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An L9(L?)-theory of the generalized Stokes
resolvent system in infinite cylinders

by

REINHARD FARWIG (Darmstadt) and MYONG-HwAN R1I (Pyongyang)

Abstract. Estimates of the generalized Stokes resolvent system, i.e. with prescribed
divergence, in an infinite cylinder 2 = X x R with ¥ Cc R"™!, a bounded domain of
class C™!, are obtained in the space LY(R; L*(X)), q € (1,00). As a preparation, spectral
decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theo-
rem is proved using the techniques of Schauder decompositions, operator-valued multiplier
functions and R-boundedness of operator families.

1. Introduction. In this paper we study the generalized Stokes resol-
vent system

AM—Au+Vp=f in (2,
(Ry) divu=g¢ in {2,
u=0 on 0f2,

where {2 = X x R is an infinite straight cylinder with cross-section X C
R"!,n > 3, a bounded domain of class C1''. This system is a key problem
for the study of nonstationary Stokes and Navier—Stokes equations. The case
of g = 01in (R)) was studied in [17]. In this paper the general case g # 0, i.e.
generalized Stokes resolvent systems in an infinite cylinder, is studied, with
a view to dealing with Stokes systems in more general unbounded cylindrical
domains such as cylindrical domains with several outlets to infinity using a
cut-off procedure.

There are many papers dealing with generalized Stokes resolvent systems
for half spaces, bounded and exterior domains, aperture domains and layer-
like domains (see e.g. [1]-[5], [14]-[16], [18], [19] and the Introduction of [17]
for more details), but no result for unbounded cylindrical domains has been
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known up to now. Here we study the solvability of the system (R)) in the
space LI(R; L?(X)) for 1 < ¢ < oo. The main result of this paper is the
following theorem.

THEOREM 1.1. Let X C R, n > 3, be a bounded domain of class C11,
ag > 0 the smallest eigenvalue of the Dirichlet Laplacian in X, and let
0<e<m/2and 1 < q<oo. If fe€ LI(R;L*(X)) and g € WH42(2) N
W—L42(), then for every a € (0,a0) and A\ € —a + S- there exists a
unique solution (u,p) to (Ry) satisfying u, V>u, Vp € LY(R; L2(X)) and the
estimate
(L1) ([N + @)u, VPu, V|| paqr.z2(5))

< C(flzaesrz(z)) + lgllwrezi@) + (A + DIl -vaz )
where the constant C' is independent of A and depends only on a, e,q and X.

In particular, if Szg(:c’,xn)dx’ = 0 for almost all x, € R, a stronger
estimate

(1.2) ([N + @)u, V2u, V|| agr.z2(5))
< Ol fllaszz oy + lallwinzca) + A 19l o)
holds with C = C(a, e, q,X).

We use the following notations. For € € (0,7/2), let S: denote the sector
of the complex plane

{AeC; N#0, |arg | < /2 + ¢}

We do not distinguish among spaces of scalar and vector-valued functions
as long as no confusion arises. In particular, given a norm in some Banach
function space, we use the short notation ||u,v|| for ||u|| + ||v]|, even if u
and v are tensors of different order. For a Banach space X let X* denote
its dual space and LI(R; X),1 < ¢ < oo, the Bochner space of all X-valued
measurable functions with finite norm

1
e = (§ Rl a) "
R

Let 2= 23 x R be an infinite cylinder of R™ with bounded cross-section
Y c R"! and with general point € {2 written in the form z = (2/, z,,) € £2,
where 2/ € ¥ and z,, € R. Similarly, differential operators in R™ are split,
in particular, A = A’ 4+ 92 and V = (V',9,,).

Let r € (1,00) and s € (0,00). Then L"(X) and W*"(X) are the usual
Lebesgue and Sobolev spaces with norms || - ||,.x and || - ||s.r.5, respectively.

Moreover, W“(Z ) is the homogeneous Sobolev space, i.e.,

WY () = {u € Lho(5)/C Ve (D)), Nulgngsy = 1Vl
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and W‘”(Z’) = (WI’TI(Z))* is the dual space of Wl”"/(E), r'=r/(r—1),
with norm | - ||W_17,«(2). We denote by Wk4r(£2), k € N, ¢ € (1,00), the
Banach space of all functions on {2 whose derivatives of order up to k belong
to LY(R; L™ (X)) with norm

1
iy = (3 1D girisy)
lor| <k
here D% = 97" -+ - 99mu for a multi-index o € N of order |a| < k. More-
over, Wol;q’T(Q) is the completion of the set C§°(§2)" in W17 (£2). Finally,
let /Wl?q””(ﬂ) be the Banach space defined by
WHT () = {u € Lie(2)/C; Vu € LI(R; L'(2))}
endowed with the norm HuHth,r(g) = ||Vul|Lo(r;Lr(5)); its dual space is de-
noted by W54 (2) = (Wher (02))*, where ¢ = q/(q —1),v' = r/(r — 1).
For notational convenience, as long as no confusion arises, we denote con-
stants ¢, C, ... appearing in the proofs by the same symbol even though they
may be change from line to line.

