
much more delicate and has been studied extensively by several authors.
We only mention a few basic results. It was shown independently by Hen-
richs [15] and Cowling and Rodway [6] that r(B(G)) = B(H) whenever G
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has small H-invariant neighbourhoods. If H is normal in G, then v ∈ B(H)
extends to some u ∈ B(G) if and only if the function x 7→ ‖x · v− v‖, where
x · v(h) = v(x−1hx) for h ∈ H and x ∈ G, is continuous at the identity
of G [6]. Earlier, it was shown in [24] that if G is an arbitrary locally com-
pact group and G0 denotes the connected component of the identity, then
B(G)|G0 = B(G0). Our main intention in this section is to show that every
power bounded element of B(G0) extends to some power bounded element
of B(G) with the same norm (Theorem 2.5).

Lemma 2.1. Let G be a projective limit of groups G/Kα and, for each α,
let να denote normalized Haar measure of Kα. Let u ∈ B(G) and set uα =
u ∗ να. Then uα ∈ B(G) and u = w∗-limα uα.

Proof. Let π be a unitary representation of G and ξ, η ∈ H(π) be such
that u(x) = 〈π(x)ξ, η〉 for all x ∈ G and ‖u‖ = ‖ξ‖ · ‖η‖. Then

uα(x) =
�

Kα

〈π(xk)ξ, η〉 dνα(k) = 〈π(x)π(να)ξ, η〉,

and hence uα ∈ B(G) and ‖uα‖ ≤ ‖π(να)ξ‖ · ‖η‖ ≤ ‖ξ‖ · ‖η‖ = ‖u‖. Since
the net (uα)α is norm bounded, for u = w∗-limα uα it suffices to verify that
〈uα, f〉 → 〈u, f〉 for all f ∈ Cc(G). Now fix such an f , choose a compact
neighbourhood C of supp f and let ε > 0 be given. Since f is uniformly
continuous, there exists a symmetric neighbourhood V of the identity such
that supp f ·V ⊆ C and |f(xy)− f(x)| ≤ ε/|C| for all x ∈ G and y ∈ V . For
large enough α, we then have Kα ⊆ V , and hence |(f ∗να)(x)−f(x)| ≤ ε/|C|
for all x ∈ G. Thus

‖f ∗ να − f‖1 =
�

C

|(f ∗ να)(x)− f(x)| dx ≤ ε,

and this implies that

|〈uα, f〉 − 〈u, f〉| = |〈u, f ∗ να〉 − 〈u, f〉| ≤ ‖u‖ · ‖f ∗ να − f‖C∗(G)

≤ ‖u‖ · ‖f ∗ να − f‖1 ≤ ε‖u‖.

This shows that 〈uα, f〉 → 〈u, f〉 for every f ∈ Cc(G)

Let H be a σ-compact closed subgroup of G and K a compact normal
subgroup of G such that HK is open in G. Let ν and µ be normalized Haar
measures of H ∩K and K, respectively, and let ν̃ and µ̃ be Haar measures
on H/H ∩K and HK/K, respectively, so that Weil’s formula holds for the
pairs (H,H ∩ K) and (HK,K). For any topological space X, let Cb(X)
denote the space of all bounded complex-valued continuous functions on X.

Lemma 2.2. Retain the above situation and notation. Let u ∈ Cb(H)
and define v ∈ Cb(HK) by v(hk) = (u ∗ ν)(h) for h ∈ H, k ∈ K. Then, for
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any f ∈ Cc(HK),

〈v, f〉 = 〈u ∗ ν, f |H〉.

Proof. Note first that v is well defined because u ∗ ν is constant on
cosets of H ∩K. Let φ : H/H ∩K → HK/K denote the group isomorphism
defined by h(H ∩K)→ hK, h ∈ H. Then φ is a homeomorphism since HK
is closed in G and H is σ-compact [16, Theorem 5.29]. Let φ also denote the
associated isomorphism between Cb(H/H ∩K) and Cb(HK/K). Moreover,
let TK : Cc(HK)→ Cc(HK/K) and TH∩K : Cc(H)→ Cc(H/H∩K) denote
the usual homomorphism. Let ω denote the left invariant measure on the
coset space K/H ∩K, so that Weil’s formula

�

K

g(x) dµ(x) =
�

K/K∩H

( �

H∩K
g(xk) dν(k)

)
dω(x(H ∩K))

holds for all g ∈ C(K). Then ω(K/H ∩K) = 1, and for any f ∈ Cc(HK)
and x ∈ H we have

TKf(xK) =
�

K/H∩K

( �

H∩K
f(xlk) dν(k)

)
dω(l(H ∩K))

=
�

K/H∩K

φ(TH∩Kf)(xlk) dω(l(H ∩K))

=
�

K/H∩K

φ(TH∩Kf)(xk) dω(l(H ∩K)) = φ(TH∩Kf)(xK).

