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Bad properties of the Bernstein numbersbyAlbreht Pietsh (Jena)Abstrat. We show that the lasses Lbern

p := {T : (bn(T )) ∈ lp} assoiated withthe Bernstein numbers bn fail to be operator ideals. Moreover, Lbern

p ◦ Lbern

q 6⊆ Lbern

r for
1/r = 1/p + 1/q.Let T be a (bounded linear) operator from a Banah spae X into aBanah spae Y . Then the nth Bernstein number bn(T ) is de�ned to be thesupremum of all onstants c ≥ 0 for whih there exists an operator A froman n-dimensional Banah spae En into X suh that ‖A‖ ≤ 1 and

‖TAu‖ ≥ c‖u‖ whenever u ∈ En.If dim(X) ≥ n, then it is enough that A ranges over the anonial embed-dings of the n-dimensional subspaes En of X; that is, ‖Tx‖ ≥ c‖x‖ for
x ∈ En. It easily turns out that the bn's are injetive s-numbers in the origi-nal sense of [5, pp. 202�203, 207�208℄; see the modi�ations in [7, p. 79℄ and[8, p. 327℄.The Bernstein numbers were invented by Mityagin and Peªzy«ski [3,p. 370℄. In the ontext of widths, the onept above and its naming go bakto the work of Tikhomirov [10℄; see also [4, p. 306℄.Aording to Milman [2, p. 141℄,

Lbern := {T : lim
n→∞

bn(T ) = 0}is a losed operator ideal. Later on, Lbern was identi�ed as the superidealassoiated with the ideal of stritly singular operators; see [9℄. Therefore well-known results about approximation numbers, Gelfand numbers et. raisedsome hope that
Lbern

p :=
{

T :
∞

∑

n=1

bn(T )p < ∞
} with 0 < p < ∞
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264 A. Pietshould be a one-parameter sale of quasi-Banah ideals. Moreover, the follow-ing Hölder-type result (1/r = 1/p + 1/q, 0 < p, q < ∞) was onjetured:
T ∈ Lbern

p (X, Y ) and S ∈ Lbern
q (Y, Z) imply ST ∈ Lbern

r (X, Z).In this paper, the two questions are answered negatively. These observa-tions help to understand why the Bernstein numbers play only a minor rolewithin the theory of s-numbers.Given non-negative salar sequenes (αn) and (βn), the symbol αn � βnmeans that αn ≤ cβn for n = 1, 2, . . . and with some onstant c > 0. Wewrite αn ≍ βn if αn � βn and βn � αn.Proposition 1. Let 1 ≤ w < ∞ and Dσ : (ξk) 7→ (k−σξk), where σ ≥ 0.Then
bn(Dσ : lw → l∞) =

(

n
∑

k=1

kσw
)−1/w

≍ n−(σ+1/w).

Proof. The problem an be redued to onsidering �nite-dimensionaldiagonal operators
DN

σ : (ξ1, . . . , ξk, . . . , ξN ) 7→ (ξ1, . . . , k
−σξk, . . . , N

−σξN ).Indeed, ‖DσAu‖ ≥ c‖u‖ implies ‖DσA0u‖ ≥ (c − ‖A − A0‖)‖u‖. Thus,using an arbitrarily small perturbation, we may arrange that the operator
A : En → lw in the de�nition of bn(Dσ : lw → l∞) maps En into a subspae
{(ξk) ∈ l∞ : ξk = 0 for k > N}. Hene

bn(Dσ : lw → l∞) = sup
1≤N<∞

bn(DN
σ : lNw → lN∞).However, we know from [5, p. 217℄ that

bn(DN
σ : lNw → lN∞) =

(

n
∑

k=1

kσw
)−1/w for n = 1, . . . , N .

The symbol P2 stands for the Banah ideal of 2-summing operators, and
π2 denotes the underlying norm. The nth Weyl number of an operator Tfrom X into Y is de�ned by xn(T ) := sup{an(TA) : ‖A : l2 → X‖ ≤ 1},where an(TA) denotes the nth approximation number of TA. Conerningfurther details, the reader is referred to [7℄.We now establish an analogue of the well-known estimate (see [7, p. 98℄)

√
nxn(T ) ≤ π2(T ) for all 2-summing operators T .Lemma 1. √

n bn(T ) ≤ π2(T ) for all 2-summing operators T.Proof. Choose some operator A as desribed in the de�nition of bn(T ). If
c > 0, then TA indues an isomorphism S between En and Fn := TA(En),



Bad properties of the Bernstein numbers 265and we have ‖S−1‖ ≤ c−1. The situation is illustrated by the diagram
X

