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An L
q(L2)-theory of the generalized Stokes

resolvent system in infinite cylinders

by

Reinhard Farwig (Darmstadt) and Myong-Hwan Ri (Pyongyang)

Abstract. Estimates of the generalized Stokes resolvent system, i.e. with prescribed
divergence, in an infinite cylinder Ω = Σ × R with Σ ⊂ R

n−1, a bounded domain of
class C1,1, are obtained in the space Lq(R; L2(Σ)), q ∈ (1,∞). As a preparation, spectral
decompositions of vector-valued homogeneous Sobolev spaces are studied. The main theo-
rem is proved using the techniques of Schauder decompositions, operator-valued multiplier
functions and R-boundedness of operator families.

1. Introduction. In this paper we study the generalized Stokes resol-

vent system

(Rλ)

λu − ∆u + ∇p = f in Ω,

div u = g in Ω,

u = 0 on ∂Ω,

where Ω = Σ × R is an infinite straight cylinder with cross-section Σ ⊂
R

n−1, n ≥ 3, a bounded domain of class C1,1. This system is a key problem
for the study of nonstationary Stokes and Navier–Stokes equations. The case
of g = 0 in (Rλ) was studied in [17]. In this paper the general case g 6= 0, i.e.
generalized Stokes resolvent systems in an infinite cylinder, is studied, with
a view to dealing with Stokes systems in more general unbounded cylindrical
domains such as cylindrical domains with several outlets to infinity using a
cut-off procedure.

There are many papers dealing with generalized Stokes resolvent systems
for half spaces, bounded and exterior domains, aperture domains and layer-
like domains (see e.g. [1]–[5], [14]–[16], [18], [19] and the Introduction of [17]
for more details), but no result for unbounded cylindrical domains has been
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known up to now. Here we study the solvability of the system (Rλ) in the
space Lq(R; L2(Σ)) for 1 < q < ∞. The main result of this paper is the
following theorem.

Theorem 1.1. Let Σ ⊂ R
n−1, n ≥ 3, be a bounded domain of class C1,1,

α0 > 0 the smallest eigenvalue of the Dirichlet Laplacian in Σ, and let

0 < ε < π/2 and 1 < q < ∞. If f ∈ Lq(R; L2(Σ)) and g ∈ W 1;q,2(Ω) ∩

Ŵ−1;q,2(Ω), then for every α ∈ (0, α0) and λ ∈ −α + Sε there exists a

unique solution (u, p) to (Rλ) satisfying u,∇2u,∇p ∈ Lq(R; L2(Σ)) and the

estimate

(1.1) ‖(λ + α)u,∇2u,∇p‖Lq(R;L2(Σ))

≤ C(‖f‖Lq(R;L2(Σ)) + ‖g‖W 1;q,2(Ω) + (|λ| + 1)‖g‖
Ŵ−1;q,2(Ω)

),

where the constant C is independent of λ and depends only on α, ε, q and Σ.

In particular , if
T
Σ g(x′, xn) dx′ = 0 for almost all xn ∈ R, a stronger

estimate

(1.2) ‖(λ + α)u,∇2u,∇p‖Lq(R;L2(Σ))

≤ C(‖f‖Lq(R;L2(Σ)) + ‖g‖W 1;q,2(Ω) + |λ| ‖g‖
Ŵ−1;q,2(Ω)

)

holds with C = C(α, ε, q, Σ).

We use the following notations. For ε ∈ (0, π/2), let Sε denote the sector
of the complex plane

{λ ∈ C; λ 6= 0, |arg λ| < π/2 + ε}.

We do not distinguish among spaces of scalar and vector-valued functions
as long as no confusion arises. In particular, given a norm in some Banach
function space, we use the short notation ‖u, v‖ for ‖u‖ + ‖v‖, even if u
and v are tensors of different order. For a Banach space X let X∗ denote
its dual space and Lq(R; X), 1 < q < ∞, the Bochner space of all X-valued
measurable functions with finite norm

‖u‖Lq(R;X) =
(\

R

‖u(t)‖q
X dt

)1/q
.

Let Ω = Σ ×R be an infinite cylinder of R
n with bounded cross-section

Σ ⊂R
n−1 and with general point x∈Ω written in the form x = (x′, xn)∈Ω,

where x′ ∈ Σ and xn ∈ R. Similarly, differential operators in R
n are split,

in particular, ∆ = ∆′ + ∂2
n and ∇ = (∇′, ∂n).

Let r ∈ (1,∞) and s ∈ (0,∞). Then Lr(Σ) and W s,r(Σ) are the usual
Lebesgue and Sobolev spaces with norms ‖ · ‖r;Σ and ‖ · ‖s,r;Σ , respectively.

Moreover, Ŵ 1,r(Σ) is the homogeneous Sobolev space, i.e.,

Ŵ 1,r(Σ) = {u ∈ L1
loc(Σ)/C; ∇′u ∈ Lr(Σ)}, ‖u‖

Ŵ 1,r(Σ)
= ‖∇′u‖r;Σ ,
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and Ŵ−1,r(Σ) = (Ŵ 1,r′(Σ))∗ is the dual space of Ŵ 1,r′(Σ), r′ = r/(r − 1),
with norm ‖ · ‖

Ŵ−1,r(Σ)
. We denote by W k;q,r(Ω), k ∈ N, q ∈ (1,∞), the

Banach space of all functions on Ω whose derivatives of order up to k belong
to Lq(R; Lr(Σ)) with norm

‖u‖W k;q,r(Ω) =
( ∑

|α|≤k

‖Dαu‖q
Lq(R;Lr(Σ))

)1/q
;

here Dαu = ∂α1

1 · · · ∂αn
n u for a multi-index α ∈ N

n
0 of order |α| ≤ k. More-

over, W 1;q,r
0 (Ω) is the completion of the set C∞

0 (Ω)n in W 1;q,r(Ω). Finally,

let Ŵ 1;q,r(Ω) be the Banach space defined by

Ŵ 1;q,r(Ω) = {u ∈ L1
loc(Ω)/C; ∇u ∈ Lq(R; Lr(Σ))}

endowed with the norm ‖u‖
Ŵ 1;q,r(Ω)

= ‖∇u‖Lq(R;Lr(Σ)); its dual space is de-

noted by Ŵ−1;q′,r′(Ω) = (Ŵ 1;q,r(Ω))∗, where q′ = q/(q − 1), r′ = r/(r − 1).
For notational convenience, as long as no confusion arises, we denote con-
stants c, C, . . . appearing in the proofs by the same symbol even though they
may be change from line to line.

