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Dual Bana
h algebras: representations and inje
tivitybyMatthew Daws (Oxford)
Abstra
t. We study representations of Bana
h algebras on re�exive Bana
h spa
es.Algebras whi
h admit su
h representations whi
h are bounded below seem to be a goodgeneralisation of Arens regular Bana
h algebras; this 
lass in
ludes dual Bana
h algebrasas de�ned by Runde, but also all group algebras, and all dis
rete (weakly 
an
ellative)semigroup algebras. Su
h algebras also behave in a similar way to C∗- and W∗-algebras;we show that interpolation spa
e te
hniques 
an be used in pla
e of GNS type arguments.We de�ne a notion of inje
tivity for dual Bana
h algebras, and show that this is equivalentto Connes-amenability. We 
on
lude by looking at the problem of de�ning a well-behavedtensor produ
t for dual Bana
h algebras.1. Introdu
tion. It has been known for some time (see [20℄ and [37℄)that a Bana
h algebra A whi
h admits a faithful representation on a re�ex-ive Bana
h spa
e has an intrinsi
 
hara
terisation, namely that the weaklyalmost periodi
 fun
tionals, written WAP(A′) (see below for the de�nition),separate the points of A. Similarly, if we wish to �nd an isometri
 representa-tion of this kind, we need only ask that WAP(A′) form a norming set for A.We shall 
all A a WAP-algebra when A admits an isomorphi
 representationon a re�exive Bana
h spa
e. Su
h algebras seem not to have been studiedabstra
tly before, but they seem to be a good generalisation of Arens regularBana
h algebras, and to form a good framework for studying dual Bana
halgebras.We follow the notation of [8℄, writing 〈·, ·〉 for the dual pairing betweena Bana
h spa
e E and its dual, E′. We write κE : E → E′′ for the 
anoni
almap given by 〈κE(x), µ〉 = 〈µ, x〉 for x ∈ E and µ ∈ E′. When E is re�exive,we tend to identify E with E′′. We write B(E,F ) for the spa
e of all boundedlinear operators between Bana
h spa
es E and F , and we denote by F(E,F ),

A(E,F ), K(E,F ) and W(E,F ) the subspa
es of, respe
tively, �nite-rank,2000 Mathemati
s Subje
t Classi�
ation: Primary 47L10; Se
ondary 46B70, 46H05,46H15, 46H99, 46M05, 43A10, 43A20, 46A25, 46A32, 46A35, 46L10, 46L06, 46M10.Key words and phrases: dual Bana
h algebra, von Neumann algebra, Connes-amenability, group algebra, unique predual.[231℄



232 M. Dawsapproximable, 
ompa
t and weakly 
ompa
t operators (so A(E,F ) is theoperator-norm 
losure of F(E,F ) in B(E,F )). We write B(E) for B(E,E),and so forth.A dual Bana
h algebra is a Bana
h algebra A su
h that A = E′, as aBana
h spa
e, for some Bana
h spa
e E, and su
h that the multipli
ation on
A is separately weak∗-
ontinuous. Re
all that a W∗-algebra is a C∗-algebrawhi
h is a dual Bana
h algebra. However, it is known that the multipli
ation(and the involution) are automati
ally weak∗-
ontinuous in this 
ase. We use[32℄ as general referen
es for C∗- and W∗-algebras. Dual Bana
h algebraswere introdu
ed in [30℄, but had been studied previously under di�erentnames.For a Bana
h algebra A, we turn A′ into an A-bimodule in the obviousway, by setting

〈a · µ, b〉 = 〈µ, ba〉, 〈µ · a, b〉 = 〈µ, ab〉 (a, b ∈ A, µ ∈ A′).We may then 
he
k, for a dual Bana
h algebra A = E′, that κE(E) is asubmodule of A′ = E′′. We 
all E the predual of A, and write (A, E) if wewish to stress whi
h predual we are using, and often write A∗ for E. In thisspe
ial 
ase, we shall often suppress the map κA∗
, and speak of A∗ as beinga subspa
e of A′ (see De�nition 2.6 for a justi�
ation of this). We later studywhen su
h preduals are unique, both in the isometri
 sense (as is well-knownfor W∗-algebras) and the isomorphi
 sense, whi
h seems more natural forBana
h algebras.When E is a re�exive Bana
h spa
e, the proje
tive tensor produ
t of Ewith its dual E′, denoted by E′ ⊗̂ E, is the 
anoni
al predual for B(E) (see[30℄). This indu
es a weak∗-topology on B(E). Re
all that the norm on E′⊗̂Eis π(·), de�ned by

π(τ) = inf
{ n∑

k=1

‖xk‖ ‖yk‖ : τ =
n∑

k=1

xk ⊗ yk

}
(τ ∈ E′ ⊗ E).

We write E′ ⊗̂ E and not E ⊗̂ E′ as the former makes more sense when
E is not ne
essarily re�exive; the two spa
es are isometri
ally isomorphi
.Here and elsewhere, we refer the reader to [31℄, [13℄ or [14, Chapter VIII℄ forfurther details on tensor produ
ts of Bana
h spa
es.Let A be a Bana
h algebra, and for µ ∈ A′, de�ne Lµ, Rµ ∈ B(A,A′) by

Lµ(a) = µ · a, Rµ(a) = a · µ (a ∈ A).Then µ ∈ WAP(A′) if and only if Lµ ∈ W(A,A′) (whi
h is equivalent to
Rµ ∈ W(A,A′)). This notation di�ers from that sometimes used, but follows[28, Se
tion 4℄, for example. It may be easily 
he
ked (as we do below) thatfor a dual Bana
h algebra (A,A∗), we have A∗ ⊆ WAP(A′). It hen
e imme-diately follows from [37℄ that there exists a re�exive Bana
h spa
e E and an
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tivity 233isometri
 representation π : A → B(E) (here representation simply means ahomomorphism to a Bana
h algebra of the form B(E)). However, it is notimmediately apparent if su
h a representation need be weak∗-
ontinuous. Asusual, we may regard representations and left modules as inter
hangeable,so this question is equivalent to E being normal in the sense of [28℄. Weshow below that we 
an indeed 
hoose E to be normal (a
tually, our argu-ment is very similar to that used by Kaijser and Young, but the requiredma
hinery, interpolation spa
es, shall be needed later anyway). This showsthat dual Bana
h algebras 
an be thought of as �abstra
t� weak∗-
losed sub-algebras of B(E) for re�exive Bana
h spa
es E. This exa
tly mirrors the fa
tthat W∗-algebras are abstra
t von Neumann algebras, that is, weak∗-
losed(whi
h in this 
ontext agrees with weak operator topology 
losed) self-adjointsubalgebras of B(H) for a Hilbert spa
e H.A derivation from a Bana
h algebra A to an A-bimodule E is a boundedlinear map d su
h that d(ab) = a · d(b) + d(a) · b. Fix x ∈ E, and de�ne
d by d(a) = a · x − x · a. Then d is a derivation, 
alled an inner deriva-tion. We say that A is amenable if every derivation from A to a dual A-bimodule E′ is inner. We refer the reader to [29℄ for details on amenabil-ity. Similarly, Runde de�nes a dual Bana
h algebra (A,A∗) to be Connes-amenable if every weak∗-
ontinuous derivation to a normal, dual A-bimoduleis inner.For a W∗-algebra A, it is this notion of amenability whi
h seems mostnatural. One of the major a
hievements of C∗-algebra theory has been togive equivalent natural 
onditions for a W∗-algebra to be Connes-amenable(see [29, Chapter 6℄). One of these is the notion of inje
tivity. We de�ne asimilar (though weaker) notion for dual Bana
h algebras, and show that itis equivalent to Connes-amenability.We �nish the paper with a study of tensor produ
ts of dual Bana
h alge-bras. This last se
tion is slightly more spe
ulative, but it is the author's opin-ion that fully understanding tensor produ
ts seems 
entral to understandingnotions of amenability: 
ertainly the rather well-behaved tensor produ
ts ofC∗-algebras play a 
entral role in the theory of amenability for su
h algebras(for example, the fa
t that amenability is equivalent to nu
learity).

2. Basi
 properties of WAP and dual Bana
h algebras. In thisse
tion, we shall study the basi
 properties of dual Bana
h algebras, andde�ne WAP-algebras.Following, for example, [8℄, in dealing with Bana
h algebras, we assume,by means of standard renormings, that the produ
t is 
ontra
tive (and notmerely bounded) and that a unit always has norm one. This philosophy is
ompatible with dual Bana
h algebras:



234 M. DawsProposition 2.1. Let E be a Bana
h spa
e su
h that A = E′ admits abounded algebra produ
t. Then there is an equivalent norm on E su
h that
A be
omes a Bana
h algebra. If A has a unit eA, we may 
hoose this normsu
h that ‖eA‖ = 1.Proof. Suppose that 1 < M = sup{‖ab‖ : a, b ∈ A, ‖a‖ = ‖b‖ = 1}, forif M ≤ 1, we have nothing to do. Then de�ne ‖µ‖0 = M−1‖µ‖ for µ ∈ E.For a ∈ A, we then have ‖a‖0 = sup{|〈a, µ〉| : ‖µ‖ ≤ M} = M‖a‖, so that
‖ab‖0 = M‖ab‖ ≤M2‖a‖ ‖b‖ = ‖a‖0‖b‖0.Now suppose that A has a unit eA. Let

X = convex{a · µ : ‖a‖0 = ‖µ‖0 ≤ 1} ⊆ E,so that for µ ∈ E, we have µ = eA · µ ∈ ‖eA‖0‖µ‖0X. Thus we 
an de�ne
‖ · ‖1 on E by

‖µ‖1 = inf{t > 0 : µ ∈ tX} (µ ∈ E),and �nd that ‖µ‖1 ≤ ‖eA‖0‖µ‖0. Conversely, we haveX⊆{µ∈E : ‖µ‖0≤1},so if ‖µ‖1 = 1, then for ea
h ε > 0, we see that µ ∈ (1 + ε)X ⊆ {(1 + ε)λ :
λ ∈ E, ‖λ‖0 ≤ 1}, and so ‖µ‖0 ≤ 1. Thus ‖ · ‖1 is equivalent to ‖ · ‖0 andhen
e also equivalent to ‖ · ‖.Then, for a ∈ A, we have
‖a‖1 = sup{|〈a, µ〉| : µ ∈ X} = sup

{∣∣∣
n∑

j=1

〈a, bj · µj〉
∣∣∣ :

n∑

j=1

‖bj‖0‖µj‖0 ≤ 1
}

= sup{|〈a, b · µ〉| : ‖b‖0 = ‖µ‖0 ≤ 1} = sup{‖ab‖0 : ‖b‖0 = 1}.Note that ‖ab‖0 ≤ ‖a‖1‖b‖0 for a, b ∈ A. Hen
e
‖ab‖1 = sup{‖abc‖0 : ‖c‖0 = 1} ≤ ‖a‖1 sup{‖bc‖0 : ‖c‖0 = 1} = ‖a‖1‖b‖1,and 
learly ‖eA‖1 = 1, as required.Let (A,A∗) be a dual Bana
h algebra, and let A♭

∗ be the Bana
h spa
e
A∗ ⊕ C with norm

‖(µ, α)‖ = max(‖µ‖, |α|) (µ ∈ A∗, α ∈ C).Then (A♭
∗)

′ = A⊕ C = A♭ with norm
‖(a, β)‖ = ‖a‖ + |β| (a ∈ A, β ∈ C).We turn A♭ into a Bana
h algebra by setting (a, α)(b, β) = (ab+βa+αb, αβ).It is a simple veri�
ation that then (A♭,A♭

∗) is a dual Bana
h algebra.We set (A,A∗)
♯ to be (A,A∗) when A is unital, and to be (A♭,A♭

∗)otherwise. This gives us a (rather 
rude, it turns out) way to unitise a dualBana
h algebra.Lemma 2.2. Let E be a Bana
h spa
e su
h that A = E′ is a Bana
halgebra. Then (A, E) is a dual Bana
h algebra if and only if κE(E) ⊆ A′ isa sub-A-bimodule.
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tivity 235Proof. This is a routine 
al
ulation showing that the produ
t is sepa-rately weak∗-
ontinuous if and only if E is an A-bimodule.We shall now re
all the Arens produ
ts whi
h shall allow us to prove somesimple fa
ts about dual Bana
h algebras (mu
h in the spirit of [26℄). Most ofthe following results are folklore (
ompare, for example, with [22, Se
tion 1℄)but do not appear to have formally been 
olle
ted together before.For a Bana
h algebra A, we turn A′ into a Bana
h A-bimodule in thestandard way (and hen
e A′′ as well). We then de�ne bilinear maps A′′×A′

→ A′ and A′ ×A′′ → A′ by
〈Φ · µ, a〉 = 〈Φ, µ · a〉, 〈µ · Φ, a〉 = 〈Φ, a · µ〉 (a ∈ A, µ ∈ A′, Φ ∈ A′′).We then de�ne two bilinear maps �,♦ : A′′ ×A′′ → A′′ by
〈Φ� Ψ, µ〉 = 〈Φ, Ψ · µ〉, 〈Φ ♦ Ψ, µ〉 = 〈Ψ, µ · Φ〉 (µ ∈ A′, Φ, Ψ ∈ A′′).We 
an then 
al
ulate

(µ · Φ) · Ψ = µ · (Φ ♦ Ψ), Φ · (Ψ · µ) = (Φ� Ψ) · µ (µ ∈ A′, Φ, Ψ ∈ A′′),from whi
h it follows that � and ♦ are Bana
h algebra produ
ts, 
alledthe �rst and se
ond Arens produ
ts respe
tively (see [25, Se
tion 1.4℄ or[8, Theorem 2.6.15℄ for further details). Furthermore, κA(a) � Φ = a · Φ =
κA(a) ♦ Φ for a ∈ A, Φ ∈ A′′, and similarly Φ� κA(a) = Φ · a = Φ ♦ κA(a).When � = ♦, we say that A is Arens regular, and in this 
ase, we may 
he
kthat (A′′,A′) be
omes a dual Bana
h algebra.Lemma 2.3. Let A be a Bana
h algebra, and let µ ∈ A′. Then µ ∈
WAP(A′) if and only if Rµ ∈ W(A,A′), whi
h happens if and only if
〈Φ� Ψ, µ〉 = 〈Φ ♦ Ψ, µ〉 for Φ, Ψ ∈ A′′.Proof. This is a simple 
al
ulation: see [9, Proposition 3.11℄. A key toolis Gantma
her's theorem, whi
h states that T ∈ W(E,F ) if and only if
T ′′(E′′) ⊆ κF (F ).We also de�ne the two topologi
al 
entres (see [23℄ or [9℄) by

Z
(1)
t (A′′) = {Φ ∈ A′′ : Φ� Ψ = Φ ♦ Ψ (Ψ ∈ A′′)},

Z
(2)
t (A′′) = {Φ ∈ A′′ : Ψ � Φ = Ψ ♦ Φ (Ψ ∈ A′′)}.Then the Arens produ
ts agree on either of the topologi
al 
entres, ea
htopologi
al 
entre is an algebra, and Z

(1)
t (A′′)∩Z

(2)
t (A′′) ⊇ κA(A) is an idealin A′′ with respe
t to either Arens produ
t.For a Bana
h spa
e E, a subspa
e F of E, and a subspa
e G of E′, wede�ne

F⊥ = {µ ∈ E′ : 〈µ, x〉 = 0 (x ∈ F )}, ⊥G = {x ∈ E : 〈µ, x〉 = 0 (µ ∈ G)}.