T
// Y

En

A

OO

S
// Fn

J

OO

in whih J denotes the anonial embedding from Fn into Y .Reall that the 2-summing norm is injetive: π2(S) = π2(JS). Anotherfundamental result says that π2(IEn
) =

√
n for the identity map IEn

of every
n-dimensional Banah spae En (see [7, pp. 45, 158℄). Hene
√

n = π2(IEn
) ≤ ‖S−1‖π2(S) = ‖S−1‖π2(JS) = ‖S−1‖π2(TA) ≤ c−1π2(T ).This implies that √n c ≤ π2(T ).We know from [7, p. 156℄ that

|λ2n−1(R)| ≤ e
(

n
∏

k=1

xk(R)
)1/n

,(Λ)where (λn(R)) denotes the eigenvalue sequene of the Riesz operator R atingon a Banah spae X.Lemma 2. b2n−1(T ) ≤ e(
∏n

k=1 xk(T ))1/n for all operators T.Proof. With the di�erene that n is replaed by 2n − 1, we onsiderthe same diagram as above. Reall that the Weyl numbers are injetive:
xk(S) = xk(JS). Applying the eigenvalue estimate (Λ) to the identity mapof E2n−1, we obtain
1 = λ2n−1(IE2n−1

) ≤ e
(

n
∏

k=1

xk(IE2n−1
)
)1/n

≤ e‖S−1‖
(

n
∏

k=1

xk(S)
)1/n

= e‖S−1‖
(

n
∏

k=1

xk(JS)
)1/n

= e‖S−1‖
(

n
∏

k=1

xk(TA)
)1/n

≤ ec−1
(

n
∏

k=1

xk(T )
)1/n

.Remark. Looking at the identity map of ln1 yields bn(Id : ln1 → ln1 ) = 1(trivial) and xn(Id : ln1 → ln1 ) = 1/
√

n (see [1, p. 19℄). Thus an inequality ofthe type bn(T ) ≤ cxn(T ) annot hold.Sine bn(Id : l2 → c0) = 1/
√

n and xn(Id : l2 → c0) = 1, the situation inthe onverse diretion is even worse: x2n−1(T ) ≤ c(
∏n

k=1 bk(T ))1/n fails tohold for any onstant c > 0.The next result goes bak to Lubitz [1, p. 30℄. Streamlined proofs an befound in [7, pp. 112�113℄.Lemma 3. Let 2 ≤ w < ∞ and Dτ : (ξk) 7→ (k−τξk), where τ > 1/w.Then
xn(Dτ : l∞ → lw) ≍ n−τ .



266 A. PietshNow we are prepared to establish a ounterpart of Proposition 1.Proposition 2. Let 2 ≤ w < ∞ and Dτ : (ξk) 7→ (k−τξk), where
τ > 1/w. Then

bn(Dτ : l∞ → lw) ≍ n−τ .Proof. By Lemmas 2 and 3, we have
b2n−1(Dτ : l∞ → lw) ≤ e

(

n
∏

k=1

xk(Dτ : l∞ → lw)
)1/n

≍
(

n
∏

k=1

k−τ
)1/n

.Hene it follows from nn/n! < en that
bn(Dτ : l∞ → lw) � (n!)−τ/n � n−τ .The onverse estimate is trivial.In the following, it is more onvenient to work with the lass Lbern

p,∞ thatonsists of all operators T for whih
λbern

p,∞ (T ) := sup
1≤n<∞

n1/pbn(T )is �nite. Note that Lbern
p ⊂ Lbern

p,∞ ⊂ Lbern
p0

for 0 < p < p0 < ∞.Now we are ready for the �nal onstrution, whih is borrowed from [6,pp. 362�363℄:Given p > 0, we hoose an exponent w suh that max{2, p} < w < ∞.Let σ := 1/p − 1/w > 0 and τ := 1/p > 1/w. Form the diret sum lw ⊕ l∞equipped with the norm
‖(x, y)‖ := (‖x | lw‖w + ‖y | l∞‖w)1/w.De�ne the anonial maps

Jw : x 7→ (x, o), Qw : (x, y) 7→ x and J∞ : y 7→ (o, y), Q∞ : (x, y) 7→ y.Moreover, put
S : (x, y) 7→ (o, Dσx) and T : (x, y) 7→ (Dτy, o).Then

S = J∞DσQw, Dσ = Q∞SJw and T = JwDτQ∞, Dτ = QwTJ∞.Propositions 1 and 2 tell us that both operators S and T belong to Lbern
p,∞with 1/p = σ + 1/w = τ . We have

S + T : (ek, k
1/2wek) 7→ k−(τ+σ)/2(ek, k

1/2wek),where ek denotes the kth unit sequene.Let En be the linear spae of all n-tuples equipped with the norm
‖(ξk)‖ :=

(

n
∑

k=1

|ξk|w + sup
1≤k≤n

k1/2|ξk|w
)1/w

.