In an n-dimensional infinite layer the Stokes resolvent system is reduced
by means of the (n —1)-dimensional partial Fourier transform to a system of
ordinary differential equations with the Fourier phase variable as a parame-
ter; in [2], [3] and [5] the authors applied Fourier multiplier theorems to the
explicit solution of the reduced system of ordinary differential equations to
get the final Stokes resolvent estimates.

However, in an n-dimensional infinite cylinder {2 = X x R the Stokes
resolvent system (R)) is reduced by the application of the one-dimensional
partial Fourier transform F = " along the axis of {2 to the parametrized
Stokes system (R) ¢) on the cross-section X,

A+&€-AW+V'P=F X,
A+& - AU, +i€P=F, inX,
div'U' 4+ iU, =G  in X,

U'=0, U,=0 ondx,

(Brge)

which is elliptic in the sense of Agmon, Douglis and Nirenberg [6]; here
U=u,P=p, and U = (U,U,), F = (F',F,) etc. In [17] the authors
obtained the estimate

I\ + @)U, £2U, EV'U, VU, EP,V' Py, < ¢|[F,V'G, G, €G||a.5 + - -+

of the solution {U(£), P(§)} to (Rx¢) where some terms for G have been
omitted; see (3.4) below and [17, Theorem 3.4] for details. Then Fourier
multiplier techniques are used to get the final estimate of (u, p) when g = 0.
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However, the estimate of {U (&), P(&)} for (Ry ¢) involves the function G with
¢-dependent parameters as well as with norms in the sum and intersection of
several Sobolev spaces. Therefore, the Fourier multiplier technique cannot
be directly applied to the case g # 0.

To get an estimate for (R)) from the estimate for (Ry¢), we use the
unconditionality of dyadic Schauder decompositions of L4(R;L*(X)) for
1 < ¢ < o0, vector-valued homogeneous Sobolev spaces and the R-bound-
edness of operator families. Having obtained Stokes resolvent estimates in
the straight cylinder {2 = X x R, one can get resolvent estimates in un-
bounded cylindrical domains with several outlets to infinity; at the end of
the paper, we briefly describe the main idea using the method of cut-off
functions.

This paper is organized as follows. Section 2 is devoted to some prelimi-
naries for the proof of the main theorem, including dyadic spectral decompo-
sitions of vector-valued homogeneous Sobolev spaces. Section 3 contains the
proof of Theorem 1.1 and a remark concerning the application to unbounded
cylindrical domains with several outlets to infinity (Remark 3.1).

2. Preliminaries. First let us consider vector-valued homogeneous So-
bolev spaces. Let X be a reflexive Banach space and 1 < ¢ < co. We define
the space W1H4(R; X) by

WUY(R; X) := {u € LL(R; X); Du € LY(R; X)}
endowed with the (semi-)norm
el gxy = 1Pl Lar;x),

where D is the first order derivative; here we neglect the technicality that
/Wl’q(R;X ) should be defined as a quotient space (of functions modulo
constants). Using the one-dimensional Fourier transform F = " the space
/Wl’q(R; X) may be rewritten as

WY(R; X) = {u € S'(R; X); F~(€0) € LYR; X)}
with norm
HUHWLq(R;X) = Hj:_l(fa)HLQ(R;X)a

where & is the phase variable of the Fourier transform and S'(R; X) is the
space of tempered X-valued distributions. It is easy to see that /Wl’q(R; X),
1 < g < o0, is a reflexive Banach space.

Let D(R; X) be the space of all compactly supported and infinitely dif-
ferentiable X-valued functions and D'(R; X*) the space of X *-valued distri-
butions. Moreover, S(R; X) is the Schwartz space of all rapidly decreasing
X-valued functions, with dual space &'(R; X*).
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LEMMA 2.1.
(i) D(R; X) is dense in Wl’q(R;X) for each q € (1,00).
(ii) C§°(R2) is dense in W4T (§2) for each gq,r € (1,00).

Proof. (i) Let f € (W4(R; X))* vanish on D(R; X). Then, due to the
Hahn-Banach theorem, there exists h € L7 (R; X*), ¢ = q/(g—1), such

that
0=(f,¢) =(h,D¢) V¢ € D(R;X).
In particular, for all ¢ € D(R) and =z € X, we have
0= (h,Dp-z)= <<h(')am>X*,X7D90>D’(R),D(]R)
which together with (h(-),z)x x € LY (R) yields
(h(),z)x»x =const =0 forall z € X.

