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A Banach space dichotomy theorem for

quotients of subspaces

by

Valentin Ferenczi (Paris)

Abstract. A Banach space X with a Schauder basis is defined to have the restricted

quotient hereditarily indecomposable property if X/Y is hereditarily indecomposable for
any infinite-codimensional subspace Y with a successive finite-dimensional decomposition
on the basis of X. The following dichotomy theorem is proved: any infinite-dimensional
Banach space contains a quotient of a subspace which either has an unconditional basis,
or has the restricted quotient hereditarily indecomposable property.

1. Introduction. In 2002, W. T. Gowers published his famous Ramsey
theorem for block-subspaces in a Banach space [8]. If X is a Banach space
with a Schauder basis, block-vectors in X are non-zero vectors with finite
support relative to the basis, and block-sequences are infinite sequences of
block-vectors with successive supports; block-subspaces are subspaces gener-
ated by block-sequences.

If Y is a block-subspace of X, Gowers’ game in Y is the infinite game
where Player 1 plays block-subspaces Yn of Y , and Player 2 plays normalized
block-vectors yn in Yn.

If ∆ = (δn)n∈N is a sequence of reals, ∆ > 0 means that δn > 0 for all
n ∈ N. For a set A of normalized block-sequences, and any ∆ = (δn)n∈N > 0,
let A∆ be the set of normalized block-sequences (yn)n∈N such that there
exists (xn)n∈N in A with ‖xn − yn‖ ≤ δn for all n ∈ N.

Theorem 1 (Gowers’ Ramsey theorem). Let A be a set of normalized

block-sequences which is analytic as a subset of Xω with the product of the

norm topology on X. Assume that every block-subspace of X contains a

block-sequence in A. Let ∆ > 0. Then there exists a block-subspace Y of X
such that Player 2 has a winning strategy in Gowers’ game in Y for produc-

ing a sequence (yn)n∈N in A∆.
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The most important consequence of the Ramsey theorem of Gowers is
the so-called dichotomy theorem for Banach spaces. A Banach space X is
said to be decomposable if it is a direct (topological) sum of two infinite-
dimensional closed subspaces. An infinite-dimensional space is hereditarily

indecomposable (or HI ) when it has no decomposable subspace. A Schauder
basis (en)n∈N of X is unconditional if there exists C ≥ 1 such that for all∑

i∈N
λiei in X, and all (εi)i∈N ∈ {−1, 1}N, ‖∑

i∈N
εiλiei‖ ≤ C‖∑

i∈N
λiei‖.

Theorem 2 (Gowers’ dichotomy theorem). Every infinite-dimensional

Banach space contains a subspace Y which has one of the following two

properties, which are both possible, and mutually exclusive:

(i) Y has an unconditional basis,
(ii) Y is hereditarily indecomposable.

These properties are even exclusive in the sense that if a subspace satisfies
(i) (resp. (ii)), then no further subspace satisfies (ii) (resp. (i)). Indeed, if
a Banach space X is hereditarily indecomposable, then so is any subspace
of X; and if X has an unconditional basis, then every block-subspace of X
has an unconditional basis, and so any subspace of X has a further subspace
with an unconditional basis.

1.1. HI spaces and their quotient spaces. From now on, spaces and sub-
spaces are supposed to be infinite-dimensional and closed unless specified
otherwise. For two subspaces Y and Z of a space X, a convenient notion of
angle was used by B. Maurey to give a simple proof of Gowers’ dichotomy
theorem [12]: let

a(Y, Z) = inf
y∈Y, z∈Z, y 6=z

‖y − z‖
‖y + z‖ .

It is in particular clear that a(Y, Z) 6= 0 if and only if Y +Z is a topological
direct sum in X, and therefore X is hereditarily indecomposable if and only
if a(Y, Z) = 0 for any subspaces Y, Z of X. On the other hand, a basic
sequence (ei)i∈N is C-unconditional if a([ei : i ∈ I], [ei : i ∈ J ]) ≥ 1/C for
every partition {I, J} of N, where [ei : i ∈ I] denotes the closed linear space
generated by (ei)i∈I .

We also note that it was proved in [9] that hereditarily indecomposable
spaces are never isomorphic to proper subspaces.

While classical spaces, such as c0 and ℓp, 1 ≤ p < ∞, or Lp, 1 < p < ∞,
have unconditional bases, the first known example of a HI space was given
by Gowers and Maurey in 1993, [9]. Gowers–Maurey’s space XGM is actually
quotient hereditarily indecomposable (or QHI ), that is, no quotient of a sub-
space of XGM is decomposable, or equivalently, every infinite-dimensional
quotient space of XGM is HI [6]; as XGM is reflexive, it follows that X∗

GM is
also quotient hereditarily indecomposable, and in particular also hereditarily
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indecomposable. In [6], an example X was also provided which is HI and not
QHI. This example is defined as the “push-out” (X1⊕X2)/{(y,−y) : y ∈ Y }
of two specific Gowers–Maurey’s type spaces X1 and X2 with respect to a
“common” subspace Y . It is therefore still very close to being QHI, in the
sense that it is saturated with QHI subspaces, and the natural quotient
space of X which is decomposable is a direct sum of two HI spaces. This led
the author to conjecture that any quotient of a HI space should contain a
HI or even QHI subspace, or that the dual of any reflexive HI space should
contain a HI subspace.

This, however, turned out to be completely false. Examples of HI spaces
were built with quotients which are very far from being HI. Using meth-
ods based on the definition of some notion of HI interpolation of Banach
spaces, S. Argyros and V. Felouzis constructed a HI space with some quo-
tient space isomorphic to c0 (resp. ℓp, 1 < p < ∞) [2]. S. Argyros and
A. Tolias used deep constructions, based on what is now known as the “ex-
tension method” [1], to prove that any separable Banach space which does
not contain a copy of ℓ1 is isomorphic to the quotient space of some sepa-
rable HI space [4]; and to construct a reflexive Banach space X which is HI
but whose dual is saturated with unconditional basic sequences [5], there-
fore any quotient space of X has a further quotient with an unconditional
basis. These results shatter all hopes of general results on preserving the
HI property when passing to quotient spaces, or to the dual. We refer to
[3], [4], and [11] for more details about these examples and hereditarily in-
decomposable spaces in general, as well as about other examples, and also
to the recent work [1] which contains a comprehensive introduction to the
previous examples.

S. Argyros asked whether there exists a reflexive HI Banach space X
such that no subspace of X has a HI dual. This would show that the HI
structure is in general not inherited by duals, not even in a very weak sense.
None of the HI examples constructed so far seem to answer that question
(for more about this, we refer to the remarks and questions section at the
end of this paper).

Our main result is somewhat related to the question of Argyros. Its
starting point is the observation that the situation becomes more pleasant
again when one looks at quotients of subspaces (or QS-spaces) of a given
Banach space. First note that the features of the QHI property with respect
to quotients of subspaces are quite similar to the ones of the HI property
with respect to subspaces. Indeed, this property obviously passes to further
QS-spaces. We also have the following result.

Proposition 3. If X is hereditarily indecomposable, then X is isomor-

phic to no proper quotient of a subspace of itself.
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Proof. Assume X is HI and α is an isomorphism from X onto Y/Z
for some Z ⊂ Y ⊂ X. We may assume that dim Z = ∞. Then by prop-
erties of HI spaces [12], the quotient map π : Y → Y/Z is strictly sin-
gular. The map T = α−1π is an onto map whose Fredholm index i(T )
(defined as dim(Ker T ) − dim(X/TY ) when this expression has a mean-
ing) is +∞. By continuity of the index ([10, Proposition 2.c.9]), we deduce
that i(T − εiY X) = +∞ for some small enough ε > 0. On the other hand,
T is strictly singular, therefore, by [10, Proposition 2.c.10], i(T − εiY X) =
i(−εiY X) ≤ 0.

