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On certain products of Banach algebras with
applications to harmonic analysis

by

MEHDI SANGANI MONFARED (Windsor)

Abstract. Given Banach algebras A and B with spectrum o(B) # 0, and given 6 €
o(B), we define a product A Xy B, which is a strongly splitting Banach algebra extension
of B by A. We obtain characterizations of bounded approximate identities, spectrum,
topological center, minimal idempotents, and study the ideal structure of these products.
By assuming B to be a Banach algebra in Co(X) whose spectrum can be identified with X,
we apply our results to harmonic analysis, and study the question of spectral synthesis,
and primary ideals.

1. Introduction and preliminaries. The products A xg B of Ba-
nach algebras defined in this paper (Definition 2.1) were first introduced by
T. Lau [18] for a special class of Banach algebras that are pre-duals of von
Neumann algebras, and for which the identity of the dual is a multiplicative
linear functional. In this paper we show that these products can be defined
for Banach algebras in a fairly general setting. The resulting products can
be viewed as strongly splitting Banach algebra extensions.

The study of these products has significance in two respects. First, the
products exhibit many properties that are not shared in general by arbitrary
strongly splitting extensions. As a simple example, the algebra of upper tri-
angular matrices is a direct sum of diagonal matrices with strictly upper tri-
angular matrices. While both direct summands are commutative, the algebra
itself is not commutative. This is in contrast with the case of the extensions
A x¢ B (Proposition 2.3). Second, the products A x¢ B can serve as a source
of examples (or counterexamples) for various purposes in functional and har-
monic analysis. In this respect, they have found applications in the study of
character amenability, which is the subject of a forthcoming paper [21].
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We recall that the spectrum o(B) of a Banach algebra B is the set
of all non-zero multiplicative linear functionals on B. If A is a commuta-
tive, semisimple Banach algebra, it can be viewed as a Banach algebra in
Co(o(A)) via the Gelfand transformation a — a. We say that A is regu-
lar Tauberian if A = {a: a € A} is regular (that is, separates points from
closed sets) and its elements with compact support are dense in A. The
kernel of a closed set E C o(A) is defined by k(E) = {a € A: ¢(a) =
0 forall ¢ € E}. The hull of a set I C A is defined by h(I) = {¢ €
o(A): ¢(a) = O0forall a € I}. A closed set E C o(A) is called a spectral
set of A if k(F) is the only closed ideal of A whose hull is equal to E.
Equivalently, E is a spectral set if for each a € A such that a(E) = {0},
and each ¢ > 0, there exists b € A such that b has compact support
disjoint from E and |la — b|| < e. E is called a local spectral set if the
conditions in the definition hold under the additional assumption that a
has compact support. We say that spectral synthesis holds in A if ev-
ery closed subset of o(A) is a spectral set [13, Sec. 39]. We denote by
koo(E) the set of all b € A such that b has compact support disjoint
from E.

Let X be a locally compact Hausdorff space and B a regular subalgebra
of Cp(X). Suppose that B is a Banach algebra with respect to a certain
norm | - ||. For each € X, let ¢, denote the evaluation functional at x.
Then the map = — ¢, is a homeomorphism from X into o(B). If this map is
surjective, we say B is a Banach algebra in Co(X ), where X is the spectrum
of B. For simplicity, if 29 € X we write I, in place of k({€z,}), in other
words,

I, = k({€z,}) = {u € B: u(xg) = 0}.

For a locally compact group G, the Fourier algebra A(G) consists of all
coefficients of the left regular representation of G' [9]. The norm of A(G)
is defined by regarding it as the continuous linear functionals on the group
C*-algebra, C*(G). In other words, for u € A(G),

ll = swp | f@)ue)da
FELYG), |Ifll=<1' &

where X denotes the collection of all equivalence classes of continuous uni-
tary representations of G. When G is commutative, A(G) = L!(G) via the
Fourier transformation. The spectrum of A(G) consists of all point evalu-
ation functionals {¢,: = € G}, and can be identified with G in a natural
way. For every x € G, {x} is a set of spectral synthesis for A(G). It is well
known that A(G) has a bounded approximate identity if and only if G is
amenable.
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Recall that the dual of a Banach algebra A carries a natural left and
right A-module structure defined by

(a-¢,b) = ($,ba), (¢-a,b)=(p,ab) (a,b€ A ¢eA).
The first Arens product O on A” is then defined by the following relations:
(@0V,¢)=(2,¥ 0 ¢), (VO¢a)= (V¢ a)
Similarly, the second Arens product & on A” is defined by
<¢<>J/7¢>:<wa¢®¢>v <¢®¢7a>:<¢7a¢>
The (first) topological center 3¢(A”) of A” is the set of all ® € A” such that
POV =0OW forall¥c A",

In general, the topological center is a closed subalgebra of (A”,0) contain-
ing A. The algebra A is called Arens regular (respectively, strongly Arens
irreqular) if 34 (A”) = A" (respectively, 3¢(A”) = A). The notion of “strongly
Arens irregular” was introduced recently by Dales and Lau in [5].