This formula in turn implies

〈u ∗ ν, f |H〉 =
�

H/H∩K

�

H∩K
v(h)f(hk) dν(k) dν̃(h(H ∩K))

=
�

H∩K
v(h)TH∩Kf(h(H ∩K)) dν̃(h(H ∩K))

=
�

HK/K

v(x)φ(TH∩Kf)(xK) dµ̃(xK)

=
�

HK/K

v(x)TKf(xK) dµ̃(xK) =
�

HK

v(x)f(x) dx = 〈v, f〉,

where we have used the fact that µ̃ is the image of ν̃ under the map φ.

Suppose that G is a projective limit of groups G/Kα, and H is a
σ-compact closed normal subgroup of G such that HKα is open in G
for each α. Let να denote normalized Haar measure on H ∩ Kα, and for
u ∈ Cb(H) let vα be defined on HKα by vα(xk) = (u ∗ να)(x) for x ∈ H
and k ∈ Kα. Moreover, let Cc,α(G) denote the set of all functions in Cc(G)
which are constant on cosets of Kα.
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Lemma 2.3. Let u ∈ B(H) be such that w∗-limn→∞ u
n = 0. For every

n ∈ N, there exists wn ∈ B(G) with the following properties:

(1) wn|H = un and ‖wn‖ = ‖un‖.
(2) For each α and f ∈ Cc,α(G), 〈wn, f〉 = 〈vnα, f |HKα〉.

Proof. We apply Lemma 2.2 to un in place of u. Since να is normalized
and translation invariant, it is easy to check that un ∗ να = (u ∗ να)n. Let
vn,α on HKα be associated to un ∗ να as in Lemma 2.2. Then vn,α = vnα;
indeed, for x ∈ H and k ∈ Kα, we have

vn,α(xk) = (un ∗ να)(x) = (u ∗ να)(x)n = vα(xk)n.

Then, by Lemma 2.2, for all f ∈ Cc(G),

〈ṽαn , f〉 = 〈un ∗ να, f |H〉.

Let now F =
⋃
αCc,α(G). Then F is a linear subspace of Cc(G). In fact, if

fi ∈ Cc,αi(G), i = 1, 2, and α ≥ α1, α2, then Kα ⊆ Kα1 ∩ Kα2 and hence
f1, f2 ∈ Cc,α(G). Furthermore, F is dense in Cc(G) with respect to the
L1-norm (compare the proof of Lemma 2.1). Note next that if f ∈ Cc,α(G)
and β ≥ α, then 〈ṽαn , f〉 = 〈ṽβn , f〉. Indeed,

〈ṽαn , f〉 = 〈un ∗ να, f |H〉 = 〈un, f |H ∗ να〉 = 〈un, f |H〉,

and similarly for β. We can therefore define a linear functional ϕn on F by

〈ϕn, f〉 = 〈ṽαn , f〉, f ∈ Cc,α(G).

We claim that ‖ṽαn‖ ≤ ‖un‖ for each α. To see this, let π be a unitary
representation of H and ξ, η ∈ H(π) be such that un(x) = 〈π(x)ξ, η〉 for all
x ∈ H and ‖un‖ = ‖ξ‖ · ‖η‖. Then, for x ∈ H and k ∈ Kα,

vnα(xk) = (un ∗ να)(x) =
�

H∩Kα

un(xl) dνα(l) =
�

H∩Kα

〈π(x)π(l)ξ, η〉 dνα(l)

=
〈
π(x)

�

H∩Kα

π(l)ξ dνα(l), η
〉
,

which implies that

‖ṽαn‖ = ‖vnα‖ ≤ ‖η‖ ·
∥∥∥ �

H∩Kα

π(l)ξ dνα(l)
∥∥∥ ≤ ‖η‖ · ‖ξ‖ = ‖un‖.

Then, for every f ∈ F ,

|〈ϕn, f〉| ≤ ‖ṽαn‖ · ‖f‖C∗ ≤ ‖un‖ · ‖f‖c∗ .

Since F is dense in C∗(G), ϕn extends to a bounded linear functional on
C∗(G), and hence there exists wn ∈ B(G) with 〈ϕn, f〉 = 〈wn, f〉 for all
f ∈ C∗(G). Clearly, by definition of ϕn, (2) holds for wn, and ‖wn‖ =
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‖ϕ‖ ≤ ‖un‖. It remains to observe that wn|H = un. By Lemma 2.1,

〈un, f |H〉 = lim
α
〈un ∗ να, f |H〉 = lim

α
〈ṽαn , f〉

for every f ∈ Cc(G) and, on the other hand, 〈wn, f〉 = 〈ṽαn , f〉 for every
f ∈ Cc,β(G) and all α ≥ β. Since the set of all f |H , f ∈

⋃
β Cc,β(G), is dense

in Cc(H), it follows that wn|H = un.