The unconditional property also has some type of heredity for quotients
of subspaces. T. Odell proved that if X has a shrinking finite-dimensional
unconditional decomposition, then every normalized weakly null sequence in
a quotient of X has an unconditional subsequence [13], and therefore every
QS-space of X contains an unconditional basic sequence.

It is therefore tempting to look for some general dichotomy result for
quotients of subspaces involving the QHI property on the one hand and
some unconditionality property on the other.

1.2. Angles between quotients of subspaces. To motivate our definitions
and results, we take a closer look at Gowers–Maurey’s sequence space XGM.
To prove that XGM is HI, Gowers and Maurey build, for arbitrarily large
k ∈ N, successive biorthonormal sequences (yi)i≤k and (y∗i )i≤k of “special”
pairs of vectors and functionals such that

∥∥∥
∑

i≤k

y∗i

∥∥∥ ≃
√

log(k),

while ∥∥∥
∑

i≤k

(−1)iyi

∥∥∥ ≃ k/log(k).

Up to a perturbation, the terms (yi)i≤k may be taken in arbitrary subspaces
of XGM. Therefore, given Y, Z ⊂ XGM, by taking the even terms close
enough to Y and the odd terms close enough to Z, we may find vectors
y almost in Y and z almost in Z, and functionals y∗ and z∗ with disjoint
supports, such that ‖y − z‖ ≃ k/log(k) while

‖y + z‖ ≥ (y∗ + z∗)(y + z)

‖y∗ + z∗‖ ≃ k/
√

log(k).

It follows that Y + Z is never a direct sum.

The proof in [6] that XGM is QHI is based on the fact that one can
actually choose y∗ and z∗ close enough to W⊥ for any W which is an infinite-
codimensional subspace of Y and of Z. It follows easily that XGM is quotient
hereditarily indecomposable. From the proof it is clear that one can even
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pick y∗ close enough to V ⊥ and z∗ close enough to W⊥ for any infinite-
codimensional subspaces V of Y and W of Z. The point here is that each
term of the sequences of “special” vectors (resp. functionals) must be taken
in some set An (resp. A∗

n) which is asymptotic, i.e. intersects any subspace
of XGM (resp. X∗

GM), and depends on the previous terms of the sequences,
but the subspace from which we pick it may be chosen arbitrarily.

For a Banach space X, and a subspace Y∗ of X∗, denote by ‖ · ‖Y∗ the
seminorm defined on X by ‖x‖Y∗ = supy∗∈Y∗, ‖y∗‖≤1 y∗(x), and by Y ⊥

∗ the

orthogonal of Y∗ in X. When Y∗ = Y ⊥ for some Y ⊂ X, ‖·‖Y∗ is the quotient
norm on X/Y .

A QS-pair is some (Y∗, Y ) ⊂ X∗ × X such that Y ⊥
∗ ⊂ Y . It may be

associated to the QS-space Y/Y ⊥
∗ . The natural notion of inclusion between

QS-pairs
(Z∗, Z) ⊂ (Y∗, Y ) ⇔ (Z∗ ⊂ Y∗) ∧ (Z ⊂ Y )

corresponds to taking quotients of subspaces of the associated QS-spaces.
Indeed, if (Z∗, Z) ⊂ (Y∗, Y ), then Z/Z⊥

∗ ≃ (Z/Y ⊥
∗ )/(Z⊥

∗ /Y ⊥
∗ ). An infinite-

dimensional QS-pair is a QS-pair whose associated QS-space is infinite-
dimensional. We define the angle A((Y∗, Y ), (Z∗, Z)) between two QS-pairs
by

A((Y∗, Y ), (Z∗, Z)) = inf
y 6=z, y∗ 6=z∗, y∗(z)=z∗(y)=0

‖y − z‖ ‖y∗ − z∗‖
|y∗(y) − z∗(z)| ,

where the infimum is taken over y ∈ Y, z ∈ Z, y∗ ∈ Y∗, z∗ ∈ Z∗.
Note that if we let W∗ = Y∗ = Z∗, then we obtain

A((W∗, Y ), (W∗, Z)) ≥ inf
y 6=z, ‖y∗−z∗‖=1

‖y − z‖
|(y∗ − z∗)(y + z)| ≥ inf

y 6=z

‖y − z‖W∗

‖y + z‖W∗

,

and therefore if W∗ = W⊥ for some W ⊂ X, then A((W∗, Y ), (W∗, Z)) ≥
a(Y/W, Z/W ). In particular Y/W and Z/W do not form a direct sum in
X/W when A((W⊥, Y ), (W⊥, Z)) = 0. If this is true for all W, Y, Z with
W an infinite-codimensional subspace of Y and of Z then we deduce that
X is QHI.

By our previous description of special sequences in Gowers–Maurey’s
space, XGM is an example of a reflexive space for which A((Y∗, Y ), (Z∗, Z))
= 0 for all infinite-dimensional QS-pairs (Y∗, Y ) and (Z∗, Z) of X. Indeed,
if y, z, y∗, −z∗ are the odd and even parts respectively of adequate length
k special sequences, we have

‖y − z‖ ‖y∗ − z∗‖ ≃ k/
√

log(k),

while
|y∗(y) − z∗(z)| ≃ k.

By construction, we may pick the terms of the special sequences close enough
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to Y , Z, Y∗, Z∗ respectively. It is not difficult to check that we may then
perturb the almost biorthonormal system of special sequences so as to have
y ∈ Y , z ∈ Z, y∗ ∈ Y∗, z∗ ∈ Z∗, and y∗(z) = z∗(y) = 0, and preserving the
estimates on ‖y − z‖ ‖y∗ − z∗‖ and |y∗(y) − z∗(z)|.

When X is reflexive, the roles of X and X∗ are interchangeable in the
expression of A. Note that under reflexivity, the QHI property ([6, Corol-
lary 4]) and the property of having an unconditional basis are self-dual
properties.

1.3. FDD-block subspaces and FDD-block quotients of subspaces. We
shall prove that a dichotomy theorem holds for quotients of subspaces which
have a finite-dimensional decomposition (or FDD) relative to a given Schau-
der basis (or even a FDD) of a given Banach space; they seem to be the
natural equivalent of block-subspaces considered in Gowers’ dichotomy.

An interval of integers is the intersection of N with a bounded interval
of R. Two non-empty intervals E1 and E2 are said to be successive, written
E1 < E2, when max(E1) < min(E2). A successive partition is a sequence
(En)n∈N of successive intervals forming a partition of N.

Let X be a Banach space with a finite-dimensional decomposition de-
noted (Bn)n∈N. When x =

∑
n∈N

bn ∈ X with bn ∈ Bn for all n ∈ N, the
support of x is the set {i ∈ N : bi 6= 0}. The range of a vector is the smallest
interval containing its support. The support of a subspace Y of X is the
smallest set containing the supports of all vectors of Y . The range of Y ,
denoted ran(Y ), is the smallest interval containing the support of Y . Two
finitely supported subspaces F and G of X with non-empty supports are
successive when ran(F ) < ran(G).

An FDD-block subspace of X is an infinite sum
∑

n∈N
Fn of finitely sup-

ported (possibly zero-dimensional) subspaces Fn of X such that ran(Fn)
⊂ En for all n ∈ N, where (En)n∈N is a successive partition. Therefore
an FDD-block subspace is finite-dimensional or equipped with the FDD
(Fn)n∈I , where I = {n : Fn 6= {0}}.

An FDD-block quotient of X is the quotient of X by some FDD-block
subspace Y =

∑
n∈N

Gn. An FDD-block quotient is finite-dimensional or
equipped with the FDD (Cn)n∈I corresponding to the successive partition
(En)n∈N associated to Y , that is, Cn = ([Bi : i ∈ En] + Y )/Y for all n, and
I = {n : Cn 6= {0}}. Note that the space X is an FDD-block quotient of
itself.