A Banach algebra A is called amenable (respectively, contractible) if
for every Banach A-bimodule E, every continuous derivation d: A — FE’
(respectively, d: A — FE) is an inner derivation [14]. A is called weakly
amenable if every continuous derivation d: A — A’ is an inner derivation.
A derivation d: A — A’ is called cyclic if

(d(a),b) + (d(b),a) =0 for all a,b € A.

If every continuous cyclic derivation from A to A’ is inner, then A is called
cyclic amenable [11].

2. Definition and structural properties. Let A and B be Banach
algebras with o(B) # 0, and let ¢, ¢ € o(B). If we equip the set A x B with
the usual C-module structure, then the multiplication

(a,b) - (d',b") = (ad’ + ¢p(b)a’ + (V' )a, bb')
turns A X B into a non-associative algebra. One can then verify that if
A has non-trivial multiplication, a necessary and sufficient condition for

associativity of the multiplication is that ¢ = . Since in this paper we deal
only with associative algebras, we are led to the following definition.

2.1. DEFINITION. Let A and B be Banach algebras with o(B) # (), and
let 0 € o(B). The 0-Lau product A x¢ B is defined as the Cartesian product
A x B with the algebra multiplication
(1) (a,) - (@', V) = (ad’ + 0(b)a’ + 6(b)a, bV'),
and with the norm |[|(a,b)|| = |la|| + ||b]].

2.2. REMARKS. (a) The space A Xy B is a Banach algebra. If we allow
0 = 0, we obtain the usual direct product of Banach algebras. Since direct
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products often exhibit different properties, we have excluded the possibility
that § = 0. If B = C and #: C — C is the identity map, then A x4y C
coincides with the unitization of A.

(b) In A xy B we identify A x {0} with A, and {0} x B with B. Then A
is a closed ideal while B is a closed subalgebra of A xy B, and

AxgB/A= B (isometric isomorphism).
In other words, A xg¢ B is a strongly splitting Banach algebra extension of
B by A. We note that the multiplication of A xg B is not induced from a
two-cocycle T € Z2(B, A), as the extension A xy B is not singular unless
A has trivial multiplication (for more on extensions of Banach algebras see
[1], [4]).
2.3. PROPOSITION. Let A and B be a Banach algebras and 6 € o(B).

(i) Given Banach algebras A, B, and given ¢ € o(B), the Banach al-
gebras A xg B and A x4 B are isomorphic if and only if there exist
Banach algebra isomorphisms W: A — A and ®: B — B such that
0=¢od.

(ii) AxgB is commutative if and only if both A and B are commutative.

(iii) (ao,bo) is an identity for A xg B if and only if ap =0 and by = 1p
s an identity for B.

(iv) ((aa,ba))a s a bounded left (right, or two-sided) approximate iden-
tity for A xg B if and only if |las| — 0 and (ba)a is a bounded left
(right, or two-sided) approzimate identity for B. A similar state-
ment is true for unbounded approximate identities.

Proof. For briefness we only give the proof for (iv). First assume that
((@a, ba))a is a bounded left approximate identity. Thus there exists M > 0
such that ||ba|| < ||aa|| + ||bal] < M for all a. Also for every b € B we must
have

1(@a; ba)(0,6) = (0, b)[| = [0(b)] laa || + [|bab — b]| — 0.

Since b is arbitrary we conclude that ||as| — 0, and (ba)q is a bounded left
approximate identity for B.

Conversely, if ||aq|| — 0 and (b, )q is a bounded left approximate identity
for B, then the net (aq, by )q is bounded, and for every (a,b) € A Xy B,

1(@as ba)(a, b)=(a, D) < llaallllall+l[a][|6(ba)—1]+|0(b)|[|aal|+[|bab—b]] — 0,
since 0(by) — 1. =

The dual of the space A x4 B can be identified with A’ x B in the natural
way ((¢,1), (a,b)) = ¢(a) + (b). The dual norm on A" x B’ is of course
the maximum norm |[|(¢,v)|| = max{||¢||, [[||}. We recall that on A" x B’

the weak™ topology coincides with the product of the weak* topologies of
A" and B’ [17, (17.14), p. 161]. The following result identifies the spectrum
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of A x¢g B. We also provide a description of various neighborhood bases in
0(A xg B) for our later purposes. Note that the topology of o(A xy B) is
the induced weak* topology from A’ x B’.

