Bad properties of the Bernstein numbers

by
Albrecht Pietsch (Jena)

Abstract

We show that the classes $\mathfrak{L}_{p}^{\text {bern }}:=\left\{T:\left(b_{n}(T)\right) \in l_{p}\right\}$ associated with the Bernstein numbers b_{n} fail to be operator ideals. Moreover, $\mathfrak{L}_{p}^{\text {bern }} \circ \mathfrak{L}_{q}^{\text {bern }} \nsubseteq \mathfrak{L}_{r}^{\text {bern }}$ for $1 / r=1 / p+1 / q$.

Let T be a (bounded linear) operator from a Banach space X into a Banach space Y. Then the nth Bernstein number $b_{n}(T)$ is defined to be the supremum of all constants $c \geq 0$ for which there exists an operator A from an n-dimensional Banach space E_{n} into X such that $\|A\| \leq 1$ and

$$
\|T A u\| \geq c\|u\| \quad \text { whenever } u \in E_{n}
$$

If $\operatorname{dim}(X) \geq n$, then it is enough that A ranges over the canonical embeddings of the n-dimensional subspaces E_{n} of X; that is, $\|T x\| \geq c\|x\|$ for $x \in E_{n}$. It easily turns out that the b_{n} 's are injective s-numbers in the original sense of [5, pp. 202-203, 207-208]; see the modifications in [7, p. 79] and [8, p. 327].

The Bernstein numbers were invented by Mityagin and Pełczyński [3, p. 370]. In the context of widths, the concept above and its naming go back to the work of Tikhomirov [10]; see also [4, p. 306].

According to Milman [2, p. 141],

$$
\mathfrak{L}^{\text {bern }}:=\left\{T: \lim _{n \rightarrow \infty} b_{n}(T)=0\right\}
$$

is a closed operator ideal. Later on, $\mathfrak{L}^{\text {bern }}$ was identified as the superideal associated with the ideal of strictly singular operators; see [9]. Therefore wellknown results about approximation numbers, Gelfand numbers etc. raised some hope that

$$
\mathfrak{L}_{p}^{\mathfrak{b e r n}}:=\left\{T: \sum_{n=1}^{\infty} b_{n}(T)^{p}<\infty\right\} \quad \text { with } 0<p<\infty
$$

could be a one-parameter scale of quasi-Banach ideals. Moreover, the following Hölder-type result $(1 / r=1 / p+1 / q, 0<p, q<\infty)$ was conjectured:

$$
T \in \mathfrak{L}_{p}^{\text {bern }}(X, Y) \quad \text { and } \quad S \in \mathfrak{L}_{q}^{\text {bern }}(Y, Z) \quad \text { imply } \quad S T \in \mathfrak{L}_{r}^{\text {bern }}(X, Z)
$$

In this paper, the two questions are answered negatively. These observations help to understand why the Bernstein numbers play only a minor role within the theory of s-numbers.

Given non-negative scalar sequences $\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right)$, the symbol $\alpha_{n} \preceq \beta_{n}$ means that $\alpha_{n} \leq c \beta_{n}$ for $n=1,2, \ldots$ and with some constant $c>0$. We write $\alpha_{n} \asymp \beta_{n}$ if $\alpha_{n} \preceq \beta_{n}$ and $\beta_{n} \preceq \alpha_{n}$.

Proposition 1. Let $1 \leq w<\infty$ and $D_{\sigma}:\left(\xi_{k}\right) \mapsto\left(k^{-\sigma} \xi_{k}\right)$, where $\sigma \geq 0$. Then

$$
b_{n}\left(D_{\sigma}: l_{w} \rightarrow l_{\infty}\right)=\left(\sum_{k=1}^{n} k^{\sigma w}\right)^{-1 / w} \asymp n^{-(\sigma+1 / w)}
$$