236 M. DawsIt is then standard that, when F is 
losed, F ′ is isometri
ally isomorphi
 to
E′/F⊥, while (E/F )′ is isometri
ally isomorphi
 to F⊥. The weak∗-
losureof G in E′ is (⊥G)⊥.Proposition 2.4. Let A be a Bana
h algebra, and let X ⊆ A′ be a
losed submodule. Then the following are equivalent :(1) the �rst Arens produ
t drops to a well-de�ned produ
t on X ′ =

A′′/X⊥ turning (X ′, X) into a dual Bana
h algebra;(2) X ⊆ WAP(A′).Furthermore, let A be a subalgebra of Z
(1)
t (A′′) ∩ Z

(2)
t (A′′), and suppose thatthe natural map A → X ′ is surje
tive. Then (1) and (2) hold , and the algebraprodu
t given by (1) agrees with the produ
t indu
ed by the map A → X ′.Proof. For Φ ∈ A′′ and µ ∈ X, suppose that Ψ ∈ A′′ is su
h that

Φ+X⊥ = Ψ +X⊥, so that
〈Φ · µ, a〉 = 〈Φ, µ · a〉 = 〈Ψ, µ · a〉 = 〈Ψ · µ, a〉 (a ∈ A),as X is a submodule. Hen
e there is a well-de�ned map (A′′/X⊥)×A′ → A′given by (Φ+X⊥) ·µ = Φ ·µ, and similarly with orders reversed. It is hen
e
lear that � gives a well-de�ned produ
t on A′′/X⊥ if and only if Φ · µ ∈ Xfor Φ ∈ A′′ and µ ∈ X. If this holds, thenX is anX ′-module if and only if, forea
h µ ∈ X and Φ ∈ A′′, there exists λ ∈ X su
h that 〈Φ� Ψ, µ〉 = 〈Ψ, λ〉for Ψ ∈ A′′. In parti
ular, we see that 〈λ, a〉 = 〈Φ · a, µ〉 = 〈µ · Φ, a〉 for

a ∈ A, that is, λ = µ · Φ, and so we 
on
lude that 〈Φ� Ψ, µ〉 = 〈Φ ♦ Ψ, µ〉for Φ, Ψ ∈ A′′, µ ∈ X, whi
h is equivalent to X ⊆ WAP(A′). Conversely,if (2) holds, then for Φ ∈ A′′, µ ∈ X and Ψ ∈ X⊥, we have 〈Ψ, Φ · µ〉 =
〈Ψ ♦ Φ, µ〉 = 〈Φ, µ · Ψ〉 = 0 as µ ·Ψ = 0, whi
h implies that Φ ·µ ∈ X. Hen
e
onditions (1) and (2) are equivalent.If A → X ′ is surje
tive, then for Φ, Ψ ∈ A′′, we 
an 
hoose a, b ∈ A su
hthat a+X⊥ = Φ+X⊥ and b+X⊥ = Ψ +X⊥. Then, for µ ∈ X,

〈Φ� Ψ, µ〉 = 〈Φ, Ψ · µ〉 = 〈Φ, b · µ〉 = 〈Φ� b, µ〉 = 〈Φ ♦ b, µ〉 = 〈b, µ · Φ〉
= 〈b, µ · a〉 = 〈a ♦ b, µ〉 = 〈a� b, µ〉,where we use the fa
t that b ∈ Z

(2)
t (A′′). Thus the map A → X ′ gives awell-de�ned produ
t on X ′. We also see that

〈ab, µ〉 = 〈a, b · µ〉 = 〈a, Ψ · µ〉 = 〈a� Ψ, µ〉 = 〈a ♦ Ψ, µ〉
= 〈Ψ, µ · a〉 = 〈Ψ, µ · Φ〉 = 〈Φ ♦ Ψ, µ〉,as a ∈ Z

(1)
t (A′′). Hen
e µ ∈ WAP(A′), and (2) holds, as required.We note that in [20, Proposition 4.9℄, Kaijser explores similar ideas to theabove proposition. Furthermore, the equivalen
e of (1) and (2) is establishedin [22, Lemma 1.4℄ in the 
ase of 
ommutative Bana
h algebras.
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tivity 237Corollary 2.5. Let A be a Bana
h algebra. Then WAP(A′)′ is a dualBana
h algebra. Let A∗ ⊆ A′ be a 
losed submodule su
h that , if π : A′′ →
A′′/A⊥

∗ = A′
∗ is the quotient map, then π ◦κA : A → A′

∗ is an isomorphism.Then A′
∗ is a dual Bana
h algebra.Conversely, suppose that (A,A∗) is a dual Bana
h algebra. Then it isa simple 
al
ulation (see [26℄) that κ′A∗

: A′′ → A is an algebra homomor-phism for either Arens produ
t. Hen
e we may (and shall) make the followingequivalent de�nition:Definition 2.6. Let A be a Bana
h algebra, let A∗ be a 
losed sub-module of A′, and let πA∗
: A′′ → A′′/A⊥

∗ = A′
∗ be the quotient map. When

πA∗
◦ κA : A → A′

∗ is an isomorphism, we say that A is a dual Bana
halgebra with predual A∗.Lemma 2.7. Let A be a Bana
h algebra, and let B = WAP(A′)′. Then
B is unital if and only if there exists Φ ∈ A′′ with Φ · µ = µ · Φ = µ for ea
h
µ ∈ WAP(A′). When (A,A∗) is a dual Bana
h algebra, B is unital if andonly if A is unital.Proof. Let eB be the unit of B, so that for some Φ ∈ A′′, we have 〈Φ, µ〉 =
〈eB, µ〉 for µ ∈ WAP(A′). Thus, for Ψ ∈ A′′,
〈Ψ, µ〉 = 〈Ψ � Φ, µ〉 = 〈Ψ, Φ · µ〉 = 〈Φ ♦ Ψ, µ〉 = 〈Ψ, µ · Φ〉 (µ ∈ WAP(A′)),as required.Now suppose that A is a dual Bana
h algebra, and let (aα) be a boundednet inA tending to Φ ∈ A′′ in the weak∗-topology. Let e ∈ A be a weak∗-limitpoint of (aα). Then, for a ∈ A and µ ∈ A∗ ⊆ WAP(A′),

〈ae, µ〉 = 〈e, µ · a〉 = lim
α

〈aα, µ · a〉 = 〈Φ, µ · a〉 = 〈a, µ〉,so that ae = a. Similarly, ea = a, so that e is a unit for A.Thus looking at WAP(A′)′ is not useful for unitising a dual Bana
h al-gebra; instead, WAP(A′)′ is a useful way for embedding a Bana
h algebrain a dual Bana
h algebra.Lemma 2.8. Let A and B be Bana
h algebras, and let π : A → B be ahomomorphism. Then π′(WAP(B′)) ⊆ WAP(A′).Proof. Let µ ∈ WAP(B′), and let λ = π′(µ) ∈ A′, so that
〈Lλ(a), b〉 = 〈λ · a, b〉 = 〈µ, π(ab)〉 = 〈µ · π(a), π(b)〉 = 〈π′Lµπ(a), b〉.So Lλ = π′ ◦ Lµ ◦ π is weakly 
ompa
t, as Lµ is weakly 
ompa
t.Weak∗-
ontinuous representations of WAP(A′)′ are 
losely related to 
on-tinuous representations of A, a fa
t �rst noted by Runde. The following is[28, Theorem 4.10℄.



238 M. DawsProposition 2.9. Let A be a Bana
h algebra, let (B,B∗) be a dual Ba-na
h algebra, and let π : A → B be a homomorphism. Then there is a uniqueweak∗-
ontinuous homomorphism π̂ : WAP(A′)′ → B su
h that π̂ ◦ κA = π.In parti
ular , a weak∗-
ontinuous homomorphism θ : WAP(A′)′ → B isuniquely determined by its restri
tion to A.Definition 2.10. Let A be a Bana
h algebra. We 
all WAP(A′)′ thedual Bana
h algebra (DBA) enveloping algebra of A. When the natural mapof A into WAP(A′)′ is bounded below, we say that A is a WAP algebra.We note that every dual Bana
h algebra, and every Arens regular Bana
halgebra, is a WAP algebra. We shall shortly see that group algebras are alsoalways WAP algebras, even in the non-dis
rete 
ase, in whi
h 
ase theyare neither dual Bana
h algebras, nor Arens regular. The above propositionshows us that the weak∗-
ontinuous theory of the DBA enveloping algebrais determined by A. We see from this, and from later results, that the DBAenveloping algebra plays mu
h the same role as the enveloping W∗-algebraof a C∗-algebra does (see [32, Chapter III, Se
tion 2℄).3. Representations for WAP algebras. We have already noted thatwork of Young shows that a WAP algebra A admits a representation π : A →
B(E) for some re�exive Bana
h spa
e E, su
h that π is bounded below. Infa
t, Young e�e
tively shows that µ ∈ WAP(A′) if and only if there exists are�exive Bana
h spa
e E, a representation π : A → B(E), x ∈ E and λ ∈ E′with ‖x‖ ‖λ‖ = ‖µ‖ and su
h that π′κE′⊗̂E(λ⊗x) = µ. In parti
ular, we seethat π′κE′⊗̂E maps E′ ⊗̂ E onto WAP(A′).In this se
tion, we shall use some interpolation spa
e theory to prove ananalogous result for dual Bana
h algebras whi
h does not seem to immedi-ately follow from the results of Young (although the method of proof is mu
hthe same). We shall later use interpolation spa
e theory for other reasons,so it is useful to de�ne some 
on
epts now. Interpolation spa
e argumentsin this area go ba
k to [10℄; we follow the text [3℄ for results on interpolationspa
es.Definition 3.1. Let (A,A∗) be a dual Bana
h algebra, and let µ ∈ A∗.Suppose that there exists a norm ‖ · ‖µ on A · µ = {a · µ : a ∈ A} su
h thatthe 
ompletion of (A · µ, ‖ · ‖µ), denoted by Eµ, is re�exive, and su
h that

‖ab · µ‖µ ≤ ‖a‖ ‖b · µ‖µ, ‖a · µ‖ ≤ ‖a · µ‖µ ≤ ‖a‖ ‖µ‖ (a, b ∈ A).Let ι : Eµ → A∗ be the norm-de
reasing in
lusion map, and suppose furtherthat ι is inje
tive. Then we say that ‖ · ‖µ is an admissible norm for µ.Example 3.2. Let (A,A∗) be a W∗-algebra, and let µ ∈ A∗ be a state.Then it is simple to 
he
k that the usual GNS 
onstru
tion for µ (see [32,Chapter I, Se
tion 9℄) indu
es an admissible norm on A · µ.
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tivity 239Example 3.3. We note that ‖ · ‖µ need not be unique (even in an iso-morphi
 sense). For example, let A = ℓ2(N) with pointwise multipli
ation,and let µ ∈ A′ = ℓ2 be su
h that the map A → A′, a 7→ a · µ, is inje
tiveand ‖µ‖ = 1 (for example, µ = (2−n/2)n>0 ∈ ℓ2). Then de�ne
‖a · µ‖µ,1 = ‖a · µ‖, ‖a · µ‖µ,2 = ‖a‖ (a ∈ A),and let Eµ,1 and Eµ,2 be asso
iated with ‖·‖µ,1 and ‖·‖µ,2 respe
tively. Then

Eµ,1 is the 
losure of A · µ in ℓ2, while Eµ,2 = A, whi
h are both re�exive,as ℓ2 is re�exive. We then 
he
k that
‖ab · µ‖µ,1 = sup{|〈ab · µ, c〉| : ‖c‖ ≤ 1} = sup{|〈b · µ, d〉| : d = ca, ‖c‖ ≤ 1}

≤ sup{|〈b · µ, d〉| : ‖d‖ ≤ ‖a‖} = ‖a‖ ‖b · µ‖ = ‖a‖ ‖b · µ‖µ,1,while 
learly ‖ab · µ‖µ,2 ≤ ‖a‖ ‖b · µ‖µ,2. Hen
e both ‖ · ‖µ,1 and ‖ · ‖µ,2 areadmissible, but 
learly they are not equivalent norms.Lemma 3.4. Let (A,A∗) be a dual Bana
h algebra, let µ ∈ A∗ havean admissible norm, and let Eµ be a spa
e as de�ned above using someadmissible norm for µ. Then ι′ : A → E′
µ has dense range, the module a
tionof A on Eµ indu
es a weak∗-
ontinuous representation A → B(Eµ), and thereexist x ∈ Eµ and λ ∈ E′

µ su
h that ‖x‖ ‖λ‖ = ‖µ‖ and 〈λ, a · x〉 = 〈a, µ〉 for
a ∈ A.Proof. We may suppose that ‖µ‖ = 1. By the 
ondition on ‖ · ‖µ, we seethat ι is norm-de
reasing, and the module a
tion inherited from A∗ indu
esa Bana
h left A-module a
tion on Eµ. Furthermore, ι′ has dense range ifand only if ι′′ : E′′

µ → A′ is inje
tive, whi
h, as Eµ is re�exive, is in turnequivalent to ι being inje
tive. We de�ne ψµ : E′
µ ⊗̂ Eµ → A∗ by

ψµ(ι′(a) ⊗ b · µ) = b · µ · a (a ∈ A, b · µ ∈ Eµ).Assuming this is bounded, ψµ extends by linearity and 
ontinuity to E′
µ⊗̂Eµ.Indeed, we have

‖b · µ · a‖ = sup{|〈acb, µ〉| : ‖c‖ ≤ 1} = sup{|〈a, cb · µ〉| : ‖c‖ ≤ 1}
≤ sup{|〈a, d · µ〉| : ‖d · µ‖Eµ ≤ ‖b · µ‖Eµ} = ‖ι′(a)‖E′

µ
‖b · µ‖Eµ ,as ‖cb ·µ‖Eµ ≤ ‖c‖ ‖b ·µ‖Eµ . Thus ψµ is norm-de
reasing. Then let θµ = ψ′

µ :
A → B(Eµ), so that for a, b, c ∈ A,
〈ι′(b), θµ(a)(c · µ)〉 = 〈a, ψµ(ι′(b) ⊗ c · µ)〉 = 〈b, ac · µ〉 = 〈ι′(b), a · (c · µ)〉;hen
e θµ agrees with the left-module a
tion of A on Eµ, as required.Finally, we see that ψµ(ι′(eA) ⊗ eA · µ) = µ, where

‖ι′(eA)‖E′
µ

= sup{|〈eA, a · µ〉| : ‖a · µ‖Eµ ≤ 1}
≤ sup{|〈eA, a · µ〉| : ‖a · µ‖ ≤ 1} ≤ ‖eA‖ = 1,and ‖eA · µ‖Eµ ≤ ‖eA‖ ‖µ‖ = 1.



240 M. DawsTheorem 3.5. Let (A,A∗) be a dual Bana
h algebra su
h that ea
hnorm-one member of A∗ has an admissible norm. Then A is isometri
, via aweak∗-weak∗-
ontinuous map, to a weak∗-
losed subalgebra of B(E) for somere�exive Bana
h spa
e E.Proof. We may suppose that A is unital, as otherwise we may workwith (A,A∗)
♯, and then restri
t the resulting representation to A. Let X =

{µ ∈ A∗ : ‖µ‖ = 1}, and let E = ℓ2(
⊕

µ∈X Eµ), so that E is a re�exiveBana
h spa
e. De�ne ψ : E′ ⊗̂ E → A∗ by
ψ((λµ) ⊗ (xµ)) =

∑

µ∈X

ψµ(λµ ⊗ xµ) ((λµ) ∈ E′, (xµ) ∈ E).

This is norm-de
reasing, as
∥∥∥

∑

µ∈X

ψµ(λµ ⊗ xµ)
∥∥∥ ≤

∑

µ∈X

‖λµ‖ ‖xµ‖ ≤
(∑

µ∈X

‖λµ‖2
)1/2(∑

µ∈X

‖xµ‖2
)1/2

.

Then let θ = ψ′ : A → B(E), so that θ is weak∗-
ontinuous, and for a, b ∈ A,
(xµ) ∈ E and (λµ) ∈ E′, we have

〈(λµ), θ(b)(xµ)〉 =
∑

µ∈X

〈b, ψµ(λµ ⊗ xµ)〉 =
∑

µ∈X

〈λµ, θµ(b)(xµ)〉;

therefore θ(b)(xµ) = (θµ(b)(xµ)), and so θ is a homomorphism, as ea
h θµ isa homomorphism.It is a standard result that θ = ψ′ has a weak∗-
losed image if and onlyif θ has a 
losed image, whi
h happens if and only if θ is bounded below. For
a ∈ A and ε > 0, there exists µ ∈ X su
h that |〈a, µ〉| > (1 − ε)‖a‖. Then
µ = ψ(λµ ⊗ xµ) for some λµ ∈ E′

µ and xµ ∈ Eµ with ‖λµ‖ ‖xµ‖ = 1. Thus
‖θ(a)‖ ≥ ‖θµ(a)‖ ≥ |〈a, ψ(λµ ⊗ xµ)〉| > (1 − ε)‖a‖.As ε > 0 was arbitrary, we see that θ is an isometry onto its range.Of 
ourse, we have not shown that any dual Bana
h algebra (other thana W∗-algebra) admits su
h a representation. We now remedy this situationby using some interpolation spa
e theory.Theorem 3.6. Let A be a unital dual Bana
h algebra with predual A∗.Then ea
h norm-one member of A∗ has an admissible norm.Proof. Let µ ∈ A∗ be su
h that ‖µ‖ = 1, and for n ∈ N de�ne a newnorm on A′ by

‖λ‖n = inf{2−n/2‖b‖ + 2n/2‖λ− b · µ‖ : b ∈ A} (λ ∈ A′).Then, for a, b ∈ A and λ ∈ A′, we have ‖λ‖n ≤ 2n/2‖λ‖, ‖a ·µ‖n ≤ 2−n/2‖a‖,and ‖λ‖ ≤ ‖λ−b ·µ‖+‖b ·µ‖ ≤ 2n‖λ−b ·µ‖+‖b‖ so that 2−n/2‖λ‖ ≤ ‖λ‖n.
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tivity 241We then de�ne
Eµ =

{
λ ∈ A′ : ‖λ‖µ :=

( ∞∑

n=1

‖λ‖2
n

)1/2
<∞

}
.If λ ∈ Eµ, then there exists some sequen
e (bn) in A with 2n‖λ−bn ·µ‖2 → 0as n → ∞. In parti
ular, A · µ is dense in Eµ. Thus, for a ∈ A, we have

‖a · µ‖ ≤ ‖a · µ‖µ ≤ ‖a‖. We 
an also easily 
he
k that ‖a · λ‖µ ≤ ‖a‖ ‖λ‖µfor a ∈ A and λ ∈ Eµ. Hen
e we need only show that Eµ is re�exive to verifythe 
onditions of De�nition 3.1.Re
all that Rµ : A → A′ is de�ned by Rµ(a) = a ·µ. Then Rµ maps into
A∗ and is weakly 
ompa
t, as A∗ ⊆ WAP(A′). It follows from the work in[10℄ (see [25, Se
tion 1.7.8℄ for a sket
h) that Eµ is re�exive, as the map Rµis weakly 
ompa
t.Noti
e that the above proof will work for any µ ∈ WAP(A′), whi
hre-
reates Young's result.Remark 3.7. The above 
onstru
tion of Eµ is a
tually a Lions�Peetreinterpolation spa
e. Let A·µ be the subspa
e of A∗ spanned by {a·µ : a ∈ A}together with the norm ‖a ·µ‖A·µ = inf{‖b‖ : b ·µ = a ·µ}. Then we see that
Rµ : A → A · µ is norm-de
reasing, and the indu
ed map A/kerRµ → A · µis an isometry, showing that A · µ is a Bana
h spa
e.Following [3℄, we let S(A·µ,A∗) be the spa
e A∗ together with the norm

‖λ‖S = inf{‖a · µ‖A·µ + ‖φ‖ : λ = a · µ+ φ} (λ ∈ A∗).Then S is a Bana
h spa
e. Let 1 ≤ p < ∞, ξ0 < 0 and ξ1 > 0, and let
s+2 (p; ξ0,A · µ; ξ1,A∗) be the subspa
e of S su
h that

‖λ‖s+

2

= inf
{

max
(( ∞∑

n=1

‖eξ0nan · µ‖p
A·µ

)1/p
,
( ∞∑

n=1

‖eξ1nφn‖p
)1/p)

:

λ = an · µ+ φn (n > 0)
}
<∞.In 
omparison, we see that Eµ is the subspa
e of S su
h that

‖λ‖µ = inf
{( ∞∑

n=1

(2−n/2‖an·µ‖A·µ+2n/2‖φn‖)2
)1/2

: λ = an·µ+φn (n > 0)
}
.