In an n-dimensional infinite layer the Stokes resolvent system is reduced
by means of the (n−1)-dimensional partial Fourier transform to a system of
ordinary differential equations with the Fourier phase variable as a parame-
ter; in [2], [3] and [5] the authors applied Fourier multiplier theorems to the
explicit solution of the reduced system of ordinary differential equations to
get the final Stokes resolvent estimates.

However, in an n-dimensional infinite cylinder Ω = Σ × R the Stokes
resolvent system (Rλ) is reduced by the application of the one-dimensional
partial Fourier transform F ≡ ∧ along the axis of Ω to the parametrized
Stokes system (Rλ,ξ) on the cross-section Σ,

(Rλ,ξ)

(λ + ξ2 − ∆′)U ′ + ∇′P = F ′ in Σ,

(λ + ξ2 − ∆′)Un + iξP = Fn in Σ,

div′ U ′ + iξUn = G in Σ,

U ′ = 0, Un = 0 on ∂Σ,

which is elliptic in the sense of Agmon, Douglis and Nirenberg [6]; here
U = û, P = p̂, and U = (U ′, Un), F = (F ′, Fn) etc. In [17] the authors
obtained the estimate

‖(λ + α)U, ξ2U, ξ∇′U,∇′2U, ξP,∇′P‖2;Σ ≤ c‖F,∇′G, G, ξG‖2;Σ + · · ·

of the solution {U(ξ), P (ξ)} to (Rλ,ξ) where some terms for G have been
omitted; see (3.4) below and [17, Theorem 3.4] for details. Then Fourier
multiplier techniques are used to get the final estimate of (u, p) when g = 0.
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However, the estimate of {U(ξ), P (ξ)} for (Rλ,ξ) involves the function G with
ξ-dependent parameters as well as with norms in the sum and intersection of
several Sobolev spaces. Therefore, the Fourier multiplier technique cannot
be directly applied to the case g 6= 0.

To get an estimate for (Rλ) from the estimate for (Rλ,ξ), we use the
unconditionality of dyadic Schauder decompositions of Lq(R; L2(Σ)) for
1 < q < ∞, vector-valued homogeneous Sobolev spaces and the R-bound-
edness of operator families. Having obtained Stokes resolvent estimates in
the straight cylinder Ω = Σ × R, one can get resolvent estimates in un-
bounded cylindrical domains with several outlets to infinity; at the end of
the paper, we briefly describe the main idea using the method of cut-off
functions.

This paper is organized as follows. Section 2 is devoted to some prelimi-
naries for the proof of the main theorem, including dyadic spectral decompo-
sitions of vector-valued homogeneous Sobolev spaces. Section 3 contains the
proof of Theorem 1.1 and a remark concerning the application to unbounded
cylindrical domains with several outlets to infinity (Remark 3.1).

2. Preliminaries. First let us consider vector-valued homogeneous So-

bolev spaces. Let X be a reflexive Banach space and 1 < q < ∞. We define

the space Ŵ 1,q(R; X) by

Ŵ 1,q(R; X) := {u ∈ L1
loc(R; X); Du ∈ Lq(R; X)}

endowed with the (semi-)norm

‖u‖
Ŵ 1,q(R;X)

= ‖Du‖Lq(R;X),

where D is the first order derivative; here we neglect the technicality that

Ŵ 1,q(R; X) should be defined as a quotient space (of functions modulo
constants). Using the one-dimensional Fourier transform F ≡ ∧ the space

Ŵ 1,q(R; X) may be rewritten as

Ŵ 1,q(R; X) = {u ∈ S ′(R; X); F−1(ξû) ∈ Lq(R; X)}

with norm

‖u‖
Ŵ 1,q(R;X)

= ‖F−1(ξû)‖Lq(R;X),

where ξ is the phase variable of the Fourier transform and S ′(R; X) is the

space of tempered X-valued distributions. It is easy to see that Ŵ 1,q(R; X),
1 < q < ∞, is a reflexive Banach space.

Let D(R; X) be the space of all compactly supported and infinitely dif-
ferentiable X-valued functions and D′(R; X∗) the space of X∗-valued distri-
butions. Moreover, S(R; X) is the Schwartz space of all rapidly decreasing
X-valued functions, with dual space S ′(R; X∗).
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Lemma 2.1.

(i) D(R; X) is dense in Ŵ 1,q(R; X) for each q ∈ (1,∞).

(ii) C∞
0 (Ω) is dense in Ŵ 1;q,r(Ω) for each q, r ∈ (1,∞).

Proof. (i) Let f ∈ (Ŵ 1,q(R; X))∗ vanish on D(R; X). Then, due to the
Hahn–Banach theorem, there exists h ∈ Lq′(R; X∗), q′ = q/(q − 1), such
that

0 = 〈f, φ〉 = 〈h, Dφ〉 ∀φ ∈ D(R; X).

In particular, for all ϕ ∈ D(R) and x ∈ X, we have

0 = 〈h, Dϕ · x〉 = 〈 〈h(·), x〉X∗,X , Dϕ〉D′(R),D(R)

which together with 〈h(·), x〉X∗,X ∈ Lq′(R) yields

〈h(·), x〉X∗,X = const = 0 for all x ∈ X.

Hence h = 0, and f = 0.

(ii) Given u ∈ Ŵ 1;q,r(Ω) define u0(xn) = |Σ|−1 T
Σ u(x′, xn) dx′ where

|Σ| denotes the (n − 1)-dimensional Lebesgue measure of Σ. Since u0 ∈

Ŵ 1,q(R; R), we may apply part (i) and assume that u ∈ Ŵ 1;q,r(Ω) has
vanishing means on Σ for almost all xn ∈ R. Then by Poincaré’s inequality
applied to u(·, xn) on Σ it is easy to see that u may be approximated by

elements of the space {v ∈ Ŵ 1;q,r(Ω); supp v ⊂ Ω is compact}. Finally, a
standard approximation argument proves that C∞

0 (Ω) is dense in the latter
space with respect to the norm ‖ · ‖

Ŵ 1;q,r(Ω)
.