Proof. The problem can be reduced to considering finite-dimensional diagonal operators

$$
D_{\sigma}^{N}:\left(\xi_{1}, \ldots, \xi_{k}, \ldots, \xi_{N}\right) \mapsto\left(\xi_{1}, \ldots, k^{-\sigma} \xi_{k}, \ldots, N^{-\sigma} \xi_{N}\right)
$$

Indeed, $\left\|D_{\sigma} A u\right\| \geq c\|u\|$ implies $\left\|D_{\sigma} A_{0} u\right\| \geq\left(c-\left\|A-A_{0}\right\|\right)\|u\|$. Thus, using an arbitrarily small perturbation, we may arrange that the operator $A: E_{n} \rightarrow l_{w}$ in the definition of $b_{n}\left(D_{\sigma}: l_{w} \rightarrow l_{\infty}\right)$ maps E_{n} into a subspace $\left\{\left(\xi_{k}\right) \in l_{\infty}: \xi_{k}=0\right.$ for $\left.k>N\right\}$. Hence

$$
b_{n}\left(D_{\sigma}: l_{w} \rightarrow l_{\infty}\right)=\sup _{1 \leq N<\infty} b_{n}\left(D_{\sigma}^{N}: l_{w}^{N} \rightarrow l_{\infty}^{N}\right)
$$

However, we know from [5, p. 217] that

$$
b_{n}\left(D_{\sigma}^{N}: l_{w}^{N} \rightarrow l_{\infty}^{N}\right)=\left(\sum_{k=1}^{n} k^{\sigma w}\right)^{-1 / w} \quad \text { for } n=1, \ldots, N
$$

The symbol \mathfrak{P}_{2} stands for the Banach ideal of 2-summing operators, and π_{2} denotes the underlying norm. The nth Weyl number of an operator T from X into Y is defined by $x_{n}(T):=\sup \left\{a_{n}(T A):\left\|A: l_{2} \rightarrow X\right\| \leq 1\right\}$, where $a_{n}(T A)$ denotes the nth approximation number of $T A$. Concerning further details, the reader is referred to [7].

We now establish an analogue of the well-known estimate (see [7, p. 98])

$$
\sqrt{n} x_{n}(T) \leq \pi_{2}(T) \quad \text { for all 2-summing operators } T
$$

Lemma 1. $\sqrt{n} b_{n}(T) \leq \pi_{2}(T)$ for all 2-summing operators T.
Proof. Choose some operator A as described in the definition of $b_{n}(T)$. If $c>0$, then $T A$ induces an isomorphism S between E_{n} and $F_{n}:=T A\left(E_{n}\right)$,
and we have $\left\|S^{-1}\right\| \leq c^{-1}$. The situation is illustrated by the diagram

in which J denotes the canonical embedding from F_{n} into Y.
Recall that the 2-summing norm is injective: $\pi_{2}(S)=\pi_{2}(J S)$. Another fundamental result says that $\pi_{2}\left(I_{E_{n}}\right)=\sqrt{n}$ for the identity map $I_{E_{n}}$ of every n-dimensional Banach space E_{n} (see [7, pp. 45, 158]). Hence
$\sqrt{n}=\pi_{2}\left(I_{E_{n}}\right) \leq\left\|S^{-1}\right\| \pi_{2}(S)=\left\|S^{-1}\right\| \pi_{2}(J S)=\left\|S^{-1}\right\| \pi_{2}(T A) \leq c^{-1} \pi_{2}(T)$.
This implies that $\sqrt{n} c \leq \pi_{2}(T)$.
We know from [7, p. 156] that

$$
\left|\lambda_{2 n-1}(R)\right| \leq e\left(\prod_{k=1}^{n} x_{k}(R)\right)^{1 / n}
$$

where $\left(\lambda_{n}(R)\right)$ denotes the eigenvalue sequence of the Riesz operator R acting on a Banach space X.