We thus see that s+2 (2;− log
√

2,A · µ; log
√

2,A∗) is isomorphi
 to Eµ.It follows from [3, Se
tion 1.5, Proposition 1℄ that Eµ is a member of theisomorphi
 
lass (A · µ,A∗)1/2,2, and hen
e [3, Se
tion 2.3, Proposition 1℄tells us that Eµ is re�exive if and only if the in
lusion A · µ→ A∗ is weakly
ompa
t, whi
h happens if and only if Rµ is weakly 
ompa
t, as before.Putting all these results together, we obtain the following.



242 M. DawsCorollary 3.8. Let (A,A∗) be a dual Bana
h algebra. Then A admitsan isometri
, weak∗-weak∗-
ontinuous representation on some re�exive Ba-na
h spa
e.Proposition 3.9. Let (A,A∗) be a W ∗-algebra (that is, A is a C∗-al-gebra), and form E as above using only the µ ∈ A∗ whi
h are states. Then
E is isomorphi
 to a Hilbert spa
e, and our representation agrees with theusual universal representation for a W ∗-algebra.Proof. This follows from work in [12℄.4. Unique preduals. It is a standard result in the theory of W∗-algebrasthat a W∗-algebra has a unique predual, up to isometri
 
lassi�
ation. Thatis, if (A,A∗) is a W∗-algebra, E is a Bana
h spa
e, and θ : A → E′ isan isometri
 isomorphism, then θ is automati
ally weak∗-
ontinuous. Thisfollows as we 
an use θ to indu
e a C∗-algebra stru
ture on E′, showing that
E is also a predual for A.The theory of isometri
 preduals in Bana
h spa
es has attra
ted someattention (see the survey [15℄). However, here we are interested in the iso-morphi
 and not isometri
 theory.Theorem 4.1. Let (A,A∗) be a 
ommutative W ∗-algebra, let (B,B∗) bea dual Bana
h algebra, and let θ : A → B be a Bana
h algebra isomorphism.Then θ is automati
ally weak∗-
ontinuous.Proof. By [32, Theorem 1.18℄, A 
an be identi�ed with C(Ω) where Ω isthe 
hara
ter spa
e of A, whi
h is a hyperstonian spa
e (see [2, Se
tion 8℄ forfurther details). In parti
ular, Ω is Stonian in that the 
losure of any openset is open. Then A′ is M(Ω), the spa
e of regular Borel measures on Ω. Wesay that a positive measure µ ∈M(Ω) is normal if µ(A) = 0 whenever A isnowhere dense, that is, the 
losure of A has empty interior. A general mea-sure is normal when its absolute value is normal. By [2, Theorem 8.2℄ thisde�nition agrees with the usual one for W∗-algebras (see also [32, Proposi-tion 1.11℄). Then the 
olle
tion of normal measures forms a 
losed subspa
eof M(Ω) whi
h is equal to κA∗

(A∗).By reversing the argument whi
h led to De�nition 2.6, we need to showthat if E ⊆ A′ is a 
losed submodule su
h that the natural map ιE : A →
E′ = A′′/E⊥ is an isomorphism, then E = κA∗

(A∗). The equivalen
e of thisstatement to the statement involving B 
omes from setting E = θ′κB∗
(B∗).Let E be as stated, and 
hoose λ ∈ E. We will show that λ is normal,whi
h will 
omplete the proof, as then E ⊆ A∗, and so ne
essarily E = A∗.Let A be a 
losed subset of Ω with empty interior, so we aim to show that

|λ|(A) = 0. Consider the family C of 
losed and open subsets of Ω whi
h
ontain A, partially ordered by reverse in
lusion. For B ∈ C, let χB be the
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tivity 243indi
ator fun
tion of B, so that χB ∈ C(Ω). As E is a predual, there existsa unique f ∈ C(Ω) su
h that
〈µ, f〉 = lim

B∈C
〈µ, χB〉 (µ ∈ E).For C ∈ C, noti
e that

〈µ, χCf〉 = 〈µ · χC , f〉 = lim
B∈C

〈µ · χC , χB〉 = lim
B∈C

〈µ, χB〉 = 〈µ, f〉 (µ ∈ E),so that χCf = f , and hen
e, for x ∈ Ω \ C, f(x) = f(x)χC(x) = 0. Wehen
e see that f vanishes o� the set A0 :=
⋂

B∈C B.We 
laim that A0 = A, whi
h follows from some simple topology. Indeed,
learly A ⊆ A0, and suppose towards a 
ontradi
tion that there exists x ∈
A0 \ A. Thus, for ea
h open B ⊆ Ω with A ⊆ B, we have x ∈ B. As Ωis Hausdor�, for ea
h a ∈ A there exist disjoint open sets Ua and Va with
a ∈ Ua and x ∈ Va. As A is 
ompa
t, there exist a1, . . . , an in A su
hthat A ⊆ U := Ua1

∪ · · · ∪ Uan . Clearly U is disjoint from the open set
V := Va1

∩ · · · ∩ Van , hen
e as x ∈ V , we see that x 6∈ U , a 
ontradi
tion.Consequently, f is supported on A, and as A has empty interior and f is
ontinuous, we must have f = 0. Let λ = λr + iλi where λr and λi are realmeasures. Then, as limB∈C 〈λ, χB〉 = 0, we see that
lim
B∈C

〈λr, χB〉 = lim
B∈C

〈λi, χB〉 = 0,as χB is real-valued. There exists a Hahn de
omposition (see [18, Se
tion 29℄)for λr, that is, measurable sets E+ and E− su
h that Ω = E+∪E− and with
λ+(E) = λr(E ∩ E+), λ−(E) = −λr(E ∩ E−) (E ⊆ Ω),de�ning two positive measures λ+ and λ− with |λr| = λ+ + λ− and λr =

λ+ − λ−. As |λr| is regular, for ea
h ε > 0, there exists an open set U and a
losed set K su
h that K ⊆ E+ ⊆ U with |λr|(U \K) < ε. As Ω is Stonian,we 
an �nd an open and 
losed set V su
h that K ⊆ V ⊆ U (this follows bya similar argument to that employed above to show that A0 = A). Then
|λr|(E+ \ V ) + |λr|(V \E+) ≤ |λr|(U \K) < ε.We hen
e see that for B ⊆ Ω,

λ+(B) = λ(B ∩E+) = |λr(B ∩ V ) + λr(B ∩ (E+\V )) − λr(B ∩ (V \E+))|
≤ ε+ |λr(B ∩ V )|.Consequently,

0 ≤ lim
B∈C

〈λ+, χB〉 ≤ ε+ lim
B∈C

〈λr, χV χB〉 = ε+ lim
B∈C

〈λr · χV , χB〉 = ε,so as ε > 0 was arbitrary, limB∈C 〈λ+, χB〉 = 0. We then have
0 ≤ λ+(A) ≤ inf

B∈C
λ+(B) = 0.



244 M. DawsA similar argument shows that λ−(A) = 0, therefore |λr|(A) = 0. Similarly,
|λi|(A) = 0, so that |λ|(A) = 0. Thus λ is normal, as required.We note that we 
annot drop the assumption that θ is an algebra ho-momorphism. This follows as, for example, Peª
zy«ski showed in [27℄ that
ℓ∞ and L∞[0, 1] are isomorphi
 (but not isometri
, and not isomorphi
as Bana
h algebras in their natural produ
ts). However, of 
ourse, ℓ1 and
L1[0, 1] are not isomorphi
, so no isomorphism ℓ∞ → L∞[0, 1] 
an be weak∗-
ontinuous.Continuing the theme of unique preduals, we have the following, whi
his [16, Proposition 5.10℄.Proposition 4.2. Let E be a re�exive Bana
h spa
e. Then the predual
E′⊗̂E is isometri
ally unique for B(E), meaning that when φ : F ′ → B(E) isan isometri
 isomorphism for some Bana
h spa
e F , there exists an isometry
ψ : E′ ⊗̂ E → F su
h that ψ′ = φ.Definition 4.3. Let E be a Bana
h spa
e, and suppose that for ea
h
ompa
t set K ⊆ E and ea
h ε > 0, there exists a �nite-rank operator
T ∈ F(E) su
h that ‖T (x)−x‖ < ε for ea
h x ∈ K. Then we say that E hasthe approximation property. When we 
an 
hoose T to be uniformly bounded,
E has the bounded approximation property , and when we 
an 
hoose T be a
ontra
tion, E has the metri
 approximation property.See [31, Chapter 4℄ or [14, Chapter VIII, Se
tion 3℄ for further details.When E is a re�exive Bana
h spa
e, the approximation property implies themetri
 approximation property (see [31, Corollary 5.51℄). The approximationproperty is equivalent to the natural map E′ ⊗̂E → B(E) being inje
tive.Theorem 4.4. Let E be a re�exive Bana
h spa
e with the approximationproperty. Whenever (A,A∗) is a dual Bana
h algebra and θ : B(E) → A isa Bana
h algebra isomorphism, θ is weak∗-
ontinuous.Proof. Again, we need to show that when X ⊆ B(E)′ is a predual, wehave X = κE′⊗̂E(E′ ⊗̂ E). As E is re�exive and has the approximationproperty, A(E)′ = E′ ⊗̂E and so A(E)′′ = B(E). We may 
he
k that A(E)is Arens regular, and that the Arens produ
ts on A(E)′′ agree with theusual produ
t on B(E). By standard results, as B(E) is unital, there existsa bounded approximate identity (eα) for A(E) (see [8, Proposition 2.9.16℄or [25, Se
tion 1.7.13℄ for further details).Let ι : A(E) → B(E) be the in
lusion map, so that a
tually ι agrees withthe map κA(E). Then ι′ : B(E)′ → E′ ⊗̂ E satis�es ι′κE′⊗̂E = IE′⊗̂E . As Xis a predual, there exists a unique P ∈ B(E) su
h that

〈µ, P 〉 = lim
α

〈µ, ι(eα)〉 = lim
α

〈ι′(µ), eα〉 = 〈IE , ι′(µ)〉 (µ ∈ X).
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tivity 245Then, for T ∈ B(E) and µ ∈ X,
〈µ, PT 〉 = 〈T · µ, P 〉 = lim

α
〈T · µ, ι(eα)〉 = lim

α
〈µ, ι(eαT )〉 = lim

α
〈ι′(µ), eαT 〉

= lim
α

〈T · ι′(µ), eα〉 = 〈IE , T · ι′(µ)〉 = 〈T, ι′(µ)〉and so, for ea
h α,
〈µ, P ι(eα)〉 = 〈ι(eα), ι′(µ)〉 = 〈µ, ι(eα)〉 (µ ∈ X),so that Pι(eα) = ι(eα). Similarly, ι(eα)P = ι(eα) for every α. Hen
e

〈µ, P 2〉 = lim
α

〈µ · P , ι(eα)〉 = lim
α

〈µ, P ι(eα)〉 = lim
α

〈µ, ι(eα)〉 = 〈µ, P 〉for µ ∈ X, hen
e P is a proje
tion. As (Pι(eα)) = (ι(eα)) is a boundedapproximate identity for A(E) ⊆ B(E), the image of P must be the wholeof E, that is, P is the identity. Thus
〈µ, T 〉 = 〈µ, PT 〉 = 〈T, ι′(µ)〉 = 〈κE′⊗̂Eι

′(µ), T 〉 (T ∈ B(E), µ ∈ X),and hen
e κE′⊗̂Eι
′ is the identity onX. This implies thatX ⊆ κE′⊗̂E(E′⊗̂E),so that X = κE′⊗̂E(E′ ⊗̂ E), as required.It would be ni
e to remove the 
ondition on E having the approxima-tion property, but this is utterly integral to the 
urrent proof. The generalquestion of whi
h dual Bana
h algebras have a unique predual seems veryinteresting. We have looked at, but have been unable to answer, the ques-tion of whether ℓ1(Z) has a unique predual. This is equivalent to the very
on
rete question: let X ⊆ ℓ∞(Z) be a shift-invariant subspa
e su
h that

X ′ is naturally identi�ed with ℓ1(Z). Is X = c0(Z)? Of 
ourse, as a Bana
hspa
e, ℓ1(Z) has plenty of preduals (see [15℄) but these do not appear to bepreduals whi
h make the produ
t on ℓ1(Z) weak∗-
ontinuous.5. Dual Bana
h ∗-algebras. We start by studying dual Bana
h alge-bras (A,A∗) whi
h admit an involution, whi
h for us will be a 
ontinuous,
onjugate-linear map ∗ : A → A su
h that (ab)∗ = b∗a∗. Re
all that we mayde�ne an involution ∗ on A′ by
〈µ∗, a〉 = 〈µ, a∗〉 (µ ∈ A′, a ∈ A).Then the involution is weak∗-
ontinuous if and only if A∗ forms a self-adjointsubspa
e of A′.We shall now sket
h some results on Bana
h spa
es whi
h admit a sesqui-linear form whi
h is not ne
essarily positive (su
h spa
es are hen
e gener-alisations of Hilbert spa
es). These are studied by Laustsen and the authorin [12℄. Let E be a Bana
h spa
e and let [·, ·] be a sesquilinear form on Ewhi
h is bounded in the sense that for some C > 0, |[x, y]| ≤ C‖x‖ ‖y‖ for

x, y ∈ E. There hen
e exists a bounded, 
onjugate-linear map J : E → E′
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h that [x, y] = 〈J(y), x〉 for any x, y ∈ E. Suppose that J is a homeomor-phism (whi
h for
es E to be re�exive). Then there is an involution on B(E)given equivalently by
T ∗ = J−1 ◦ T ′ ◦ J or [T ∗(x), y] = [x, T (y)] (x, y ∈ E, T ∈ B(E)).It is shown in [12℄ that every bounded involution on B(E) arises in this way.Now let (A,A∗) be a dual Bana
h algebra with a 
ontinuous involution,let µ ∈ A∗ be self-adjoint and of norm one, and 
onsider the spa
e Eµ formedin Theorem 3.6. As this spa
e is isomorphi
 to a Lions�Peetre interpolationspa
e, it is isomorphi
 to the spa
es 
onstru
ted in [12℄. In parti
ular, wemay de�ne a bounded form on Eµ by

[a · µ, b · µ] = 〈b∗a, µ〉 (a, b ∈ A)su
h that the indu
ed map J : E → E′ is a homeomorphism. It hen
e followsthat the representation A → B(E) is a
tually a ∗-homomorphism.The spa
e (E, [·, ·]) may 
ertainly fail to be a Hilbert spa
e. However, it isshown that in the spe
ial 
ase when µ is a positive linear fun
tional, E is atleast isomorphi
 to the Hilbert spa
e generated by the GNS representationfor µ.Proposition 5.1. Let (A,A∗) be a dual Bana
h algebra with a 
ontin-uous involution. Then the following are equivalent :(1) the involution is weak∗-
ontinuous;(2) A is weak∗-
ontinuously ∗-isomorphi
 to a 
losed subspa
e of B(E)for some re�exive Bana
h spa
e E su
h that B(E) admits an invo-lution.Proof. To show that (1) implies (2), by the pre
eding dis
ussion, the onlything to 
he
k is that the subset of A∗ of norm-one self-adjoint fun
tionalsnorms A. However, as the involution is weak∗-
ontinuous, A∗ is itself self-adjoint, and hen
e every µ ∈ A∗ is of the form µ = µr + iµi for self-adjoint
µr, µi ∈ A∗. It hen
e follows that the quantity sup{|〈a, µ〉| : µ ∈ A∗, µ

∗ = µ,
‖µ‖ = 1} is at least equivalent to ‖a‖, as required.Now suppose that (2) holds. We 
an then identify A with its image in
B(E), so that A∗ be
omes identi�ed with E′ ⊗̂E/⊥A∗. Let τ ∈ A∗, so thatas J is a homeomorphism, τ has a representation of the form

τ =
∞∑

n=1

J(xn) ⊗ yn + ⊥A∗,with ∑∞
n=1 ‖xn‖ ‖yn‖ <∞. Let

σ =

∞∑

n=1

J(yn) ⊗ xn + ⊥A∗ ∈ A∗.
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tivity 247Then, for T ∈ A ⊆ B(E), we have
〈T, τ〉 =

∞∑

n=1

〈J(xn), T (yn)〉 =

∞∑

n=1

[T (yn), xn] =

∞∑

n=1

[T ∗(xn), yn] = 〈T ∗, σ〉,so that 〈T, σ∗〉 = 〈T ∗, σ〉 = 〈T, τ〉. Therefore σ∗ = τ , so τ∗ = σ, and hen
e
A∗ is self-adjoint, as required.It would be interesting to know if there exists a dual Bana
h algebra
(A,A∗) whi
h admits a 
ontinuous involution whi
h is not weak∗-
ontinuous.Lemma 5.2. Let (A,A∗) be a dual Bana
h algebra, and suppose that Aadmits a weak∗-
ontinuous involution. Then there is an equivalent norm ‖·‖0on A∗ su
h that the involution be
omes isometri
 on (A, ‖ · ‖∗0), where ‖ · ‖∗0is the dual norm to ‖ · ‖0.Proof. We would usually de�ne a new norm on A by setting |||a||| =
max(‖a‖, ‖a∗‖); we show here how to dualise this idea. For µ ∈ A∗, wede�ne

‖µ‖0 = inf{‖λ∗‖ + ‖µ− λ‖ : λ ∈ A∗},where, as A∗ is self-adjoint, λ∗ ∈ A∗. Clearly, ‖µ‖ ≤ ‖µ‖0 for µ ∈ A∗. Asthe involution is 
ontinuous, there exists M ≥ 1 su
h that ‖a∗‖ ≤M‖a‖ forea
h a ∈ A. Then ‖λ∗‖ ≤M‖λ‖ for ea
h λ ∈ A′, so that also ‖λ‖ ≤M‖λ∗‖.Thus
‖µ‖ ≤ ‖λ‖+ ‖µ−λ‖ ≤M‖λ∗‖+ ‖µ−λ‖ ≤M‖λ∗‖+M‖µ−λ‖ (λ ∈ A∗)so that ‖µ‖ ≤M‖µ‖0. Hen
e ‖ · ‖0 is equivalent to ‖ · ‖ on A∗.Then, for a ∈ A, we have