An FDD-block quotient of a subspace of X is a quotient of a subspace of
X of the form

∑
n∈N

Fn/
∑

n∈N
Gn, where Gn ⊂ Fn ⊂ [Bi : i ∈ En] for all n,

where (En)n∈N is a successive partition. The space
∑

n∈N
Fn/

∑
n∈N

Gn is
naturally seen as an FDD-block subspace of X/

∑
n∈N

Gn, when X/
∑

n∈N
Gn

is equipped with the FDD corresponding to (En)n∈N.
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It is therefore clear that any FDD-block subspace (resp. quotient of a
subspace) of an FDD-block subspace (resp. quotient of a subspace) of X
is again an FDD-block subspace (resp. quotient of a subspace) of X. Note
also that by classical results, any subspace of X contains, for any ε > 0, a
1 + ε-isomorphic copy of a block subspace, and therefore of an FDD-block
subspace (however, the similar result concerning QS-spaces does not seem
to be clear). Considering FDD-block quotients of subspaces to study the
structure of the class of QS-spaces is a natural counterpart of considering
block-subspaces to study the structure of the class of subspaces.

Proposition 4. Let X be a Banach space with a finite-dimensional

decomposition. The following statements are equivalent :

(i) no FDD-block quotient of a subspace of X is decomposable,
(ii) for any infinite-codimensional FDD-block subspace W of X, the quo-

tient X/W is hereditarily indecomposable,
(iii) whenever Y =

∑
n∈N

Fn/
∑

n∈N
Gn and Y ′ =

∑
n∈N

F ′
n/

∑
n∈N

Gn

are infinite-dimensional FDD-block quotients of subspaces of X
with the same successive partition, the sum Y + Y ′ is not direct in

X/
∑

n∈N
Gn.

When X satisfies (i)–(iii) we shall say that X is quotient hereditarily

indecomposable restricted to FDD-block subspaces, or for short , has the re-

stricted QHI property.

Proof. (ii)⇒(i) is immediate. If (iii) is false then the FDD-block quotient
of a subspace Y +Y ′ =

∑
n∈N

(Fn +F ′
n)/

∑
n∈N

Gn is decomposable, contra-
dicting (i). Finally, assume (ii) is false, i.e. Z/W ⊕Z ′/W forms a direct sum
of infinite-dimensional subspaces in X/W for some infinite-codimensional
FDD-block subspace W =

∑
n∈N

Gn and some subspaces Z and Z ′, and let
(En)n∈N be a successive partition associated to W . We may find sequences
(zn)n∈N and (z′n)n∈N, and a partition (Nn)n∈N of N into successive intervals,
such that for all n ∈ N, ran(zn, z′n) ⊂ ⋃

i∈Nn
Ei, and d(zn, Z) and d(z′n, Z ′)

converge to 0 sufficiently fast so that ([zn]n∈N + W )/W ⊕ ([z′n]n∈N + W )/W
is still direct in X/W . Define Hn =

∑
i∈Nn

Gi for all n ∈ N; then
(
∑

n∈N
(Hn + [zn]))/

∑
n∈N

Hn and (
∑

n∈N
(Hn + [z′n]))/

∑
n∈N

Hn form a di-
rect sum, with successive partition (

⋃
i∈Nn

Ei)n∈N, contradicting (iii).

FDD-block quotients of subspaces still capture enough information about
the structure of the space: a space which has the restricted QHI property is in
particular hereditarily indecomposable by (ii), and by (i), any of its infinite-
dimensional FDD-block quotients of subspaces has again the restricted QHI
property. The next proposition also shows that the restricted QHI property
has similar self-dual properties to the QHI property.
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Proposition 5. Let X be a Banach space with a shrinking finite-dimen-

sional decomposition such that X∗ has the restricted QHI property. Then X
has the restricted QHI property.

Proof. Let Y =
∑

n∈N
Fn/

∑
n∈N

Gn be an infinite-dimensional FDD-
block quotient of a subspace of X, with successive partition (En)n∈N. For
each n ∈ N, let X∗

n be the space of vectors in X∗ with range included in En.
Then

Y ∗ =
(∑

n∈N

Gn

)⊥
/
(∑

n∈N

Fn

)⊥
=

(∑

n∈N

(G⊥
n ∩ X∗

n)
)
/
(∑

n∈N

(F⊥
n ∩ X∗

n)
)
,

since (En)n∈N is a partition of N. So Y ∗ is an FDD-block quotient of a
subspace of X∗. Therefore according to the first characterization in Propo-
sition 4, if X does not have the restricted QHI property, then X∗ does not
have the restricted QHI property.

In consequence, we note that if X is a reflexive Banach space with the
restricted QHI property, then X has HI dual and is saturated with subspaces
with HI dual. Indeed, every FDD-block subspace of X has HI dual.

We are now in a position to state the main result of this paper.

Theorem 6. Every infinite-dimensional Banach space has a quotient of

a subspace, Y , with one of the following two properties, which are mutually

exclusive and both possible:

(i) Y has an unconditional basis,
(ii) Y has the restricted QHI property.

We give a few comments on the reasons we needed to impose a restric-
tion on the QHI property. Our proof is based on a method of “combinatorial
forcing” (see Todorcevic’s course [3]). It will enable us to prove a general
dichotomy result for closed properties of FDD-block quotients of subspaces,
seen as sequences of finite-dimensional successive QS-blocks (this will be de-
fined precisely in the next section), with the product of the discrete topology
on the set of QS-blocks. This applies more or less directly to yield Theorem 6.

As we see them, these methods rely on defining infinite sequences of
elements which may be correctly approximated by finite sequences; a notion
of succession is needed, i.e. finite sequences are extended to infinite sequences
in a way that does not “affect” the properties implied by the finite part.

Our proof was inspired by a simplification by B. Maurey of this method
in the case of block-subspaces of a space with a Schauder basis, where a less
restrictive setting may be used, based on replacing X by a countable dense
subset [12].

It did not seem possible to repeat Maurey’s proof exactly to study
QS-spaces. Therefore we needed to restrict our study to particular QS-
spaces which may be canonically associated to infinite sequences of “finite-
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dimensional blocks” which are successive in some sense. For technical rea-
sons, the countable dense subset must be replaced by a net whose inter-
section with the set of predecessors of a given block is always finite. Up to
perturbations, the restriction to a net is not essential, but the need for some
notion of succession seems to be, and this justifies why we could not obtain
“quotient hereditarily indecomposable” in the second part of the conclusion
of Theorem 6. Actually some examples indicate that FDD-block quotients
of subspaces may behave differently from general quotients of subspaces. We
refer to the final section for this fact.

2. Proof of the theorem. To prove Theorem 6, we may consider a
Banach space X with a Schauder basis (en). We denote by (e∗n) its dual
basis, and by X∗ the closed linear span of (e∗n)n∈N. We may also assume that
the basis is bimonotone. We shall consider supports and ranges of vectors
or subspaces of X and of X∗ with respect to these canonical bases.

We choose to represent blocks forming quotients of subspaces of X
as pairs formed by a finite-dimensional subspace F of X and a finite-
dimensional subspace F∗ of X∗, with F⊥

∗ ∩ [en : n ∈ ran(F, F∗)] ⊂ F . Pairs
(F, G) of finite-dimensional subspaces of X with G ⊂ F would also have
been a possible representation. Our choice will save us from some technical-
ities (successive pairs in our setting are pairs whose supports are necessarily
immediately successive). It will also preserve, in our proofs, the symmetry
between the roles played by X and X∗ in the reflexive case. This symme-
try is apparent in our main result, and we felt it worth emphasizing in our
demonstration.