Part (i) of the following result is a generalization of a result proved by
Lau [18, Proposition 3.6, p. 166]

2.4. PROPOSITION. Let A and B be Banach algebras with o(B) # (). Let
0 € o(B) and

(2) E={(¢,0): 0 €0a(A)}, F={0,¢):¢ca(B)}
Set E =0 if 0(A) = 0. Then
(i) o(Axy B)=FEUF.
(ii) In o(A x¢ B), F is closed, while E'U{(0,0)} is compact.
(iii) All sets of the form U x{0}, where U is a neighborhood of ¢ in o(A),
form a neighborhood base at (¢,0). If ¥ # 6, all sets of the form
{0} x W, where W is a neighborhood of ¢ in o(B) not containing
0, form a neighborhood base at (0,v). Finally, all sets of the form

(U N a(A)) x {6} U{0} x W,
where U is a neighborhood of 0 in A’ and W is a neighborhood of 6
in o(B), form a neighborhood base at (0,8).

Proof. (i) We prove the inclusion o(AxyB) C EUF, the reverse inclusion
is easy to verify directly. Suppose that (¢,v) € o(A Xy B). Then for every
(a,b), (', V') € A xy B we have

(¢, 0), (aa’ + 0(b)a’ + 0(b)a, b)) = (¢(a) + ¥ (b))(4(d)) + (V)

which implies

¢laa’) + 0(b)(a’) + 0 )p(a) + 1) (bb')

= ¢(a)p(a’) + ¢(a)p(b)) + P(b)d(a’) + (D) (V).
If we take b = V' = 0, it follows that ¢(aa’) = ¢(a)p(d’) for all a,a’ € A,
and hence ¢ € o(A) U {0}. Next, if we take a = o’ = 0, it follows that
Y € o(B)U{0}. But ¢ = 0 implies that ¢ = 0, which is impossible since
(¢,9) # (0,0). So we have shown that ¢ € U(B). Now if ¢ = 0, then
(¢,¢) = (0,v) € F, which is what we want. If ¢ # 0, we can rewrite the
above equation as

(0(b) — ¥(b))(a’) + (O() — (V) (a) = 0.
Choosing a’ = 0, and a such that ¢(a) # 0, it follows that (V') = (V') for
all ¥ € B, and hence ¢ = 6. This means that (¢,v¢) = (¢,0) € E. Thus
o(AxgB)C EUF.
The proofs of (ii) and (iii) are left for the reader. m
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2.5. NOTE. For the rest of this paper, we shall use the letters £ and F
exclusively to denote the sets defined in (2).

The following two results which are stated for left ideals are also true for
right or two-sided ideals.

2.6. PROPOSITION. Let A and B be Banach algebras and 6 € o(B).
Suppose that I is a left ideal of A, J is a left ideal of B, and M =1 x J.

(i) If J C ker 0, then M is a left ideal in A Xy B.
(ii) If J & ker @, then M is a left ideal in A xg B if and only if [ = A.

The proof is routine and is omitted.
Next we consider the converse. Suppose that M is a left ideal of A x¢ B
and

(3) I ={a€ A: (a,b) € M for some b € B},
(4) J={be B: (a,b) € M for some a € A}.
The question is whether in general I and J are ideals and whether M = I'x J.
We will show by examples that in general we can neither expect I to be an

ideal, nor to have M = I x J (even if A is unital). However we have the
following result.

2.7. PROPOSITION. Let M, I, and J be as above. Then

(i) Jis a left ideal in B.
(ii) If J C ker 0, then I is a left ideal of A. Furthermore if A has a left

approximate identity and if M is closed, then M =1 x J.
(i) If J ¢ ker @ but I is a left ideal of A, then I = A.

Proof. (i) is easy.
For (ii) suppose that J C ker 6, and let a € I. Then (a,b) € M for some
b € J. Then for every a’ € A,
(a',0)(a,b) = (a'a+6(b)a’,0) = (d'a,0) € M.

Thus d’a € I, that is, I is a left ideal of A.

Next let (aq)q be a left approximate identity (not necessarily bounded)
for A, and suppose that ag € I, by € J. We will show that (ag,by) € M,
which proves M = IxJ. Let b € J and a € I be such that (ag, b), (a,by) € M.
Then (aq, 0)(ag,b) = (aqao,0) € M, and

I(@aao, 0) = (a0, 0)|| = [laaao — aol| — 0.

Since M is closed it follows that (ag,0) € M. Similarly, we can show that
(a,0) € M. Consequently, (a,by) — (a,0) = (0,bg) € M, and hence

(CLQ,O) + (O,bo) = (ao,bo) € M.
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(iii) Suppose that by € J — kerf. Then (ag,by) € M for some ag € I.
Thus for every a € A,

(a,0)(ap,by) = (aap + 6(bo)a,0) € M.
Hence a € I as aag € I and 6(by) # 0. That is, I = A. =

2.8. ExAMPLES. The following two examples serve to show that the
condition J C ker 0 is necessary in the second part of Proposition 2.7.

Let B be a regular Banach algebra in Co(X ), where X is the spectrum
of B. Let g € X, 0 = €,, and consider the product B xy B.

(a) Let K be a proper compact subset of X containing xy and at least
one other element. Define

I = {u € B: u|k is a constant function},
M = {(u,v) € BxgB:ue€l, v(xg) = —u(xo)}.