Hence h =0, and f = 0.

(ii) Given u € Wher(2) define ug(z,) = | 2|7} (s u(z',x,)de’ where
|| denotes the (n — 1)-dimensional Lebesgue measure of Y. Since uy €
/Wl’q(R;R), we may apply part (i) and assume that u € /Wl?q’r(ﬂ) has

vanishing means on X for almost all z,, € R. Then by Poincaré’s inequality
applied to u(-,z,) on X it is easy to see that u may be approximated by

elements of the space {v € Wl;q”(()); suppv C _(_Zis compact}. Finally, a
standard approximation argument proves that C§°({2) is dense in the latter

space with respect to the norm || - ]

||W1;q,r(9)'
By the Hahn-Banach theorem, for every f € (/Wl’q(R; X))* there is some
h e LY (R; X*) such that
J=Dh and Hf”(ﬁl,q(R;X))* = ||h||Lq’(]R;X*)7
(cf. Lemma 2.1). Conversely, it is obvious from Lemma 2.1(i) that, if h €
LY (R; X*), then Dh € (WH4(R; X))*. Thus we conclude that
(WH(R; X))* = {f € (R X"): FH(1/)f) € L7 (R: X)),
1Al e = IF /O P o g

In view of (2.1) we shall denote the space (Wl’q(R; X))* by W‘l’ql(R; X*)
for 1 < g < oo.

Now we introduce the notions of UMD spaces, Schauder decompositions
of Banach spaces and R-boundedness of operator families.

DEFINITION 2.2. A Banach space X is called a UMD space if the Hilbert
transform

(2.1)

Hf(t) = 1 PV | %ds, feSR; X),

™

extends to a bounded linear operator in LI(R; X) for some ¢ € (1, 00).
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It is well known that, if X is a UMD space, then X is reflexive (see
e.g. [9]) and the Hilbert transform is bounded in L(R; X) for all g € (1, 00)
(see e.g. [25, Theorem 1.3], [22, Proposition 2.3]). Closed subspaces of, the
dual of, and quotients of UMD spaces are UMD spaces as well. If X is a
UMD space, then L(G; X), for 1 < ¢ < oo and for any open subset G of R?,
d € N, is also a UMD space.

DEFINITION 2.3. Let X be a Banach space and (z,,)22; C X. A series
>ty Ty is called unconditionally convergent if Y07 | x4, is convergent in
norm for every permutation o : N — N.

Note that if ) 7z, is unconditionally convergent, then the sum
Yoy To(n) is independent of the permutation o (see e.g. [11, §3.2]).

DEFINITION 2.4. A sequence of projections (A;)jen C L£(X) is called a
Schauder decomposition of a Banach space X if

AiA; =0 foralli#jy

and
D

Zij =1z foreachz € X.

j=1
A Schauder decomposition (Aj)jey is called unconditional if the series
Z;’il Ajx converges unconditionally for each z € X.

If (Aj)jen is an unconditional Schauder decomposition of a Banach
space X, then there is a constant ¢ > 0 such that

N N
H Z;sjij“Xg CH z;ijHX foral NeN,ze X, ¢;€{-1,1}
j= j=

(see [10, p. 138], or [11, Proposition 3.14]). Moreover, there is a constant
ca > 0 such that for all z; in the range R(4;) of A; the inequalities

23 %HZ%H <HZ€J 7|

are valid for any sequence (¢;(s)) of independent, symmetric {—1, 1}-valued
random variables defined on (0, 1), for all [ < k € Z and for each p € [1,00)
(see e.g. [11, (3.8)]). Given an interpolation couple X7, X of Banach spaces,
it is easily seen that a Schauder decomposition of both X7 and X; is a
Schauder decomposition of X1 N Xy and A + A> as well. We note that in
the previous definitions and results the set N of indices may be replaced by
Z without any further changes.

<eca| X,
LP(0,1;X) AZ]

j=l
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Let X be a UMD space and let x|, denote the characteristic function
of the interval [a,b). Let R be the Riesz projection, i.e.

R:= f_IX[O,OO)fa
and define
(2.4) Aj = -7:_1X[2j,2j+1)}-, J€ L.