2.1. Blockings of QS-pairs. If Y ⊂ X and Y∗ ⊂ X∗, the range of (Y∗, Y )
is the smallest interval containing the ranges of Y and of Y∗. The set of
finitely supported subspaces of X is denoted F (X), and that of finitely
supported subspaces of X∗ is denoted F (X∗). A QS-block (or block) is a
pair (F∗, F ) ∈ F (X∗) × F (X) such that F⊥

∗ ∩ [en : n ∈ E] ⊂ F , where
E := ran(F∗, F ). The set of blocks is denoted F(X). The dimension of
(F∗, F ) is the dimension of F/(F⊥

∗ ∩ [en : n ∈ E]). Two blocks (F∗, F ) and
(G∗, G) are said to be successive if min(ran(G∗, G)) = max(ran(F∗, F )) + 1,
and we write (F∗, F ) < (G∗, G) (note the technical difference from the usual
notion of succession).

We note that when Y = (Yn∗, Yn)n∈N is a sequence of successive blocks
whose ranges partition N (equivalently, such that min(ran(Y1∗, Y1)) = 1),
the spaces Y =

∑
n∈N

Yn and Y∗ =
∑

n∈N
Yn∗ satisfy Y ⊥

∗ ⊂ Y . We shall
then say that (Y∗, Y ) is the QS-pair associated to Y , and that Y is infinite-

dimensional whenever the QS-space Y/Y ⊥
∗ is infinite-dimensional. Note that

the space Y/Y ⊥
∗ is an FDD-block quotient of a subspace of X.
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If (F∗, F ) is a block and (Yn∗, Yn)n∈I is a finite or an infinite sequence
of successive blocks, and if there exists an interval E ⊂ I such that F ⊂∑

n∈E Yn and F∗ ⊂ ∑
n∈E Yn∗, then we shall say that (F∗, F ) is a block of

(Yn∗, Yn)n∈I .
We now define a relation of “blocking” between sequences of successive

blocks.

Definition 7. Let (Yn∗, Yn)n and (Zi∗, Zi)i be finite or infinite sequences
of successive blocks. If for any i, (Zi∗, Zi) is a block of (Yn∗, Yn)n, then we
shall say that (Zi∗, Zi)i is a blocking of (Yn∗, Yn)n.

If Z = (Zi∗, Zi)i∈N and Y = (Yn∗, Yn)n∈N are infinite sequences of suc-
cessive blocks whose ranges partition N, then we shall write Z ≤ Y if Z
is a blocking of Y . This means that there exists a partition {Ni : i ∈ N}
of N into successive intervals such that, for all i ∈ N, ran(Zi∗, Zi) =⋃

n∈Ni
ran(Yn∗, Yn) and (Zi∗, Zi) is a block of (Yn∗, Yn)n∈Ni

.

We note that ≤ is an order relation. Clearly, when Z ≤ Y , the associated
QS-pairs (Z∗, Z) and (Y∗, Y ) satisfy (Z∗, Z) ⊂ (Y∗, Y ).

For any two sequences Y and Z, we define

A(Y ,Z) = A((Y∗, Y ), (Z∗, Z)),

where (Y∗, Y ) and (Z∗, Z) are the associated QS-pairs.

Lemma 8. Let Y = (Yn∗, Yn)n∈N be an infinite-dimensional , successive

sequence of blocks whose ranges partition N. Let (Y∗, Y ) be the associated QS-

pair. Assume that A(U ,V) = 0 whenever U ,V ≤ Y are infinite-dimensional ,
successive sequences of blocks whose ranges are equal and partition N. Then

Y/Y ⊥
∗ has the restricted QHI property.

Proof. The proof is based on the natural identification between sequences
of blocks of Y/Y ⊥

∗ with its natural finite-dimensional decomposition, and
sequences of blocks of X which are blockings of (Y∗, Y ). Indeed, consider
two infinite-dimensional FDD-block quotients of subspaces of Y/Y ⊥

∗ which
are of the form Z =

∑
n∈N

Fn/
∑

n∈N
Gn and Z ′ =

∑
n∈N

F ′
n/

∑
n∈N

Gn,
with successive partition (En)n∈N. By definition for all n ∈ N, Gn ⊂ Fn ⊂
(
∑

k∈En
Yk + Y ⊥

∗ )/Y ⊥
∗ , and let In = ran(

∑
k∈En

Yk). Therefore we may find
An, Bn such that

( ∑

k∈En

Yk∗

)⊥
∩ [ei : i ∈ In] ⊂ Bn ⊂ An ⊂

∑

k∈En

Yn,

and such that Gn = (Bn + Y ⊥
∗ )/Y ⊥

∗ and Fn = (An + Y ⊥
∗ )/Y ⊥

∗ . We define
some subspaces A′

n associated to the spaces F ′
n in a similar way.

We therefore have the identification

Z ≃
∑

n∈N

An + Y ⊥
∗ /

∑

n∈N

Bn + Y ⊥
∗ =

∑

n∈N

An/
∑

n∈N

Bn,
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which is by construction an FDD-block quotient of a subspace of X corre-
sponding to a blocking of Y . Indeed, let Bn∗ = B⊥

n ∩[ei : i ∈ In], and let Z =
(Bn∗, An)n∈N. Then the associated QS-space is

∑
n∈N

An/(
∑

n∈N
Bn∗)

⊥ =∑
n∈N

An/
∑

n∈N
Bn.

We have the similar identification for Z ′ and let Z ′ = (Bn∗, A
′
n)n∈N.

Since Z ≤ Y and Z ′ ≤ Y , it follows that A(Z,Z ′) = 0. This means that the
spaces

∑
n∈N

An/
∑

n∈N
Bn and

∑
n∈N

A′
n/

∑
n∈N

Bn do not form a direct
sum in Y/

∑
n∈N

Bn, and therefore Z and Z ′ do not form a direct sum in

the space (Y/Y ⊥
∗ )/

∑
n∈N

Gn. Therefore (iii) of Proposition 4 is satisfied.

Before stating more definitions, we need to realize a reduction to a net
R of blocks with some finiteness property which will be crucial for our
combinatorial method.

For F, G in F (X), we let dH(F, G) be the Hausdorff distance between
the unit spheres SF of F and SG of G, dH(F, G) = maxx∈SF

d(x, SG) ∨
maxy∈SG

d(y, SF ). Modifying a definition from [7], we define a distance d on
F (X) by

d(F, G) = min(1, 2k
√

k dH(F, G))

if dimF = dimG = k and ran(F ) = ran(G), and d(F, G) = 1 otherwise.
We finally define a distance δ on F(X) by

δ((F∗, F ), (G∗, G)) = max(d(F, G), d(F⊥
∗ ∩ X0, G

⊥
∗ ∩ X0))

when ran(F∗, F ) = ran(G∗, G) and X0 = [ei : i ∈ ran(F∗, F )], and we let
δ((F∗, F ), (G∗, G)) = 1 otherwise.

The critical result concerning this distance is contained in the next
lemma.

Lemma 9. Let 0 < ε < 1 and let (δn)n be a positive sequence such that∑
n∈N

δn ≤ ε. Let (Fn∗, Fn)n∈N and (Gn∗, Gn)n∈N be successive sequences of

blocks such that for all n ∈ N, δ((Fn∗, Fn), (Gn∗, Gn)) ≤ δn, and , for n ∈ N,
let Xn be the space [ei : i ∈ ran(Fn∗, Fn)]. Then there exists a map T :∑

n∈N
Fn → ∑

n∈N
Gn such that T (Fn) = Gn and T (F⊥

n∗ ∩ Xn) = G⊥
n∗ ∩ Xn

for all n ∈ N, and ‖Tx − x‖ ≤ ε‖x‖ for any x ∈ ∑
n∈N

Fn.