By the Hahn–Banach theorem, for every f ∈ (Ŵ 1,q(R; X))∗ there is some
h ∈ Lq′(R; X∗) such that

f = Dh and ‖f‖
(Ŵ 1,q(R;X))∗

= ‖h‖Lq′(R;X∗),

(cf. Lemma 2.1). Conversely, it is obvious from Lemma 2.1(i) that, if h ∈

Lq′(R; X∗), then Dh ∈ (Ŵ 1,q(R; X))∗. Thus we conclude that

(2.1)
(Ŵ 1,q(R; X))∗ = {f ∈ S ′(R; X∗); F−1((1/ξ)f̂ ) ∈ Lq′(R; X∗)},

‖f‖
(Ŵ 1,q(R;X))∗

= ‖F−1((1/ξ)f̂ )‖Lq′(R;X∗).

In view of (2.1) we shall denote the space (Ŵ 1,q(R; X))∗ by Ŵ−1,q′(R; X∗)
for 1 < q < ∞.

Now we introduce the notions of UMD spaces, Schauder decompositions
of Banach spaces and R-boundedness of operator families.

Definition 2.2. A Banach space X is called a UMD space if the Hilbert
transform

Hf(t) = −
1

π
PV

\
R

f(s)

t − s
ds, f ∈ S(R; X),

extends to a bounded linear operator in Lq(R; X) for some q ∈ (1,∞).
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It is well known that, if X is a UMD space, then X is reflexive (see
e.g. [9]) and the Hilbert transform is bounded in Lq(R; X) for all q ∈ (1,∞)
(see e.g. [25, Theorem 1.3], [22, Proposition 2.3]). Closed subspaces of, the
dual of, and quotients of UMD spaces are UMD spaces as well. If X is a
UMD space, then Lq(G; X), for 1 < q < ∞ and for any open subset G of R

d,
d ∈ N, is also a UMD space.

Definition 2.3. Let X be a Banach space and (xn)∞n=1 ⊂ X. A series∑∞
n=1 xn is called unconditionally convergent if

∑∞
n=1 xσ(n) is convergent in

norm for every permutation σ : N → N.

Note that if
∑∞

n=1 xn is unconditionally convergent, then the sum∑∞
n=1 xσ(n) is independent of the permutation σ (see e.g. [11, §3.2]).

Definition 2.4. A sequence of projections (∆j)j∈N ⊂ L(X ) is called a
Schauder decomposition of a Banach space X if

∆i∆j = 0 for all i 6= j

and
∞∑

j=1

∆jx = x for each x ∈ X .

A Schauder decomposition (∆j)j∈N is called unconditional if the series∑∞
j=1 ∆jx converges unconditionally for each x ∈ X .

If (∆j)j∈N is an unconditional Schauder decomposition of a Banach
space X , then there is a constant c > 0 such that

(2.2)
∥∥∥

N∑

j=1

εj∆jx
∥∥∥
X
≤ c

∥∥∥
N∑

j=1

∆jx
∥∥∥
X

for all N ∈N, x∈X , εj ∈ {−1, 1}

(see [10, p. 138], or [11, Proposition 3.14]). Moreover, there is a constant
c∆ > 0 such that for all xj in the range R(∆j) of ∆j the inequalities

(2.3) c−1
∆

∥∥∥
k∑

j=l

xj

∥∥∥
X
≤

∥∥∥
k∑

j=l

εj(s)xj

∥∥∥
Lp(0,1;X )

≤ c∆

∥∥∥
k∑

j=l

xj

∥∥∥
X

are valid for any sequence (εj(s)) of independent, symmetric {−1, 1}-valued

random variables defined on (0, 1), for all l ≤ k ∈ Z and for each p ∈ [1,∞)
(see e.g. [11, (3.8)]). Given an interpolation couple X1, X2 of Banach spaces,
it is easily seen that a Schauder decomposition of both X1 and X2 is a
Schauder decomposition of X1 ∩ X2 and X1 + X2 as well. We note that in
the previous definitions and results the set N of indices may be replaced by
Z without any further changes.
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Let X be a UMD space and let χ[a,b) denote the characteristic function
of the interval [a, b). Let R be the Riesz projection, i.e.

R := F−1χ[0,∞)F ,

and define

(2.4) ∆j := F−1χ[2j ,2j+1)F , j ∈ Z.

It is well known that R and ∆j, j ∈ Z, are bounded in Lq(R; X) for each
q ∈ (1,∞) and that {∆j; j ∈ Z} is an unconditional Schauder decomposition
of RLq(R; X), the image of Lq(R; X) under the Riesz projection R (see [11,
proof of Theorem 3.19]). Furthermore, {∆j ; j ∈ Z} is an unconditional

Schauder decomposition of both RŴ 1,q(R; X) and RŴ−1,q(R; X) for each
q ∈ (1,∞) since for every permutation σ of N, every l < k ∈ Z and any

u ∈ RŴ 1,q(R; X),

∥∥∥u −
k∑

j=l

∆σ(j)u
∥∥∥

Ŵ 1,q(R;X)
=

∥∥∥Du −
k∑

j=l

∆σ(j)Du
∥∥∥

Lq(R;X)
,

as well as for any v ∈ RŴ−1,q(R; X),

∥∥∥v −
k∑

j=l

∆σ(j)v
∥∥∥

Ŵ−1,q(R;X)
=

∥∥∥F−1(ξ−1v̂) −
k∑

j=l

∆σ(j)F
−1(ξ−1v̂)

∥∥∥
Lq(R;X)

.

Definition 2.5. Let X, Y be Banach spaces. An operator family T ⊂
L(X; Y ) is called R-bounded if there is a constant c > 0 such that for all
T1, . . . , TN ∈ T , all x1, . . . , xN ∈ X and N ∈ N,

(2.5)
∥∥∥

N∑

j=1

εj(s)Tjxj

∥∥∥
Lp(0,1;Y )

≤ c
∥∥∥

N∑

j=1

εj(s)xj

∥∥∥
Lp(0,1;X)

for some p ∈ [1,∞); here (εj(s)) is a sequence of independent, symmetric
{−1, 1}-valued random variables on [0, 1], e.g. the Rademacher functions

rj(s) = sign sin(2jπs), j ∈ N.

The smallest constant c for which (2.5) holds is denoted by Rp(T ).