Lemma 2.4. Let u ∈ B(H) be such that w∗-limn→∞ u
n = 0, let wn ∈

B(G), n ∈ N, be as in Lemma 2.3 and set w = w1. Then w∗-limn→∞w
n = 0.

Proof. As in the proof of Lemma 2.2, let µα be normalized Haar measure
of Kα. We first show by induction that wn ∗ µα = wn ∗ µα for all n ∈ N.
Suppose that this equation holds for n and let g ∈ Cc(G). Then, since
g ∗ µα ∈ Cc,α(G), by Lemma 2.3,

〈wn+1 ∗ µα, g〉 = 〈wn+1, g ∗ µα〉 = 〈ṽαn+1 , g ∗ µα〉 = 〈ṽαn , ṽα(g ∗ µα)〉
= 〈wn, ṽα(g ∗ µα)〉 = 〈wn, [ṽα(g ∗ µα)] ∗ µα〉
= 〈wn ∗ µα, ṽα(g ∗ µα)〉 = 〈wn ∗ µα, ṽα(g ∗ µα)〉
= 〈ṽα, (wn ∗ µα)(g ∗ µα)〉 = 〈w, (wn ∗ µα)(g ∗ µα)〉
= 〈(w ∗ µα)(wn ∗ µα), g ∗ µα〉 = 〈wn+1 ∗ µα, g ∗ µα〉
= 〈wn+1 ∗ µα, g〉.

Now wn ∗ µα = wn ∗ µα for all α means that the bounded linear functionals
g 7→ 〈wn, g〉 and g 7→ 〈wn, g〉 agree on F =

⋃
αCc,α(G). Since F is dense in

C∗(G), it follows that wn = wn for all n ∈ N. Therefore, we only have to show
that w∗-limn→∞wn = 0. Since the sequence (wn)n is norm bounded and F
is dense in C∗(G), it suffices to verify that 〈wn, f〉 → 0 for f ∈ Cc,α(G). By
Lemma 2.2,

〈wn, f〉 = 〈ṽαn , f〉 = 〈vnα, f |HKα〉 = 〈un ∗ να, f |H〉 = 〈un, f |H ∗ να〉,
which converges to zero since w∗-limn→∞ u

n = 0.

We are now ready to prove the extension result mentioned at the outset
of this section.

Theorem 2.5. Let G be any locally compact group and G0 its connected
component of the identity. Then every power bounded element u of B(G0)
extends to some power bounded element w of B(G) with the same norm. If
w∗-limn→∞ u

n = 0, then w can be found such that w∗-limn→∞w
n = 0.

Proof. Let u be a power bounded element of B(G0). By [22], either there
exist a complex number λ of absolute value 1 and a character γ of G0 such
that u(x) = λγ(x) for all x ∈ G0, or u satisfies w∗-limn→∞ u

n = 0.
In the first case, by [24, Proposition 1.1], γ extends to some continu-

ous positive definite function σ on G, and so λσ is the required extension
of u. Alternatively, instead of using [24], we could proceed as follows. Since
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|u(x)| = 1 for all x ∈ G0, by [21, Proposition 4.5] either u is constant or
w∗-limn→∞ u

n = 0. Therefore, to establish the theorem, we have to show
that if w∗-limn→∞ u

n = 0, then there exists w ∈ B(G) such that w|G0 = u
and w∗-limn→∞w

n = 0.

Since G/G0 is totally disconnected, we can choose an open subgroup L
of G containing G0 such that L/G0 is compact. If u extends to some element
v of B(L) such that w∗-limn→∞ v

n = 0, then the trivial extension of v to G
has the same property. Therefore we may assume that G/G0 is compact.

Now G, being almost connected, is a projective limit of Lie groups
G/Kα [27]. Then, for each α, G/G0Kα is a compact and totally disconnected
Lie group, so finite. Thus Lemma 2.4 applies with H = G0 and yields the
existence of some w ∈ B(G) such that w|G0 = u and w∗-limn→∞w

n = 0.