Proof. Let k = dimF1 = dim G1 and let l = dimF⊥
1∗∩X1 = dimG⊥

1∗∩X1.
By classical results, the Banach–Mazur distance of F1 to lk2 is at most

√
k,

so we may pick a normalized basis f1, . . . , fk of F1 with basis constant at
most

√
k and such that f1, . . . , fl is a basis of F⊥

1∗ ∩ X1. By the expression

of δ, we have dH(F⊥
1∗ ∩ X1, G

⊥
1∗ ∩ X1) ≤ δ1/2k

√
k, therefore for 1 ≤ i ≤ l,

there exists some gi ∈ G⊥
1∗ ∩X1 with ‖gi − fi‖ ≤ δ1/2k

√
k. Likewise we find

for l < i ≤ k some gi ∈ G1 with the same condition on ‖gi − fi‖.
By [10, Prop. 1.a.9], (gi)1≤i≤k is a basis of G1, and furthermore, if T1 :

F1 → G1 is defined by T1(fi) = gi for all 1 ≤ i ≤ k, we have, for any x ∈ F1,
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x =
∑k

i=1 aifi,

‖T1x − x‖ ≤
k∑

i=1

|ai| ‖fi − gi‖ ≤ 2
√

k ‖x‖k(δ1/2k
√

k) = δ1‖x‖.

Repeating this construction on each Fn, let Tn be the associated map
from Fn onto Gn with Tn(F⊥

n∗ ∩ Xn) = G⊥
n∗ ∩ Xn, and let T be defined on∑

n∈N
Fn by T|Fn

= Tn for all n ∈ N. For any x =
∑

n∈N
xn with xn ∈ Fn,

we have

‖Tx − x‖ ≤
∑

n∈N

‖Tnxn − xn‖ ≤
∑

n∈N

δn‖xn‖ ≤ ε‖x‖,

by bimonotonicity of the basis.

For N ∈ N, we let FN (X) be the set of elements (F∗, F ) of F(X) such
that max(ran(F∗, F )) = N . Fixing a decreasing positive sequence (δn)n∈N

such that δn ≤ 2−n for every n ∈ N, we choose a subset R ⊂ F(X) with the
following properties:

(i) R∩ FN (X) is a finite δN -net for FN (X),
(ii) whenever (F1∗, F1) < · · · < (Fk∗, Fk) belong to R, it follows that

(F1∗ + · · · + Fk∗, F1 + · · · + Fk) belongs to R.
(iii) for any (F∗, F ) ∈ R∩FN (X), R∩FF∗,F is a δN -net for FF∗,F , where

FF∗,F := {(G∗, G) ∈ FN (X) : (G ⊂ F ) ∧ (G∗ ⊂ F∗)}.
(iv) for any (F∗, F ) ∈ R ∩ FN (X), R ∩ FF∗

F is a δN -net for FF∗

F , where

FF∗

F := {(G∗, F ) ∈ FN (X) : G∗ ⊂ F∗},
(v) for any (F∗, F ) ∈ R ∩ FN (X), R ∩ FF

F∗
is a δN -net for FF

F∗
, where

FF
F∗

:= {(F∗, G) ∈ FN (X) : G ⊂ F},
(vi) if (F∗, F ) ∈ R then (F⊥ ∩ [e∗i : i ∈ E], F⊥

∗ ∩ [ei : i ∈ E]) ∈ R, where
E = ran(F∗, F ).

An R-block will denote a block in R. In the following, blocks will always
be R-blocks, unless specified otherwise.

We denote by QS<ω(X) (resp. QS<ω
0 (X)) the set of finite sequences of

successive R-blocks (Fn∗, Fn)n (resp. for which min(ran(F1∗, F1)) = 1).

The set QSω(X) (resp. QSω
0 (X)) is the space of infinite sequences of

successive R-blocks Y = (Yn∗, Yn)n (resp. for which min(ran(Y1∗, Y1)) = 1).
If (Yn∗, Yn)n is an element of QSω

0 (X), the partition of (Yn∗, Yn)n is the
sequence (ran(Yn∗, Yn))n∈N, which is a partition of N. The space

∑
n∈N

Yn

will be denoted Y , and Y∗ will denote
∑

n∈N
Yn∗. As already observed, the

relation Y ⊥
∗ ⊂ Y ensures that Y/Y ⊥

∗ is an FDD-block quotient of a sub-
space of X. We let QS(X) ⊂ QSω

0 (X) be the set of sequences which are
infinite-dimensional, that is, such that the QS-space Y/Y ⊥

∗ is infinite-dimen-
sional.
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If E is an interval of integers, and (Yn∗, Yn)n∈I is a finite or an infinite
sequence of successive R-blocks, we shall say that (Yn∗, Yn)n∈I is well-placed

with respect to E if there exists m ∈ I such that min(ran(Ym∗, Ym)) =
maxE+1. The set of sequences of QS(X) which are well-placed with respect
to E is denoted QSE(X).

We now define a relation of “tail blocking” on QS(X).

Definition 10. LetZ,Y∈QS(X). If E is an interval of N, and (Zi∗, Zi)i≥p

is a blocking of (Yn∗, Yn)n≥m with min(ran(Zp∗, Zp)) = min(ran(Ym∗, Ym)) =
maxE + 1, then we shall write Z ≤E Y .

Note that if Z ≤E Y then necessarily Z and Y are well-placed with
respect to E. It is also clear that ≤E is a preorder relation, and W ≤E Y
whenever W and Y are well-placed with respect to E and W ≤ Y .

We shall need the following easy lemma.

Lemma 11. Let E be an interval of N, and Y ,Z ∈ QSE(X). Assume

Z ≤E Y. Then there exists W ∈ QSE(X) such that W ≤ Y and W ≤E Z.

Proof. Let min(ran(Ym∗, Ym)) = maxE + 1 = min(ran(Zp∗, Zp)) for
some m, p. We define (Wn∗, Wn) = (Yn∗, Yn) if n < m and (Wn∗, Wn) =
(Z(n−m+p)∗, Zn−m+p) if n ≥ m.

Definition 12. Let P ⊂ QSE(X). We say that P is ≤E-hereditary if
whenever Y ∈ P and Z ≤E Y , then Z ∈ P . We say that P is ≤E-large if it
is ≤E-hereditary and whenever Y ∈ QSE(X), there exists Z ≤ Y such that
Z ∈ P .

2.2. A game for QS-pairs. Our proof will be based on an “oriented QS-
pairs” Gowers game GY

A associated to some subset A of QS(X) × {−1, 1}ω

and to some Y∈QS(X), and defined as follows. Player 1 plays some W1≤Y .
Player 2 plays some sign ε1 ∈ {−1, 1} and some block (U1∗, U1) which is a
block of W1 with min(ran(U1∗, U1)) = 1.

At step n, Player 1 plays some Wn ≤ Y which is well-placed with respect
to ran(U(n−1)∗, Un−1). Player 2 plays some sign εn ∈ {−1, 1} and some block
(Un∗, Un) of Wn which is successive with respect to (U(n−1)∗, Un−1).

Player 2 wins the game if he produces an infinite sequence (Un∗, Un, εn)n

which is in A.

In our application we shall use this game for the set Aδ for some δ > 0,
defined as the set of (Un∗, Un, εn)n such that there exist n ∈ N and uk ∈ Uk,
u∗

k ∈ Uk∗, 1 ≤ k ≤ n, such that

∥∥∥
n∑

k=1

uk

∥∥∥
∥∥∥

n∑

k=1

u∗
k

∥∥∥ < δ
∣∣∣

n∑

k=1

εk−1u
∗
k(uk)

∣∣∣,

where ε0 = 1 is fixed.
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A state s will be an element of QS<ω(X) × {−1, 1}<ω, where the two
sequences are of equal length denoted |s|. The set of states will be denoted S.
When Y is well-placed with respect to (Ui∗, Ui)i<k and (εi)i<k is a sequence
of signs, we define in an obvious way the game GY

A(s), where s is the state
(Un∗, Un, εn)n<k: just rename steps 1, 2, . . . in the new game as k, k + 1, . . .
and then apply the same definition as above; this is the game GY

A starting
from position s.