‖a‖∗0 = sup{|〈a, µ+ λ〉| : µ, λ ∈ A∗, ‖λ∗‖ + ‖µ‖ ≤ 1}
= sup{|〈a, µ〉| + |〈a, λ〉| : µ, λ ∈ A∗, ‖λ∗‖ + ‖µ‖ ≤ 1}
= max{sup{|〈a, µ〉| : ‖µ‖ ≤ 1}, sup{|〈a, λ〉| : ‖λ∗‖ ≤ 1}}
= max{‖a‖, sup{|〈a∗, λ〉| : ‖λ‖ ≤ 1}} = max(‖a‖, ‖a∗‖).Hen
e ‖a∗‖∗0 = ‖a‖∗0, as required.Following [8℄, we shall say that a Bana
h ∗-algebra is a Bana
h algebrawith an isometri
 involution. We now know that there is no loss of gen-erality to talk about dual Bana
h ∗-algebras as long as the involution isweak∗-
ontinuous, whi
h in light of Proposition 5.1 seems ne
essary for ourpurposes. The next theorem shows that we 
an always embed a dual Bana
halgebra with involution into a dual Bana
h algebra with weak∗-
ontinuousinvolution. We remind the reader of Proposition 2.4.Theorem 5.3. Let (A,A∗) be a dual Bana
h algebra with a 
ontinuousinvolution. Then WAP(A′)′ admits a weak∗-
ontinuous involution su
h thatthe 
anoni
al map A → WAP(A′)′ be
omes a ∗-homomorphism.
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t on A′′ drops to a well-de�ned produ
t on WAP(A′)′ turning WAP(A′)′ into a dual Bana
h algebra.As shown in [12℄, it follows from Grothendie
k's double limit 
riterion that
WAP(A′) is a self-adjoint subspa
e of A′; in parti
ular, this means that for
µ ∈ A∗, 
ertainly µ∗ ∈ WAP(A′).We de�ne an involution on A′′ by setting

〈Φ∗, λ〉 = 〈Φ, λ∗〉 (Φ ∈ A′′, λ ∈ A′).We then de�ne an involution on WAP(A′)′ by setting
(Φ+ WAP(A′)⊥)∗ = Φ∗ + WAP(A′)⊥ (Φ ∈ A′′),whi
h is well-de�ned, as WAP(A′) is self-adjoint. We may 
he
k that, for

a ∈ A, λ ∈ WAP(A′) and Φ ∈ A′′, we have (a·λ)∗ = λ∗·a∗ and (λ·Φ)∗ = Φ∗·λ.We then see that for Φ, Ψ ∈ A′′ and λ ∈ WAP(A′),
〈(Φ� Ψ)∗, λ〉 = 〈Φ, Ψ · λ∗〉 = 〈Φ∗, (Ψ · λ∗)∗〉 = 〈Φ∗, λ · Ψ∗〉

= 〈Ψ∗ ♦ Φ∗, λ〉 = 〈Ψ∗ � Φ∗, λ〉,by Lemma 2.3. Thus WAP(A′)′ has a 
ontinuous involution whi
h, by de�-nition, is weak∗-
ontinuous, and extends the involution on A.Instead of using WAP(A′) in the above 
onstru
tion, we 
ould insteadhave used X = A∗ + A∗
∗ ⊆ WAP(A′), whi
h has the advantage that if theinvolution on A is already weak∗-
ontinuous, then X ′ = A.6. Connes-amenability and inje
tivity. We shall show below that if

A is Connes-amenable, then A is unital. In fa
t, a stronger result holds.Proposition 6.1. Let (A,A∗) be a dual Bana
h algebra su
h that
(A♭,A♭

∗) is Connes-amenable. Then A is unital.Proof. Let E = A∗ as a Bana
h spa
e, and for µ ∈ A∗, write µ̂ for the
anoni
al image of µ in E (and similarly for elements of A in E′). Then turn
E into an A♭-bimodule by setting

(a+ α) · µ̂ = â · µ+ αµ̂, µ̂ · (a+ α) = αµ̂ (a+ α ∈ A♭, µ̂ ∈ E).We 
laim that E′ then be
omes a normal A♭-bimodule; for example, if
ai + αi → a+ α weak∗ in A♭ then, for µ̂ ∈ E and b̂ ∈ E′,

lim
i
〈̂b · (ai + αi), µ̂〉 = lim

i
〈̂b, âi · µ+ αiµ̂〉 = lim

i
〈bai + αib, µ〉

= 〈ba+ αb, µ〉 = 〈̂b · (a+ α), µ̂〉,so that b̂ · (ai + αi) → b̂ · (a+ α) weak∗ in E′, as required.Now let d : A♭ → E′ be de�ned by d(a+ α) = â. Then
d((a+ α)(b+ β)) = âb + αb̂+ βâ = â · (b+ β) + (a+ α) · b̂,
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tivity 249so that d is a derivation. Clearly d is weak∗-
ontinuous, hen
e as (A♭,A♭
∗) isConnes-amenable, d is inner, so that for some e ∈ A, we have

â = d(a+ α) = ê · (a+ α) − (a+ α) · ê = êa (a ∈ A).Thus A has a left identity, and in an analogous manner, A has a rightidentity, so that A is unital.Thus the naive unitisation is useless as far as Connes-amenability is 
on-
erned.Let E be a Bana
h spa
e, and let A ⊆ B(E) be a subset. We de�ne the
ommutant of A to be
Ac = {T ∈ B(E) : TS = ST (S ∈ A)},so that Ac is a 
losed subalgebra of B(E). We then de�ne Acc = (Ac)c, andsee that A ⊆ Acc.Definition 6.2. Let E be a Bana
h spa
e, and let A ⊆ B(E) be asubalgebra. A quasi-expe
tation for A is a proje
tion Q : B(E) → Ac su
hthat Q(cTd) = cQ(T )d for c, d ∈ Ac and T ∈ B(E).Proposition 6.3. Let A be a Bana
h algebra, and let π : A → B(E) bea homomorphism with E a re�exive Bana
h spa
e. Suppose that either(1) A is amenable, or(2) A is a dual Bana
h algebra, π is weak∗-
ontinuous, and A is Connes-amenable.Then there exists a quasi-expe
tation Q : B(E) → π(A)c.Proof. We may either translate, almost verbatim, the proof of [5, Theo-rem 3℄, or else look at [29, Theorem 4.4.11℄.Very similar ideas to the above are 
onsidered by Cora
h and Galé in [7℄,and in parti
ular in Se
tion 3 of that paper, where they ask if the existen
e ofa quasi-expe
tation is equivalent to some form of amenability. We shall nowanswer this question in the a�rmative, showing that quasi-expe
tations andConnes-amenability are intimately linked (as is true in the von Neumannalgebra 
ase: see [5℄).Definition 6.4. Let (A,A∗) be a dual Bana
h algebra, and let E be aBana
h A-bimodule. Then x ∈ σWC(E) if and only if the maps A → E,

a 7→ a · x, a 7→ x · a,are σ(A,A∗)-σ(E,E′) 
ontinuous.It is 
lear that σWC(E) is a 
losed submodule of E. The A-bimodulehomomorphism ∆A has adjoint ∆′
A : A′ → (A ⊗̂ A)′. In [28, Corollary 4.6℄it is shown that ∆′

A(A∗) ⊆ σWC((A ⊗̂A)′). Consequently, we 
an view ∆′
A



250 M. Dawsas a map A∗ → σWC((A ⊗̂A)′), denoted by ∆̃A, and hen
e we have a map
∆̃′

A : σWC((A ⊗̂ A)′)′ → A′
∗ = A. The following is [28, Theorem 4.8℄.Theorem 6.5. Let A be a dual Bana
h algebra with predual A∗. Thenthe following are equivalent :(1) A is Connes-amenable;(2) A has a σWC-virtual diagonal, whi
h is M ∈ σWC((A ⊗̂A)′)′ su
hthat a ·M = M · a and a∆̃′

A(M) = a for ea
h a ∈ A.We 
an identify σWC((A ⊗̂ A)′)′ in a slightly more 
on
rete way. Firstof all, re
all that (A⊗̂A)′ = B(A,A′), where we 
hoose the 
onvention that
〈T, a⊗ b〉 = 〈T (b), a〉 (a⊗ b ∈ A ⊗̂ A, T ∈ B(A,A′)).Then, for µ ∈ A∗, we identify ∆̃A(µ) with the map b 7→ b · µ. The followingis [11, Proposition 3.2℄.Proposition 6.6. Let (A,A∗) be a dual Bana
h algebra. For T ∈

B(A,A′) = (A ⊗̂ A)′, de�ne maps φr, φl : A ⊗̂ A → A′ by
φr(a⊗ b) = T ′κA(a) · b, φl(a⊗ b) = a · T (b) (a⊗ b ∈ A ⊗̂ A).Then T ∈ σWC(B(A,A′)) if and only if φr and φl are weakly 
ompa
t andhave ranges 
ontained in κA∗

(A∗).As the unit ball of A⊗̂A is the 
losure of the 
onvex hull of {a⊗b : ‖a‖ =
‖b‖ ≤ 1}, we see that, for example, φl is weakly 
ompa
t if and only if theset {a · T (b) : ‖a‖ = ‖b‖ ≤ 1} is relatively weakly (sequentially) 
ompa
t.We shall now prove a representation result for maps in σWC(B(A,A′)).Firstly, we again apply some interpolation spa
e theory.Proposition 6.7. Let (A,A∗) be a unital dual Bana
h algebra, and let
T ∈ σWC(B(A,A′)). Then there exists an absolute 
onstant K > 0, a Ba-na
h left A-module E and a Bana
h right A-module F su
h that E and Fare normal and re�exive, and for some unit ve
tors µ0 ∈ E′ and λ0 ∈ F ′,we have

|〈T (b), a〉| ≤ K‖T‖ ‖µ0 · a‖E′‖b · λ0‖F ′ (a, b ∈ A).Furthermore, µ0 · A is dense in E′ and A · λ0 is dense in F ′.Proof. We may suppose that ‖T‖ = 1. Form φl using T , and for n ≥ 1de�ne a norm on A∗ by
‖µ‖n = inf{2−n/2‖τ‖ + 2n/2‖µ− φl(τ)‖ : τ ∈ A ⊗̂ A} (µ ∈ A∗).As in the proof of Theorem 3.6, we may 
he
k that ‖ · ‖n is an equivalentnorm on A∗, and that we may de�ne

E =
{
µ ∈ A∗ : ‖µ‖E :=

(∑

n≥1

‖µ‖2
n

)1/2
<∞

}
.
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tivity 251Then E is a Bana
h spa
e, φl(A ⊗̂ A) is dense in E, and for τ ∈ A ⊗̂ A, wehave ‖φl(τ)‖ ≤ ‖φl(τ)‖E ≤ ‖τ‖π. Furthermore, E is a Bana
h left A-moduleas φl is a left A-module homomorphism. Again, it follows from general in-terpolation spa
e results that E is re�exive, as φl is weakly 
ompa
t.Again, let ιE : E → A∗ be the in
lusion map, so that ι′E : A → E′has dense range. Let µ ∈ E, ι′E(a) ∈ E′, and let (bα) be a net in A whi
h
onverges weak∗ to b. Then
〈ι′E(a), bα · µ〉 = 〈abα, µ〉 → 〈ab, µ〉 = 〈ι′E(a), b · µ〉,so we see that the map A → E, b 7→ b · µ, is weak∗-
ontinuous, that is, E isnormal. For ea
h n ≥ 1, let ‖ · ‖∗n be the dual norm to ‖ · ‖n, de�ned on A.For a ∈ A, we have

‖a‖∗n = sup{|〈a, µ+ φl(τ)〉| : 2−n/2‖τ‖ + 2n/2‖µ‖ ≤ 1}
= sup{2−n/2|〈a, µ〉| + 2n/2|〈φ′l(a), τ〉| : ‖τ‖ + ‖µ‖ ≤ 1}
= max(2−n/2‖a‖, 2n/2‖φ′l(a)‖).As E isometri
ally embeds into the ℓ2-dire
t sum of the spa
es (A∗, ‖·‖n)n≥1,we see that E′ is isometri
ally a quotient of the ℓ2-dire
t sum of the spa
es

(A, ‖ · ‖∗n)n≥1. We hen
e see that, if we drop the map ι′E and identify A witha dense subspa
e of E′, then for a ∈ A,
‖a‖E′ = inf

{(∑

n≥1

max(2−n/2‖an‖, 2n/2‖φ′l(an)‖)2
)1/2

: a =
∑

n≥1

an

}
.From [3, Se
tion 1.5, Proposition 1℄ it follows that there is an absolute 
on-stant K > 0 su
h that if we de�ne

‖a‖1 = inf
{(∑

n≥1

(2−n/2‖a− an‖ + 2n/2‖φ′l(an)‖)2
)1/2

: (an) ⊆ A
}
,

then K−1‖ · ‖1 ≤ ‖ · ‖E′ ≤ K‖ · ‖1.We analogously use φr to form a re�exive, normal, Bana
h right A-module F , and we �nd a norm ‖·‖2 onA su
h thatK−1‖·‖2 ≤ ‖·‖F ′ ≤ K‖·‖2.Noti
e that for a, b ∈ A, 〈T (b), a〉 = 〈φ′l(a)(b), eA〉 and
‖φ′l(a)(b)‖ = sup{|〈T (b), ac〉| : ‖c‖ ≤ 1} = sup{|〈φ′r(b)(eA), ac〉| : ‖c‖ ≤ 1}

≤ ‖φ′r(b)‖ ‖a‖.For a, b ∈ A and ε > 0, 
hoose (an), (bn) ⊆ A su
h that a =
∑

n≥1 an and
(∑

n≥1

max(2−n/2‖an‖, 2n/2‖φ′l(an)‖)2
)1/2

≤ ‖a‖E′ + ε,

(∑

n≥1

(2−n/2‖b− bn‖ + 2n/2‖φ′r(bn)‖)2
)1/2

≤ ‖b‖2 + ε.
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hy�S
hwarz inequality to see that
|〈T (b), a〉| ≤ ‖φ′l(a)(b)‖ ≤

∑

n≥1

‖φ′l(an)(b)‖

≤
∑

n≥1

‖φ′l(an)(bn − b)‖ + ‖φ′l(an)(bn)‖

≤
∑

n≥1

2n/2‖φ′l(an)‖2−n/2‖bn − b‖ +
∑

n≥1

2n/2‖φ′r(bn)‖2−n/2‖an‖

≤ 2(‖a‖E′ + ε)(‖b‖2 + ε).As ε > 0 was arbitrary, we see that |〈T (b), a〉| ≤ 2K‖a‖E′‖b‖F ′ . We mayhen
e set µ0 = ι′E(eA) and λ0 = ι′F (eA), so that as ι′E has dense range, µ0 ·Ais dense in E′, and similarly for A · λ0. It remains to 
he
k that these areunit ve
tors. However, as ι′ is norm-de
reasing, ‖µ0‖E′ ≤ 1, while 
onversely
‖ι′E(eA)‖ = sup{|〈eA, φl(τ)〉| : ‖φl(τ)‖E ≤ 1}

≥ sup{|〈eA, φl(a⊗ b)〉| : ‖a⊗ b‖π = ‖a‖ ‖b‖ ≤ 1}
= sup{|〈a, T (b)〉| : ‖a| = ‖b‖ = 1} = ‖T‖ = 1.Similarly, ‖λ0‖F ′ = 1, and the proof is 
omplete.Noti
e that if T = ∆̃A(µ) for some µ ∈ A∗, then φl(a⊗ b) = a · (b · µ) =

ab · µ. It hen
e follows that the spa
e E 
onstru
ted in the above proof isequal to the spa
e 
onstru
ted in Theorem 3.6.Theorem 6.8. Let (A,A∗) be a unital dual Bana
h algebra, and let T ∈
B(A,A′). Then the following are equivalent :(1) T ∈ σWC(B(A,A′));(2) there exist a normal re�exive Bana
h left A-module E, x ∈ E, µ ∈ E′and S ∈ B(E) su
h that 〈T (b), a〉 = 〈µ · a, S(b · x)〉 for ea
h a, b ∈ A.Furthermore, in this 
ase, there is an absolute 
onstant K > 0 su
h that wemay 
hoose E, x, µ and S with ‖x‖ ‖µ‖ ‖S‖ ≤ K‖T‖.Proof. If (2) holds, then let π : A → B(E) be the asso
iated represen-tation, and let π∗ : E′ ⊗̂ E → A′ be the restri
tion of π′ to E′ ⊗̂ E. As Eis normal, the representation is weak∗-
ontinuous, and so π∗ maps into A∗,and π′∗ = π. For a, b ∈ A, we have

〈T (b), a〉 = 〈µ, π(a)Sπ(b)(x)〉 = 〈a, π∗(Sπ(b)(x) ⊗ µ)〉
= 〈b, π∗(x⊗ S′π(a)′(µ))〉,so that T (A) ⊆ A∗ and T ′κA(A) ⊆ A∗.Let (an) and (bn) be bounded sequen
es in A, and let x ∈ E. As Eis re�exive, the unit ball of E is weakly sequentially 
ompa
t, and so, by
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tivity 253moving to subsequen
es if ne
essary, we may suppose that for some y ∈ E,
〈µ, π(an)Sπ(bn)(x)〉 → 〈µ, y〉 (µ ∈ E′).Then, for c ∈ A and µ ∈ E′,

lim
n→∞

〈an · T (bn), c〉 = lim
n→∞

〈µ, π(can)Sπ(bn)(x)〉
= lim

n→∞
〈π(c)′(µ), π(an)Sπ(bn)(x)〉 = 〈π(c)′(µ), y〉 = 〈c, π∗(y ⊗ µ)〉.Combining this with the 
omments after Proposition 6.6, we see that φl (asde�ned using T ) is weakly 
ompa
t. A similar 
al
ulation shows that φr isweakly 
ompa
t, and so we 
on
lude that T ∈ σWC(B(A,A′)) as required.Conversely, let T ∈ σWC(B(A,A′)), and form the spa
es E and F usingProposition 6.7. The subspa
e µ0 ·A is dense in E′ and A·λ0 is dense in F ′.De�ne R ∈ (E′ ⊗̂ F ′)′ = B(F ′, E) by
〈R,µ0 · a⊗ b · λ0〉 = 〈T (b), a〉 (a, b ∈ A),so that ‖R‖ ≤ K‖T‖. Let G = E⊕2 F