Lemma 2. $b_{2 n-1}(T) \leq e\left(\prod_{k=1}^{n} x_{k}(T)\right)^{1 / n}$ for all operators T.
Proof. With the difference that n is replaced by $2 n-1$, we consider the same diagram as above. Recall that the Weyl numbers are injective: $x_{k}(S)=x_{k}(J S)$. Applying the eigenvalue estimate (Λ) to the identity map of $E_{2 n-1}$, we obtain

$$
\begin{aligned}
1 & =\lambda_{2 n-1}\left(I_{E_{2 n-1}}\right) \leq e\left(\prod_{k=1}^{n} x_{k}\left(I_{E_{2 n-1}}\right)\right)^{1 / n} \leq e\left\|S^{-1}\right\|\left(\prod_{k=1}^{n} x_{k}(S)\right)^{1 / n} \\
& =e\left\|S^{-1}\right\|\left(\prod_{k=1}^{n} x_{k}(J S)\right)^{1 / n}=e\left\|S^{-1}\right\|\left(\prod_{k=1}^{n} x_{k}(T A)\right)^{1 / n} \leq e c^{-1}\left(\prod_{k=1}^{n} x_{k}(T)\right)^{1 / n}
\end{aligned}
$$

REMARK. Looking at the identity map of l_{1}^{n} yields $b_{n}\left(\operatorname{Id}: l_{1}^{n} \rightarrow l_{1}^{n}\right)=1$ (trivial) and $x_{n}\left(\operatorname{Id}: l_{1}^{n} \rightarrow l_{1}^{n}\right)=1 / \sqrt{n}$ (see [1, p. 19]). Thus an inequality of the type $b_{n}(T) \leq c x_{n}(T)$ cannot hold.

Since $b_{n}\left(\operatorname{Id}: l_{2} \rightarrow c_{0}\right)=1 / \sqrt{n}$ and $x_{n}\left(\operatorname{Id}: l_{2} \rightarrow c_{0}\right)=1$, the situation in the converse direction is even worse: $x_{2 n-1}(T) \leq c\left(\prod_{k=1}^{n} b_{k}(T)\right)^{1 / n}$ fails to hold for any constant $c>0$.

The next result goes back to Lubitz [1, p. 30]. Streamlined proofs can be found in [7, pp. 112-113].

Lemma 3. Let $2 \leq w<\infty$ and $D_{\tau}:\left(\xi_{k}\right) \mapsto\left(k^{-\tau} \xi_{k}\right)$, where $\tau>1 / w$. Then

$$
x_{n}\left(D_{\tau}: l_{\infty} \rightarrow l_{w}\right) \asymp n^{-\tau}
$$

Now we are prepared to establish a counterpart of Proposition 1.
Proposition 2. Let $2 \leq w<\infty$ and $D_{\tau}:\left(\xi_{k}\right) \mapsto\left(k^{-\tau} \xi_{k}\right)$, where $\tau>1 / w$. Then

$$
b_{n}\left(D_{\tau}: l_{\infty} \rightarrow l_{w}\right) \asymp n^{-\tau}
$$

Proof. By Lemmas 2 and 3, we have

$$
b_{2 n-1}\left(D_{\tau}: l_{\infty} \rightarrow l_{w}\right) \leq e\left(\prod_{k=1}^{n} x_{k}\left(D_{\tau}: l_{\infty} \rightarrow l_{w}\right)\right)^{1 / n} \asymp\left(\prod_{k=1}^{n} k^{-\tau}\right)^{1 / n}
$$

Hence it follows from $n^{n} / n!<e^{n}$ that

$$
b_{n}\left(D_{\tau}: l_{\infty} \rightarrow l_{w}\right) \preceq(n!)^{-\tau / n} \preceq n^{-\tau} .
$$

The converse estimate is trivial.
In the following, it is more convenient to work with the class $\mathfrak{L}_{p, \infty}^{\text {bern }}$ that consists of all operators T for which

$$
\lambda_{p, \infty}^{\mathrm{bern}}(T):=\sup _{1 \leq n<\infty} n^{1 / p} b_{n}(T)
$$

is finite. Note that $\mathfrak{L}_{p}^{\text {bern }} \subset \mathfrak{L}_{p, \infty}^{\text {bern }} \subset \mathfrak{L}_{p_{0}}^{\text {bern }}$ for $0<p<p_{0}<\infty$.
Now we are ready for the final construction, which is borrowed from [6, pp. 362-363]:

Given $p>0$, we choose an exponent w such that $\max \{2, p\}<w<\infty$. Let $\sigma:=1 / p-1 / w>0$ and $\tau:=1 / p>1 / w$. Form the direct sum $l_{w} \oplus l_{\infty}$ equipped with the norm

$$
\|(x, y)\|:=\left(\left\|x\left|l_{w}\left\|^{w}+\right\| y\right| l_{\infty}\right\|^{w}\right)^{1 / w}
$$

Define the canonical maps
$J_{w}: x \mapsto(x, \mathrm{o}), \quad Q_{w}:(x, y) \mapsto x \quad$ and $\quad J_{\infty}: y \mapsto(\mathrm{o}, y), \quad Q_{\infty}:(x, y) \mapsto y$.
Moreover, put

$$
S:(x, y) \mapsto\left(\mathrm{o}, D_{\sigma} x\right) \quad \text { and } \quad T:(x, y) \mapsto\left(D_{\tau} y, \mathrm{o}\right)
$$

Then

$$
S=J_{\infty} D_{\sigma} Q_{w}, \quad D_{\sigma}=Q_{\infty} S J_{w} \quad \text { and } \quad T=J_{w} D_{\tau} Q_{\infty}, \quad D_{\tau}=Q_{w} T J_{\infty}
$$

Propositions 1 and 2 tell us that both operators S and T belong to $\mathfrak{L}_{p, \infty}^{\text {bern }}$ with $1 / p=\sigma+1 / w=\tau$. We have

$$
S+T:\left(e_{k}, k^{1 / 2 w} e_{k}\right) \mapsto k^{-(\tau+\sigma) / 2}\left(e_{k}, k^{1 / 2 w} e_{k}\right)
$$

where e_{k} denotes the k th unit sequence.
Let E_{n} be the linear space of all n-tuples equipped with the norm

$$
\left\|\left(\xi_{k}\right)\right\|:=\left(\sum_{k=1}^{n}\left|\xi_{k}\right|^{w}+\sup _{1 \leq k \leq n} k^{1 / 2}\left|\xi_{k}\right|^{w}\right)^{1 / w}
$$

Then

$$
J_{n}:\left(\xi_{k}\right) \mapsto \sum_{k=1}^{n} \xi_{k}\left(e_{k}, k^{1 / 2 w} e_{k}\right)
$$

defines an isometric embedding from E_{n} into $l_{w} \oplus l_{\infty}$. Moreover, it follows from

$$
(S+T) J_{n}:\left(\xi_{k}\right) \mapsto \sum_{k=1}^{n} k^{-(\tau+\sigma) / 2} \xi_{k}\left(e_{k}, k^{1 / 2 w} e_{k}\right)
$$

that

$$
\begin{aligned}
\left\|(S+T) J_{n}\left(\xi_{k}\right)\right\| & =\left(\sum_{k=1}^{n}\left|k^{-(\tau+\sigma) / 2} \xi_{k}\right|^{w}+\sup _{1 \leq k \leq n} k^{1 / 2}\left|k^{-(\tau+\sigma) / 2} \xi_{k}\right|^{w}\right)^{1 / w} \\
& \geq n^{-(\tau+\sigma) / 2}\left\|\left(\xi_{k}\right)\right\|
\end{aligned}
$$

Hence

$$
b_{n}(S+T) \geq n^{-(\tau+\sigma) / 2}=n^{-1 / p+1 / 2 w}
$$

This means that subject to a suitable choice of w, the sum $S+T$ does not belong to $\mathfrak{L}_{p_{0}-\varepsilon, \infty}^{\text {bern }}$ whenever $0<\varepsilon<p_{0}$, where $1 / p_{0}:=1 / p-1 / 4$ if $0<p<2$ and $p_{0}:=2 p$ if $2 \leq p<\infty$. In both cases p_{0} is larger than p.