It is well known that R and A;, j € Z, are bounded in L(RR; X) for each
q € (1,00) and that {A;; j € Z} is an unconditional Schauder decomposition
of RLY(R; X), the image of LI(R; X) under the Riesz projection R (see [11,
proof of Theorem 3.19]). Furthermore, {A;; j € Z} is an unconditional

Schauder decomposition of both RI//I\/'L‘I(R; X) and RW‘L‘](R; X) for each
q € (1,00) since for every permutation o of N, every [ < k € Z and any

u € RWHY(R; X),

k
HU_X;A”U) HquRX _HDU_ZA Du‘
=

as well as for any v € RW 4(R; X),

k k
| =114 e PN
v z; AU(j)vH/W*Lq(R;X) N HF S z; Ao (& v)’
Jj= Jj=
DEFINITION 2.5. Let X, Y be Banach spaces. An operator family 7 C

L(X;Y) is called R-bounded if there is a constant ¢ > 0 such that for all
Ty,...., Ty eT,al xz1,...,zny € X and N € N,

(2:5) HZEJ Tx]‘LP01Y <CHZ€] ‘

for some p € [1,00); here (g;(s)) is a sequence of independent, symmetric
{—1,1}-valued random variables on [0, 1], e.g. the Rademacher functions

LI(R;X)

La(R;X)

LP(0,1;:X)

rj(s) = signsin(2/7s), j€N.
The smallest constant ¢ for which (2.5) holds is denoted by R, (7).

Due to Kahane’s inequality ([12]) for all p;,p2 € [1,00) and for any
Banach space X there exists a constant ¢ = ¢(p1,p2, X) > 0 such that for
all z1,..., 2y € X, N € N,

N
(2:6) H;Sj(s ‘Lpl (0,1;X) <0H257 ‘

hence, if (2.5) holds for some p € [1,00), then it does for all p € [1, c0).

LP2(0,1; X)
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LEMMA 2.6. Let (H, (-,-),||- ||z) be a Hilbert space, let 1 < q < oo and
let Aj, j € Z, be as in (2.4). Then there is a constant ¢ > 0 such that for
all z; = Ajz; € LY(R; H) the inequalities

1 k 5\ 1/2
(X llsliz)
j=l

hold for all | < k € Z.

Proof. Choose a sequence (g;(s)) of {—
dent random variables on [0, 1]. Then by
hane’s inequality (2.6),

(2.8) HZ ‘Lq@w <CAH25] ‘
= CAH ZEJ ‘ La(R;L4(0,1;H))

< cAcH Z 8]-(3)36]-‘
j=l

Since S(l) gj(s)ei(s)ds = &5 by the assumption on (g5(s)), due to the Hilbert
space structure of H we get

k k L\1/2
‘ z;ej(s)%‘ 12(0,1;H) - (z; H%HH)
j= J=

Therefore (2.8) leads to the estimate

k k L\ 12
5 = I8
Since in (2.8) the reverse inequality holds as well, (2.7) is proved. =

LEMMA 2.7. Let X be a UMD space, 1 < g < oo and Rqp = .7:71)([&76).7:

for —oo <a<b<oo.Ifge W‘Lq(]R; X), then Rqpg € LY(R; X)) and there
exists a constant ¢(q, X) > 0 such that

Sl?j‘

k
1/2
< ) 2)
La®sH) — CH(JZ_; lz5ll7 )~ llor

, 1}-valued symmetric, indepen-

1
(2.3), Fubini’s theorem and Ka-

L49(0,1;L9(R; H))

La(R;L2(0,1H))

(2.9)

[ RapgllLax) < (g, X) max{lal, [0} Rapg 1.0, x)-

In particular, if a > 0, then

1 c(q, X)

be(g. X) IR0l o@x) < 1 Rapgllip-1agx) < [ Rap9 La(r;x)-

Proof. Let m1(§) be a continuously differentiable function on R such
that m1(§) = ¢ in (a,b) and

sup{|m1(§)], [§m1(§)[} < 2max{|al, [b]}.
geRr
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To find the function mq we start with the case a = —1, b = 1 and construct
a quadratic C''-spline mg such that mg(+2) = +3/2 and m{(£2) = 0 which
will satisfy the above estimates. In the general case we consider an elemen-
tary shift and dilation of mg. Then, by [28, Proposition 3|, m; is a Fourier
multiplier in LY(R; X), and we get
HRa,bg”LLI(R;X) = Hj:_l(ml(‘g)f_l)([a,b)/g\)HL‘](R;X)
< c(g, X) max{|al, [b]}| Ra,b9155 - 1.0(r, x -

If a > 0, we define a C''-function mo(€) on R such that ma(€) = 1/€ in (a, b)
and )

sup{|ma(&)], [Em5(§)[} < 2/a.