Remark 2.6. Suppose that u is a power bounded element of A(G0).
Then the element w of B(G) constructed in Theorem 2.5 belongs to A(G).
To see this, let H = G0 and let f, g ∈ L2(H) be such that u(x) = (f ∗ g̃)(x)
for all x ∈ H. As before, let να and µα denote the normalized Haar measures
of H ∩Kα and Kα, respectively. Then f ∗ να and g̃ ∗ να are in L2(H) and

(u ∗ να)(x) = [(f ∗ να) ∗ (g̃ ∗ να)](x)

for all x ∈ H. So u ∗ να ∈ A(H) and ‖u ∗ να‖ ≤ ‖u‖. This implies that

vα(xk) = (u ∗ να)(x) = (f1 ∗ g̃1)(xk), x ∈ H, k ∈ Kα,

where f1, g1 ∈ L2(HKα) are defined by f1(xk) = (f ∗ να)(x) and similarly
for g1. Thus ṽα ∈ A(G) and ‖ṽα‖ ≤ ‖u‖ for every α. Recall next that
〈w ∗ µα, f〉 = 〈ṽα, f〉 for all f ∈ Cc(G), and hence w ∗ µα ∈ A(G) and
‖w∗µα‖ ≤ ‖u‖. Finally, let g ∈ C∗(G) and ε > 0 be given. Since

⋃
αCc,α(G)

is dense in C∗(G), there exist α0 and f ∈ Cc,α0(G) with ‖g−f‖C∗ ≤ ε. Then
f ∈ Cc,α(G) for all α ≥ α0 and hence, as 〈w, f〉 = 〈w, f ∗ µα〉 = 〈w ∗ µα, f〉,

|〈w, g〉 − 〈w ∗ µα, g〉| ≤ |〈w, g〉 − 〈w, f〉|+ |〈w ∗ µα, f〉 − 〈w ∗ µα, g〉|
≤ 2‖u‖ · ‖g − f‖C∗ ≤ 3ε‖u‖.

This shows that w ∗ µα → w in B(G) and hence w ∈ A(G).

For locally compact abelian groups the following result was shown in [34,
Lemma 6.27].

Theorem 2.7. Let G be an arbitrary locally compact group and D a dis-
crete subgroup of G. Then every power bounded element u of A(D) extends
to some power bounded v ∈ A(G). If G is first countable, then v can be found
to satisfy Ev = Eu.

Proof. First, choose any u1 ∈ A(G) extending u. As Eu1 is compact, we
can select a relatively compact open subset U of G such that Eu1 ⊆ U . Since
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D is discrete and D∩U is finite, there exist symmetric open neighbourhoods
W and V of e with the following properties:

(1) W 2 ∩D = {e} and dW ⊆ U for all d ∈ D ∩ U ;
(2) UV ∩D = U ∩D.

Next choose u2 ∈ A(G) such that u2|U = 1, u2 = 0 on G \ UV and
0 ≤ u2 ≤ 1, and a continuous positive definite function u3 with u3(e) = 1
and u3 = 0 on G \W . Note that if G is first countable, we can require that
Eu3 = {e}.

Now define v ∈ A(G) by

v(x) = u1(x)[1− u2(x)] +
∑

d∈D∩U
u(d)u3(d

−1x), x ∈ G.

The functions u3(d
−1·), d ∈ D ∩ U , are pairwise orthogonal. In fact, if

u3(d
−1
j x) 6= 0, j = 1, 2, then d−1j x ∈ W and hence d−11 d2 ∈ W 2 ∩D = {e}.

Since ‖u3‖ = u3(e) = 1, it follows that w =
∑

d∈D∩U u(d)u3(d
−1·) ∈ A(G)

is power bounded. Notice that also u1[1−u2] and w are orthogonal. Indeed,
if, for some x ∈ G, u1(x)[1 − u2(x)] 6= 0 and w(x) 6= 0, then x 6∈ U and
x ∈ dW for some d ∈ D ∩ U , which is impossible. Consequently, v is power
bounded once u1[1−u2] has been shown to be power bounded. There exists
a compact subset C of G containing U such that |u1(x)| ≤ 1/2 for all x 6∈ C.
Since U ⊇ Eu1 and C \U is compact, it follows that supx 6∈U |u1(x)| < 1 and
hence supx∈G |u1(x)[1− u2(x)]| < 1 because u2 = 1 on U . This implies that
u1(1− u2) is power bounded.

It remains to verify that v|D = u. Suppose first that x ∈ D∩UV = D∩U .
Then u2(x) = 1 and, as we have seen above, u3(d

−1x) 6= 0 exactly for d = x,
whence v(x) = u(x). If x ∈ D \ UV , then u2(x) = 0 and d−1x 6∈ W for
all d ∈ D ∩ U . Thus v(x) = u1(x) = u(x). This completes the proof of the
existence of v.

Finally, if Eu3 = {e} then Ev = Eu. Indeed, if x ∈ Ev ∩ U then we
have u1(x)[1 − u2(x)] = 0 and, since u3(d

−1x) 6= 0 for at most one d in
D ∩ U , we obtain |u3(d−1x)| = 1, so x = d ∈ D. Similarly, if x 6∈ U then

|u1(x)[1 − u2(x)]| ≤ |u1(x)| < 1 and, for all d ∈ D ∩ U , d−1x 6∈ W , so that

u3(d
−1x) = 0.