The upshot of the foregoing results is
THEOREM 1. The classes $\mathfrak{L}_{p}^{\text {bern }}$ and $\mathfrak{L}_{p, \infty}^{\text {bern }}$ fail to be operator ideals.
We proceed with another negative fact.
Theorem 2. If $0<p, q<\infty$ and $1 / r=1 / p+1 / q$, then

$$
\mathfrak{L}_{p}^{\text {bern }} \circ \mathfrak{L}_{q}^{\text {bern }} \nsubseteq \mathfrak{L}_{r}^{\text {bern }} \quad \text { and } \quad \mathfrak{L}_{p, \infty}^{\text {bern }} \circ \mathfrak{L}_{q, \infty}^{\text {bern }} \nsubseteq \mathfrak{L}_{r, \infty}^{\text {bern }}
$$

Proof. Choose w such that $\max \{2, p, q\}<w<\infty$. Let $\sigma:=1 / p-1 / w$ and $\tau:=1 / q$. Then Propositions 1 and 2 tell us that $D_{\sigma} \in \mathfrak{L}_{p, \infty}^{\text {bern }}\left(l_{w}, l_{\infty}\right)$ and $D_{\tau} \in \mathfrak{L}_{q, \infty}^{\text {bern }}\left(l_{\infty}, l_{w}\right)$. On the other hand, it follows from

$$
b_{n}\left(D_{\sigma} D_{\tau}: l_{\infty} \rightarrow l_{\infty}\right)=b_{n}\left(D_{\tau} D_{\sigma}: l_{w} \rightarrow l_{w}\right)=n^{-(\sigma+\tau)}=n^{-1 / r+1 / w}
$$

that the Bernstein numbers of the products $D_{\sigma} D_{\tau}$ and $D_{\tau} D_{\sigma}$ are rather large.

Finally, we recall that s-numbers s_{n} are said to be additive if

$$
s_{m+n-1}(S+T) \leq s_{m}(S)+s_{n}(T) \quad \text { for } X \xrightarrow{S, T} Y \text { and } m, n=1,2, \ldots
$$

and multiplicative if

$$
s_{m+n-1}(S T) \leq s_{m}(S) s_{n}(T) \quad \text { for } X \xrightarrow{T} Y \xrightarrow{S} Z \text { and } m, n=1,2, \ldots
$$

The first property ensures that the classes $\mathfrak{L}_{p}^{(s)}:=\left\{T:\left(s_{n}(T)\right) \in l_{p}\right\}$ are operator ideals, while the second one implies the Hölder-type multiplication
formula $\mathfrak{L}_{p}^{(s)} \circ \mathfrak{L}_{q}^{(s)} \subseteq \mathfrak{L}_{r}^{(s)}$ for $1 / r=1 / p+1 / q$. Thus we can give a negative answer to a problem posed more than 30 years ago; see [5, p. 222].

Theorem 3. The Bernstein numbers are neither additive nor multiplicative.

Direct proof. In view of [5, p. 217],

$$
b_{n}\left(\operatorname{Id}: l_{2}^{N} \rightarrow l_{\infty}^{N}\right)=1 / \sqrt{n} \quad \text { for } n=1, \ldots, N .
$$

On the other hand, using Lemma 1, we obtain

$$
\begin{aligned}
\sqrt{n} b_{n}\left(D_{1 / 2}^{N}: l_{\infty}^{N} \rightarrow l_{2}^{N}\right) & \leq \pi_{2}\left(D_{1 / 2}^{N}: l_{\infty}^{N} \rightarrow l_{2}^{N}\right) \\
& =\sqrt{\frac{1}{1}+\cdots+\frac{1}{N}} \leq \sqrt{1+\log N}
\end{aligned}
$$

Now we may proceed as in the final construction: Replace D_{σ} and D_{τ} by Id : $l_{2}^{N} \rightarrow l_{\infty}^{N}$ and $D_{1 / 2}^{N}: l_{\infty}^{N} \rightarrow l_{2}^{N}$, respectively. Put $N=2 n$.