If s = (Un∗, Un, εn)n<k, then ran(s) will denote ran((Un∗, Un)n<k), and to
simplify the notation we also let QSs(X) stand for QSran(s)(X), and ≤s for

≤ran(s); moreover, “successive to s” will mean “successive to (U(k−1)∗, Uk−1)”.

In the following, we fix some subset A of QS(X)×{−1, 1}ω. Our next def-
inition is the first step of the method of “combinatorial forcing” on QS(X).

Definition 13. Let s be a state, and let Y ∈ QSs(X).

The state s accepts Y if Player 2 has a winning strategy for the game
GY

A(s).

The state s rejects Y if it accepts no Z ≤ Y .

The state s decides Y if it accepts or rejects Y .

Lemma 14. Let s be a state.

• The set of Y in QSs(X) such that s accepts Y (resp. rejects Y) is

≤s-hereditary.

• The set of Y in QSs(X) such that s decides Y is ≤s-large.

Proof. Assume s accepts Y . Let Z be such that Z ≤s Y . Let W = Wn ≤
Z be a move for Player 1 in GZ

A(s) at step n. By Lemma 11, we may find
V ≤ Y with V ≤s W , in particular V is well-placed with respect to ran(s).
Therefore Vn = V is an admissible move for Player 1 in GY

A(s). Since s
accepts Y , a move (Un∗, Un, εn) for Player 2 is prescribed by the winning
strategy for GY

A(s). This move is admissible for Player 2 in GZ
A(s), since

(Un∗, Un) is successive to s and therefore is a block of W . We have therefore
described a winning strategy for Player 2 in the game GZ

A(s), which means
that s accepts Z.

Assume now that s rejects Y ∈ QSs(X) while it does not reject Z ≤s Y .
We may assume that s accepts Z. We get a contradiction by using Lemma
11 to find some element W ∈ QSs(X) such that W ≤ Y and W ≤s Z.

It follows that the set of Y in QSs(X) such that s decides Y is ≤s-
hereditary. Finally, if Y ∈ QSs(X), then either s rejects Y , or s accepts
some Z ≤ Y ; this implies ≤s-largeness.

Lemma 15 (Stabilization principle). For any W ∈ QS(X), there exists

Y ≤ W such that whenever (Zn∗, Zn)n≤k ∈ QS<ω
0 (X) is a blocking of Y , and

(εn)n≤k is a sequence of signs, then the state s = (Zn∗, Zn, εn)n≤k decides Y.
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Such a Y will be called stabilizing , and states associated to blockings of

Y will be said to be states blocking Y.

Proof. Fix W in QS(X). Let n1 be such that dim(Wn1∗, Wn1
) ≥ 1. We let

Y1 = W and (Y1∗, Y1) = (
∑

n≤n1
Y 1

n∗,
∑

n≤n1
Y 1

n ). Assume (Yk∗, Yk)k<n and

some Yn−1 in QSE(X) have been constructed with E = ran((Y(n−1)∗, Yn−1).

By the finiteness property of R, and the ≤E-largeness property of Lemma 14,
we may find some Yn ≤ Yn−1, with Yn ∈ QSE(X), such that for any finite
sequence (Zi∗, Zi)i≤m which is a blocking of (Yk∗, Yk)k<n with

max(ran(Zm∗, Zm)) = maxE,

and for any sequence of signs (εi)i≤m, the state s = (Zi∗, Zi, εi)i≤m de-
cides Yn. Let mn be such that max(ran(Y n

mn∗, Y
n
mn

) = maxE and pn be
such that the associated subsequence (Y n

i∗, Y
n
i )mn<i≤pn

contains a term of
dimension at least 1. Let (Yn∗, Yn) be (

∑
mn<i≤pn

Y n
i∗ ,

∑
mn<i≤pn

Y n
i ).

Repeating this by induction we construct an element Y of QS(X) which
has the required property. Indeed, for any state s blocking Y , let n be such
that max(ran(s)) = max(ran(Y(n−1)∗, Yn−1)). Then s decides Yn and Y ≤s

Yn, therefore s decides Y .

We now fix some stabilizing X in QS(X). Note that by Lemmas 14
and 15, whenever s is a state blocking X and Y ≤s X , then s accepts (resp.
rejects) X if and only if it accepts (resp. rejects) Y . In the following, we shall
say that s accepts (resp. rejects) to mean that s accepts (resp. rejects) X .

Lemma 16. Let s ∈ S be a state blocking X . If s rejects, then for any

Y ≤ X in QSs(X) there exists Z ≤ Y in QSs(X) such that for any block

(F∗, F ) of Z which is successive to s, and any sign ε, the state s⌢(F∗, F, ε)
rejects.

Proof. Assume the conclusion is false. Let n = |s|. There exists Y ≤ X in
QSs(X) such that for any Z ≤ Y in QSs(X), there is a block (F(n+1)∗, Fn+1)
of Z successive to s and εn+1 ∈ {−1, 1} such that the state

s′ = s⌢(F ∗
n+1, Fn+1, εn+1)

accepts, and therefore accepts Y , that is, Player 2 has a winning strategy
for GY

A(s′). Note that s′ is a state blocking X . What we have written means

that Player 2 has a winning strategy for GY
A(s), in other words s accepts Y ,

that is, s accepts. This is a contradiction.

In the following, ∅ denotes the empty state.

Lemma 17. Assume ∅ rejects. Then there exists Y ≤ X such that any

state blocking Y rejects.

Proof. Let Y0 = X . We build by induction a sequence Y = (Yn∗, Yn)n∈N

and a ≤-decreasing sequence (Yn)n∈N with Yn ∈ QSEn
(X), with En =
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ran(Yi∗, Yi)i<n, and with (Yn∗, Yn) a block of Yn for each n ∈ N, as follows.
Assume (Yi∗, Yi)i<n and (Y i)i<n have been defined. There are finitely many
states s with max(ran(s)) = max(E). Therefore applying Lemma 16 a finite
number of times, we obtain some Yn ≤ Yn−1 in QSE(X) such that for any
state s with max(ran(s)) = max(E), for any block (F∗, F ) of Yn which is
successive to E, and for any sign ε, the state s⌢(F∗, F, ε) rejects. We define
(Yn∗, Yn) to be such a block (F∗, F ) of dimension at least 1.

Whenever U = (Un∗, Un)n∈N ≤ Y , we may easily check by induction that
for any sequence of signs (εi)i≤n, the state (Ui∗, Ui, εi)i≤n rejects.

Proposition 18. Let A be a subset of QS(X)×{−1, 1}ω which is open

as a subset of (F(X) × {−1, 1})ω with the product of the discrete topology

on F(X) × {−1, 1}. If for every Y ∈ QS(X), there exists Z ≤ Y and a

sequence of signs e such that (Z, e) ∈ A, then there exists Y ∈ QS(X) such

that Player 2 has a winning strategy in the game GY
A.

Proof. If ∅ accepts then by definition, Player 2 has a winning strategy in
the game GY

A for some Y . If ∅ rejects then, by Lemma 17, there exists Y such
that any state blocking Y rejects, which implies that any state blocking Y is
extendable as a sequence which is not in A. Since A is open, this means that
no infinite sequence of successive blocks of Y and of signs belongs to A.