3. The power boundedness property for some L1-group alge-
bras. Let H be a locally compact group and Γ a compact subgroup of the
group Aut(H) of topological automorphisms of H which contains the inner
automorphisms of H (see [16]). Let E(H,Γ ) denote the set of all continuous
positive definite functions α on H such that α(e) = 1 and

α(x)α(y) =
�

Γ

α(xγ(y)) dγ, x, y ∈ H,
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where dγ is normalized Haar measure on Γ . Equip E(H,Γ ) with the topol-
ogy of uniform convergence on compact subsets of H. Let

L1
Γ (H) = {f ∈ L1(H) : f ◦ γ = f for all γ ∈ Γ}.

For α ∈ E(H,Γ ) and f ∈ L1
Γ (H), let

ϕα(f) =
�

H

f(x)α(x) dx.

Then the map α 7→ ϕα is a homeomorphism between E(H,Γ ) and the spec-
trum ∆(L1

Γ (H)) of L1
Γ (H) [28, Theorem 5.8 and Proposition 4.8]. If Γ is a

closed subgroup of Γ1 ⊆ Aut(H), then there is a continuous map α 7→ α]

from E(H,Γ ) onto E(H,Γ1) given by α](x) =
	
Γ1
a(γ(x)) dγ [28, Proposi-

tion 4.9].

Lemma 3.1. Let Γ be a closed subgroup of SO(d), d ≥ 2, and let A =
L1
Γ (Rd). Then A does not have the power boundedness property.

Proof. Towards a contradiction, assume that A has the pb-property, and
let B = L1

SO(d)(R
d) denote the subalgebra of A consisting of all SO(d)-

invariant, i.e. radial, functions. Then B has the pb-property. Indeed, if f ∈ B
and α ∈ E(Rd, Γ ), then, since f is SO(d)-invariant,

f̂(α) =
�

Rd
α(x)

( �

SO(d)

f(β(x)) dβ
)
dx =

�

SO(d)

( �

Rd
α(x)f(β(x)) dx

)
dβ

=
�

Rd
f(x)

( �

SO(d)

α(β−1(x)) dβ
)
dx =

�

Rd
f(x)α](x) dx = f̂(α]),

and hence rB(f) = rA(f), and therefore ‖fn‖1 ≤ C <∞ for all n ∈ N since
A has the pb-property. Now, it is not difficult to construct a radial function

f ∈ L1(Rd) satisfying f̂ |Sd−1 = 1 and |f̂(y)| < 1 for all y ∈ Rd = R̂d,
‖y‖ 6= 1. Thus f is power bounded and hence

Sd−1 = {y ∈ Rd : f̂(y) = 1} ∈ Rc(Rd)

by [20, Theorem 4.1]. However, Sd−1 6∈ Rc(Rd) for d ≥ 2 because otherwise,
denoting by p : Rd → R the projection y = (y1, . . . , yn) 7→ y1, we would have
[−1, 1] = p(Sd−1) ∈ Rc(R) [35, Theorem 1.3], which is a contradiction.

Let G be a semidirect product G = N o K where K is compact with
normalized Haar measure µ. Let f ∈ L1(N) be K-invariant, and define
g ∈ L1(G) by g(x, k) = f(x), x ∈ N , k ∈ K. Then (convolution product),
for all n ∈ N,

gn(x, k) = fn(x), x ∈ N, k ∈ K.
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Suppose the formula holds for n. Then, since µ(K) = 1,

gn+1(x, k) =
�

N

�

K

gn((x, k)(y, l)−1)g(y, l) dµ(l) dy

=
�

N

�

K

gn(x(kl−1) · y−1, kl−1)g(y, l) dµ(l) dy

=
�

N

�

K

fn(x(kl−1) · y−1)f(y) dµ(l) dy = fn+1(x).

In particular, ‖fn‖1 = ‖gn‖1 and rL1(G)(g) = rL1(N)(f).

Corollary 3.2. Let G = V oK, where V is a nontrivial vector group
and K is a compact group. Then L1(G) cannot have the power boundedness
property.

Proof. Notice first that if V is a vector group with scalar product 〈·, ·〉
and Γ is a compact group of topological automorphisms of V then, after
replacing 〈·, ·〉 by the new scalar product

〈ξ, η〉Γ =
�

Γ

〈γ(ξ), γ(η)〉 dγ, ξ, η ∈ V,

we can assume that Γ acts through orthogonal transformations on V .

Let A denote the subalgebra of L1(N) consisting of all K-invariant func-
tions, and let B be the set of all g ∈ L1(G) arising from functions in A as
above. Then, by the above calculations, if B has the pb-property, then so
does A. By Lemma 3.1, this is impossible whenever dimV ≥ 2. Thus, if
L1(G) has the pb-property, then V = R and hence K acts either trivially or
as SO(1) on V . In any case, G is a locally compact group all of whose irre-
ducible representations are finite-dimensional. However, for such a group G,
by [34, Theorem 8.8], L1(G) has the pb-property only if G is compact (and
abelian). This contradicts V 6= {0}.