Regularity of B implies that I # (). If J is defined as in (4), then J = B ¢
ker 6. It is easy to check that M is a closed ideal of B xg B, while neither I
is an ideal of B, nor M =1 x J.

(b) We modify the above example, by defining M to be

M = {(u,v) € B x¢ B: v(xg) = —u(xg)}.

In this case M is closed ideal, and I = J = B (that is, both I and J are
ideals), but nonetheless M # I x J.

2.9. REMARK. There does not seem to be an easy description for various
radicals of A xgB. However if SR denotes either strong, or Jacobson, or prime
radical, and if R(B) = {0}, then

(5) R(A xg B) = R(A).

It is easy to characterize the idempotent elements of A xy B. In the
following, we would like to characterize the minimal idempotents of these
algebras because of their importance in the ideal theory of A x¢ B. Suppose
that B is an algebra. We recall that a non-zero element p € B is called a
minimal idempotent if u?> = p and uBp = Cpu. It is well known that when
B is semiprime, L is a minimal left (respectively, right) ideal of B if and
only if L = Bpu (respectively, L = uB), where p is a minimal idempotent
in B [3, Proposition 6, p. 155]. In the group algebra L!(G) of a locally
compact group GG, the minimal idempotents are the coefficients of integrable
representations of G [2]. For the Fourier algebra A(G), minimal idempotents
exist if and only if G is discrete, in which case the minimal idempotents are
given by characteristic functions x(,} of single point sets [7, Theorem 5.5,
p. 360].

2.10. THEOREM. An element (ag,bp) is a minimal idempotent of Axg B
if and only if one of the following conditions are satisfied:
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(i) bo = 0 and ag is a minimal idempotent of A.
(ii) ap =0, 6(by) = 0, and by is a minimal idempotent of B.
(iii) by is a minimal idempotent such that bobby = 0(b)by for all b € B,
0(by) = 1, and ag satisfies

(+) {a% = —ao,

apaag + aag + aga+a =0 for all a € A.

Proof. The sufficiency part of the theorem is left for the reader. We prove
the necessity. Let (ag, byp) be a minimal idempotent; we show at least one of
the above three conditions holds.

The condition (ag, bg)? = (ao, bo) implies that
(6) b3 = by,

(7) a% + 29(b0)a0 = aq.
If (a,b) € A xy B is arbitrary, there must exist \,; € C such that

(a0, bo)(a, b)(ao, bo) = Aap(ao, bo),

which is equivalent to
(8) aoaag + O(bo)(aag + apa) + O(b)ag + 0(bo)*a + 20(b)0(bo)ao = Aapao,
(9) bobbo = g pbo-
Comparing (6) and (9) it follows that either by = 0, or by is a minimal
idempotent of B with A\, = Aoy for all a € A.

If we assume by = 0, then (7) implies a2 = ag, and (8) implies

apaagy + H(b)ag = Agpao for all (a,b).

Upon substituting b = 0, we obtain agaay = A 0a0, for all a € A. Thus ag
is a minimal idempotent, proving condition (i).

Alternatively if we assume by # 0 is a minimal idempotent, and \,; =
Ao, for all a, then either 6(by) = 0 or 8(by) = 1. We consider two cases.

CASE I: (by) = 0. Then (7) and (8) imply
(10) a3 = ao,
(11) apaag + 0(b)a = Agpag  for all a, b.

Substituting a = 0 in the last equation implies Ag,ap = 0 for all b € B,
which can be true only if ag = 0 (the alternative Ao = 0 also leads to
ap = 0 if we substitute a = ap, and b = 0 in (11)), thus proving (ii).

CASE IL: §(by) = 1. Then (7) implies a3 = —ap, and consequently upon
substituting b = 0 in (8) we get

(12) apaag + aag + apa + a = Agpag  for all a.
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If we set a = 0 in the above equation we conclude \gg = 0, and therefore
(13) apaag + aag +apa +a =0 for all a.

Finally, from (9) and the fact that 6(by) = 1 we get 6(b) = Ao for all b € B,
hence proving (iii). =

We remark that the conditions in (x) do not imply that a is an idempo-
tent of A. For example when A has an identity e4, the only element of A
satisfying () is —e4.

Next we turn our attention to the question of amenability and topological
center of A Xy B.

Amenability has well known hereditary properties [14, 4, 20]. In par-
ticular, since A xy B is a strongly splitting extension of B, it is amenable
(respectively, contractible) if and only if both A and B are amenable (re-
spectively, contractible).

With regard to weak amenability, although weak amenability of A and
B implies the weak amenability of A x4 B, the converse is not true in gen-
eral [15]. However, we can state the following theorem.