′ (that is, the norm on G is ‖(e, f)‖ =
(‖e‖2 + ‖f‖2)1/2 for e ∈ E and f ∈ F ) so that G′ = E′ ⊕2 F , and G is anormal, re�exive, Bana
h left A-module. De�ne S ∈ B(G) by

S(z, b · λ0) = (R(b · λ0), 0) (z ∈ E, b · λ0 ∈ F ′),and let x = (0, λ0) ∈ G, µ = (µ0, 0) ∈ G′. Then, for a, b ∈ A,
〈µ · a, S(b · x)〉 = 〈(µ0 · a, 0), R(b · λ0, 0)〉 = 〈R,µ0 · a⊗ b · λ0〉 = 〈T (b), a〉,as required.Let A be a Bana
h algebra and E be a left A-module. Then we write

AB(E) for the 
olle
tion of left A-module homomorphisms, that is, maps T ∈
B(E) su
h that T (a · x) = a · T (x) for a ∈ A and x ∈ E. Similarly, we de�ne
BA(E) and ABA(E) to be the 
olle
tion of right A-module homomorphismsand A-bimodule homomorphisms, respe
tively.Suppose now that A is a 
losed subalgebra of B(E) for some re�exiveBana
h spa
e E. Then B(E) be
omes a Bana
h A-bimodule and a Bana
h
Ac-bimodule in the obvious way. We turn AcBAc(B(E)) into a Bana
h A-module by setting

(a · S)(T ) = aS(T ), (S · a)(T ) = S(T )a (a ∈ A, T ∈ B(E))for S ∈ AcBAc(B(E)). Noti
e that B(B(E)) is a dual Bana
h spa
e withpredual B(E) ⊗̂ (E ⊗̂ E′). Let X ⊆ B(E) ⊗̂ (E ⊗̂ E′) be the 
losure of thelinear span of{
cT ⊗ x⊗ µ− T ⊗ x⊗ c′(µ),

T c⊗ x⊗ µ− T ⊗ c(x) ⊗ µ
: c ∈ Ac, T ∈ B(E), x ∈ E, µ ∈ E′

}
.Then, for example, if S ∈ B(B(E)) satis�es 〈S, cT ⊗ x⊗ µ− T ⊗ x⊗ c′(µ)〉

= 0 for ea
h c ∈ Ac, T ∈ B(E), x ∈ E and µ ∈ E′, then S(cT ) = cS(T ). We
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e see that X⊥ = AcBAc(B(E)), so that AcBAc(B(E)) has the predual
B(E) ⊗̂E ⊗̂ E′/X.De�ne θ : A ⊗̂ A → AcBAc(B(E)) by

θ(a⊗ b)(T ) = aTb (a, b ∈ A, T ∈ B(E)),so that θ is an A-bimodule homomorphism. We then de�ne ψ : B(E) ⊗̂E ⊗̂
E′/X → B(A,A′) by, for a, b ∈ A, x ∈ E, µ ∈ E′ and T ∈ B(E),

〈ψ(T ⊗ x⊗ µ+X), a⊗ b〉 = 〈µ, θ(a⊗ b)(T )(x)〉 = 〈µ, aTb(x)〉.A simple 
he
k shows that this is well-de�ned, and that ‖ψ‖ ≤ 1. We turn
B(E) ⊗̂E ⊗̂ E′ into a Bana
h A-bimodule by setting

a · (T ⊗ x⊗ µ) = T ⊗ a(x) ⊗ µ, (T ⊗ x⊗ µ) · a = T ⊗ x⊗ a′(µ)

(a ∈ A, T ∈ B(E), x ∈ E, µ ∈ E′).Then X is a sub-A-bimodule, and this module a
tion agrees with the modulea
tion already de�ned on AcBAc(B(E)). We may verify that ψ is an A-bimodule homomorphism.We now aim to 
onstru
t a Bana
h spa
e E su
h that ψ is a bije
tion(onto a suitable 
losed subspa
e of B(A,A′)) for this E.Definition 6.9. For a Bana
h left A-module E, and x ∈ E, let A · xbe the 
losure of {a · x : a ∈ A}, so that A · x is a 
losed submodule of E.Similarly, for µ ∈ E′, de�ne µ · A. We then say that E is 
y
li
 if, for some
x0 ∈ E, we have A · x0 = E; a similar de�nition holds for E′.For Bana
h spa
es E and F , we let ℓ2(E ⊕ F ) = E ⊕2 F be the dire
tsum of E and F with the norm ‖(e, f)‖ = (‖e‖2 +‖f‖2)1/2 for e ∈ E, f ∈ F .When E and F are re�exive, normal, Bana
h left A-modules, it is 
learthat so is E ⊕2 F . We similarly de�ne ℓ2(⊕αEα), where (Eα) is a family ofBana
h spa
es.The following lemma is a te
hni
al result. It would be easier to de�ne Eto be the ℓ2-dire
t-sum of all re�exive, normal, Bana
h left A-modules, butthis 
olle
tion is not in general a set.Lemma 6.10. Let E be a set of re�exive, normal , 
y
li
, Bana
h left
A-modules. There exists a re�exive, normal , Bana
h left A-module E su
hthat :(1) ea
h member of E is isometri
ally isomorphi
 to a 1-
omplementedsubmodule of E;(2) for x1, x2 ∈ E and µ1, µ2 ∈ E′, if X(x1, x2) = {a · (x1, x2) : a ∈ A}

⊆ A · x1 ⊕2 A · x2 and Y (µ1, µ2) = {(µ1, µ2) · a : a ∈ A} ⊆ µ1 · A⊕2

µ2 · A, then X(x1, x2)⊕2 Y (µ1, µ2)
′ is isometri
ally isomorphi
 to a

1-
omplemented submodule of E.
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tivity 255Proof. Let E0 = E , and then use trans�nite indu
tion to de�ne Eα, for anordinal α, as follows. If α is a limit ordinal, we let Eα =
⋃

λ<α Eλ. Otherwise,let Eα = ℓ2(
⊕

E∈Eα
E) and for x1, x2 ∈ Eα and µ1, µ2 ∈ E′

α, form X(x1, x2)and Y (µ1, µ2) as above. Then let Eα+1 be Eα unioned with the 
olle
tionof all su
h spa
es X(x1, x2) ⊕2 Y (µ1, µ2)
′. Noti
e that ea
h member of Eαis 
anoni
ally a re�exive, normal, Bana
h A-module. Noti
e that X(x1, x2)is always a 
y
li
 module, while Y (µ1, µ2)

′ is the dual of a 
y
li
 (right)module.We then let E = ℓ2(
⊕

E∈Eℵ1

E) and give E the obvious left A-modulestru
ture. Then ea
h member of E is a 1-
omplemented subspa
e of E. In-deed, we may view Eα = ℓ2(
⊕

E∈Eα
E) and E′

α as submodules of E and E′,respe
tively, for ea
h α<ℵ1. For notational 
onvenien
e, let Eℵ1
={Ei : i∈I}for some indexing set I. Then let x1, x2 ∈ E and µ1, µ2 ∈ E′, so that, for

k = 1, 2, xk = (x
(k)
i )i∈I with ‖xk‖ = (

∑
i∈I ‖x

(k)
i ‖2)1/2, and similarly for µk.As ℵ1 is the �rst un
ountable ordinal, we see that for some α < ℵ1, forea
h k = 1, 2 the 
ondition x(k)

i 6= 0 or µ(k)
i 6= 0 implies that Ei ∈ Eα. Hen
e

x1, x2 ∈ Eα and µ1, µ2 ∈ E′
α, so that by 
onstru
tion, X(x1, x2)⊕2Y (µ1, µ2)

′is a 1-
omplemented submodule of Eα+1 ⊆ E as required.Theorem 6.11. Let (A,A∗) be a unital dual Bana
h algebra. Thereexists an isometri
, weak∗-
ontinuous representation π : A → B(E) su
hthat ψ (as asso
iated with π) maps into σWC(B(A,A′)) and is a bije
tion.Proof. By Theorem 6.8, we see that ψ maps into σWC(B(A,A′)) forany isometri
 weak∗-
ontinuous representation π : A → B(E). Let E bethe 
olle
tion of Bana
h spa
es 
onstru
ted in Theorem 6.8 for ea
h norm-one member of σWC(B(A,A′)). Then let E be the Bana
h spa
e given byLemma 6.10, so that it is 
lear that ψ is surje
tive, by Theorem 6.8. Hen
e
ψ′ is an isomorphism onto its range. We shall now show that ψ′ is surje
tive,whi
h will 
omplete the proof.Fix S ∈ AcBAc(B(E)), and de�ne M ∈ σWC(B(A,A′))′ in the followingway. For ea
h T ∈ σWC(B(A,A′)), let x ∈ E, µ ∈ E′ and S ∈ B(E)be su
h that 〈T, a⊗ b〉 = 〈µ · a, S(b · x)〉 for ea
h a, b ∈ A. Then de�ne
〈M,T 〉 = 〈µ,S(S)(x)〉. Suppose that this is well-de�ned. Then, for ea
h
x ∈ E, µ ∈ E′ and S ∈ B(E),

〈ψ′(M), S ⊗ x⊗ µ+X〉 = 〈M,ψ(S ⊗ x⊗ µ+X)〉 = 〈µ,S(S)(x)〉
= 〈S, S ⊗ x⊗ µ+X〉,so that ψ′(M) = S as required.We shall now show that M is well-de�ned, at least for our spe
i�
 E.Let T ∈ σWC(B(A,A′)), and suppose that, for i = 1, 2, we have xi ∈ E,

µi ∈ E′ and Si ∈ B(E) su
h that 〈T, a⊗ b〉 = 〈µi · a, Si(b · xi)〉 for a, b ∈ A.Pi
k t ∈ (0, 1) su
h that t‖S1‖ = (1− t)‖S2‖. A qui
k 
al
ulation shows that



256 M. Dawsthen K := t‖S1‖ = ‖S1‖ ‖S2‖(‖S1‖ + ‖S2‖)−1. For ea
h a, b ∈ A, by theCau
hy�S
hwarz inequality,
|〈T, a⊗ b〉| = t|〈µ1 · a, S1(b · x1)〉| + (1 − t)|〈µ2 · a, S2(b · x2)〉|

≤ t‖S1‖ ‖µ1 · a‖ ‖b · x1‖ + (1 − t)‖S2‖ ‖µ2 · a‖ ‖b · x2‖
≤ K(‖µ1 · a‖2 + ‖µ2 · a‖2)1/2(‖b · x1‖2 + ‖b · x2‖2)1/2.Let F be the 
losure of A · (x1, x2) in A · x1 ⊕2 A · x2, and let G be the
losure of (µ1, µ2) · A in µ1 · A⊕2 µ2 · A. The above 
al
ulation allows us tode�ne R ∈ (G ⊗̂ F )′ = B(F,G′) by

〈R, (µ1 · a, µ2 · a) ⊗ (b · x1, b · x2)〉 = 〈T, a⊗ b〉 (a, b ∈ A),and we see that ‖R‖ ≤ K. Then set H = G′ ⊕2 F , and let PF and PG′ bethe proje
tions onto F and G′ respe
tively. As H ′ = G⊕2F
′, let PG and PF ′be de�ned similarly, so PG = P ′

G′ and PF ′ = P ′
F . Let x0 = (0, (x1, x2)) ∈ H,

µ0 = ((µ1, µ2), 0) ∈ H ′, and de�ne S0 ∈ B(H) by S0(g
∗, f) = (R(f), 0) for

g∗ ∈ G′ and f ∈ F . Then, for a, b ∈ A,
〈µ0 · a, S0(b · x0)〉 = 〈(µ1 · a, µ2 · a), R(b · x1, b · x2)〉 = 〈T, a⊗ b〉.By Lemma 6.10, H is a 1-
omplemented submodule of E, so we 
an �ndnorm-de
reasing left A-module homomorphisms P : E → H and ι : H → Esu
h that Pι = IH . For i = 1, 2, we may de�ne maps Ui ∈ AB(H,A · xi) and

Vi ∈ BA(H ′, µi · A) by, for a ∈ A, f∗ ∈ F ′ and g∗ ∈ G′,
Ui(g

∗, a · (x1, x2)) = a · xi, Vi((µ1, µ2) · a, f∗) = µi · a.Then, by 
onstru
tion, Ui and Vi are norm-de
reasing. For a, b ∈ A, we seethat
〈T, a⊗ b〉 = 〈µi · a, Si(b · xi)〉 = 〈µ0 · a, V ′

i SiUi(b · x0)〉
= 〈µ0 · a, PG′V ′

i SiUiPF (b · x0)〉 = 〈µ0 · a, PG′S0PF (b · x0)〉.As A·x0 is dense in F and µ0 ·A is dense in G, we 
on
lude that PG′V ′
i SiUiPF

= PG′S0PF . As S ∈ AcBAc(B(E)), we see that
〈µi,S(Si)(xi)〉 = 〈ViPG(µ0),S(Si)UiPF (x0)〉

= 〈µ0, P ιPG′V ′
i S(Si)UiPFPι(x0)〉

= 〈µ0, PS(ιPG′V ′
i SiUiPFP )ι(x0)〉

= 〈µ0, PS(ιPG′S0PFP )ι(x0)〉.We hen
e 
on
lude that 〈µi,S(Si)(xi)〉 has the same value for i = 1 as for
i = 2, and hen
e that M is well-de�ned, as required.Definition 6.12. Let (A,A∗) be a dual Bana
h algebra. We say that
A is inje
tive if whenever π : A → B(E) is a weak∗-
ontinuous, unitalrepresentation, there is a quasi-expe
tation Q : B(E) → π(A)c.
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tivity 257Theorem 6.13. Let (A,A∗) be a unital dual Bana
h algebra. Then A isConnes-amenable if and only if A is inje
tive.Proof. We have already seen that when A is Connes-amenable, A isinje
tive. Conversely, 
onsider the weak∗-
ontinuous representation π : A →
B(E) 
onstru
ted in Theorem 6.11, so that ψ′ is an isomorphism. As A isinje
tive, there exists a quasi-expe
tation Q : B(E) → π(A)c. Let M =
(ψ′)−1(Q) ∈ σWC((A⊗̂A)′)′. As Q maps into π(A)c, it follows that a ·Q =
Q · a for a ∈ A, so that a ·M = M · a.The unit ball of A⊗̂A is weak∗-dense in the unit ball of σWC((A⊗̂A)′)′,so there exists a bounded net (τα) in A ⊗̂A su
h that M is the weak∗-limitof (τα). For ea
h α, let τα =

∑
n≥1 a

(α)
n ⊗ b

(α)
n . For x ∈ E and µ ∈ E′, thereexists λ ∈ A∗ su
h that 〈a, λ〉 = 〈µ, π(a)(x)〉 for a ∈ A. We then see that for

a, b ∈ A,
〈ab, λ〉 = 〈∆̃A(λ), a⊗ b〉 = 〈µ, π(ab)(x)〉 = 〈µ, π(a)IEπ(b)(µ)〉.Then, from the proof of Theorem 6.11, we dedu
e that

〈µ,Q(IE)(x)〉 = 〈M, ∆̃A(λ)〉 = 〈∆̃′
A(M), λ〉 = lim

α

∑

n≥1

〈µ, π(a(α)
n b(α)

n )(x)〉.