The preceding corollary is a main step in establishing the following the-
orem for general motion groups.

Theorem 3.3. Let G be a semidirect product G = N oK, where N is
an abelian locally compact group and K is a compact group. Then L1(G) has
the power boundedness property (if and) only if G is compact and abelian.

Proof. By [34, Corollary 8.3], we only have to show that N is compact.
Now N is the direct product of a vector group V and a group H which
contains a compact open subgroup C [18, Theorem 2]. Since N ∈ [SIN]G,
by [13, Theorem 0.1] we can assume that V , H and C are all normal in G.
As L1(G/C) has the pb-property, we can assume that H is discrete. Now
V oK is an open subgroup of G and hence L1(V oK) has the pb-property.
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Corollary 3.2 shows that V is trivial. Therefore, we are left with the case
that N is discrete and abelian.

Consider the subalgebra L1(N t o K) of L1(G) and, towards a contra-
diction, assume that N t is infinite. As L1(N t oK) has the pb-property, by
[34, Lemma 6.2] it suffices to produce a K-invariant function f in L1(N t)

such that |f̂(γ)| = 1 for all γ ∈ N̂ t and f̂ has infinite range. Now such
an f can be constructed as in the proof of [34, Lemma 8.5] observing that
every finite subset of N t is contained in a finite K-invariant set and hence
in a finite normal subgroup of G [32, Theorem 4.32]. This contradiction
shows that N t is finite. Thus, passing to G/N t, we can assume that N is
torsion-free.

Towards a contradiction, assume that N is nontrivial and fix x ∈ N ,
x 6= e. Then K(x), the K-orbit of x, is finite and the subgroup of N gener-
ated by K(x) is isomorphic to Zm for some m ∈ N and normal in G. The
centralizer

CK(Zm) = {k ∈ K : k(y) = y for all y ∈ Zm}
has finite index in K. Let M = ZmoCK(Zm). Then M is open in G and M is
the direct product of Zm and CK(Zm). Since L1(M) has the pb-property,
so does L1(Zm), contradicting [34, Lemma 8.5]. This completes the proof of
Theorem 3.3.

Before proceeding, we recall that a locally compact group G is of polyno-
mial growth if given any relatively compact open subset U of G, there exist
constants c, d > 0 such that |Un| ≤ cnd for all n ∈ N. Nilpotent locally com-
pact groups are of polynomial growth [14, Théorème II.4], and conversely,
if G is a finitely generated discrete group of polynomial growth, then G has
a nilpotent subgroup of finite index [12, Main Theorem].

The following theorem improves [34, Theorem 8.8]. We remind the reader
that a locally compact group G is called an IN-group if G has a compact
neighbourhood of the identity which is invariant under the inner automor-
phisms of G.

Theorem 3.4. Let G be an IN-group of polynomial growth. If L1(G) has
the power boundedness property, then G is compact and abelian.

Proof. We first assume G is an SIN-group. Then, by [13, Theorem 2.13],
G has an open normal subgroup of the form V × K, where V is a vector
group and K is a compact group. If L1(G) has the pb-property, then so
does L1(V ) = L1(V ×K/K) and hence V must be trivial. Then, passing to
G/K and observing that L1(G/K) has the pb-property, we can henceforth
assume that G is discrete.

Let H be any finitely generated subgroup of G. Then, being finitely
generated and having polynomial growth, H has a nilpotent subgroup M
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of finite index. Since that an abelian group A with L1(A) having the pb-
property is compact, a straightforward induction argument shows that M
is finite and hence so is H. Then H must be abelian, and as this applies
to any finitely generated subgroup H of G, it follows that G is abelian.
Finally, since L1(G) has the pb-property, we conclude that G is compact
[34, Theorem 8.6].

Now let G be an IN-group. Then G has a compact normal subgroup
C such that G/C is an SIN-group [13, Theorem 2.5]. Since L1(G/C), being
isometrically isomorphic to a subalgebra of L1(G), has the pb-property, G/C
and hence G is compact. Finally, [34, Corollary 8.3] implies that G is also
abelian.

It is expected that for much larger classes of locally compact groups G,
if L1(G) has the power boundedness property, then G must be compact
and abelian. However, this appears to be a very difficult problem even for
nilpotent locally compact groups.

4. Power bounded elements in Bλ(G). In this entire section, for any
locally compact group G, Gd denotes the group G made discrete. Moreover,
λG (or simply λ if G is understood) stands for the left regular representation
of G (respectively, L1(G) or C∗(G)) on L2(G). Let C∗λ(G) denote the reduced
C∗-algebra of G, i.e. the norm closure of λ(L1(G)) in B(L2(G)).