Bad properties of the Bernstein numbers 267Then
Jn : (ξk) 7→

n
∑

k=1

ξk(ek, k
1/2wek)de�nes an isometri embedding from En into lw ⊕ l∞. Moreover, it followsfrom

(S + T )Jn : (ξk) 7→
n

∑

k=1

k−(τ+σ)/2ξk(ek, k
1/2wek)that

‖(S + T )Jn(ξk)‖ =
(

n
∑

k=1

|k−(τ+σ)/2ξk|w + sup
1≤k≤n

k1/2|k−(τ+σ)/2ξk|w
)1/w

≥ n−(τ+σ)/2‖(ξk)‖.Hene
bn(S + T ) ≥ n−(τ+σ)/2 = n−1/p+1/2w.This means that subjet to a suitable hoie of w, the sum S + T does notbelong to Lbern

p0−ε,∞ whenever 0 < ε < p0, where 1/p0 := 1/p−1/4 if 0 < p < 2and p0 := 2p if 2 ≤ p < ∞. In both ases p0 is larger than p.The upshot of the foregoing results isTheorem 1. The lasses Lbern
p and Lbern

p,∞ fail to be operator ideals.We proeed with another negative fat.Theorem 2. If 0 < p, q < ∞ and 1/r = 1/p + 1/q, then
Lbern

p ◦ Lbern
q 6⊆ Lbern

r and Lbern
p,∞ ◦ Lbern

q,∞ 6⊆ Lbern
r,∞ .Proof. Choose w suh that max{2, p, q} < w < ∞. Let σ := 1/p − 1/wand τ := 1/q. Then Propositions 1 and 2 tell us that Dσ ∈ Lbern

p,∞ (lw, l∞) and
Dτ ∈ Lbern

q,∞ (l∞, lw). On the other hand, it follows from
bn(DσDτ : l∞ → l∞) = bn(DτDσ : lw → lw) = n−(σ+τ) = n−1/r+1/wthat the Bernstein numbers of the produts DσDτ and DτDσ are ratherlarge.Finally, we reall that s-numbers sn are said to be additive if
sm+n−1(S + T ) ≤ sm(S) + sn(T ) for X

S,T−→ Y and m, n = 1, 2, . . .and multipliative if
sm+n−1(ST ) ≤ sm(S)sn(T ) for X

T−→ Y
S−→ Z and m, n = 1, 2, . . . .The �rst property ensures that the lasses L

(s)
p := {T : (sn(T )) ∈ lp} areoperator ideals, while the seond one implies the Hölder-type multipliation



268 A. Pietshformula L
(s)
p ◦ L

(s)
q ⊆ L

(s)
r for 1/r = 1/p + 1/q. Thus we an give a negativeanswer to a problem posed more than 30 years ago; see [5, p. 222℄.Theorem 3. The Bernstein numbers are neither additive nor multiplia-tive.Diret proof. In view of [5, p. 217℄,

bn(Id : lN2 → lN∞) = 1/
√

n for n = 1, . . . , N .On the other hand, using Lemma 1, we obtain
√

n bn(DN
1/2 : lN∞ → lN2 ) ≤ π2(D

N
1/2 : lN∞ → lN2 )

=

√

1

1
+ · · · + 1

N
≤

√

1 + log N.Now we may proeed as in the �nal onstrution: Replae Dσ and Dτ by
Id : lN2 → lN∞ and DN

1/2 : lN∞ → lN2 , respetively. Put N = 2n.The onept of Bernstein numbers an be modi�ed as follows. We de�ne
ln(T ) as the supremum of all onstants c ≥ 0 for whih there exists anoperator A from ln2 into X suh that ‖A‖ ≤ 1 and

‖TAu‖ ≥ c‖u‖ whenever u ∈ ln2 .This quantity ould be alled the nth Dvoretzky number of the operator T .The ln's are s-numbers in the sense of [8, p. 327℄. That is, the formula
sn(Id : En → En) = 1 is not required to hold for all n-dimensional Banahspaes En but only for ln2 . In general, we have

ln(Id : En → En) = d(En, ln2 )−1,where d(En, ln2 ) denotes the Banah�Mazur distane between En and ln2 . Oneeasily obtains the inequalities ln(T ) ≤ bn(T ) and ln(T ) ≤ xn(T ), whih maybe strit.The same reasoning as above shows that the Dvoretzky numbers fail tobe multipliative. Unfortunately, the ounterexample does not work in thease of additivity. Nevertheless, I have strong doubts that the lasses
Ldvor

p :=
{

T :

∞
∑

n=1

ln(T )p < ∞
} with 0 < p < ∞are operator ideals.
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