The concept of Bernstein numbers can be modified as follows. We define $l_{n}(T)$ as the supremum of all constants $c \geq 0$ for which there exists an operator A from l_{2}^{n} into X such that $\|A\| \leq 1$ and

$$
\|T A u\| \geq c\|u\| \quad \text { whenever } u \in l_{2}^{n} .
$$

This quantity could be called the nth Dvoretzky number of the operator T. The l_{n} 's are s-numbers in the sense of [$\left.8, \mathrm{p} .327\right]$. That is, the formula $s_{n}\left(\mathrm{Id}: E_{n} \rightarrow E_{n}\right)=1$ is not required to hold for all n-dimensional Banach spaces E_{n} but only for l_{2}^{n}. In general, we have

$$
l_{n}\left(\mathrm{Id}: E_{n} \rightarrow E_{n}\right)=d\left(E_{n}, l_{2}^{n}\right)^{-1}
$$

where $d\left(E_{n}, l_{2}^{n}\right)$ denotes the Banach-Mazur distance between E_{n} and l_{2}^{n}. One easily obtains the inequalities $l_{n}(T) \leq b_{n}(T)$ and $l_{n}(T) \leq x_{n}(T)$, which may be strict.

The same reasoning as above shows that the Dvoretzky numbers fail to be multiplicative. Unfortunately, the counterexample does not work in the case of additivity. Nevertheless, I have strong doubts that the classes

$$
\mathfrak{L}_{p}^{\text {dvor }}:=\left\{T: \sum_{n=1}^{\infty} l_{n}(T)^{p}<\infty\right\} \quad \text { with } 0<p<\infty
$$

are operator ideals.

References

[1] C. Lubitz, Weylzahlen von Diagonaloperatoren und Sobolev-Einbettungen, Bonner Math. Schriften 144 (Thesis, Bonn 1982).
[2] V. D. Milman, Spectrum of bounded continuous functions specified on a unit sphere in Banach space, Funktsional. Anal. i Prilozhen. 3 (1969), no. 2, 67-79 (in Russian); English transl.: Funct. Anal. Appl. 3 (1969), 137-146.
[3] B. S. Mityagin and A. Pełczyński, Nuclear operators and approximative dimension, in: Proc. ICM Moscow 1966, Mir, Moscow, 1968, 366-372.
[4] B. S. Mityagin and V. M. Tikhomirov, Asymptotic characteristics of compact sets in linear spaces, in: Proc. Fourth All-Union Math. Congress, Vol. II, Nauka, Leningrad, 1964, 299-308 (in Russian).
[5] A. Pietsch, s-Numbers of operators in Banach spaces, Studia Math. 51 (1974), 201223.
[6] -, Distribution of eigenvalues and nuclearity, in: Spectral Theory, Banach Center Publ. 8, PWN-Polish Sci. Publ., Warszawa, 1982, 361-365.
[7] -, Eigenvalues and s-Numbers, Geest \& Portig, Leipzig, and Cambridge Univ. Press, 1987.
[8] -, History of Banach Spaces and Linear Operators, Birkhäuser, Boston, 2007.
[9] A. Plichko, Superstrictly singular and superstrictly cosingular operators, in: Functional Analysis and Its Applications, North-Holland Math. Stud. 197, Elsevier, Amsterdam, 2004, 239-255.
[10] V. M. Tikhomirov, Widths of sets in function spaces and the theory of best approximation, Uspekhi Mat. Nauk 15 (1960), no. 3, 81-120; 15 (1960), no. 6, 226 (in Russian).

Mathematisches Institut
Friedrich-Schiller-Universität
D-07740 Jena, Germany
E-mail: pietsch@minet.uni-jena.de

Received March 30, 2007
Revised version November 13, 2007