Due to Kahane’s inequality ([12]) for all p1, p2 ∈ [1,∞) and for any
Banach space X there exists a constant c = c(p1, p2, X) > 0 such that for
all x1, . . . , xN ∈ X, N ∈ N,

(2.6)
∥∥∥

N∑

j=1

εj(s)xj

∥∥∥
Lp1(0,1;X)

≤ c
∥∥∥

N∑

j=1

εj(s)xj

∥∥∥
Lp2(0,1;X)

;

hence, if (2.5) holds for some p ∈ [1,∞), then it does for all p ∈ [1,∞).
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Lemma 2.6. Let (H, (·, ·), ‖ · ‖H) be a Hilbert space, let 1 < q < ∞ and

let ∆j , j ∈ Z, be as in (2.4). Then there is a constant c > 0 such that for

all xj = ∆jxj ∈ Lq(R; H) the inequalities

(2.7)
1

c

∥∥∥
( k∑

j=l

‖xj‖
2
H

)1/2
‖q,R ≤

∥∥∥
k∑

j=l

xj

∥∥∥
Lq(R;H)

≤ c
∥∥∥
( k∑

j=l

‖xj‖
2
H

)1/2
‖q,R

hold for all l < k ∈ Z.

Proof. Choose a sequence (εj(s)) of {−1, 1}-valued symmetric, indepen-
dent random variables on [0, 1]. Then by (2.3), Fubini’s theorem and Ka-
hane’s inequality (2.6),

∥∥∥
k∑

j=l

xj

∥∥∥
Lq(R;H)

≤ c∆

∥∥∥
k∑

j=l

εj(s)xj

∥∥∥
Lq(0,1;Lq(R;H))

(2.8)

= c∆

∥∥∥
k∑

j=l

εj(s)xj

∥∥∥
Lq(R;Lq(0,1;H))

≤ c∆c
∥∥∥

k∑

j=l

εj(s)xj

∥∥∥
Lq(R;L2(0,1;H))

.

Since
T1
0 εj(s)εi(s) ds = δji by the assumption on (εj(s)), due to the Hilbert

space structure of H we get
∥∥∥

k∑

j=l

εj(s)xj

∥∥∥
L2(0,1;H)

=
( k∑

j=l

‖xj‖
2
H

)1/2
.

Therefore (2.8) leads to the estimate

(2.9)
∥∥∥

k∑

j=l

xj

∥∥∥
Lq(R;H)

≤ c
∥∥∥
( k∑

j=l

‖xj‖
2
H

)1/2∥∥∥
q,R

.

Since in (2.8) the reverse inequality holds as well, (2.7) is proved.

Lemma 2.7. Let X be a UMD space, 1 < q < ∞ and Ra,b := F−1χ[a,b)F

for −∞ < a < b < ∞. If g ∈ Ŵ−1,q(R; X), then Ra,bg ∈ Lq(R; X) and there

exists a constant c(q, X) > 0 such that

‖Ra,bg‖Lq(R;X) ≤ c(q, X) max{|a|, |b|}‖Ra,bg‖Ŵ−1,q(R;X)
.

In particular , if a > 0, then

1

bc(q, X)
‖Ra,bg‖Lq(R;X) ≤ ‖Ra,bg‖Ŵ−1,q(R;X)

≤
c(q, X)

a
‖Ra,bg‖Lq(R;X).

Proof. Let m1(ξ) be a continuously differentiable function on R such
that m1(ξ) = ξ in (a, b) and

sup
ξ∈R

{|m1(ξ)|, |ξm
′
1(ξ)|} ≤ 2max{|a|, |b|}.
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To find the function m1 we start with the case a = −1, b = 1 and construct
a quadratic C1-spline m0 such that m0(±2) = ±3/2 and m′

0(±2) = 0 which
will satisfy the above estimates. In the general case we consider an elemen-
tary shift and dilation of m0. Then, by [28, Proposition 3], m1 is a Fourier
multiplier in Lq(R; X), and we get

‖Ra,bg‖Lq(R;X) = ‖F−1(m1(ξ)ξ
−1χ[a,b)ĝ)‖Lq(R;X)

≤ c(q, X) max{|a|, |b|}‖Ra,bg‖Ŵ−1,q(R;X)
.

If a > 0, we define a C1-function m2(ξ) on R such that m2(ξ) = 1/ξ in (a, b)
and

sup
ξ∈R

{|m2(ξ)|, |ξm
′
2(ξ)|} ≤ 2/a.

This function is constructed first for a = 1, b > 1, by extending 1/ξ from
(a, b) by quadratic pieces to (0, 2b) such that m(0) = 3/2, m′(0) = 0, and
m(2b) = 1/2b, m′(2b) = 0. The general case follows by using a scaling
argument. Then for g ∈ Lq(R; X) we get

‖Ra,bg‖Ŵ−1,q(R;X)
= ‖F−1(ξ−1χ[a,b)ĝ)‖Lq(R;X)

= ‖F−1(m2(ξ)χ[a,b)ĝ)‖Lq(R;X) ≤
c(q, X)

a
‖Ra,bg‖Lq(R;X).

Lemma 2.8. Let X be a UMD space and q ∈ (1,∞). There is a constant

c > 0 such that for all g ∈ Lq(R; X) and for any l ≤ k ∈ Z,

(2.10) c−1
∥∥∥

k∑

j=l

2j∆jg
∥∥∥

Lq(R;X)

≤
∥∥∥

k∑

j=l

∆jg
∥∥∥

Ŵ 1,q(R;X)
≤ c

∥∥∥
k∑

j=l

2j∆jg
∥∥∥

Lq(R;X)
,

(2.11) c−1
∥∥∥

k∑

j=l

2−j∆jg
∥∥∥

Lq(R;X)

≤
∥∥∥

k∑

j=l

∆jg
∥∥∥

Ŵ−1,q(R;X)
≤ c

∥∥∥
k∑

j=l

2−j∆jg
∥∥∥

Lq(R;X)
.

Proof. Define

m1(ξ) =
∑

j∈Z

2j

ξ
χ[2j ,2j+1)(ξ), m2(ξ) =

∑

j∈Z

ξ

2j
χ[2j ,2j+1)(ξ).

Obviously supj∈Z Var(χ[2j ,2j+1)mi) < ∞ for i = 1, 2, where “Var” means the
total variation on R. Note that for i = 1, 2,

mi(ξ) =
∑

j∈Z

χ[2j ,2j+1)(ξ)mi(ξ) ∀ξ ∈ R and mi(ξ) = 0 for ξ < 0.
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Then by [27, Theorem 3.2], mi, i = 1, 2, is a Marcinkiewicz type multiplier
in Lq(R; X), that is, there is a constant c > 0 satisfying

‖F−1(mif̂)‖Lq(R;X) ≤ c‖f‖Lq(R;X) for all f ∈ Lq(R; X).