Recall that for any δ > 0, we define Aδ to be the set of (Un∗, Un, εn)n

such that there exist n ∈ N and uk ∈ Uk, u∗
k ∈ Uk∗, 1 ≤ k ≤ n, such that

∥∥∥
n∑

k=1

uk

∥∥∥
∥∥∥

n∑

k=1

u∗
k

∥∥∥ < δ
∣∣∣

n∑

k=1

εk−1u
∗
k(uk)

∣∣∣,

where we put ε0 = 1. This is an open subset of (F(X) × {−1, 1})ω.

2.3. A dichotomy theorem on QS(X). If Y ∈ QS(X), with dim(Yn∗, Yn)
= 1 for all n ∈ N, then we shall write Y ∈ QS1(X). If Y ∈ QS1(X), and for
each n ∈ N, ẽn ∈ Y/Y ⊥

∗ is the class of some en ∈ Yn which is not in Y ⊥
n∗, then

we shall say that (ẽn) is a successive Schauder basis of Y/Y ⊥
∗ . Note that all

successive Schauder bases of Y/Y ⊥
∗ may be obtained from one another by

homotheties on the span of each of their basic vectors.
In the next proposition, fixing δ > 0, we let Xδ be a stabilizing subspace

corresponding to Aδ, and we say that s δ-accepts (resp. δ-rejects) if s accepts
(resp. rejects) Xδ with respect to the set Aδ.

Proposition 19. If ∅ δ-rejects, then there exists Y ∈ QS1(X) with

Y ≤ Xδ such that any successive basis of Y/Y ⊥
∗ is unconditional with con-

stant δ−1. If ∅ δ-accepts, then whenever U ,V ≤ Xδ have identical partitions,
A(U ,V) < δ.

Proof. If ∅ δ-rejects, then consider Y = (Yi∗, Yi)i∈N given by Lemma 17,
and write Ei = ran(Yi∗, Yi). Without loss of generality we may assume that
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Y ∈ QS1(X). Pick in each Yi some normalized fi such that d(fi, Y
⊥
i∗ ∩ [en :

n ∈ Ei]) = 1. Fix n and some signs (εi)i≤n, and recall that ε0 = 1. By the
proof of Proposition 18, and since Aδ is open, for any (y∗i , yi) ∈ Yi∗ × Yi,
i ≤ n, we have

∥∥∥
n∑

k=1

yk

∥∥∥
∥∥∥

n∑

k=1

y∗k

∥∥∥ ≥ δ
∣∣∣

n∑

k=1

εk−1y
∗
k(yk)

∣∣∣.

Equivalently, whenever ‖∑n
k=1 y∗k‖ = 1,

( n∑

k=1

y∗k

)( n∑

k=1

εk−1yk

)
≤ δ−1

∥∥∥
n∑

k=1

yk

∥∥∥,

and therefore ∥∥∥
n∑

k=1

εk−1yk

∥∥∥∑
k≤n

Yk∗

≤ δ−1
∥∥∥

n∑

k=1

yk

∥∥∥.

Taking yk = λkfk + zk, where λk is a scalar and zk is arbitrary in Y ⊥
k∗ ∩ [ei :

i ∈ Ek], we obtain

∥∥∥
n∑

k=1

εk−1λkfk

∥∥∥∑
k≤n

Yk∗

≤ δ−1
∥∥∥

n∑

k=1

λkfk + z
∥∥∥,

where z ∈ ∑
k≤n(Y ⊥

k∗ ∩ [ei : i ∈ Ek]) = (
∑

k≤n Yk∗)
⊥ ∩ [ei : i ∈ ⋃

k≤n Ek] is
arbitrary. By duality in [ei : i ∈ ⋃

k≤n Ek], we conclude that

∥∥∥
n∑

k=1

εk−1λkfk

∥∥∥∑
k≤n

Yk∗

≤ δ−1
∥∥∥

n∑

k=1

λkfk

∥∥∥∑
n

k=1
Yk∗

.

Since (εi)1≤i≤n−1 was arbitrary, we deduce that (f̃k)k≤n is δ−1-unconditional
in

∑
k≤n Yk/((

∑
k≤n Yk∗)

⊥ ∩ [ei : i ∈ ⋃
k≤n Ek]) for each n, and therefore in

Y/Y ⊥
∗ by bimonotonicity.

Now assume ∅ δ-accepts. Pick U ,V ≤ Xδ which have identical parti-
tions. This will ensure that playing U or V is always an admissible move for
Player 1. We therefore may define a strategy for Player 1 as follows. The
first move is U . Assuming Player 2 has picked some (Y ∗

k−1, Yk−1, εk−1) at step
k − 1, Player 1’s kth move will be U if εk−1 = 1, and V if εk−1 = −1. Op-
posing a winning strategy for Player 2, we therefore obtain some n ∈ N, and
some sequences (u∗

i , ui)i≤n of pairs of vectors and functionals, and (εi)i≤n of
signs such that ui ∈ U, u∗

i ∈ U∗ if εi−1 = 1, and ui ∈ V, u∗
i ∈ V∗ if εi−1 = −1,

and with ∥∥∥
n∑

k=1

uk

∥∥∥
∥∥∥

n∑

k=1

u∗
k

∥∥∥ < δ
∣∣∣

n∑

k=1

εk−1u
∗
k(uk)

∣∣∣.

We let u =
∑

εi−1=1 ui ∈ U , u∗ =
∑

εi−1=1 u∗
i ∈ U∗, v = −∑

εi−1=−1 ui ∈ V ,
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v∗ = −∑
εi−1=−1 u∗

i ∈ V∗, and observe that u∗(v) = v∗(u) = 0 and

‖u − v‖ ‖u∗ − v∗‖ < δ|u∗(u) − v∗(v)|.
Theorem 20. Let X be a Banach space with a Schauder basis. Then

there exists a quotient Y/Y ⊥
∗ of a subspace of X, associated to some Y

in QS1(X), which has one of the following two properties, which are both

possible and mutually exclusive:

(i) Y/Y ⊥
∗ has an unconditional basis,

(ii) Y/Y ⊥
∗ has the restricted QHI property.

Proof. Fix as before a positive sequence (δn)n∈N with δn ≤ 2−n for all n,
and build by Lemma 15 a ≤-decreasing sequence Xn such that Xn is δn-
stabilizing for each n. If, in the terminology defined at the beginning of this
subsection, ∅ δn-rejects Xn for some n, then we are done by Proposition 19.

Assume therefore that ∅ δn-accepts Xn for all n ∈ N. Let Y ∈ QS(X) be
diagonal for the Xn’s, i.e. such that Y ≤s Xn for any state s blocking Y with
max(ran(s)) = max(ran(Yn∗, Yn)). This is easily constructed by induction.
We shall prove that A(U ,V) = 0 for any U ,V ≤ Y which are sequences of
successive blocks (not necessarily in R) with equal ranges forming a partition
of N. By Lemma 8, this will be enough to prove our result.

Fix ε > 0 and arbitrary U ,V ∈ QS(X) (therefore formed of R-blocks),
with U ,V ≤ Y and with identical partition denoted (En)n∈N. Let m be large
enough so that if p = max(Em) then δp < ε. Denote by X = (Xi∗, Xi)i∈N

the corresponding Xp, by Fi the range of (Xi∗, Xi) and let q be such that
p = max(Fq).

For i ≤ q we let U ′
i∗ = Xi∗, and U ′

i = X⊥
i∗ ∩ [en : n ∈ Fi]. For i > q we let

(U ′
i∗, U

′
i) = (U(m−q+i)∗, Um−q+i). We have thus constructed an element U ′ of

QS(X) which satisfies U ′ ≤ X and U ′ ≤E U for E = [1, p]. In the same way
we construct some V ′ ≤ X with V ′ ≤E V.