2.11. THEOREM. Weak amenability of Axy B implies the weak amenab-
ity of B and cyclic amenability of A.

Proof. The weak amenability of B follows from a general result about
Banach algebra extensions proved in [19, Lemma 2.3, p. 183]. It remains to
prove the cyclic amenability of A. Let P: A x9 B — A be the projection
on A, and let d: A — A’ be a continuous cyclic derivation. Then we prove

D='PodoP: AxgB— A x B

is a continuous derivation. In fact, for every (a,b), (a’,0’), and (¢, e) in AxyB,
we have

(14) (D((a,b)(d’,b"), (c,e)) = (d(aa’ + 0(b)a’ + 0(b)a), c)
= (d(aad’") + 0(b)d(a’) + O(V))d(a), c).
On the other hand,
(15)  (D(a,b) - (a’, V), (c,e)) = (d(a),a’c+ O(b')c + O(e)a’)
(d(a) -a’ +0(b)d(a), c) + (d(a)(a')0, €),

and
(16)  {(a,b) - D(d,b'), (c,e)) = {d(a’),ca+ O(e)a + O(b)c)

= {a-d(a’)+0(b)d(da'),c) + (d(a’)(a)b,e).
Adding (15) to (16) and comparing with (14) we conclude that D is a deriva-

tion since d(a)(a’) + d(a’)(a) = 0. From the weak amenability of A xy B it
follows that D = 04,y for some (¢,9) € A" x B'. We claim that d = d;
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indeed, for all a,a’ € A,

(d(a),d’) = (PodoP(a 0), (a’,0))
= ((a,0) - (¢,¥) — (¢, ¢) - (a,0),(d, 0))
= (¢,a a>—(¢,aa’>
=(a-¢—¢-a,d),

as we wanted to show. m

To state our next result we note that if B is a Banach algebra and
0 € o(B), then § € o(B”) in a natural way, when B” is equipped with
either of its Arens products.

2.12. PROPOSITION. Let A and B be Banach algebras and 6 € o(B).
Suppose that A", B", and (A xg B)" are equipped with their first (or second)
Arens products. Then

(AxgB)"= A" x¢g B”  (isometric isomorphism).

Proof. Assume that A”, B” and (A xy B)" are equipped with the first
Arens product. The multiplication in A” x¢ B” is given by
(17) (S,0)(P'\W)= (0P +¥(0)d +¥'(0)d, ¥ OW).

To compute the first Arens product in (A xg¢ B)”, let (a,b) € A xy B,
(¢,9) € A x B', and (®,¥), (9',¥') € A” x B” be arbitrary. Then one can
calculate, respectively,
(@,9) - (a,b) = (¢-a+0(b)d, ¢ - b+ p(a)f),

(@0)©(6,9) = (&' © 6+ ¥(0)9, ()0 + ¥ © 1)),
(18) (¢, w)0 (¢, W)= (00 +W(0)d + V' (0)d,wOW).
Comparing (17) with (18) shows that the identity mapping is an isometric
isomorphism between (A xg B)"” and A” xy B”.

Calculations with the second Arens product are similar. On one hand,
we have

(D, 0)(P'\W) = (2O P +W(0)D +W (0)D,¥ OV,
and on the other hand,
(a,b) - (¢, 0) = (a- &+ 0(b)p,b- 1 + ¢(a)b),
(0,9) © (,¥) = (O P +¥(0)g, P(9)0 + ¢ © W),
(Q,0) O (D W)= (2O P +W(0)d + V' (0)D, ¥ OV'). u

2.13. COROLLARY. 3¢[(A x¢ B)"] = 3¢(A4") xg 3¢(B"). In particular,
A xg B is Arens reqular (respectively, strongly Arens irregular) if and only
if both A and B are Arens regular (respectively, strongly Arens irreqular).
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3. Spectral synthesis. We start this section with the following result
which will be used throughout.

3.1. THEOREM. Let A and B be commutative Banach algebras, and let
0 €o(B).

(i) A xg B is semisimple if and only if both A and B are semisimple.
(ii) If A and B are semisimple, b € B and its Gelfand tmnsformg has
compact support, then for every a € A, (a,b)" = (a, Z) has compact
support.
(iii) If A and B are semisimple, then A xg B is regular if and only if
both A and B are regular. If in addition B is Tauberian, then so is
A X9 B.

Proof. (i) Suppose that A and B are semisimple. Using the character-
ization of spectrum in Proposition 2.4, we verify that the Gelfand map is

-~

injective; in fact, if (a,b)" = (@,b) = (0,0) then

(@), (¢,0)) = ¢(a) +0(b) =0 (¢ € o(4)),
((@0),(0,9)) = ¢(b) =0 (¥ € o(B)).

This implies that a = b = 0. The converse can be proved similarly.
(ii) Assume that b € B and suppb is compact in o(B). Then for every
a € A,
supp(a,b) C EU{(0,0)} U {(0,%): ¢ € suppb},

since by Proposition 2.4 the set on the right hand side is compact (hence

~ ~

closed) and (a,b) is zero outside this set, proving that (@,b) has compact
support.