The following lemma and its proof are a fairly straightforward adaptation
of the equivalence of conditions (i) and (ii) in [34, Lemma 6.21]. We include
the proof for completeness.

Lemma 4.1. Let G be a discrete group and E ∈ R(G). For u ∈ B(G),
the following are equivalent:

(i) un1E → 0 in the w∗-topology of B(G) = C∗(G)∗.
(ii) un1E → 0 in the strong operator topology of M(A(G)).

Proof. For (i)⇒(ii), if w∗-limn→∞ u
n1E = 0, then there exists a constant

C > 0 such that ‖un1E‖B(G) ≤ C for all n ∈ N. Let v ∈ A(G) and ε > 0
be given. There exists w ∈ A(G) with finite support such that ‖w − v‖A(G)

≤ ε/2C, say w =
∑m

j=1 cjδxj . It follows that

‖un1Ew‖A(G) =
∥∥∥ m∑
j=1

cj(u
n1E)(xj)δxj

∥∥∥
A(G)

≤
m∑
j=1

|cj | · |〈un1E , δxj 〉| ≤ ε/2

for n large enough, and hence

‖un1Ev‖A(G) ≤ ε/2 + ‖un1E‖B(G)‖v − w‖A(G) ≤ ε.

Conversely, if (ii) holds, then the multiplication operators Mun1E , n ∈ N,
of A(G) are pointwise bounded, and hence ‖Mun1E‖ ≤ C for some constant
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C <∞ and all n by the uniform boundedness principle. Let f ∈ C∗(G) and
ε > 0 be given, and choose g =

∑m
j=1 cjδxj such that ‖f − g‖C∗(G) ≤ ε/C.

Since ‖Mun1E‖ = ‖un1E‖B(G), it follows that for all n ∈ N,

|〈un1E , f〉| ≤ ‖un1E‖B(G)‖f − g‖C∗(G) +
∣∣∣ m∑
j=1

cj〈un1E , δxj 〉
∣∣∣

≤ ε/2 +

m∑
j=1

|cj | · ‖un1Eδxj‖∞ ≤ ε/2 +

m∑
j=1

|cj | · ‖un1Eδxj‖A(G).

Since the latter sum converges to 0 as n→∞, the proof is complete.

Corollary 4.2. Let G be a discrete group, E ∈ R(G) and u ∈ Bλ(G).
Consider the following two conditions:

(1) un1E → 0 in the w∗-topology of Bλ(G) = C∗λ(G)∗.
(2) un1E → 0 in the strong operator topology of M(A(G)).

Then (1) implies (2), and the converse holds whenever G is amenable.

Proof. Let q : C∗(G)→ C∗λ(G) denote the quotient homomorphism and
suppose that (1) holds. Since Bλ(G) is an ideal in B(G), un1E ∈ Bλ(G) and
hence 〈un1E , T 〉 = 〈un1E , q(T )〉 → 0 for every T ∈ C∗(G). So (2) follows
from the implication (i)⇒(ii) of Lemma 4.1.

Conversely, if G is amenable, then C∗(G) = C∗λ(G) and thus (2)⇒(1) is
a consequence of (ii)⇒(i) of Lemma 4.1.

Let G be a discrete group and, for any subset E of G, let C∗λ(E) =

〈λ(x) : x ∈ E〉, the norm closure in C∗λ(G) of the linear span of all operators
λ(x), x ∈ E.

Lemma 4.3. If E ∈ R(G), then C∗λ(E) = 1E · C∗λ(G).

Proof. Given T ∈ C∗λ(G), choose Sn ∈ 〈λ(x) : x ∈ G〉, n ∈ N, such that
Sn → T in C∗λ(G). Then, for each n,

|〈1E · Sn − 1E · T, u〉| ≤ ‖Sn − T‖ · ‖u‖ · ‖1E‖
for all u ∈ A(G). This implies that 1E · T ∈ C∗λ(E).

Conversely, let T ∈ C∗λ(E) and choose Sn ∈ 〈λ(x) : x ∈ E〉, n ∈ N, with
‖Sn − T‖ → 0. Then Sn = 1E · Sn and hence

‖T − 1E · T‖ ≤ ‖T − Sn‖+ ‖1E · Sn − 1E · T‖ ≤ 2 · ‖T − Sn‖ → 0,

so that T = 1E · T , as required.

Corollary 4.4. Let G be a discrete group, E ∈ R(G) and u ∈ Bλ(G).
Then the following are equivalent:

(1) un1E → 0 in the w∗-topology of Bλ(G).
(2) For each T ∈ C∗λ(E), 〈un, T 〉 → 0 as n→∞.



186 E. Kaniuth et al.

Proof. The statement follows from C∗λ(E) = 1E · C∗λ(G) (Lemma 4.3)
and 〈un, 1E · T 〉 = 〈un1E , T 〉 for all T ∈ C∗λ(G).