£eR

This function is constructed first for a = 1, b > 1, by extending 1/£ from
(a,b) by quadratic pieces to (0,2b) such that m(0) = 3/2, m/(0) = 0, and
m(2b) = 1/2b, m’(2b) = 0. The general case follows by using a scaling
argument. Then for g € L4(R; X) we get

HRa,bgHW—l,q(R;X) = Hf_l(f_IX[a,b)/g)HLq(R;X)
= | F 7 (m2() X a0 @) |l La r.x) <

a
LEMMA 2.8. Let X be a UMD space and q € (1,00). There is a constant
¢ > 0 such that for all g € LYR; X) and for any | < k €

(2.10) *1HZ2J jg‘

c(q, X)

||Ra b9l La (R;X)- ™

LI(R;X)

< A; HA <c
= HZ 79 Wha(R;X)
(2.11) —1HZQ 45|

k
< ) < —JA.
quuz y

k
QJA]g‘

La(R:X)

L4(R;X)

LI(R;X)
Proof. Define

Z X[2121+1 £), Z X[27,25+1) (&)
§

JEL ]EZ
Obviously sup;cz Var(x(gi 2i+1ym;) < oo for i = 1,2, where “Var” means the
total variation on R. Note that for i = 1, 2,

m 5) = ZX[21,2j+1)(£)mi(£) VéE e R and mz(f) =0 for& <O.
JEZ
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Then by [27, Theorem 3.2], m;, i = 1,2, is a Marcinkiewicz type multiplier
in LY(R; X), that is, there is a constant ¢ > 0 satisfying

Hf_l(mif)HLq(R;X) <c|fllpamr,xy forall f e LYR; X).
Consequently, for each g € LY(R; X) we get

i (&Y _
H ; QJA]‘Q‘ LX) H]—" 1(; € X[Qj’2j+1)(€)Dg(§)>

- (o3 29))

L4(R;X)

L4(R;X)

k
< ; .
- CH z; AJgHWLq(R;X)
j:

The second inequality of (2.10) is proved using the multiplier ms, that is,
we have

| > sy m— irl(gx@jmﬂ)(&)a@))]
j=l ’ j=l
[ ()
j=1

k
o|S-va
j=l

The estimate (2.11) is proved similarly. =

L4(R;X)

LI(R;X)

La(R;X)

Now let X be a bounded Lipschitz domain of R*~!. Then L"(X) and
WLr (X)) are UMD spaces for all r € (1,00) (see e.g. [7, Theorem I11.4.5.2].

LEMMA 2.9. Suppose m : R\ {0} — R satisfies

sup [m(§)] < co, sup [Em’(&)] < co.
£eR\{0} £eR\{0}

Then the multiplier operator defined by

Mf = F"'(mf)
is bounded in LI(R, W‘l’r(ﬂ)) and W‘l’q(R; L"(X)), respectively, with
bound ¢ = ¢(q,r, X)co for q,r € (1,00).

Proof. 1t is trivial to deduce from [28, Proposition 3] that M is bounded
in LY(R; W~L7(X)) since W~17(X) is a UMD space. Moreover, considering
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(2.1), for f € W L(R; L"(X)) we get

HMfHW—Lq(R;Lr(E)) = HMf_l(g_lf)HL‘?(R;LT(Z)) < CHfHW—Lq(R;Lr(E))v
which completes the proof of this lemma. =

LEMMA 2.10. Let 1 < ¢q,r < oo. Then the operator family {Rgp;
—00 < a<b< oo} is R-bounded in L4(R; L"(X)).

Proof. In the proof of [11, Theorem 3.19], the R-boundedness of the
operator family {Rqp; a,b € R} in LY(R; X) is shown for UMD spaces X. =

For more details on UMD spaces, R-boundedness, Schauder decomposi-
tions and multiplier theorems for Banach space-valued multiplier functions
we refer to [10], [11] and [23].

3. Generalized resolvent estimate. In this section we study the
Stokes resolvent system (Ry) on 2 (see Introduction), where 2 = X' x R is
an infinite straight cylinder with cross-section X ¢ R"~!, n > 3, a bounded
domain of class Cb!. Let a general point & € {2 be written in the form
x = (2, x,) € 2, where 2’ € X and z,, € R. Similarly, differential operators
in R™ are split, in particular, A = A’ + 92 and V = (V’,9,). The Fourier
transform in the variable z,, is denoted by F or ”* and the inverse Fourier
transform by F~! or V.