As Q is a proje
tion onto π(A)c and IE ∈ π(A)c, we see Q(IE) = IE , andso, as x and µ were arbitrary, we must have limα
∑

n≥1 a
(α)
n b

(α)
n = eA in theweak∗-topology on A. That is, ∆̃′

A(M) = eA, showing that M is a σWC-virtual diagonal, whi
h implies that A is Connes-amenable, as required.There exists a rather strong de
omposition theory for weak∗-
ontinuoushomomorphisms between von Neumann algebras (see [32, Theorem 5.5℄).From this, it follows that if A ⊆ B(H) is a von Neumann algebra admittinga quasi-expe
tation, and A is isomorphi
 to B ⊆ B(K), then B admits aquasi-expe
tation (see [29, Lemma 6.1.2℄). Hen
e we need only look at onerepresentation for A to de
ide if A is Connes-amenable.In 
ontrast, it follows from [30, Corollary 4.5℄ that A = B(ℓp ⊕ ℓq) is notConnes-amenable when p, q ∈ (1,∞) \ {2} are distin
t, while trivially, thereis a quasi-expe
tation for A under the trivial representation to B(ℓp ⊕ ℓq).Our theorem shows that there exists some re�exive Bana
h spa
e E andsome weak∗-
ontinuous representation π : A → B(E) su
h that A has noquasi-expe
tation for B(E). It would be interesting to determine the Bana
hspa
e properties of E.There exists a more 
ategory-theoreti
 de�nition of inje
tivity for vonNeumann algebras (see [33, Chapter XV, Se
tion 1℄): namely, they are in-je
tive in the usual mapping sense, with respe
t to 
ompletely positive maps.Does a similar de�nition hold for dual Bana
h algebras?
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h algebra, and let π : A →
B(E) be the representation given by Theorem 6.11. Then suppose that B =
Acc is Connes-amenable, so that there exists a quasi-proje
tion Q : B →
(Acc)c = Ac. Thus A♯ is Connes-amenable by Theorem 6.13, whi
h impliesin parti
ular that A is unital. Hen
e, if we wish to unitise A by using Acc,then we need to 
onsider �smaller� representations.Proposition 6.15. Let A be a Bana
h algebra. Then the following areequivalent :(1) WAP(A′)′ is Connes-amenable;(2) whenever π : A → B(E) is a 
ontinuous representation on a re�exiveBana
h spa
e E, there exists a quasi-expe
tation Q : B(E) → π(A)c.Proof. Let π : A → B(E) be a 
ontinuous representation on a re�ex-ive Bana
h spa
e E, so that by Proposition 2.9, there is a unique weak∗-
ontinuous representation π̂ : WAP(A′)′ → B(E) extending π. It is hen
esu�
ient to show that π(A)c = π̂(WAP(A′)′)c. The in
lusion ⊇ is 
lear.Conversely, let T ∈ π(A)c, so that

〈Tπ(a), τ〉 = 〈π(a)T , τ〉 (a ∈ A, τ ∈ E′ ⊗̂ E).Then let Φ ∈ WAP(A′)′ and let (aα) be a bounded net in A whi
h 
onvergesto Φ in the weak∗-topology on WAP(A′)′. Consequently, for x ∈ E, µ ∈ E′and T ∈ π(A)c,
〈µ, T π̂(Φ)(x)〉 = 〈Φ, π∗(T ′(µ) ⊗ x)〉 = lim

α
〈π∗(T ′(µ) ⊗ x), aα〉

= lim
α

〈µ, Tπ(aα)(x)〉 = lim
α

〈µ, π(aα)T (x)〉
= lim

α
〈π∗(µ⊗ T (x)), aα〉 = 〈Φ, π∗(µ⊗ T (x))〉

= 〈µ, π̂(Φ)T (x)〉,so that T ∈ π̂(WAP(A′)′)c, as required.7. WAP-
ompa
ti�
ations for semigroups. Semigroup algebras �tvery ni
ely into our framework, and the theory is well-explored. Here weshall sket
h some results on 
ompa
ti�
ations; for further details, see [4℄.Let S be a semigroup whi
h is also a topologi
al spa
e. Then S is asemitopologi
al semigroup when the left and right a
tions of S are 
ontinuous,while S is a topologi
al semigroup when the multipli
ation map S × S → Sis 
ontinuous.We write ℓ∞(S) for the 
ommutative C∗-algebra of all bounded fun
tionson S. For s ∈ S, de�ne ̺s : S → S by ̺s(t) = ts for t ∈ S. De�ne Rs :
ℓ∞(S) → ℓ∞(S) by

Rs(f) = f ◦ ̺s (s ∈ S, f ∈ ℓ∞(S)),



Dual Bana
h algebras: representations and inje
tivity 259Let C(S) ⊆ ℓ∞(S) be the spa
e of 
ontinuous, bounded fun
tions on S.For f ∈ ℓ∞(S), we say that f is weakly almost periodi
, denoted by f ∈
WAP(S), when f ∈ C(S), and RS(f) := {Rs(f) : s ∈ S} is relativelyweakly 
ompa
t in ℓ∞(S). As noted in [4, Chapter 4℄, if Sd denotes thesemigroup S with the dis
rete topology, then WAP(S) = WAP(Sd)∩C(S).Theorem 7.1. Let S be a semitopologi
al semigroup, and let f ∈ C(S).Then f ∈ WAP(S) if and only if

lim
n→∞

lim
m→∞

f(smtn) = lim
m→∞

lim
n→∞

f(smtn)whenever (sm) and (tn) are sequen
es of distin
t elements of S, and theiterated limits exist. Then WAP(S) is a translation invariant sub-C∗-algebraof ℓ∞(S) whi
h 
ontains the 
onstant fun
tions.We shall now 
on
entrate on the 
ase when S is dis
rete. We turn ℓ1(S)into a Bana
h algebra with the 
onvolution produ
t in the usual way (see[9℄ for further details about su
h algebras). Using the double limit 
riterionabove, it is a simple matter to 
he
k that WAP(S) = WAP(ℓ∞(S)) wherewe treat ℓ∞(S) as an ℓ1(S)-bimodule. Thus, we see that the Arens produ
tsdrop to a well-de�ned produ
t on WAP(S)′ turning WAP(S)′ into a dualBana
h algebra.Similar 
on
lusions 
an be drawn when S is a lo
ally 
ompa
t group (see[9, Chapter 7℄ for example) but the arguments involved are more intri
ate.For example, in [36℄, it is shown that WAP(L∞(G)) = WAP(G) for a lo
ally
ompa
t group G. The argument there seems to rely upon 
ertain propertiesof groups, and it is far from 
lear that an analogous result will hold insituations where L1(T ) makes sense for a topologi
al semigroup T . See [21℄for re
ent progress in the study of when L1(T ) makes sense for su
h a semi-group T .Let SWAP be the 
hara
ter spa
e of the C∗-algebra WAP(S). De�ne amap ǫ : S → SWAP by letting ǫ(s) be point evaluation at s ∈ S. We may
he
k that the produ
t on WAP(S)′ restri
ts to the 
hara
ter spa
e SWAP ,so that SWAP be
omes a semigroup, and ǫ be
omes a homomorphism.For a semitopologi
al semigroup S, a semitopologi
al semigroup 
ompa
t-i�
ation of S is a pair (ψ, T ) where T is a 
ompa
t, Hausdor�, semitopolog-i
al semigroup, and ψ : S → T is a 
ontinuous homomorphism with denserange. We do not require that ψ be inje
tive, so this di�ers from the notionof a 
ompa
ti�
ation of a topologi
al group. A semitopologi
al semigroup
ompa
ti�
ation (ψ, T ) is universal if whenever R is another 
ompa
t semi-topologi
al semigroup and φ : S → R is a homomorphism, φ fa
tors through
(ψ, T ). Clearly any two universal 
ompa
ti�
ations are isomorphi
.Theorem 7.2. With notation as above, (ǫ, SWAP) is a universal semi-topologi
al semigroup 
ompa
ti�
ation of S.
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eforth drop the ǫ and write SWAP for the WAP-
ompa
t-i�
ation of S. Noti
e that WAP(S) is isomorphi
 to C(SWAP) and so
WAP(S)′ is isomorphi
 to M(SWAP). We may 
he
k that the produ
t on
WAP(S)′ agrees with the natural 
onvolution produ
t on M(SWAP).Example 7.3. Let S be a dis
rete semigroup. Then ℓ1(S) is a Bana
halgebra, and c0(S) is a predual for the Bana
h spa
e ℓ1(S). We see that theprodu
t is weak∗-
ontinuous if and only if S is a weakly 
an
ellative dis
retesemigroup, that is, the left and right a
tions are �nite-to-one maps. Thisfollows by an easy 
al
ulation: see [11, Proposition 5.1℄ for example.Example 7.4. Let S = (N,max), so that ℓ1(S) is a dual Bana
h algebrawith predual c0(S). Then SWAP is a 
ompa
t semitopologi
al semigroup
ontaining S as a dense subsemigroup. We may 
he
k that SWAP is equalto S with an adjoined zero, denoted by ∞, whi
h satis�es ∞n = n∞ = ∞for n ∈ SWAP . The topology is then simply the one-point 
ompa
ti�
ation.Example 7.5. Let S = (N,min), so that ℓ1(S) is a Bana
h algebra, butas S is not weakly 
an
ellative, ℓ1(S) is not a dual Bana
h algebra withrespe
t to c0(S). We may 
he
k that SWAP is equal to S with an adjoinedidentity, denoted again by ∞, so that ∞n = n∞ = n for n ∈ SWAP . Thetopology is again the one-point 
ompa
ti�
ation.For example, the WAP-
ompa
ti�
ation of (Z,+) is a mu
h more mys-terious obje
t.7.1. Inje
tivity and semigroup algebras. We now apply the idea of in-je
tivity to some semigroup algebras. As will be seen, the results we get arerather simple, while the ne
essary Bana
h spa
e ma
hinery is fairly involved,all suggesting that we really need some further tools to make this approa
hworthwhile.Let E be a Bana
h spa
e with a normalised basis (en). See [24℄ for furtherdetails on bases in Bana
h spa
es. For ea
h n, there is a linear fun
tional
e∗n ∈ E′ given by 〈e∗n,

∑
i xiei〉 = xn. By a standard renorming of E, we maysuppose that the proje
tion onto the linear span of (ei)

n
i=1 is norm-de
reasing.Let S = (N,min). There is then a natural representation π : ℓ1(S) →

B(E) given by
π(δn)(em) =

{
em, m ≤ n,
0, m > n, (n,m ∈ N)and linearity. That is, π(δn) is the proje
tion onto the linear span of the �rst

n basis elements. Let A = π(ℓ1(S)) ⊆ B(E).Ea
h element of B(E) has a natural representation as a matrix withrespe
t to the basis (en). We 
laim that Ac is just the diagonal matri
esin B(E). Clearly a diagonal matrix is in Ac, while 
onversely, sin
e π(n) −
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π(n− 1) = e∗n ⊗ en, we see that for T ∈ Ac,
T (e∗n⊗en)(em) = δn,mT (en) = (e∗n⊗en)T (em) = 〈e∗n, T (em)〉en (n,m ∈ N);here δ denotes the Krone
ker delta. We hen
e see that T (en) ∈ Cen for ea
h
n ∈ N, as required.We now 
laim that if there exists a quasi-expe
tation Q : B(E) → Ac,then Q must be the 
anoni
al proje
tion onto the diagonal of B(E). Let
n,m ∈ N, let a = e∗n ⊗ en, b = e∗m ⊗ em ∈ Ac and let T ∈ B(E). Then

〈e∗n, T (em)〉Q(e∗m ⊗ en) = Q(aTb) = aQ(T )b = 〈e∗n,Q(T )(em)〉e∗m ⊗ en,so that, if n 6= m, then e∗m ⊗ en 6∈ Ac, so 〈e∗n,Q(T )(em)〉 = 0. Thus
Q(T )(en) ∈ Cen for ea
h n, and we see that

〈e∗n, T (en)〉e∗n ⊗ en = 〈e∗n, T (en)〉Q(e∗n ⊗ en) = 〈e∗n,Q(T )(en)〉e∗n ⊗ en,and hen
e Q(T )(en) = 〈e∗n, T (en)〉, as required.Theorem 7.6. Let S = (N,min). Then WAP(ℓ1(S)′)′ is not Connes-amenable.Proof. By Proposition 6.15 (but really by Proposition 6.3) it su�
esto �nd a re�exive Bana
h spa
e with a basis (en) su
h that the 
anoni
alproje
tion from B(E) onto its diagonal is not bounded.Following [24, Proposition 2.b.11℄, there exists a sequen
e (βn)n∈N ofpositive reals tending to in�nity su
h that, for ea
h n ∈ N, we 
an �nd aBana
h spa
e Hn su
h that:1. there is an isomorphism φn : Hn → ℓ22n (that is, the spa
e C2n with theusual Eu
lidean norm) su
h that ‖φn‖ ‖φ−1
n ‖ ≤ K for some absolute
onstant K > 0;2. Hn has a normalised basis (in our sense, as above) (ek)

2n
k=1;3. there exists (ak)

2n
k=1 ⊆ C with
∥∥∥

n∑

k=1

a2k−1e2k−1

∥∥∥ ≥ βn

∥∥∥
2n∑

k=1

akek

∥∥∥.Let Kn be the subspa
e spanned by (e2k−1)
n
k=1. As Hn is isomorphi
 to

ℓ22n, let Pn be the orthogonal proje
tion onto Kn (pulled ba
k by φn), sothat ‖Pn‖ ≤ K. Then Pn(ek) = ek when k is odd, while for even k, 
learly
〈e∗k, Pn(ek)〉 = 0, as Pn(ek) ∈ Kn. Let Qn be the 
anoni
al proje
tion of
B(Hn) onto its diagonal, so that Qn(Pn) =

∑n
k=1 e

∗
2k−1 ⊗ e2k−1. Then let

x =
∑2n

k=1 akek, so that
‖Qn(Pn)(x)‖ =

∥∥∥
n∑

k=1

a2k−1e2k−1

∥∥∥ ≥ βn‖x‖,so ‖Qn(Pn)‖ ≥ βn, and hen
e ‖Qn‖ ≥ K−1βn.



262 M. DawsLet E be the ℓ2-dire
t sum of the Hn, so that if Q is the 
anoni
alproje
tion from B(E) onto its diagonal, we see that ‖Q‖ ≥ βn for every n,whi
h gives a 
ontradi
tion. We hen
e see that WAP(ℓ1(S)′)′ is not Connes-amenable when S = (N,min).Noti
e that when π : ℓ1(N,min) → B(E) is a representation, then π isa well-de�ned linear operator ℓ1(N,max) → B(E), and it is easily 
he
kedthat the map ℓ1(N,max) → B(E), δn 7→ IE − π(n), is a homomorphism.The 
ommutant for either of these maps is equal, and hen
e we see that
WAP(ℓ1(N,max)′)′ is also not Connes-amenable.It seems quite possible that various interesting Bana
h spa
es will begenerated by starting with a 
omplex semigroup S for whi
h we know that
WAP(ℓ1(S)′)′ is not Connes-amenable, and then looking at the representa-tions generated by our results.We now brie�y mention how to use the notion of inje
tivity to show that adual Bana
h algebra is Connes-amenable. For example, let π : ℓ1(Z) → B(E)be a representation on some re�exive Bana
h spa
e E. We 
onstru
t a quasi-expe
tation Q : B(E) → π(ℓ1(Z))c by

Q(T ) = lim
n→∞

1

n

n∑

k=1

π(δ−k)Tπ(δk),where the limit is in the weak∗-topology on B(E). Then, for m ≥ 0,
‖π(δm)Q(T ) −Q(T )π(δm)‖

= lim
n→∞

∥∥∥∥
1

n

n∑

k=1

(π(δm−k)Tπ(δk) − π(δ−k)Tπ(δk+m))

∥∥∥∥

= lim
n→∞

∥∥∥∥
1

n

m∑

k=1

π(δm−k)Tπ(δk)

∥∥∥∥ ≤ lim
n→∞

m

n
‖T‖ ‖π‖2 = 0,and a similar argument holds when m < 0. Thus Q is a proje
tion onto

π(ℓ1(Z))c, and it is simple to verify that Q is a quasi-proje
tion. Of 
ourse,in this argument, we have really used, rather dire
tly, the fa
t that Z is anamenable group.It seems more natural and pro�table to study the Connes-amenability ofalgebras of operators via inje
tivity, something we hope to pursue in futureresear
h.8. Tensor produ
ts. In this se
tion, we shall sket
h some ideas abouttensor produ
ts of Bana
h algebras whi
h behave well with respe
t to weaklyalmost periodi
 fun
tionals, and then go on to give a theory of tensor prod-u
ts of dual Bana
h algebras.We start by sket
hing some results on tensor produ
ts of Bana
h spa
es.
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h algebras: representations and inje
tivity 263We follow the notation used in Bana
h spa
e theory, namely that foundin [31℄, and in [13℄ (ex
ept where this 
lashes with notation in [31℄). Notethat this notation is di�erent from that found in [32℄, for example.Let E and F be Bana
h spa
es. We have previously de�ned the proje
tivetensor produ
t E ⊗̂ F . The inje
tive tensor norm, ǫ, is de�ned by, for τ =∑n
k=1 xk ⊗ yk ∈ E ⊗ F ,
ǫ(τ) = sup

{∣∣∣
n∑

k=1

〈µ, xk〉〈λ, yk〉
∣∣∣ : µ ∈ E′, λ ∈ F ′, ‖µ‖ = ‖λ‖ = 1

}
.We write E ̂

⊗ F for the 
ompletion of E ⊗ F with respe
t to ǫ. Noti
e thatif we identify E ⊗ F with a subspa
e of the �nite rank operators F(E′, F ),then ǫ is the norm indu
ed by the operator norm under this identi�
ation.Let α be a norm on E⊗F . Then α is a reasonable 
rossnorm when ǫ(τ) ≤
α(τ) ≤ π(τ) for ea
h τ ∈ E ⊗ F . In this 
ase, 
learly α(x ⊗ y) = ‖x‖ ‖y‖for x ∈ E and y ∈ F . We write E ⊗̂α F for the 
ompletion of E ⊗ F withrespe
t to α.A uniform 
rossnorm is an assignment, to ea
h pair of Bana
h spa
es
E and F , of a norm α with the following mapping property. Let G and Hbe Bana
h spa
es, let T ∈ B(E,G) and S ∈ B(F,H), and de�ne T ⊗ S :
E⊗F → G⊗H by (T⊗S)(x⊗y) = T (x)⊗S(y) and linearity. Then we insistthat T ⊗S extends by 
ontinuity to a bounded linear map E ⊗̂αF → G⊗̂αHwith norm ‖T‖ ‖S‖. In the spe
ial 
ase when this mapping property holdswith E = G, F = H and α a reasonable 
rossnorm on E ⊗ F , we say (in anon-standard way) that α is a quasi-uniform 
rossnorm.We de�ne an a
tion of E′ ⊗ F ′ on E ⊗ F by setting

〈µ⊗ λ, x⊗ y〉 = 〈µ, x〉〈λ, y〉 (x ∈ E, y ∈ F, µ ∈ E′, λ ∈ F ′),and extending by linearity. We de�ne the dual norm αs on E′ ⊗ F ′ by
αs(σ) = sup{|〈σ, τ〉| : τ ∈ E ⊗ F, α(τ) ≤ 1} (σ ∈ E′ ⊗ F ′).Then it may be 
he
ked that αs is a reasonable 
rossnorm when α is, andsimilarly for uniform 
rossnorms. When E and F are re�exive, and α is aquasi-uniform 
rossnorm, then αs is also quasi-uniform. Then πs = ǫ for allBana
h spa
es, but ǫs = π only in spe
ial 
ases.A tensor norm is then a uniform 
rossnorm whi
h respe
ts �nite-dimen-sional subspa
es in a 
ertain sense. We shall not have use of this idea, butdo note that many of the norms we 
onstru
t in this se
tion are not aswell-behaved as those studied in [31℄ and [13℄.As explained before, it is standard that (E ⊗̂ F )′ = B(E,F ′) for Bana
hspa
es E and F . For any reasonable 
rossnorm α on E ⊗ F , as the formalin
lusion map E ⊗̂F → E ⊗̂α F is norm-de
reasing, we may use the adjointto identify (E ⊗̂α F )′ with a subspa
e of B(E,F ′), together with the dual



264 M. Dawsnorm. For example, the dual of E ̂
⊗ F is I(E,F ′), the integral operatorsfrom E to F ′ (see [31, Chapter 3℄ for further details).As explained above, ǫs = π only in spe
ial 
ases, whi
h means that in gen-eral, the natural map E′⊗̂F ′ → (E