(iii) Suppose that both A and B are regular. Let S C o(A Xy B) be
closed and (¢, 1) € 0(A xg B) — S. Define

S1=SNF, Sy;=S8NE,
Si={¢eo(B): (0,¥) € S1}, Sh={p<€a(A):(¢,0) € S}

The sets S7 and S} are closed subsets of o(B) and o(A), respectively. To
separate (¢g, o) from S we consider several cases:

CASE I: (¢o,%0) = (0,6). In this case 0 is not in the closure of S} in
o(A) U {0}, and hence S} is compact in o(A). Regularity of A implies that
there exists ag € A such that

(Ao, ¢) = Pp(ag) = —1 for all ¢ € S5,
[13, Corollary 39.16, p. 493]. Next using regularity of B, we choose by € B
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(@0, Do), (6,0)) =o(¢) +Bo(0) = ~1+1=0 forall ¢ € S},
This means that (60,30) separates (0,0) from S.

CASE II: (¢o,%0) = (0,%0) (o # 6). Using regularity of B, choose
bo € B such that

bo(wo) =1, bo(S7 L {0}) = {0};
then of course (O,Bg) separates (0, ) from S.

CASE III: (¢o,%0) = (¢o,0). In this case ¢g & Sh. From regularity of A
there exists ag € A such that ap(¢o) =1 and ag(¢) = 0 for all ¢ € S;. Now
(@o, 0) separates (¢, d) from S.

The proofs of the rest of the statements in (iii) are left for the reader. m

As a consequence of the abstract Tauberian theorem [13, Theorem 39.27,
p. 499] and the above result we obtain:

3.2. COROLLARY. Let A and B be commutative, semisimple, reqular
Banach algebras, and suppose that B is Tauberian. Then the empty set () is
a spectral set of A xg B. In particular, every proper closed ideal in A X9 B
s contained in a mazximal modular ideal.

For the rest of this section we assume that A and B are commutative,
semisimple, regular Banach algebras. We also recall our standing assumption
that F and F' are used exclusively to denote

E={(¢,0):¢c0(A)}, F={(0,¢):¢e€o(B)}
It follows from [13, Theorem 39.19, p. 494] that if K C o(B) is a non-
spectral set for B, then {(0,1): ¥ € K} is a non-spectral set for A xy B.
We show in the next result that even a spectral set of B may no longer
be a spectral set for the extension A xy B.

3.3. PROPOSITION. Let A and B be commutative, semisimple, reqular
Banach algebras, and suppose the empty set is not a spectral set for A. Then
the singleton {(0,0)} is not a spectral set for A x¢ B.

Proof. By our assumption, A has a proper closed ideal I such that h(I)
= (. Let J =kerf = {b € B: 6(b) =0}, and M = I x J. By Proposition
2.6, M is a closed ideal of A xy B. If (0,%) € h(M), then ¢(b) = 0 for all
b € kerf, and therefore by regularity of B, ¢» = 6. That is, h(M) N F =
{(0,0)}. If however (¢,0) € h(M), then by definition of M, we must have
¢(a) = 0 for all a € I, that is, ¢ € h([), which is impossible. This means
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that h(M)NE = (. Thus h(M) = {(0,6)}. Clearly M # k({(0,0)}) = Ax J.
Thus {(0,0)} is not a spectral set. m

As a consequence of the above result we can show Ditkin’s property
is not preserved under Banach algebra extensions. We recall the following
definition [13, p. 497].

Let A be a commutative semisimple Banach algebra. We say A satisfies
Ditkin’s condition if the following conditions hold.

(a) If a € A and ¢ € o(A) is such that @(¢) = 0, then there exists a
sequence (by,) in A such that each En vanishes in some neighborhood
of ¢ (depending on b,) and |lab, — al| — 0.

(b) If o(A) is non-compact, then for every a € A there exists a sequence
(by) in A such that each by, has compact support and llab, —al| — 0.

Ditkin’s condition has been studied for various algebras by many au-
thors. For example, in the context of the Fourier algebra A(G), it has been
studied by Derighetti, Forrest, Kaniuth, Lau and the author [6, 10, 16, 22].
In particular it is known that A(G) (or in general, A,(G)) satisfies Ditkin’s
condition if G is amenable [22, Proposition 3.9, p. 420].

3.4. COROLLARY. Let A and B be commutative, semisimple, regular
Banach algebras, and suppose the empty set is not a spectral set for A.
Then A xg¢ B does not satisfy Ditkin’s condition.

Proof. By [13, Corollary 39.26, p. 498] if A xy B satisfies Ditkin’s con-
dition and if S is a closed subset of 0(A xy B) whose boundary contains no
non-empty perfect set, then S is a spectral set; in particular, {(0,60)} is a
spectral set. This of course contradicts the above proposition. =

In our next theorem we assume B = A(G) is the Fourier algebra of a
locally compact group G, and characterize the circumstances under which
singletons are spectral sets in the extensions A Xy B. It seems that our result
cannot be extended to a general commutative, semisimple, regular Banach
algebra B, unless some restrictive conditions are assumed. For this reason
we have decided to state our result for the case of the Fourier algebra, which
is of particular interest in harmonic analysis. We recall that A(G) is regular,
Tauberian and every singleton {z} in G is a spectral set of A(G) [8].