By Proposition 19, we may find x ∈ U ′, x∗ ∈ U ′
∗ and y ∈ V ′, y∗ ∈ V ′

∗

with disjoint supports and with ‖x − y‖ ‖x∗ − y∗‖ < δp|(x∗ − y∗)(x + y)|.
Let P be the projection onto [en : n > p], and P∗ be the projection onto
[e∗n : n > p]. Note that P (U ′) ⊂ U and P∗(U

′
∗) ⊂ U∗, and similar inclusions

hold for V and V∗. Let u = Px, u∗ = P∗x
∗, v = Py, v∗ = P∗y

∗.

By bimonotonicity of the basis, we observe that ‖u − v‖ ≤ ‖x − y‖ and
‖u∗ − v∗‖ ≤ ‖x∗ − y∗‖. On the other hand, writing x = u + a, x∗ = u∗ + a∗,
y = v + b, and y∗ = v∗ + b∗, we note that a ∈ (

∑
i≤q Xi∗)

⊥ while a∗ ∈∑
i≤q Xi∗, therefore a∗(a) = 0. Likewise, b∗(b) = a∗(b) = b∗(a) = 0, and by

disjointness of the ranges, u∗(a) = u∗(b) = v∗(a) = v∗(b) = a∗(u) = a∗(v) =
b∗(u) = b∗(v) = 0. Therefore

(x∗ − y∗)(x + y) = (u∗ − v∗)(u + v),
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and we deduce that

‖u − v‖ ‖u∗ − v∗‖ < δp|(u∗ − v∗)(u + v)|.
We have thus proved that A(U ,V) < ε.

It remains to show that we may obtain the same results for general
U ,V ≤ Y , i.e. successive sequences of blocks which are not necessarily in R.
Fix 0 < ε < 1/3 and let U , V have the same partition (En)n∈N. Let U ′, V ′

be sequences with blocks in R such that δ((Un∗, Un), (U ′
n∗, U

′
n)) < δn for all

n ∈ N, and with similar relations for (Vn∗, Vn) and (V ′
n∗, V

′
n). Let N ∈ N

be such that 2−N ≤ ε/2. By the above, we may find a partition {I, J} of
[N,∞), vectors u ∈ ∑

n∈I U ′
n, v ∈ ∑

n∈J V ′
n, and functionals u∗ ∈ ∑

n∈I U ′
n∗,

v∗ ∈ ∑
n∈J V ′

n∗ such that

‖u − v‖ ‖u∗ − v∗‖ < ε|(u∗ − v∗)(u + v)|.
For n ≥ N , let (Wn∗, Wn) = (Un∗, Un) if n ∈ I, and (Wn∗, Wn) =

(Vn∗, Vn) if n ∈ J , and let W∗ =
∑

n≥N Wn∗; let (W ′
n∗, W

′
n) and W ′

∗ be

defined in a similar way. Let also XN = [ei : i ∈ ⋃
n≥N En]. We then have

‖u − v‖ < ε‖u + v‖W ′
∗
.

Since
∑

n≥N δn ≤ ε, we find by Lemma 9 a map T from
∑

n≥N W ′
n onto

∑
n≥N Wn such that T (W ′) = W , T (XN ∩ W ′

∗
⊥) = XN ∩ W⊥

∗ , and

‖T‖ ‖T−1‖ ≤ (1 + ε)(1 − ε)−1 ≤ 2.

If we let x = Tu ∈ ∑
n∈I Un and y = Tv ∈ ∑

n∈J Vn, we have

‖x − y‖ < 2ε‖x + y‖W∗ .

This means that we may pick some normalized functional w∗ ∈ W∗, hence
w∗ = x∗ − y∗ with x∗ ∈ ∑

n∈I Un∗ and y∗ ∈ ∑
n∈J Vn∗, such that

‖x − y‖ < 2ε|(x∗ − y∗)(x + y)| = 2ε|x∗(x) − y∗(y)|,
and we deduce that A(U ,V) ≤ 2ε.

3. Remarks and open questions

Remark 21. Let Y be an FDD-block quotient of a subspace of X. To
check whether Y has the restricted QHI property, we have checked the
formally stronger result that the angle is zero between any two QS-pairs as-
sociated to FDD-block quotients of subspaces of Y with sequences of blocks
having the same partition. We note that by our dichotomy theorem, these
two notions are equivalent up to passing to a quotient of a subspace. In-
deed, if X is QHI restricted to block-subspaces, then no quotient of X by
an FDD-block subspace can contain an unconditional basic sequence, and
therefore X must contain a quotient of a subspace with the stronger “angle
zero” property.
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Question 22. Is it possible to improve Theorem 20 by suppressing the
restriction to FDD-block subspaces? This restriction is not only technical.
By a result of S. Argyros, A. Arvanitakis and A. Tolias [1], the distinction
between general quotient spaces and quotients by FDD-block subspaces may
be essential: there exists a separable dual space X with a Schauder basis
such that quotients with w∗-closed kernels are HI, yet every quotient has
a further quotient isomorphic to l2. Since FDD-block subspaces of X are
w∗-closed, this space has the restricted QHI property, but it is not QHI by
the l2-saturation property.

Unlike the case of subspaces, it does not seem clear that, in a space with
a Schauder basis, QS-spaces may be approximated by FDD-block quotients
of subspaces, that is, we do not know whether for any QS-space, there is a
further QS-space which is an arbitrarily small perturbation of an FDD-block
quotient of a subspace.

Remark 23. As noticed in the introduction, HI spaces can fall in either
side of the dichotomy in Theorem 6. The example of XGM is QHI, while
the examples of [2] have an unconditional quotient. The dual X∗

uh of the
reflexive space Xuh of Argyros and Tolias [5] has the following quite inter-
esting mixed property. Any of its quotients has a further quotient with an
unconditional basis [5, Proposition 3.6], but on the other hand it is HI [5,
Proposition 5.11], and it is saturated with QHI subspaces. This last fact
was indicated to us by S. Argyros, and the proof is as follows. Consider
any block subspace of X∗

uh. Keeping half of the vectors of the block basis,
and denoting by Y the space generated by them, we find that the anni-
hilator of any subspace Z of Y must contain an infinite subsequence of
the basis. Therefore [5, Proposition 6.3] applies to show that Xuh/Z

⊥ is
HI. This means that every infinite-dimensional quotient of Xuh/Y ⊥ is HI,
therefore Xuh/Y ⊥ is QHI. By reflexivity it follows that Y ≃ (Xuh/Y ⊥)∗

is QHI.

We say that a Banach space X is unconditionally QS-saturated (resp.
QS-saturated with HI subspaces) if any infinite-dimensional QS-space of X
has a further QS-space with an unconditional basis (resp. which is HI).

By Odell’s result [13], if a space X has a shrinking unconditional FDD,
then every quotient of X must be unconditionally saturated, and there-
fore X must be unconditionally QS-saturated. It remains unknown whether
there exists a HI space which is unconditionally QS-saturated. Therefore we
ask:

Does every HI space contain a quotient of a subspace which is QHI? or
which has the restricted QHI property?

Remark 24. Our dichotomy theorem, the result of Odell [13], and the
remark after Proposition 5 imply the following: if X is reflexive and QS-
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saturated with HI spaces, then some quotient of a subspace of X has the
restricted QHI property, and is therefore HI and saturated with subspaces
with HI dual.

In this direction, we recall the question of S. Argyros: does there exist a
reflexive HI space X such that no subspace of X has a HI dual?
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[12] —, Quelques progrès dans la compréhension de la dimension infinie, in: Espaces de
Banach classiques et quantiques, SMF Journ. Ann., Soc. Math. France, 1994, 29 pp.

[13] T. Odell, On quotients of Banach spaces having shrinking unconditional bases, Illi-
nois J. Math. 36 (1992), 681–695.
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