Consequently, for each g ∈ Lq(R; X) we get

∥∥∥
k∑

j=l

2j∆jg
∥∥∥

Lq(R;X)
=

∥∥∥∥F−1

( k∑

j=l

2j

ξ
χ[2j ,2j+1)(ξ)D̂g(ξ)

)∥∥∥∥
Lq(R;X)

=
∥∥∥F−1

(
m1F

(
D

( k∑

j=l

∆jg
)))∥∥∥

Lq(R;X)

≤ c
∥∥∥

k∑

j=l

∆jg
∥∥∥

Ŵ 1,q(R;X)
.

The second inequality of (2.10) is proved using the multiplier m2, that is,
we have

∥∥∥
k∑

j=l

∆jg
∥∥∥

Ŵ 1,q(R;X)
=

∥∥∥
k∑

j=l

F−1(ξ χ[2j ,2j+1)(ξ)ĝ(ξ))
∥∥∥

Lq(R;X)

=
∥∥∥F−1

(
m2F

( k∑

j=l

2j∆jg
))∥∥∥

Lq(R;X)

≤ c
∥∥∥

k∑

j=l

2j∆jg
∥∥∥

Lq(R;X)
.

The estimate (2.11) is proved similarly.

Now let Σ be a bounded Lipschitz domain of R
n−1. Then Lr(Σ) and

Ŵ 1,r(Σ) are UMD spaces for all r ∈ (1,∞) (see e.g. [7, Theorem III.4.5.2].

Lemma 2.9. Suppose m : R \ {0} → R satisfies

sup
ξ∈R\{0}

|m(ξ)| ≤ c0, sup
ξ∈R\{0}

|ξm′(ξ)| ≤ c0.

Then the multiplier operator defined by

Mf := F−1(mf̂ )

is bounded in Lq(R; Ŵ−1,r(Σ)) and Ŵ−1,q(R; Lr(Σ)), respectively , with

bound c = c(q, r, Σ)c0 for q, r ∈ (1,∞).

Proof. It is trivial to deduce from [28, Proposition 3] that M is bounded

in Lq(R; Ŵ−1,r(Σ)) since Ŵ−1,r(Σ) is a UMD space. Moreover, considering
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(2.1), for f ∈ Ŵ−1,q(R; Lr(Σ)) we get

‖Mf‖
Ŵ−1,q(R;Lr(Σ))

= ‖MF−1(ξ−1f̂ )‖Lq(R;Lr(Σ)) ≤ c‖f‖
Ŵ−1,q(R;Lr(Σ))

,

which completes the proof of this lemma.

Lemma 2.10. Let 1 < q, r < ∞. Then the operator family {Ra,b;
−∞ < a < b < ∞} is R-bounded in Lq(R; Lr(Σ)).

Proof. In the proof of [11, Theorem 3.19], the R-boundedness of the
operator family {Ra,b; a, b ∈ R} in Lq(R; X) is shown for UMD spaces X.

For more details on UMD spaces, R-boundedness, Schauder decomposi-
tions and multiplier theorems for Banach space-valued multiplier functions
we refer to [10], [11] and [23].

3. Generalized resolvent estimate. In this section we study the
Stokes resolvent system (Rλ) on Ω (see Introduction), where Ω = Σ × R is
an infinite straight cylinder with cross-section Σ ⊂ R

n−1, n ≥ 3, a bounded
domain of class C1,1. Let a general point x ∈ Ω be written in the form
x = (x′, xn) ∈ Ω, where x′ ∈ Σ and xn ∈ R. Similarly, differential operators
in R

n are split, in particular, ∆ = ∆′ + ∂2
n and ∇ = (∇′, ∂n). The Fourier

transform in the variable xn is denoted by F or ∧ and the inverse Fourier
transform by F−1 or ∨.

First, we consider the spaces relating to the divergence equation. If u ∈
W 2;q,r(Ω)∩W 1;q,r

0 (Ω) for some q, r ∈ (1,∞) solves the divergence equation
of (Rλ), then

(3.1) g ∈ W 1;q,r(Ω) ∩ Ŵ−1;q,r(Ω).

In fact, given ϕ ∈ Ŵ 1;q′,r′(Ω) and a sequence (ϕk) ⊂ C∞
0 (Ω) converging to

ϕ in Ŵ 1;q′,r′(Ω) (see Lemma 2.1(ii)), for all k ∈ N we have

〈g, ϕk〉 =
\
Ω

div u ϕk dx = −
\
Ω

u · ∇ϕk dx.

Hence 〈g, ϕ〉 is well defined and ‖g‖
Ŵ−1;q,r(Σ)

≤ ‖u‖Lq(R;Lr(Σ)).

Moreover, we shall show that

(3.2) Ŵ−1;q,r(Ω) = Lq(R; Ŵ−1,r(Σ)) + Ŵ−1,q(R; Lr(Σ))

with equivalent norms. In fact, if g ∈ Ŵ−1;q,r(Ω), then there exist functions

f1, f2 ∈ Lq(R; Lr(Σ)) such that for all ϕ ∈ Ŵ 1;q′,r′(Ω),

〈g, ϕ〉 =
\
Ω

f1 · ∇
′ϕdx +

\
Ω

f2∂nϕdx and ‖g‖−1;q,r = ‖f1, f2‖Lq(R;Lr(Σ)),

where 〈·, ·〉 denotes the duality product between Ŵ−1;q,r(Ω) and Ŵ 1;q′,r′(Ω).
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Now, defining g1, g2 by

〈g1, ϕ〉 =
\
Ω

f1 · ∇
′ϕdx, 〈g2, ϕ〉 =

\
Ω

f2∂nϕdx,

we get g = g1 + g2, g1 ∈ Lq(R; Ŵ−1,r(Σ)), g2 ∈ Ŵ−1,q(R; Lr(Σ)) and

‖g1‖Lq(R;Ŵ−1,r(Σ))
≤‖f1‖Lq(R;Lr(Σ)), ‖g2‖Ŵ−1,q(R;Lr(Σ))

≤‖f2‖Lq(R;Lr(Σ)).