First, we consider the spaces relating to the divergence equation. If u €
W24 (2) N Wy @"(£2) for some g, 7 € (1,00) solves the divergence equation
of (Ry), then

(3.1) g € WHIT(2) n W =197 (02),
In fact, given ¢ € W' (£2) and a sequence (p5,) C C§°(£2) converging to
@ in WhHe'"' (02) (see Lemma 2.1(ii)), for all k € N we have

(g9, pK) = Sdivu o dr = — S u- Vo dz.
9] 2

Hence (g, ¢) is well defined and ||QHW*1;¢LT(Z) < lull par;zr(5))-
Moreover, we shall show that

(32 W) = LR W () + WHI(R; L(5)
with equivalent norms. In fact, if g € /W_l?q’r(ﬂ), then there exist functions
fi, f2 € LY(R; L"(X)) such that for all ¢ € Wh?'"'(£2),
(g.0) =\ 11 Viode+ | faOnpdr and gl -1qr = Il f1, ol Larizr (),
N N
where (-, -) denotes the duality product between W‘l;q’r(ﬂ) and Whd'»r’ (12).
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Now, defining g1, g2 by

(gr,0) =\ fi-Viodz, (g2,0) = | frOnpda,
(9] 2

we get g = g1 + go, g1 € LYR; W-1(X)), go € WL4(R; L"(X)) and
HngLq(R;W%,T(E)) < ”leLq(R;LT(E))a HQQH/Wfl,q(R;LT(E)) < Hf?”Lq(R;LT(E))‘

Hence the space W57 (£2) is continuously embedded in L4(R; W =17 (X)) +
W—L4(R; L"(X)). The continuity of the other embedding is trivial.

Proof of Theorem 1.1. 'To prove the existence of a solution, it is enough
to consider the case f = 0, g € S(R;WH2(X)) N W~122(2). Actually,
the theorem is already proved for the case f # 0, g = 0 (see [17, Theo-
rem 1.1]. Moreover, we mention that S(R; W12(X)) N /V[7*1;‘172(_Q) is dense
in Whe2(02) N /I/I7*1;‘172(Q); for the proof standard techniques as in [26,
Ch. I, 1.2] may be used.

By [17, Theorem 3.4] for every £ € R* and A € —a+S; the parametrized
Stokes system (Ry¢) with F' = f=0and G =7 € Wh2(%) (see the
Introduction) has a unique solution

(Ua, Pg) == (Ua(€), Po(§)) € (W>(Z) N W2 (D)) x WH(2).
To cite the corresponding resolvent estimates we introduce the function

space L%m) = L%m)(E) = {G € L*(X); {,Gda’ = 0} of functions with

vanishing mean and the norm
(3:3)  NIG: Ly + Lijello := nf{[|Gollgp 1,25y + IG1/Ell2;53
G=Gy+ Gy, Gy € L?m)(E), G € L2(2)}.

Then we have the estimate
(34) [N+ a)Ug,&Ug,&V'Uq, V?Ug, (PG, V' Pg|
<c(|IV'G, G, G

2;X

2.2 + (N + DIG; LT, + L3 jello),
and (see [17, Corollary 3.6])

(3.5) Hgdig(u + a)Uq, £2Uq, EV'Uq, V?Uq, EPg, V' Pg)

2,

< (IV'G, GG 25 + (M + DIIG; L) + LT jello);

here the constant ¢ = c(a,e,X) > 0 is independent of A € —a + S. and
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¢ € R*. Moreover, if |, G'dz’ = 0, on the right-hand sides of (3.4) and (3.5)
the factor |A| + 1 may be replaced by |\|. Therefore, the operator M (&) :
Wh2(X) — L*(Y), defined for £ € R* by

M(E)G = (A + )Uq, U, §V'Uc, V*Uq, £Pa, V' Pa),

is Fréchet differentiable in £ € R* and satisfies the estimates
(3.6a)  [|M(§)G,EM'(§)G|l2,z

< (e, D)(|V'G, GG |2x + (1A + DIIG: L) + L ello)
and, if { G dz' =0,
(3.6b) [ M(§)G,EM'(E)Gl2,n

< c(a,8, D) (|V'G, G, €G] l2.s + NG5 LYy + L ello)-
Let

(3.7) wi=F; Usey,  pi=F; ' Py

We shall show that {u,p} is the unique solution to (R)) satisfying (1.1).
Obviously {u,p} solves (Ry) with right-hand side (0, g) in the sense of dis-
tributions. For the proof of (1.1), we may assume without loss of generality
that suppg C [0, 00) due to the relation

9(@",2n) = (X[0,00)9(€)) " (2, 2n) + (X(~00,09(8)) " (&, )

= (X[0,00)9() " (2", 2n) + (X[0,00)3(—€)) " (2, —n)

and due to the linearity of the problem (R)). Since (A + a)u, V2u, Vp) =

(M(€)g(£))Y, our aim is to estimate ||(M (£)g(€))" | Lar;z2(x))-
For notational convenience, we introduce the space

X = Whe2(Q) n W 192()
= (WHI(R; L*(£)) N LY(R; W (X))
N (W=b(R; LA(2)) + LUR; W H2(5)).