̂
⊗F )′ = I(E,F ′) is only norm-de
reasing.An important spe
ial 
ase is when E or F has themetri
 approximation prop-erty, in whi
h 
ase E′⊗̂F ′ is, isometri
ally, a 
losed subspa
e of I(E,F ′). See[31, Se
tion 4℄ for further details. Another way to state this result is to 
on-sider the natural map from E′ ⊗̂ F ′ to B(E,F ′), whi
h has range N (E,F ′),the nu
lear operators. Thus N (E,F ′) is 
losed in I(E,F ′) when E or F hasthe metri
 approximation property.Example 8.1. Let X and Y be lo
ally 
ompa
t Hausdor� spa
es. Then

C0(X)

̂
⊗ C0(Y ) = C0(X × Y ) under the obvious identi�
ation (see [31,Se
tion 3.2℄). As C(X) has the metri
 approximation property, we �nd that

M(X) ⊗̂M(Y ) forms a 
losed subspa
e of M(X × Y ). We shall see belowthat we 
an fail to have equality.Similarly, let µ and ν be measures. Then L1(µ) ⊗̂ L1(ν) = L1(µ × ν)under the obvious identi�
ation (see [31, Chapter 2℄).Hen
e, if X and Y are dis
rete sets, then c0(X)

̂
⊗ c0(Y ) = c0(X × Y )and c0(X)′ ⊗̂ c0(Y )′ = ℓ1(X) ⊗̂ ℓ1(Y ) = ℓ1(X × Y ) = c0(X × Y )′.8.1. Tensor produ
ts of algebrasDefinition 8.2. Let A and B be Bana
h algebras, and de�ne an algebraprodu
t on A⊗B by (a⊗ b)(c⊗ d) = ac⊗ bd, and linearity, for a, c ∈ A and

b, d ∈ B. Then an algebra 
rossnorm on A⊗ B is a reasonable 
rossnorm αsu
h that A ⊗̂α B be
omes a Bana
h algebra.Noti
e that the proje
tive tensor norm is always an algebra 
rossnorm,but that the inje
tive tensor norm may not be (indeed, it is shown in [6℄that only four of Grothendie
k's fourteen �natural� tensor norms are alwaysalgebra 
rossnorms).We have shown that WAP algebras are isomorphi
 (but maybe not iso-metri
) to 
losed subalgebras of B(E) for suitable re�exive E. In this se
tion,it is 
onvenient to suppose that a WAP algebra A is isometri
 to a 
losed sub-algebra of B(E) for suitable E. This 
an 
learly be a
hieved by 
onsideringa suitable renorming of A.Definition 8.3. Let A and B be WAP algebras. A WAP-
rossnorm on
A ⊗ B is an algebra 
rossnorm α su
h that, if we form the natural 
hainof natural in
lusion maps WAP(A′) ⊗ WAP(B′) ⊆ A′ ⊗ B′ ⊆ A′ ⊗̂αs B′ ⊆
(A⊗̂αB)′, then we a
tually map into WAP((A⊗̂αB)′), and that furthermore,
WAP(A′) ⊗ WAP(B′) is norming for A ⊗̂α B.We shall see that the 
ondition on WAP(A′)⊗WAP(B′) is natural whenwe 
ome to 
onsider dual Bana
h algebras.
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tivity 265Example 8.4. Let K and L be 
ompa
t Hausdor� spa
es, and 
onsiderthe inje
tive tensor produ
t C(K)

̂
⊗C(L) = C(K×L). As these are 
ommu-tative C∗-algebras, they are Arens regular, and so WAP(C(K)′) = M(K),

WAP(C(L)′) = M(L), and hen
e M(K) ⊗M(L) ⊆ WAP(C(K × L)). Asexplained above, we indu
e the proje
tive tensor norm on M(K) ⊗M(L)by embedding it into C(K × L)′ = M(K × L). Then (M(K) ⊗̂M(L))′ =
B(M(K),M(L)′), and so we get the 
hain of isometri
 in
lusions

C(K)

̂
⊗ C(L) ⊆ A(M(K), C(L)) ⊆ A(M(K),M(L)′)

⊆ B(M(K),M(L)′).ThusM(K)⊗M(L) is norming for C(K×L). We 
ould also see this dire
tlyby 
onsidering point masses in M(K) and M(L).However, M(K) ⊗M(L) is not in general dense in M(K × L). Let Lbe a 
ompa
t Hausdor� spa
e su
h that M(L) does not have the Radon�Nikodým property (see [14℄ for what this te
hni
al 
ondition is). For example,[14, Chapter VII℄ shows that this holds when there is a separable subspa
eof C(L) without a separable dual. As indi
ated in [14, Chapter VI, Corol-lary 6℄, there then exists an integral, non-nu
lear operator from C(K) to
M(L) whenever K 
ontains a perfe
t subset (that is, a 
losed subset with noisolated points). For example, let T = {z ∈ C : |z| = 1}, so that T is perfe
t,and M(T) does not have the Radon�Nikodým property. ThusM(T)⊗M(T)is not dense in (C(T)

̂
⊗ C(T))′.Example 8.5. Let S and T be dis
rete semigroups, so that WAP(ℓ1(S)′)

= C(SWAP). Then ℓ1(S) ⊗̂ ℓ1(T ) = ℓ1(S × T ) as a Bana
h algebra, and so
WAP(ℓ1(S×T )′) = C((S×T )WAP). We 
laim that (S×T )WAP = SWAP ×
TWAP, whi
h follows easily by the universality property of (S×T )WAP . Wethen see that

WAP(ℓ1(S)′)

̂
⊗ WAP(ℓ1(T )′) = C(SWAP)

̂
⊗ C(TWAP)

= C(SWAP × TWAP) = C((S × T )WAP)

= WAP((ℓ1(S) ⊗̂ ℓ1(T ))′),so 
ertainly WAP(ℓ1(S)′)⊗WAP(ℓ1(T )′) is dense in WAP((ℓ1(S) ⊗̂ ℓ1(T ))′).As before, this argument also works for general lo
ally 
ompa
t groups
G and H.Example 8.6. Let S and T be dis
rete weakly 
an
ellative semigroups,so that c0(S)

̂
⊗ c0(T ) = c0(S×T ), and hen
e (c0(S)

̂
⊗ c0(T ))′ = ℓ1(S×T ) =

ℓ1(S) ⊗̂ ℓ1(T ) is a dual Bana
h algebra.Similarly, let S and T be lo
ally 
ompa
t groups, so that M(S) has thepredual C0(S), and similarly for M(T ) (see [30℄). Then, as above, we seethat M(S) ⊗̂M(T ) is a 
losed, norming (and hen
e weak∗-dense) subspa
eof M(S × T ) = C0(S × T )′ = (C0(S)

̂
⊗ C0(T ))′.



266 M. DawsProposition 8.7. Let A and B be Bana
h algebras. Then the naturalmap WAP(A′)⊗WAP(B′) → A′ ⊗̂πs B′ maps into WAP((A⊗̂B)′). If A and
B are Arens regular and one has the metri
 approximation property , then πis a WAP-
rossnorm on A⊗ B.Proof. Re
all that πs = ǫ, and let µ ∈ WAP(A′) and λ ∈ WAP(B′). Thenthere exists a re�exive Bana
h spa
e E and maps Sµ : A → E and Tµ : E →
A′ su
h that TµSµ = Lµ, that is, TµSµ(a) = a · µ for a ∈ A. Similarly thereexists a re�exive Bana
h spa
e F and maps Sλ and Tλ. We shall see belowthat there exists a uniform 
rossnorm α su
h that E ⊗̂α F is re�exive. As
ǫ ≤ α ≤ π, we see that we 
an fa
tor the map Lµ ⊗Lλ : A⊗̂B → A′

̂
⊗ B′ as

A ⊗̂ B
Sµ⊗Sλ

// E ⊗̂ F → E ⊗̂α F
Tµ⊗Tλ

// A′ ⊗̂α B′ → A′

̂
⊗ B′,and so Lµ ⊗ Lλ = Lµ⊗λ is weakly 
ompa
t. By linearity, the argument is
omplete.Suppose now that A has the metri
 approximation property. By [31,Theorem 4.14℄, the 
anoni
al map A ⊗̂ B → (A′

̂
⊗ B′)′ is an isometry, sothat A′

̂
⊗ B′ is norming for A ⊗̂ B. As A and B are Arens regular, we seethat π is indeed a WAP-
rossnorm on A ⊗ B. The 
ase for B follows bysymmetry.Example 8.8. Let c = C(N∞) be the spa
e of 
onvergent sequen
es,where N∞ is the one-point 
ompa
ti�
ation of N. Then c′ = ℓ1 naturally,and so (c ⊗̂ c)′ = B(c, ℓ1) = A(c, ℓ1) = ℓ1

̂
⊗ ℓ1. Then π is a WAP-
rossnormfor c⊗ c as c is Arens regular. In fa
t, c ⊗̂ c is Arens regular.For general 
ompa
t Hausdor� spa
esK and L, by the above proposition,we see that π is a WAP-
rossnorm on C(K) ⊗ C(L). However, as noted in[34℄, when G is a 
ompa
t group, the algebra C(G) ⊗̂C(G) 
ontains a 
opyof A(G), the Fourier algebra of G, so that C(G)⊗̂C(G) is not Arens regular.Hen
e M(G) ⊗M(G) ⊆ (C(G) ⊗̂ C(G))′ 
annot be dense.See [35℄ for details about when A⊗̂B is Arens regular, but bear in mindthe 
orre
tion [34℄.It seems that in general, WAP(A′)

̂
⊗ WAP(B′) need not be norming for

A ⊗̂B. Also, we see no way to adapt the above proof to the 
ase A ⊗̂β B foran arbitrary algebra 
rossnorm β.Proposition 8.9. Given re�exive Bana
h spa
es E and F , there existsa tensor norm α on E ⊗ F su
h that E ⊗̂α F is re�exive, and su
h that
E′ ⊗ F ′ is dense in (E ⊗̂α F )′.Proof. For example, for 1 < p <∞, let gp and dp be the Chevet�Saphartensor norms, as de�ned in [31, Chapter 6℄ or [1℄. Then, by [1, Corollary 3.2℄,we �nd that E ⊗̂gp F is re�exive whenever E and F are, and similarly for dp.
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h algebras: representations and inje
tivity 267Furthermore, E′⊗F ′ is indeed dense in (E ⊗̂gpF )′ and (E ⊗̂dp
F )′. As E′⊗F ′is dense in (E ⊗̂α F )′, we see that (E ⊗̂α F )′ = E′ ⊗̂αs F ′.Remark 8.10. One disadvantage of the Chevet�Saphar tensor norms isthat they are not symmetri
, in that E ⊗̂gp F is not in general isomorphi
 to

F ⊗̂gp E (in 
ontrast to the inje
tive or proje
tive tensor norms). However,
d2 and g2 behave rather ni
ely, in that ds

2 = g2, gs
2 = d2, and H ⊗̂d2

K =
H ⊗̂g2

K = H ⊗2 K whenever H and K are Hilbert spa
es (here H ⊗2 Kis the usual Hilbertian tensor produ
t). If we interpolate between d2 and g2then we 
an verify that we end up with a symmetri
 tensor norm α su
h that
E ⊗̂α F is re�exive when E and F are, and su
h that H ⊗̂αK = H ⊗2K forHilbert spa
es H and K.Let A be a Bana
h algebra su
h that there is a re�exive Bana
h spa
e
E and an isometri
 representation πA : A → B(E) su
h that π′AκE′⊗̂E takesthe unit ball of E′ ⊗̂ E onto the unit ball of WAP(A′). From our previouswork, this is equivalent to WAP(A′) being norming for A. Suppose that
B is similar, with πB : B → B(F ), say. Now let α be some quasi-uniform
rossnorm satisfying the 
on
lusions of Proposition 8.9. Then π = πA⊗ πB :
A⊗ B → B(E ⊗̂α F ), de�ned by
π(a⊗ b)(x⊗ y) = πA(a)(x) ⊗ πB(b)(y) (a ∈ A, b ∈ B, x ∈ E, y ∈ F ),is a representation. Use this to indu
e a norm ‖ · ‖π,α on A⊗B, and denotethe 
ompletion by A ⊗̂π,α B.Proposition 8.11. With notation as above, ‖·‖π,α is a WAP-
rossnormon A⊗ B.Proof. By assumption, ‖a⊗b‖π,α = ‖πA(a)‖ ‖πB(b)‖ = ‖a‖ ‖b‖ for a ∈ Aand b ∈ B, so the triangle inequality implies that ‖ · ‖π,α ≤ π(·). Let λA ∈ A′and λB ∈ B′ be su
h that ‖λA‖ = ‖λB‖ = 1. As WAP(A′) is normingfor A, the unit ball of WAP(A′) is weak∗-dense in the unit ball of A′, and sothere exists a net (µAα ) in WAP(A′) su
h that ‖µAα ‖ ≤ ‖λA‖ for ea
h α, and

limα 〈µAα , a〉 = 〈λA, a〉 for a ∈ A. By the assumption on πA, for ea
h α, we
an �nd σAα ∈ E′ ⊗̂E with ‖σAα ‖ = ‖µAα ‖ and π′AκE′⊗̂E(σAα ) = µAα . Similarly,we 
an �nd (σBβ ) ⊆ F ′ ⊗̂ F for λB. Then, for τ =
∑n

k=1 ak ⊗ bk ∈ A⊗ B,
〈λA ⊗ λB, τ〉 =

n∑

k=1

lim
α

〈µAα , ak〉 lim
β

〈µBβ , bk〉

=
n∑

k=1

lim
α

〈πA(ak), σ
A
α 〉 lim

β
〈πB(bk), σ

B
β 〉

= lim
α

lim
β

〈π(τ), σAα ⊗ σBβ 〉.



268 M. DawsBy taking the supremum over ‖λA‖ = ‖λB‖ = 1, we 
onsequently 
on
ludethat ǫ(·) ≤ ‖ · ‖π,α. Thus ‖ · ‖π,α is a reasonable 
rossnorm, and so 
learly itis an algebra 
rossnorm.Now let G = E ⊗̂α F and C = A ⊗̂π,α B. We may treat π as an isometryfrom C into B(G), and so π′κG′⊗̂G is a norm-de
reasing map from G′ ⊗̂ Gto C′. De�ne
X={π′κG′⊗̂G((µE⊗µF )⊗(xE⊗xF )) : µE ∈ E′, µF ∈ F ′, xE ∈ E, xF ∈ F},so that 
learly X ⊆ WAP(C′). For µE ∈ E′, µF ∈ F ′, xE ∈ E and xF ∈ F ,we have, for a ∈ A and b ∈ B,

〈π′κG′⊗̂G((µE ⊗ µF ) ⊗ (xE ⊗ xF )), a⊗ b〉
= 〈π′A(µE ⊗ xE), a〉〈π′B(µF ⊗ xF ), b〉.Hen
e, by the assumptions on πA and πB, the linear span of X is dense in

WAP(A′)⊗WAP(B′), and so WAP(A′)⊗WAP(B′) ⊆ WAP(C′), as required.Finally, almost by de�nition, the linear span of X is norming for π(A⊗ B),and so ‖ · ‖π,α is a WAP-
rossnorm.Conversely, suppose that β is some WAP-
rossnorm on A ⊗ B, so thatthere exists a re�exive Bana
h spa
e G and an isometri
 representation π :
A⊗̂β B → B(G). However, it need not be the 
ase that G = E ⊗̂αF for someBana
h spa
es E and F , and some uniform 
rossnorm α, with π = πA ⊗ πBfor suitable πA : A → B(E) and πB : A → B(F ).This mirrors the behaviour of C∗-algebras. Re
all that the minimal C∗-tensor produ
t of two C∗-algebras A and B is that de�ned by taking faithful
∗-representations of A and B on Hilbert spa
es H and K, respe
tively, andletting A⊗min B be the 
losure of A⊗B in B(E⊗2 F ). It turns out that thisis independent of the ∗-representations taken (as long as they are faithful).The maximal C∗-tensor produ
t is that de�ned by taking the supremum overany ∗-representation of A ⊗ B. As indi
ated by their names, the minimaland maximal C∗-tensor norms are indeed the smallest and greatest normson A⊗B whi
h satisfy the C∗-
ondition ‖τ∗τ‖ = ‖τ‖2 for τ ∈ A⊗B. Thena C∗-algebra A is nu
lear if A⊗minB = A⊗maxB for all C∗-algebras B. Thisis a
tually equivalent to A being amenable (see [29℄).As C∗-algebras are always Arens regular, we see that a C∗-tensor norm
α on A⊗B is a WAP-
rossnorm if and only if A′⊗B′ is norming for A⊗̂αB.However, this is always true for A′⊗minB′, essentially for the same reasons asin the proof of Proposition 8.11. By [32, Proposition 4.10℄, the norm indu
edonA′⊗B′ byA⊗maxB always agrees with that indu
ed byA⊗minB, so if α is aC∗-tensor norm, then as min ≤ α ≤ max, we see that A′⊗̂αsB′ = A′⊗̂minsB′.Hen
e α is a WAP-
rossnorm, as we might hope.We may be tempted to de�ne the minimal and maximal WAP-
rossnormsin a similar fashion, given that we know that at least one WAP-
rossnorm
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tivity 269must exist. However, it is rather un
lear if su
h minimal and maximal normsexist.Proposition 8.12. Let A and B be Bana
h algebras. There exists analgebra 
rossnorm max on A⊗ B su
h that if α is any WAP-
rossnorm on
A⊗ B, then α ≤ max, and su
h that A ⊗̂max B is a WAP-algebra.Proof. De�ne max on A ⊗ B by max(τ) = sup{‖π(τ)‖}, the supremumbeing taken over all algebra homomorphisms π : A ⊗ B → B(E), where
E is a re�exive Bana
h spa
e, and ‖π(a ⊗ b)‖ = ‖a‖ ‖b‖ for a ∈ A and
b ∈ B. Let ‖ · ‖π,α be a WAP-
rossnorm given by Proposition 8.11, so that
ǫ ≤ ‖ · ‖π,α ≤ max. As max(a ⊗ b) = ‖a‖ ‖b‖ for a ∈ A and b ∈ B, we seethat max ≤ π, so that max is a reasonable 
rossnorm. Clearly then max isan algebra 
rossnorm.Let α be some WAP-
rossnorm on A⊗B, so we 
an �nd a representation
π : A ⊗̂α B → B(E) for some re�exive Bana
h spa
e E, su
h that π′ takesthe unit ball of E′ ⊗̂E onto the unit ball of WAP((A⊗̂αB)′). As WAP(A′)⊗
WAP(B′) ⊆ WAP((A ⊗̂α B)′) is norming for A ⊗̂α B, we see that π is anisometry. Consequently, α ≤ max.For ea
h τ ∈ A ⊗ B and ea
h ε > 0, let πτ,ε : A⊗ B → B(Eτ,ε) be somerepresentation on a re�exive Bana
h spa
e su
h that ‖πτ,ε(τ)‖ > max(τ)−ε.Let F = ℓ2(