Hence the space Ŵ−1;q,r(Ω) is continuously embedded in Lq(R; Ŵ−1,r(Σ))+

Ŵ−1,q(R; Lr(Σ)). The continuity of the other embedding is trivial.

Proof of Theorem 1.1. To prove the existence of a solution, it is enough
to consider the case f = 0, g ∈ S(R; W 1,2(Σ)) ∩ Ŵ−1;q,2(Ω). Actually,
the theorem is already proved for the case f 6= 0, g = 0 (see [17, Theo-

rem 1.1]. Moreover, we mention that S(R; W 1,2(Σ)) ∩ Ŵ−1;q,2(Ω) is dense

in W 1;q,2(Ω) ∩ Ŵ−1;q,2(Ω); for the proof standard techniques as in [26,
Ch. I, 1.2] may be used.

By [17, Theorem 3.4] for every ξ ∈ R
∗ and λ ∈ −α+Sε the parametrized

Stokes system (Rλ,ξ) with F = f̂ = 0 and G = ĝ ∈ W 1,2(Σ) (see the
Introduction) has a unique solution

(UG, PG) := (UG(ξ), PG(ξ)) ∈ (W 2,2(Σ) ∩ W 1,2
0 (Σ)) × W 1,2(Σ).

To cite the corresponding resolvent estimates we introduce the function
space L2

(m) = L2
(m)(Σ) = {G ∈ L2(Σ);

T
Σ Gdx′ = 0} of functions with

vanishing mean and the norm

(3.3) ‖G; L2
(m) + L2

1/ξ‖0 := inf{‖G0‖Ŵ−1,2(Σ)
+ ‖G1/ξ‖2;Σ;

G = G0 + G1, G0 ∈ L2
(m)(Σ), G1 ∈ L2(Σ)}.

Then we have the estimate

(3.4) ‖(λ + α)UG, ξ2UG, ξ∇′UG,∇′2UG, ξPG,∇′PG‖2;Σ

≤ c(‖∇′G, G, ξG‖2;Σ + (|λ| + 1)‖G; L2
(m) + L2

1/ξ‖0),

and (see [17, Corollary 3.6])

(3.5)

∥∥∥∥ξ
d

dξ
((λ + α)UG, ξ2UG, ξ∇′UG,∇′2UG, ξPG,∇′PG)

∥∥∥∥
2;Σ

≤ c(‖∇′G, G, ξG‖2;Σ + (|λ| + 1)‖G; L2
(m) + L2

1/ξ‖0);

here the constant c = c(α, ε, Σ) > 0 is independent of λ ∈ −α + Sε and
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ξ ∈ R
∗. Moreover, if

T
Σ Gdx′ = 0, on the right-hand sides of (3.4) and (3.5)

the factor |λ| + 1 may be replaced by |λ|. Therefore, the operator M(ξ) :
W 1,2(Σ) → L2(Σ), defined for ξ ∈ R

∗ by

M(ξ)G := ((λ + α)UG, ξ2UG, ξ∇′UG,∇′2UG, ξPG,∇′PG),

is Fréchet differentiable in ξ ∈ R
∗ and satisfies the estimates

(3.6a) ‖M(ξ)G, ξM ′(ξ)G‖2,Σ

≤ c(α, ε, Σ)(‖∇′G, G, ξG‖2;Σ + (|λ| + 1)‖G; L2
(m) + L2

1/ξ‖0)

and, if
T
Σ Gdx′ = 0,

(3.6b) ‖M(ξ)G, ξM ′(ξ)G‖2,Σ

≤ c(α, ε, Σ)(‖∇′G, G, ξG‖2;Σ + |λ|‖G; L2
(m) + L2

1/ξ‖0).

Let

(3.7) u := F−1
ξ Uĝ(ξ), p := F−1

ξ Pĝ(ξ).

We shall show that {u, p} is the unique solution to (Rλ) satisfying (1.1).
Obviously {u, p} solves (Rλ) with right-hand side (0, g) in the sense of dis-
tributions. For the proof of (1.1), we may assume without loss of generality
that supp ĝ ⊂ [0,∞) due to the relation

g(x′, xn) = (χ[0,∞)ĝ(ξ))∨(x′, xn) + (χ(−∞,0]ĝ(ξ))∨(x′, xn)

= (χ[0,∞)ĝ(ξ))∨(x′, xn) + (χ[0,∞)ĝ(−ξ))∨(x′,−xn)

and due to the linearity of the problem (Rλ). Since ((λ + α)u,∇2u,∇p) =
(M(ξ)ĝ(ξ))∨, our aim is to estimate ‖(M(ξ)ĝ(ξ))∨‖Lq(R;L2(Σ)).

For notational convenience, we introduce the space

X = W 1;q,2(Ω) ∩ Ŵ−1;q,2(Ω)

= (W 1,q(R; L2(Σ)) ∩ Lq(R; W 1,2(Σ)))

∩ (Ŵ−1,q(R; L2(Σ)) + Lq(R; Ŵ−1,2(Σ))).

As mentioned in Section 2 the operator family {∆j = F−1χ[2j ,2j+1)(ξ)F ;
j ∈ Z} is easily seen to be a Schauder decomposition of RX , the image of
X under the Riesz projection R; hence g =

∑
j∈Z

∆jg in X . Moreover, for
s ∈ R we define

Rs = F−1χ[s,∞)F .

Note that M(ξ) = M(2j) +
Tξ
2j M ′(τ) dτ for ξ ∈ [2j , 2j+1), j ∈ Z, and

that obviously (M(2j)∆̂jg)∨ = M(2j)∆jg; furthermore,
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( ξ\
2j

M ′(τ) dτ ∆̂jg(ξ)
)∨

=
( 2j+1\

2j

M ′(τ)χ[2j ,ξ)(τ)∆̂jg(ξ) dτ
)∨

=
( 1\

0

2jM ′(2j(1 + t))χ[2j ,ξ)(2
j(1 + t))χ[2j ,2j+1)(ξ)ĝ(ξ) dt

)∨

=

1\
0

2jM ′(2j(1 + t))

2j+1\
2j(1+t)

ĝ(ξ)eixnξ dξ dt

=

1\
0

2jM ′(2j(1 + t))(R2j(1+t) − R2j+1)∆jg dt.