Without loss of generality, we assume 6 = ¢, € 0(A(G)), where e is the
identity of G.

3.5. THEOREM. Let A be a commutative, semisimple, reqular Banach
algebra with identity.

(i) If every singleton {¢} is a spectral set for A, then every singleton
{(¢,)} is a spectral set for A xg A(G).
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(ii) If every singleton {(p, 1)} is a local spectral set for A x9 A(G) then
every singleton {¢} is a spectral set for A.

Therefore every singleton {(¢,1)} is a spectral set for A xg A(G) if and only
if every singleton {¢} is a spectral set for A.

3.6. REMARK. We note that as A is assumed to have identity, there is no
distinction between spectral sets and local spectral sets in 0(A). Statement
(ii) means that the converse of (i) is true under a weaker assumption (since
A xg A(G) may not have an identity even if A has one—Proposition 2.3).

Proof of Theorem 3.5. (1) CASEI: (¢,%) = (0, €4, ), o # €. Let (a,u)" =
(@, u) be such that
<(a, a)v (0) 61())) - U(J:O) =0.

Since {zo} is a spectral set for A(G) there exists a sequence (uy,), each uy,
with compact support K, disjoint from {z¢}, such that ||u, — u| — 0. It
follows that (a,uy) converges in norm to (@, u). Furthermore we have

supp(@,u,) C EU{(0,¢e.} UK,

where K], = {(0,¢;): x € K} is itself a compact subset of o(A Xy A(G)).
Thus supp(a, uy,) is a compact set disjoint from {(0, €x,)}-

CASEIL: (¢,%) = (0,€c). This is similar to the previous case if we replace
x with e in Case I, except in showing that the support of (a,u,) is compact
we need to use the assumption that A has identity. In fact we can write

supp(@, tin) = {(¢, €c): d(a) # 0} U{(0, €&): un(x) # 0} C EU K,
where the closures are in (A xy A(G)), and the last inclusion follows since
A is unital and E = 0(A) x {e.} is compact in o(A xg A(G)). Of course as
before K/, is compact and disjoint from {(0,¢€.)}, and so is the support of
(@, ).

CASE III: (¢,v) = (¢0, €.) for some ¢g € o(A). Let (ap, up) be such that
((@o, o), (o, €c) = do(ao) + uo(e) = 0.

We want to approximate (ag,up) with a sequence (a,,u,) such that each
term has a compact support disjoint from {(¢o, €.)}. Suppose that ug(e) # 0
(the other alternative can be handled in a similar fashion). Since both {¢o}
and {e} are spectral sets, we can find two sequences (a,), (4,) with compact
supports in o(A) and in o(A(G)) respectively, and two sequences of open
neighborhoods, (W;,) and (V,,) of ¢¢ and e, respectively, such that

|@o — @nl| — 0,  @nlw, = —uole),
Hao - an” — 0, an’Vn = UO(e)-

Thus over the neighborhood Wy, x{e.} of (¢, €c) we have (@n, Un)w;, x {e.} =0-
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With regard to the support of (a,,uy), let K, be the compact support
of u,,. Then

SUpPP(an; Un) = {(, €e): Pan) + unle) # 0} UL(0, €2): un(x) # 0}
C{(¢,€e): dlan) +uo(e) # 0} U quz
={p € 0(A): ¢(an) # —uo(e)} x {ec} UK,

But

Ly ={¢ € 0(A): an(¢) # —uo(e)}

is a closed subset of the compact support of @,, and hence is compact. Since

{p€a(A): ¢(an) # —up(e)} x {e.} C Ly, x {ec}
the compactness of the support of (a,,u,) follows.

It remains to show that (¢o, €.) & supp(an, uy,). It suffices to show that
¢o & Lp. If o9 € L, there exists a net ¢, such that ¢, — ¢g and ¢, (a,) #
—ug(e) for all . But as W, is a neighborhood of ¢g, ¢, is eventually in W),
and hence for sufficiently large «,

an(Pa) = —up(e), ie. o¢qlan) = —up(e).
This is of course a contradiction.
(ii) Let ¢p € o(A) and ap € k({¢o}). We want to approximate ag by
a net (aq) in koo({¢o}) (that is, each @, must vanish on a neighborhood
of ¢pp—as o(A) is compact we do not need to require that a, has compact
support). By our assumption {(¢g,€.)} is a local spectral set and of course

((@0,0), (0, €c)) = do(ao) = 0.
Compactness of E implies the compactness of the support of (ag,0). Hence
there exists a net (aq, Uq) € koo({(¢o,€c)}) such that

1(@0,0) = (aa, Ua)ll = llao = @all + [[ual — 0.