⊕
τ,εEτ,ε), so that π =

⊕
πτ,ε is a representation of A ⊗ B on

B(F ). Clearly then, for τ ∈ A ⊗ B, ‖π(τ)‖ = sup ‖πτ,ε(τ)‖ = max(τ), andso π extends to an isometri
 representation π : A ⊗̂max B → B(F ).In general, however, we see no way to show that this norm is a WAP-
rossnorm.8.2. Dual Bana
h algebras. Re
all that for twoW ∗-algebras (A,A∗) and
(B,B∗), we let X = A⊗min B, and then regard A∗ ⊗B∗ as a subspa
e of X ′,with 
losure A∗ ⊗ B∗. Then A ⊗ B, the W ∗-tensor produ
t of A and B, isthe dual of A∗ ⊗ B∗. It may be 
he
ked that A⊗ B be
omes a weak∗-densesubalgebra of A ⊗ B. For example, when H and K are Hilbert spa
es, wehave B(H) ⊗ B(K) = B(H ⊗2 K); in parti
ular, B(H) ⊗ B(K) need not benorm-dense in B(H) ⊗ B(K) (see [19, Exer
ise 11.5.7℄).Let (A,A∗) and (B,B∗) be dual Bana
h algebras, and let β be a WAP-
rossnorm on A⊗B. By assumption, WAP(A′) ⊗̂βs WAP(B′) is norming for
A ⊗̂β B and maps into WAP((A ⊗̂β B)′). Hen
e we see that X = A∗ ⊗̂βs B∗is a 
losed A⊗̂β B-submodule of WAP((A⊗̂β B)′). Thus, by Proposition 2.4,
(X ′, X) be
omes a dual Bana
h algebra. Noti
e that the norm on X =
A∗ ⊗̂βs B∗ is given by

‖τ‖X = sup{|〈τ, u〉| : u ∈ A⊗ B, β(u) ≤ 1} (τ ∈ X).It is hen
e immediate that A ⊗ B is weak∗-dense in X ′, so we may regard
X ′ as a dual Bana
h algebra tensor produ
t of A and B, and denote X ′ by
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A⊗β B. When A∗ ⊗̂βs B∗ is norming for A ⊗̂β B, we see that A ⊗̂β B is evena 
losed subspa
e of A⊗β B.Example 8.13. Let G and H be lo
ally 
ompa
t groups, so that M(G)is a dual Bana
h algebra with predual C0(G), and similarly for H (see Ex-ample 8.6). By Proposition 8.7, WAP(M(G)′) ⊗ WAP(M(H)′) maps into
WAP((M(G) ⊗̂M(H))′). As the map M(G) ⊗̂M(H) → (C0(G)

̂
⊗ C0(H))′is an isometry, we see that

C0(G) ⊗ C0(H) ⊆ C0(G)

̂
⊗ C0(G) ⊆ (M(G) ⊗̂M(H))′ = B(M(G),M(H)′)is norming forM(G)⊗̂M(H). Thus π is a WAP-
rossnorm onM(G)⊗M(H).We may hen
e formM(G)⊗πM(H). By de�nition, it is the weak∗-
losureof M(G) ⊗M(H) in the dual of C0(G)

̂
⊗ C0(H), that is, in M(G × H).As explained in Example 8.6, M(G) ⊗ M(H) is 
ertainly weak∗-dense in

M(G×H), and so M(G) ⊗π M(H) = M(G×H) as we might hope.Given dual Bana
h algebras (A,A∗) and (B,B∗), we 
an �nd weak∗-weak∗-
ontinuous representations πA : A → B(E) and πB : B → B(F ). Wemay hen
e de�ne the WAP-
rossnorm β := ‖ · ‖π,α as in Proposition 8.11,leading to A ⊗̂π,α B and hen
e A⊗β B. Alternatively, we may simply de�ne
A⊗π,α B to be the weak∗-
losure of πA(A) ⊗ πB(B) in B(E ⊗̂α F ).Proposition 8.14. With notation as above, there is a natural norm-de
reasing map from A∗ ⊗̂βs B∗ to (A ⊗π,α B)∗ whi
h has dense range. If
A∗ ⊗̂βs B∗ is norming for A ⊗̂β B, then this map is an isometry.Proof. We identify A with its weak∗-
losed image under πA : A → B(E),and hen
e we identify A∗ with a quotient of E′ ⊗̂ E, namely E′ ⊗̂ E/⊥A,and similarly for B. Then A ⊗̂β B is the 
losure of A ⊗ B in B(E ⊗̂α F ).We dedu
e that (A⊗π,α B)∗ = B(E ⊗̂α F )∗/

⊥(A⊗B) where B(E ⊗̂α F )∗ =
(E′ ⊗̂αs F ′) ⊗̂ (E ⊗̂α F ).We de�ne a natural map θ : A∗ ⊗ B∗ → (A ⊗π,α B)∗ as follows. For
τ ∈ A∗, σ ∈ B∗ and ε > 0, we have representations
τ =

∞∑

n=1

xE
n ⊗µE

n +⊥A ∈ E′ ⊗̂E/⊥A, σ =
∞∑

n=1

xF
n ⊗µF

n +⊥B ∈ F ′ ⊗̂F/⊥B,where ∑∞
n=1 ‖xE

n ‖ ‖µE
n ‖ < ‖τ‖+ε and ∑∞

n=1 ‖xF
n ‖ ‖µF

n ‖ < ‖σ‖+ε. Then let
θ(τ ⊗ σ) = u =

∞∑

n=1

∞∑

m=1

(xE
n ⊗ xF

m) ⊗ (µE
n ⊗ µF

m) + ⊥(A⊗ B) ∈ (A⊗π,α B)∗,so that ‖u‖ ≤ ∑∞
n=1

∑∞
m=1 ‖xE

n ‖ ‖xF
m‖ ‖µE

n ‖ ‖µF
m‖ < (‖σ‖+ ε)(‖τ‖+ ε). For

a ∈ A and b ∈ B, we see that
〈a⊗ b, u〉 =

∞∑

n=1

∞∑

m=1

〈a, xE
n ⊗ µE

n 〉〈b, xF
m ⊗ µF

m〉 = 〈a, τ〉〈b, σ〉 = 〈a⊗ b, τ ⊗ σ〉.
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tivity 271In parti
ular, u does not depend upon the 
hoi
e of representatives for τand σ, and so θ is well-de�ned. Noti
e also that for ψ ∈ A∗ ⊗ B∗,
βs(ψ) = sup{|〈ψ, v〉| : v ∈ A⊗ B, β(v) ≤ 1}

= sup{|〈θ(ψ), v〉| : v ∈ A⊗ B ⊆ B(E ⊗̂α F ), ‖v‖ ≤ 1} ≤ ‖θ(ψ)‖,so that θ extends to a norm-de
reasing map A∗ ⊗̂βsB∗ → (A⊗π,αB)∗. Noti
ethat if we knew that the unit ball of A⊗B were weak∗-dense in the unit ballof A⊗π,αB (that is, A∗ ⊗̂βs B∗ were norming for A⊗̂β B), then θ would evenbe an isometry. This is the 
ase for von Neumann algebras, for example, bythe Kaplansky density theorem ([32, Se
tion II, Theorem 4.8℄).We shall now show that A∗ ⊗ B∗ is dense in (A ⊗π,α B)∗, whi
h will
omplete the proof. Let τ ∈ (A⊗π,α B)∗, and pi
k a representation
τ =

∞∑

n=1

un ⊗ vn + ⊥(A⊗ B),

with (un) ⊆ E′ ⊗̂αs F ′ and (vn) ⊆ E ⊗̂α F satisfying ∑∞
n=1 α

s(un)α(vn)
<∞. By approximation, we may a
tually suppose that (un) ⊆ E′ ⊗ F ′ and
(vn) ⊆ E ⊗ F . We 
an then �nd representations

un =
∞∑

k=1

φ
(n)
k ⊗ ψ

(n)
k , vn =

∞∑

k=1

x
(n)
k ⊗ y

(n)
k ,

where for ea
h n, eventually φ(n)
k = 0, and so forth. For ea
h n, de�ne

µn =
∞∑

k=1

φ
(n)
k ⊗ x

(n)
k + ⊥A ∈ A∗, λn =

∞∑

k=1

ψ
(n)
k ⊗ y

(n)
k + ⊥B ∈ B∗,noti
ing that ea
h of these is a �nite sum. For a ∈ A and b ∈ B, we see that

〈a⊗ b, µn ⊗ λn〉 =
∞∑

k=1

〈a, φ(n)
k ⊗ x

(n)
k 〉〈b, ψ(n)

k ⊗ y
(n)
k 〉 = 〈a⊗ b, un ⊗ vn〉for n ≥ 1. Consequently, for c ∈ A⊗π,αB and N ≥ 1, as A⊗B is weak∗-densein A⊗π,α B,

∣∣∣〈c, τ〉 −
N∑

n=1

〈c, µn ⊗ λn〉
∣∣∣ =

∣∣∣
∞∑

n=N+1

〈c, un ⊗ vn〉
∣∣∣ ≤ ‖c‖

∞∑

n=N+1

αs(un)α(vn).

Thus A∗ ⊗ B∗ is indeed dense in (A⊗π,α B)∗.As indi
ated, the la
k of a generalisation of the Kaplansky density theo-rem shows that in general A⊗β B and A⊗π,α B are di�erent. The followingprovides an example of a general Bana
h algebra in whi
h the theory workswell.



272 M. DawsProposition 8.15. Let E and F be re�exive Bana
h spa
es, and let αbe a tensor norm on E ⊗ F satisfying the 
on
lusions of Proposition 8.9.Form the tensor produ
ts B(E) ⊗β B(F ) and B(E) ⊗π,α B(F ) by using thetrivial representations of B(E) on itself , and the same for B(F ). Then thesetensor produ
ts agree with B(E ⊗̂α F ).Proof. By Proposition 8.14, B(E)∗ ⊗ B(F )∗ is dense in the predual of
B(E)⊗π,αB(F ). Furthermore, E′⊗E⊗F ′⊗F is dense in both B(E)∗⊗B(F )∗and B(E⊗̂αF )∗. So if our natural map is an isometry, that is, B(E)∗⊗̂βsB(F )∗is norming for B(E) ⊗̂β B(F ), then the proof is 
omplete.If we identify B(E) ⊗ B(F ) as a subalgebra of B(E ⊗̂α F ) then β agreeswith the operator norm. Let u ∈ B(E)⊗B(F ) and ε > 0, so we may �nd σ ∈
E′ ⊗F ′ and τ ∈ E ⊗F with αs(σ) ≤ 1, α(τ) ≤ 1 and |〈σ, u(τ)〉| > β(u)− ε.Let

σ =
n∑

i=1

µi ⊗ λi, τ =
m∑

j=1

xj ⊗ yj ,and de�ne
v =

n∑

i=1

m∑

j=1

(µi ⊗ xj) ⊗ (λi ⊗ yj) ∈ (E′ ⊗ E) ⊗ (F ′ ⊗ F ) ⊆ B(E)∗ ⊗ B(F )∗.A simple 
al
ulation shows that 〈w, v〉 = 〈σ,w(τ)〉 for any w ∈ B(E)⊗B(F ),so that
βs(v) = sup{|〈w, v〉| : w ∈ B(E) ⊗ B(F ), β(w) ≤ 1}

= sup{|〈σ,w(τ)〉| : ‖w‖ ≤ 1} ≤ ‖σ‖ ‖τ‖ ≤ 1.It hen
e follows that the norm of u as a member of the dual spa
e of
B(E)∗ ⊗̂βs B(F )∗ is at least β(u) − ε. The proof is 
omplete, as ε > 0 wasarbitrary.It would be ni
e if we 
ould �nd a universal way to take the tensorprodu
t of two dual Bana
h algebras. For example, the proje
tive tensorprodu
t of two Bana
h algebras always gives a Bana
h algebra (although itis not always the most natural norm to use, for example for C(K) spa
es).This problem is related to the fa
t that we 
annot �nd maximal or minimalWAP-
rossnorms.Let A and B be WAP-algebras, and let α be a WAP-
rossnorm on
A⊗ B. It would be natural if there was some 
onne
tion between the DBAenveloping algebra WAP((A ⊗̂α B)′)′ and the dual Bana
h algebra ten-sor produ
t WAP(A′)′ ⊗α WAP(B′)′. However, this latter algebra is thedual of WAP(A′) ⊗̂αs WAP(B′), whi
h is only a norming submodule of
WAP((A ⊗̂α B)′). Hen
e, in general, WAP(A′)′ ⊗α WAP(B′)′ is only a quo-tient of WAP((A ⊗̂α B)′)′. Example 8.4 shows that this is true even for
ommutative C∗-algebras.
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tivity 2738.3. Appli
ation to Connes-amenabilityTheorem 8.16. Let A and B be Connes-amenable dual Bana
h algebras,and let β be a reasonable 
rossnorm on A∗ ⊗ B∗ whi
h turns (A∗ ⊗̂β B∗)
′ =

A ⊗ B into a dual Bana
h algebra 
ontaining A ⊗̂βs B as a weak∗-denseBana
h algebra (so that βs is an algebra 
rossnorm on A⊗B). Then A⊗Bis Connes-amenable.Proof. Let E be a re�exive Bana
h spa
e, and let π : A⊗ B → B(E) bea weak∗-
ontinuous representation. As in the proof of Proposition 6.15, we
laim that π(A⊗ B)c = π(A⊗ B)c, whi
h follows as π is weak∗-
ontinuousand A⊗ B is weak∗-dense in A⊗ B. We wish to show that there is a quasi-expe
tation Q : B(E) → π(A⊗ B)c.As A and B are Connes-amenable, they are unital, with units eA and eB,say. We may de�ne a homomorphism φ : A → A⊗ B by φ(a) = a ⊗ eB for
a ∈ A. Then, for τ =

∑n
k=1 µk ⊗ λk ∈ A∗ ⊗ B∗, we see that

〈φ(a), τ〉 = 〈a⊗ eB, τ〉 =
n∑

k=1

〈a, µk〉〈eB, λk〉 = 〈a, φ∗(τ)〉 (a ∈ A),where φ∗(τ) =
∑n

k=1 〈eB, λk〉µk ∈ A∗. Clearly φ∗ is bounded (as β is areasonable 
rossnorm), so φ∗ extends to A∗ ⊗̂β B∗ = (A ⊗ B)∗, and we seethat φ′∗ = φ, so that φ is weak∗-
ontinuous. A similar remark holds for B.Consider the representation πA : A → B(E) given by πA(a) = π(a⊗ eB).This is weak∗-
ontinuous by the pre
eding paragraph, so identify A with itsimage in B(E). As A is Connes-amenable, there is a quasi-expe
tation QA :
B(E) → Ac. Analogously, there exists a quasi-expe
tation QB : B(E) → Bc.Noti
e that A ⊆ Bc, B ⊆ Ac and (A⊗ B)c = Ac ∩ Bc.LetQ = QBQA, so that Q is bounded, and Q(a) = a for ea
h a ∈ Ac∩Bc.Let T ∈ B(E), let x = QA(T ) ∈ Ac, and let b = QB(x) = Q(T ) ∈ Bc. Let
a ∈ A, so that ax = xa, and as A ⊆ Bc,

QB(a(b− x)) = aQB(b− x) = 0 = QB(b− x)a

= QB((b− x)a).As ab, ba ∈ Bc, we see that ab = QB(ab) = QB(ba) = ba, so we 
on
ludethat b ∈ Ac. Thus Q maps into Ac ∩ Bc, and so we 
on
lude that Q is aproje
tion onto Ac ∩ Bc. Now let a, b ∈ Ac ∩ Bc, and let T ∈ B(E), so that
Q(aTb) = QBQA(aTb) = QB(aQA(T )b) = aQ(T )b,and we 
on
lude that Q is a quasi-expe
tation, as required.Noti
e that this proof will also show that C is Connes-amenable whenever

C is a dual Bana
h algebra 
ontaining A⊗ B as a dense subalgebra, and issu
h that the map A → C, a 7→ a ⊗ eB, is weak∗-
ontinuous (and similarlyfor B).



274 M. DawsCorollary 8.17. Let r, s ∈ (1,∞), and let α be some quasi-uniform
rossnorm on ℓr ⊗ ℓs su
h that ℓr ⊗̂α ℓ
s is re�exive, and (ℓr)′⊗ (ℓs)′ is densein (ℓr ⊗̂α ℓ

s)′. Then B(ℓr ⊗̂α ℓ
s) is Connes-amenable.Proof. By Proposition 8.15, we have B(ℓr ⊗̂α ℓ

s) = B(ℓr)⊗α B(ℓs). Thenthe theorem applies, as B(ℓr) and B(ℓs) are Connes-amenable, by resultsin [30℄.This 
orollary is 
omparable to [17, Theorem 2.2℄, as a quasi-uniformtensor norm is tight in the sense of [17℄, and by [30℄, the amenability of
A(E) is equivalent to the Connes-amenability of B(E), at least when E isre�exive and has the approximation property.It is interesting to note that our proof of Theorem 8.16 is rather morealgebrai
 than an analogous von Neumann result (
ompare to [33, Chap-ter XV, Proposition 3.2℄). Our approa
h is more in line with that of [29,Proposition 6.3.17℄.A
knowledgements. The author would like to thank the anonymousreviewer for mu
h helpful advi
e.
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