Thus we get

(3.8) (M(ξ)ĝ(ξ))∨ =
( ∑

j∈Z

χ[2j ,2j+1)(ξ)M(ξ)∆̂jg
)∨

=
∑

j∈Z

((
M(2j) +

ξ\
2j

M ′(τ) dτ
)
∆̂jg

)∨

=
∑

j∈Z

(M(2j)∆̂jg)∨ +
∑

j∈Z

( ξ\
2j

M ′(τ) dτ∆̂jg
)∨

=
∑

j∈Z

M(2j)∆jg +
∑

j∈Z

1\
0

2jM ′(2j(1 + t))(R2j(1+t) − R2j+1)∆jg dt.

To estimate the first term on the right-hand side of (3.8) in Lq(R; L2(Σ)),
note that for each j ∈ Z the operator M(2j) commutes with ∆j and
that {∆j ; j ∈ Z} is a Schauder decomposition of RLq(R; L2(Σ)). Then
Lemma 2.6 and (3.4) yield the estimate

(3.9)
∥∥∥

k∑

j=l

M(2j)∆jg
∥∥∥

Lq(R;L2(Σ))
≤ c

∥∥∥
( k∑

j=l

‖M(2j)∆jg‖
2
2;Σ

)1/2
‖q,R

≤ c
(∥∥∥

( k∑

j=l

‖∆jg‖
2
1,2;Σ

)1/2∥∥∥
q,R

+
∥∥∥
( k∑

j=l

22j‖∆jg‖
2
2;Σ

)1/2∥∥∥
q,R

+ (|λ| + 1)
∥∥∥
( k∑

j=l

‖∆jg; L2
(m) + L2

1/2j‖
2
0

)1/2∥∥∥
q,R

)

with c = c(α, ε, q, Σ).

Now, let us estimate each term on the right-hand side of (3.9). Again,
using Lemma 2.6, we get
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(3.10)
∥∥∥
( k∑

j=l

‖∆jg‖
2
1,2;Σ

)1/2∥∥∥
q,R

≤ c(q, Σ)
∥∥∥

k∑

j=l

∆jg
∥∥∥

Lq(R;W 1,2(Σ))
.

By analogy, exploiting also Lemma 2.8,

∥∥∥
( k∑

j=l

22j‖∆jg‖
2
2;Σ

)1/2∥∥∥
q,R

≤ c(q, Σ)
∥∥∥

k∑

j=l

2j∆jg
∥∥∥

Lq(R;L2(Σ))
(3.11)

≤ c(q, Σ)
∥∥∥

k∑

j=l

∆jg
∥∥∥

Ŵ 1,q(R;L2(Σ))
.

In order to get an estimate of the last term on the right-hand side of (3.9), let
k∑

j=l

∆jg = g0 + g1, g0 ∈ Lq(R; Ŵ−1,2(Σ)), g1 ∈ Ŵ−1,q(R; L2(Σ)),

be any splitting of
∑k

j=l ∆jg. Note that ∆jg = ∆jg0 + ∆jg1 for all j =

l, . . . , k, and moreover, by Lemma 2.7, ∆jg1 ∈ Lq(R; L2(Σ)) and conse-

quently even ∆jg0 ∈ Lq(R; Ŵ−1,2(Σ)∩L2(Σ)) = Lq(R; L2
(m)(Σ)). By the tri-

angle inequality and Lemma 2.6 applied also in the Hilbert space Ŵ−1,2(Σ)
we get

∥∥∥
( k∑

j=l

‖∆jg; L2
(m) + L2

1/2j‖
2
0

)1/2∥∥∥
q,R

≤
∥∥∥
( k∑

j=l

‖∆jg0‖
2
−1,2;Σ

)1/2∥∥∥
q,R

+
∥∥∥
( k∑

j=l

2−2j‖∆jg1‖
2
2;Σ

)1/2∥∥∥
q,R

≤ c
(∥∥∥

k∑

j=l

∆jg0

∥∥∥
Lq(R;Ŵ−1,2(Σ))

+
∥∥∥

k∑

j=l

2−j∆jg1

∥∥∥
Lq(R;L2(Σ))

)
.

Then Lemma 2.8, Lemma 2.10 and (3.2) imply the estimate

(3.12)
∥∥∥
( k∑

j=l

‖∆jg; L2
(m) + L2

1/2j‖
2
0

)1/2∥∥∥
q,R

≤ c
(∥∥∥

k∑

j=l

∆jg0

∥∥∥
Lq(R;Ŵ−1,2(Σ))

+
∥∥∥

k∑

j=l

∆jg1

∥∥∥
Ŵ−1,q(R;L2(Σ))

)

≤ c(‖g0‖Lq(R;Ŵ−1,2(Σ))
+ ‖g1‖Ŵ−1,q(R;L2(Σ))

)

≤ c(q, Σ)
∥∥∥

k∑

j=l

∆jg
∥∥∥

Ŵ−1;q,2(Ω)
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with c = c(q, Σ) independent of l, k ∈ Z. Summarizing (3.9)–(3.12), we
get

(3.13)
∥∥∥

k∑

j=l

M(2j)∆jg
∥∥∥

Lq(R;L2(Σ))

≤ c
(∥∥∥

k∑

j=l

∆jg
∥∥∥

W 1;q,2(Ω)
+ (|λ| + 1)

∥∥∥
k∑

j=l

∆jg
∥∥∥

Ŵ−1;q,2(Ω)

)

with c = c(α, ε, q, Σ) for all l, k ∈ Z and all λ ∈ −α + Sε. Since (∆j)j∈Z

defines unconditional Schauder decompositions of the spaces RW 1;q,2(Ω)

and RŴ−1;q,2(Ω), (3.13) implies that the series
∑

j∈Z
M(2j)∆jg converges

in Lq(R; L2(Σ)) and
∥∥∥

∑

j∈Z

M(2j)∆jg
∥∥∥

Lq(R;L2(Σ))
≤ c(‖g‖W 1;q,2(Ω) + (|λ| + 1)‖g‖

Ŵ−1;q,2(Ω)
)

with c = c(α, ε, q, Σ). This is the desired estimate of the first term on the
right-hand side of (3.8).