As mentioned in Section 2 the operator family {4; = f_IX[Qj’2j+1)(£)f;
J € Z} is easily seen to be a Schauder decomposition of RX, the image of
X under the Riesz projection R; hence g =) .., A;g in X. Moreover, for
s € R we define

JEZ
Ry = F X500 F-

Note that M (&) = M(29) + {3, M'(r)dr for ¢ € [27,2111), j € Z, and
that obviously (M(Qj)z\jg)v = M(27)Ajg; furthermore,
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(§ M'(7) drz\jg(f))v - (2]5 M (1) (21, () A;9(€) dT)v

27 27
1

- (SQJM’(Qj(l + )X (20,6 (27 (14 1)) X (27 2541 ()G (€) dt)v

0
27+1
=M@ +1) | GEeemtdgat
27 (1+t)

2 M (27 (1 + ) (Rai(144) — Roi1)A g dt.

O = O e

Thus we get
(38)  (MEFE)" = (X xparm ©ME© D)
JEZL
=Y (M) + § M'(r)dr)Asg)”
JEZ 27
Z 2J Ag —l—Z(S dTAJg)V
JEZ JEZ 23

1

= > M(@)Ajg+> {27 M (27(1 +))(Ryy150) — Ras1)Ajg dt.
JEZL JEZ O

To estimate the first term on the right-hand side of (3.8) in L(R; L?(X)),
note that for each j € Z the operator M(2’) commutes with A; and
that {A;; j € Z} is a Schauder decomposition of RLI(R;L?(X)). Then
Lemma 2.6 and (3.4) yield the estimate

B9 [, sy < (311 a0085) ")
j=l ’ j=l

((Sranttas) ], - |(S122)",

q,R

+ (Al +1) H(;HAJSJ’Lm) %/21"(2))1/2“(1,}1@)

with ¢ = ¢(a, €, ¢, X).
Now, let us estimate each term on the right-hand side of (3.9). Again,
using Lemma 2.6, we get
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(3.10) H(ZHAJ9|1,2,Z)1/ HqR c(q, X HZAJQ‘

By analogy, explomng also Lemma 2.8,

La(R;W12(5))

) 1/2
(3.11) H 22] Al H , H 27 A ‘
( | ;9Hz,z> . clg, & Z 39| L2 ()

< ¢(q, E)H JZ:; Ajg”wl,qm;y(z))
In order to get an estimate of the last term on the right-hand side of (3.9), let
k
ZAJQ =go+g1, g€ LUR;WTH(X)), g1 € WH(R; L2(X)),
j=l
be any splitting of Z?:z Ajg. Note that Ajg = Ajgo + Ajgr for all j =

l,...,k, and moreover, by Lemma 2.7, A;jg; € LI(R;L?(X)) and conse-
quently even Ajgo € LY(R; W—12(2)NLA(X)) = LI(R; L%m)(E)). By the tri-

angle inequality and Lemma 2.6 applied also in the Hilbert space Wﬁl’z(ﬂ )
we get

k 2 2 2 1/2
H(;||Ajg;L<m>+L1/2j||o) I,
< (hamians) |+ (S 1amizs)").
g=l ’ j=l ’

k k
< A, ‘ _ H 27 A, ‘
- C(H; 790 La(R;W—12(5)) - ]z::l 79

Then Lemma 2.8, Lemma 2.10 and (3.2) imply the estimate

012 (S st ),
(|3 201
j=l

< C(HQOHLq(R;Wﬂa(E)) + ”gl||W71,q(R;L2(Z)))

k
< (g, 5| Z; VY o)
‘7:

Lq(R;L?(z))) '

La(R;W—1:2(5)) + H jz; AjngvAvfl»q(R;m(z)))
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with ¢ = ¢(¢,Y) independent of [,k € Z. Summarizing (3.9)—(3.12), we
get

La(R;L2(X))

(3.13) H Zk:M(Qj)Ajg‘
j=l

k
() o IR SR Y NI
]:

with ¢ = c(a,e,q,X) for all [,k € Z and all A € —a + S;. Since (4;);ez
defines unconditional Schauder decompositions of the spaces RW i9:2(2)
and RW_W’Q(Q), (3.13) implies that the series } . M(27)A,g converges
in L4(R; L?(X)) and

|21 808] g sy, < ey + 0N+ Dlllp-ssca)
JE

with ¢ = ¢(a, e,q,X). This is the desired estimate of the first term on the
right-hand side of (3.8).