Since sets like U x {e.} where U is a neighborhood of ¢y in o(A) form a
neighborhood base at (¢q, €.) (Proposition 2.4), there exists one such set for
which

(Ao, Ua)|Ux{e.y =0 and hence @oly = —ua(e).
If 14 is the identity of A, then (@q + ua(e)14)|y = 0, and
[@e + uale)Ta = @ol| < [|@a — ol + [ua(e)] [Tall — 0.
Thus {¢o} is a spectral set. m

Our next theorem concerns primary ideals in A xg A(G). For this we need
a couple of preliminary results concerning the support of linear functionals
on regular Banach algebras of functions. The notion of support in this gen-
erality was defined by Herz in [12, p. 101]. But Herz does not indicate the
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properties that we require here. For this reason we mention the following
two results.

3.7. LEMMA. Let A be a regular Banach algebra in Co(X) where X is
the spectrum of A. Let T € A" and a € X. Then the following assertions are
equivalent:

(i) The linear functional €,: A — C, €4(v) = v(a), is the weak™ limit of
operators v-T where v € A (the product being the module product).
(ii) Ifue A and if u-T =0, then u(a) = 0.
(iii) For every neighborhood V' of a there exists a function v € A with
suppv C V and (T,v) # 0.

Proof. The proof of Eymard for A = A(G) in [8, Proposition 4.4, p. 225]
can be applied with natural modifications. =

For A as in the above lemma, the support of an element T' € A’ is defined
as the set of all a € X satisfying the equivalent conditions of the lemma.

3.8. LEMMA. Let A be a regular Banach algebra in Co(X) where X is the
spectrum of A, and suppose that elements with compact support are dense
in A. If a singleton {xo} C X is a local spectral set and if T € A’ is such
that supp T = {xo}, then T = Xeg, for some X\ € C.

This result for the case of A = A(G) was proved in [8, Lemma 3.8, p. 221
and Proposition 4.8(6), p. 226]. Eymard uses the group structure of G and
so his proof does not seem to carry over to our general case. In our proof

however we avoid any use of group structure, and instead use a hint in [12,
p. 101] and Lemma 3.7.

Proof. We divide the proof into several steps. The idea in Steps 1-3 is
to show that

(19) v-T =wv(xg)T forallve A

STEP 1. If u,v € ANCoo(X) and if u = v on a compact neighborhood
of xg, then (T,u) = (T,v).

Note that 9 ¢ K = supp(u — v). So for every z € K there exists
a neighborhood U, such that for every w € A with suppw C U, we have
(T, w) = 0. Let V, be a compact neighborhood of = such that V,, C U,. From
compactness of K, there exist z1,...,r, € K such that K C U?Zl Vi, By
[13, Theorem 39.21, p. 495] the restricted algebra Ax = {u|x: u € A} is a
normal Banach algebra of functions on the compact space K, and therefore
by a partition of unity, there exist v1,...,v, in A such that

n
supp(vj| k) C Va; N K, Z%"K:l-
j=1
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Using regularity of A, let w; € A be such wj|vacj = 1 and suppw; C Uy;.
Let u; = vjwj for j =1,...,n. Then

—_

n
suppu; C Uj, Z%’K =
j=1

Since (T, (u — v)uj) = 0, we get

as we wanted to show.
STEP 2. Ifv e ANCoo(X) and if v(zg) =0 then v-T = 0.

Since {zo} is a local spectral set, v is the norm limit of a sequence
v, € v € AN Cyo(X) such that suppwv, is disjoint from {zg}. Then by
Step 1, v, - T =0 for all n and hence v -T = 0.

STEP 3. Ifv e ANCoo(X), thenv-T = v(xo)T.

Let vg € ANCpo(X) be such that vy = 1 on a neighborhood of zy. Then
by Step 1, vo - T = T. On the other hand, by Step 2, (v — v(zg)vg) - T =0
and hence v - T = v(xg)vg - T =T.

Now we can easily prove (19) by using the fact that the elements with
compact support are dense in A. The proof of the lemma can now be com-
pleted as follows: since supp T = {x}, by Lemma 3.7 there exists a net (vq)
in A such that €,, = weak™-lim,, v, - T. Thus for every u € A,

w(zg) = (€x, u) = lim (vy - T, u) = lim (v (20) T, u) = p(T,u),
where p = lim,, vo(20). As p# 0, we can set A =1/p. m

The following is a generalization of a famous result of Eymard [8, Corol-
lary 1, p. 229]. The proof of Eymard now carries over.

3.9. THEOREM. Let A be a regular Banach algebra in Co(X) where X is
the spectrum of A and suppose that the elements with compact supports are
dense in A. Suppose that every singleton {x} is a local spectral set for A.
Then every closed primary ideal of A is a mazximal modular ideal in A.

As a corollary of the above theorem and Theorem 3.5 we obtain:

3.10. COROLLARY. Let A be a commutative, semisimple, reqular Banach
algebra with identity. Suppose that every singleton {¢} C o(A) is a spectral
set for A. Then every closed primary ideal in A xg A(G) is a mazimal
modular ideal.
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