Next let us estimate the second term on the right-hand side of (3.8).
Note that the operator family

{R2j(1+t) − R2j+1 ; j ∈ N, t ∈ (0, 1)} ⊂ L(Lq(R; L2(Σ)))

is R-bounded (cf. Lemma 2.10). Moreover, for t ∈ (0, 1), the operator
M(2j(1 + t)) commutes with the operator Bj,t := R2j(1+t) − R2j+1 and
the range of Bj,t is contained in the range of ∆j . Hence it follows from (2.3),
(2.5) that for any independent symmetric {−1, 1}-valued random variables
{εj(s)} on (0, 1),

(3.14)
∥∥∥

k∑

j=l

1\
0

2jM ′(2j(1 + t))Bj,t∆jg dt
∥∥∥

Lq(R;L2(Σ))

≤
1\
0

∥∥∥
k∑

j=l

2jBj,tM
′(2j(1 + t))∆jg

∥∥∥
Lq(R;L2(Σ))

dt

≤ c∆

1\
0

∥∥∥
k∑

j=l

εj(s)2
jBj,tM

′(2j(1 + t))∆jg
∥∥∥

Lq(0,1;Lq(R;L2(Σ)))
dt

≤ c

1\
0

∥∥∥
k∑

j=l

εj(s)2
jM ′(2j(1 + t))∆jg

∥∥∥
Lq(0,1;Lq(R;L2(Σ)))

dt.

By similar arguments to the proof of Lemma 2.6 we estimate the right-hand
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side of (3.14) by

(3.15) c

1\
0

∥∥∥
k∑

j=l

εj(s)2
jM ′(2j(1 + t))∆jg

∥∥∥
Lq(R;L2(0,1;L2(Σ)))

dt

≤ c

1\
0

∥∥∥
( k∑

j=l

‖2j(1 + t)M ′(2j(1 + t))∆jg‖
2
2,Σ

)1/2∥∥∥
q,R

dt

with c = c(q, Σ). Therefore it follows from (3.6a) and the arguments leading
from (3.9) to (3.13) that the right-hand side of (3.15) is bounded by

c(α, ε, q, Σ)

1\
0

∥∥∥
{ k∑

j=l

‖∆jg‖
2
W 1,2(Σ) + 22j(1 + t)2‖∆jg‖

2
2;Σ

+ |λ + 1|2‖∆jg; L2
(m) + L2

2−j(1+t)−1‖
2
0]

}1/2∥∥∥
q,R

dt

≤ c(α, ε, q, Σ)
(∥∥∥

( k∑

j=l

‖∆jg‖
2
W 1,2(Σ)

)1/2∥∥∥
q,R

+
∥∥∥
( k∑

j=l

22j‖∆jg‖
2
2;Σ

)1/2∥∥∥
q,R

+ |λ + 1|
∥∥∥
( k∑

j=l

‖∆jg; L2
(m) + L2

2−j‖
2
0

)1/2∥∥∥
q,R

)

≤ c(α, ε, q, Σ)(‖g‖W 1;q,2(Ω) + (|λ| + 1)‖g‖
Ŵ−1;q,2(Ω)

).

Thus we finally proved the existence of a solution satisfying the estima-
te (1.1). It is clear that if

T
Σ g(x′, ·) dx′ = 0, the solution satisfies the esti-

mate (1.2); for the proof, use (3.6b) in place of (3.6a).

The uniqueness of the solution is obvious from the uniqueness result for
f 6= 0, g = 0 (see [17]). The proof of the theorem is complete.

Remark 3.1. Theorem 1.1 may be applied to obtain resolvent estimates
of the Stokes system for more general domains, e.g. for unbounded cylindri-
cal domains with several outlets to infinity. Let Ω =

⋃m
i=0 Ωi be a cylindrical

domain of class C1,1 such that Ω0 is a bounded domain and Ωi, i = 1, . . . , m,
are semi-infinite straight cylinders with boundaries of class C1,1; to be
more precise, for each i = 1, . . . , m, we may find orthogonal coordinates
xi = (xi

1, . . . , x
i
n) such that

Ωi = {xi ∈ R
n; xi

n > 0, (xi
1, . . . , x

i
n−1) ∈ Σi}

and Ωi ∩ Ωj = ∅ for i, j = 1, . . . , m with i 6= j. Without loss of generality
we may assume that there exist cut-off functions {ϕi}

m
i=0 such that

m∑

i=0

ϕi(x) = 1, 0 ≤ ϕi(x) ≤ 1 for x ∈ Ω,

ϕi ∈ C∞(Ωi), suppϕi ⊂ Ωi \ (∂Ωi ∩ Ω), i = 0, . . . , m.
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Now consider the resolvent system

(Rλ)

λu − ∆u + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

and let {u, p} be a solution to (Rλ). Then we are led to a resolvent system
with unknown {ϕ0u, ϕ0p} on Ω0,

(Rλ)0

λ(ϕ0u) − ∆(ϕ0u) + ∇(ϕ0p) = f0 in Ω0,

div(ϕ0u) = g0 in Ω0,

ϕ0u = 0 on ∂Ω0,

where

f0 := ϕ0f + (∇ϕ0)p − (∆ϕ0)u − 2∇ϕ0 · ∇u, g0 := ∇ϕ0 · u,

and a finite number of resolvent systems with unknowns {ϕ̃iu, ϕ̃ip} on Ω̃i,
i = 1, . . . , m,

(Rλ)i

λ(ϕ̃iu) − ∆(ϕ̃iu) + ∇(ϕ̃ip) = f̃ i in Ω̃i,

div(ϕ̃iu) = g̃i in Ω̃i,

ϕ̃iu = 0 on ∂Ω̃i,

where Ω̃i is the infinite straight cylinder extending the semi-infinite cylinder
Ωi; moreover, ϕ̃iu, ϕ̃ip, f̃ i, g̃i are the zero extensions onto Ω̃i of the functions
ϕiu, ϕip,

f i := ϕif + (∇ϕi)p − (∆ϕi)u − 2∇ϕi · ∇u, gi := ∇ϕi · u,

respectively. Obviously
T
Ω0

g0 dx = 0,
T̃
Ωi

g̃i dx = 0, i = 1, . . . , m. Then,
under suitable assumptions on f , using the results for Stokes resolvent sys-
tems on bounded domains (see e.g. [14]) for (Rλ)0 and Theorem 1.1 for
(Rλ)i, i = 1, . . . , m, we may obtain a priori estimates for {ϕ0u, ϕ0p} and
{ϕ̃iu, ϕ̃ip}, i = 1, . . . , m, with norms of lower order terms on the right-hand
side. Finally, we get estimates for u =

∑m
i=0 ϕiu and p =

∑m
i=0 ϕip using a

well known contradiction argument (see [14]).
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