Proposition 4.5. Let G be a discrete group and u ∈ Bλ(G). Then u is
power bounded if and only if (i) and (ii) hold, where:

(i) ‖u‖∞ ≤ 1, Eu ∈ R(G) and u|Eu is piecewise affine.
(ii) The sequence (un)n satisfies condition (2) of Corollary 4.4 with

E = G \ Eu.

Proof. If u is power bounded, then ‖u‖∞ ≤ 1, Eu ∈ R(G) by [20, The-
orem 4.1] and u|Eu is piecewise affine [20, Lemma 3.1]. To show (ii), note
that 1Fu is power bounded and, for each x ∈ G,

〈(1Fu)n, λ(x)〉 = 1F (x)u(x)n → 0

since |u(x)| < 1 for x ∈ F . As the sequence ((1Fu)n)n is norm bounded, it
follows that 〈(1Fu)n, T 〉 → 0 and hence 〈un, 1F ·T 〉 → 0 for every T ∈ C∗λ(G).
So (ii) is a consequence of C∗λ(E) = 1F · C∗λ(G) (Lemma 4.3).

Conversely, suppose that (i) and (ii) hold. Then 1Fu
n → 0 in the

w∗-topology of Bλ(G). It follows from the uniform boundedness princi-
ple that the sequence (1Fu

n)n is norm bounded. Now, with v = 1Euu,
(1Fu)v = 0 and hence un = (1Fu)n + vn for all n. It therefore suffices
to verify that v is also power bounded. This can be done by using precisely
the same arguments as in the proof of [21, Theorem 3.4].

For any locally compact group G, let C∗δ (G) denote the norm-closure in
B(L2(G)) of the linear span of all operators λ(x), x ∈ G.

Theorem 4.6. Let G be a locally compact group which contains an open
subgroup H such that Hd is amenable and let u ∈ Bλ(G). Then u is power
bounded if and only if (i) and (ii) hold:

(i) ‖u‖∞ ≤ 1 and there exist pairwise disjoint sets F1, . . . , Fn ∈ Rc(G)
such that Eu =

⋃n
j=1 Fj, closed subgroups Hj of G and aj ∈ G such

that Fj ⊆ ajHj, and characters γj of Hj and αj ∈ T such that

u(x) = αjγj(a
−1
j x) for all x ∈ Fj, 1 ≤ j ≤ n.

(ii) For each T ∈ C∗δ (G \ Eu), 〈un, T 〉 → 0 as n→∞.

Proof. We apply Proposition 4.5 to Gd. Let i : Gd → G denote the
identity map and recall that, for every u ∈ B(G), ‖u ◦ i‖B(Gd) = ‖u‖B(G) by
[8, Theorem 2.20].

By [7, Theorem 2.5], λGd extends to a ∗-homomorphism φ from C∗δ (G)
onto C∗λGd

(Gd) = C∗δ (Gd), and the existence of the subgroup H guarantees

(actually, is equivalent to) that φ is an isomorphism [3, Theorem 1]. Hence
we also have Bλ(G) ◦ i ⊆ Bλ(Gd).
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Now let u ∈ Bλ(G) be power bounded. Then (i) holds for u by
[21, Theorem 3.2]. Since u ◦ i ∈ BλGd (Gd) is power bounded, by Propo-
sition 4.5 we have

〈un, 1G\Eu · T 〉 = 〈un1G\Eu , T 〉 → 0

for every T ∈ C∗λGd (Gd) = C∗δ (G). Thus (ii) is valid as well.

Conversely, suppose that (i) and (ii) hold for u. Then u ◦ i ∈ Bλ(Gd)
since Bλ(G)◦ i ⊆ Bλ(Gd), and u◦ i satisfies condition (i) of Proposition 4.5.
Moreover, for each x ∈ G \ Eu, by (ii),

〈(u ◦ i)n, λGd(x)〉 = u(x)n = 〈un, λG(x)〉 → 0

since λG(x) ∈ C∗δ (G\Eu). So condition (ii) of Proposition 4.5 is also satisfied
and hence u ◦ i ∈ B(Gd) is power bounded. As ‖un‖ = ‖un ◦ i‖ = ‖(u ◦ i)n‖
for all n, we deduce that u is power bounded.

From Theorem 4.6 and Corollary 4.2 we immediately conclude

Corollary 4.7. Let G be a locally compact group such that Gd is
amenable and let u ∈ B(G). Then u is power bounded if and only if (i)
and (ii) hold:

(i) ‖u‖∞ ≤ 1, Eu ∈ R(G) and u|Eu is as in Theorem 4.6.
(ii) For each v ∈ A(Gd), limn→∞ ‖1G\Euunv‖ = 0.
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