Next let us estimate the second term on the right-hand side of (3.8).
Note that the operator family

{Rai(141) — Rosers j €Nt € (0,1)} C L(LY(R; L (X))
is R-bounded (cf. Lemma 2.10). Moreover, for ¢ € (0,1), the operator
M(2/(1 + t)) commutes with the operator Bj; 1= Ryj(j144) — Rgi1 and

the range of B;; is contained in the range of A;. Hence it follows from (2.3),
(2.5) that for any independent symmetric {—1, 1}-valued random variables

{ej(s)} on (0, 1),

k1
(3:.14) HZ?M o) ”Ajgdt‘mmw))

=l

.

<\[|>" 2B, Mm@ (1 +1)) ‘
= HJZ_: M2 (A1) A9 La(R;L2(5))
1 k
< cal | Y0028, (2 (14 6) As] dt

L3(0,1;L9(R;L2(X)))
0 4=l

dt.

1
< CS H ZEj(S)QjM/(Qj(l + t))AjQ‘ L0, LLaRL2(Z)
0 j=I 7 ’

By similar arguments to the proof of Lemma 2.6 we estimate the right-hand
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side of (3.14) by

(3.15) HZ&-J ()20 M (27 (1 + 1)) Jg‘

La(R;L2(0,1;L2(X)))

1/2
H (Z 1271+ )M+ D) Aggl ) | e
q7
]_
with ¢ = ¢(g, X'). Therefore it follows from (3.6a) and the arguments leading
from (3.9) to (3.13) that the right-hand side of (3.15) is bounded by

ce,q, ¥ H{ZHAJgHW +25(1+ 1)) As9135

+ A+ 1124595 L2, )+L2 e 1]3]}1/2”(1’Rdt
ool (Eastban) (S 21002,

+|>‘+1|H<ZHAJQ’ )+L a||g) /QH%R)

< cla, 6,4, X)(llgllwraz(e) + (1A + 1)H9HW_1;4,2(9))-

Thus we finally proved the existence of a solution satisfying the estima-
e (1.1). It is clear that if {, g(2',-) dz’ = 0, the solution satisfies the esti-
mate (1.2); for the proof, use (3.6b) in place of (3.6a).

The uniqueness of the solution is obvious from the uniqueness result for
f#0,g=0 (see [17]). The proof of the theorem is complete. m

REMARK 3.1. Theorem 1.1 may be applied to obtain resolvent estimates
of the Stokes system for more general domains, e.g. for unbounded cylindri-
cal domains with several outlets to infinity. Let £2 = [J], {2; be a cylindrical
domain of class C1'! such that {2y is a bounded domain and §2;, i = 1,...,m,
are semi-infinite straight cylinders with boundaries of class C!; to be
more precise, for each ¢ = 1,...,m, we may find orthogonal coordinates
ot = (2%,...,2¢) such that

rrn
2 ={z' €eR" 2}, >0, (a},...,2,_,) € 5}
and 2, N 2; =0 for i,j =1,...,m with ¢ # j. Without loss of generality
we may assume that there ex1st Cut off functions {¢;}!"*, such that

Zsoi(x) =1, 0<gi(x)<1 forzel,

@i € C™(£2;), suppy; C 2;\ (002;N12),i=0,...,m.
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Now consider the resolvent system
A—Au+Vp=f in £,
(Ry) divu=0 in £,
u=0 on 0f2,

and let {u,p} be a solution to (R)). Then we are led to a resolvent system
with unknown {@ou, pop} on 2,

Mepou) — Alpou) + V(pop) = f° in 0,
(Bx)o div(gou) = ¢°  in 2,

pou =0 on 92,

where
U= wof + (Vo)p — (Apo)u — 2Vpg - Vu,  ¢° := Vg - u,

and a finite number of resolvent systems with unknowns {p;u, p;p} on 2,
1=1,....,m,

@) — Algiu) + V(gp) = f£ in 2,
(R)); div(gyu) = ¢ in £,
piu=0 on 8(2-,

where !NZZ is the infinite straight cylinder extending the semi-infinite cylinder
£2;; moreover, p;u, Pip, f*,G' are the zero extensions onto §2; of the functions
Pill, Pip,

[ =wif + (Vyi)p — (Agpi)u —2Vp;-Vu, ¢ := Vgoi -,
respectively. Obviously S ¢°dex =0, {5 gide =0, i = ,m. Then,
under suitable assumptlons on f, us1ng the results for Stokes resolvent Sys-
tems on bounded domains (see e.g. [14]) for (Ry)o and Theorem 1.1 for
(Ry)i, i = 1,...,m, we may obtain a priori estimates for {pou, pop} and
{eiu, pip}, i = 1,...,m, with norms of lower order terms on the right-hand
side. Finally, we get estimates for u = > p;u and p = >, ;p using a
well known contradiction argument (see [14]).
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