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On S. Mazur's problems 8 and 88 from the S
ottish BookbyV. V. Peller (East Lansing, MI)Abstra
t. The paper dis
usses Problems 8 and 88 posed by Stanisªaw Mazur inthe S
ottish Book. It turns out that negative solutions to both problems are immediate
onsequen
es of the results of Peller [J. Operator Theory 7 (1982)℄. We dis
uss here somequantitative aspe
ts of Problems 8 and 88 and give answers to open problems dis
ussedin a re
ent paper of Peª
zy«ski and Suko
hev in 
onne
tion with Problem 88.1. Introdu
tion. We are going to dis
uss Problems 8 and 88 posedby Stanisªaw Mazur in the S
ottish Book [SB℄. Problem 88 asks whether aHankel matrix in the inje
tive tensor produ
t ℓ1 ⊗̌ ℓ1 of two spa
es ℓ1 musthave �nite sum of the moduli of its matrix entries. Problem 8 asks whetherfor an arbitrary sequen
e {zn}n≥0 in the spa
e c of 
onverging sequen
esthere exist sequen
es {xn}n≥0 and {yn}n≥0 in c su
h that
zn =

1

n + 1

n∑

k=0

xkyn−k, n ≥ 0.We give pre
ise statements of the problems and all ne
essary de�nitions later.It is known that both problems have negative solutions. Independently,solutions were obtained by Kwapie« and Peª
zy«ski [KP℄ and Eggermont andLeung [EL℄. In a re
ent paper by Peª
zy«ski and Suko
hev [PS℄ in Se
tion 6
ertain quantitative results related to negative solutions of Problems 8 and88 are obtained and 
ertain open problems are raised.It turns out, however, that the results of Se
tion 5 of my earlier paper[P1℄ immediately imply negative solutions to Problems 8 and 88. Moreover,Se
tion 5 of [P1℄ 
ontains mu
h stronger results. In parti
ular, a 
ompletedes
ription of the Hankel matri
es (1) in the inje
tive tensor produ
t of two2000 Mathemati
s Subje
t Classi�
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(1) Note that Hankel matri
es and Hankel operators play an important role in manyareas of mathemati
s and appli
ations; see [P2℄.[191℄ 
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192 V. V. Pellerspa
es ℓ1 is obtained in [P1℄ in terms of the Besov spa
e B1
∞,1. Unfortunately,I was not aware of Problems 8 and 88 when I was writing the paper [P1℄.In Se
tions 3 and 4 of this paper we explain why the results of [P1℄immediately imply negative solutions to Problems 8 and 88 and we give asolution to the problems raised in [PS℄.In �2 we 
olle
t ne
essary information on tensor produ
ts and Besovspa
es.2. Preliminaries2.1. Proje
tive and inje
tive tensor produ
ts. We de�ne the proje
tivetensor produ
t ℓ∞ ⊗̂ ℓ∞ as the spa
e of matri
es {qjk}j,k≥0 of the form

qjk =
∑

n≥0

a
(n)
j b

(n)
k ,(2.1)

where a(n) = {a
(n)
j }j≥0 and b(n) = {b

(n)
j }j≥0 are sequen
es in ℓ∞ su
h that

∑

n≥0

‖a(n)‖ℓ∞‖b
(n)‖ℓ∞ < ∞.(2.2)

The norm of the matrix {qjk}j,k≥0 in ℓ∞ ⊗̂ ℓ∞ is de�ned as the in�mum ofthe left-hand side of (2.2) over all sequen
es a(n) = {a
(n)
j }j≥0 and b(n) =

{b
(n)
j }j≥0 satisfying (2.1).Similarly, one 
an de�ne the proje
tive tensor produ
ts c ⊗̂ c and c0 ⊗̂ c0,where c is the subspa
e of ℓ∞ that 
onsists of the 
onverging sequen
es and

c0 is the subspa
e of c that 
onsists of the sequen
es with zero limit.We 
onsider the spa
e V 2 that is a kind of a �weak 
ompletion� of
ℓ∞ ⊗̂ ℓ∞. V 2 
onsists of the matri
es Q = {qjk}j,k≥0 for whi
h

sup
n>0

‖PnQ‖ℓ∞⊗̂ℓ∞ < ∞,where the proje
tions Pn are de�ned by
(PnQ)jk =

{
qjk if j, k ≤ n,

0 otherwise.Note that c ⊗̂ c ⊂ ℓ∞ ⊗̂ ℓ∞ ⊂ V 2.The inje
tive tensor produ
t ℓ1 ⊗̌ ℓ1 of two spa
es ℓ1 is, by de�nition, thespa
e of matri
es Q = {qjk}j,k≥0 su
h that
‖Q‖ℓ1⊗̌ℓ1 = sup

∣∣∣
N∑

j,k=0

qjkxjyk

∣∣∣ < ∞,

where the supremum is taken over all sequen
es {xj}j≥0 and {yk}k≥0 in theunit ball of ℓ∞ and over all positive integers N . The spa
e ℓ1 ⊗̌ ℓ1 
an be



On S. Mazur's problems 8 and 88 193naturally identi�ed with the spa
e of bounded linear operators from c0 to ℓ1(note that every bounded operator from c0 to ℓ1 is 
ompa
t).2.2. Besov spa
es. In this paper we 
onsider only Besov spa
es of fun
-tions analyti
 in the unit disk D. Besov spa
es Bs
p,q admit many equivalentdes
riptions. We give a de�nition in terms of dyadi
 Fourier expansions. Wede�ne the polynomials Wn, n ≥ 0, as follows. If n ≥ 1, then Ŵn(2n) = 1,

Ŵn(k) = 0 for k 6∈ (2n−1, 2n+1), and Ŵn is a linear fun
tion on [2n−1, 2n]and on [2n, 2n+1]. We put W0(z) = 1 + z. It is easy to see that
‖Wn‖L1 ≤ 3/2, n ≥ 0,and

f =
∑

n≥0

f ∗ Wnfor an arbitrary analyti
 fun
tion f in D.For 1 ≤ p, q ≤ ∞, and s ∈ R, we de�ne the Besov spa
e Bs
p,q as the spa
eof analyti
 fun
tions in D satisfying

f ∈ Bs
p,q ⇔ {2ns‖f ∗ Wn‖Lp}n≥0 ∈ ℓq.(2.3)If q = ∞, the spa
e Bs

p,q is nonseparable. We denote by bs
p,∞ the 
losure ofthe set of polynomials in Bs

p,∞. It is easy to verify that
f ∈ bs

p,∞ ⇔ {2ns‖f ∗ Wn‖Lp}n≥0 ∈ c0.Besov spa
es admit many other des
riptions (see [Pe℄ and [P2℄).3. Problem 8. To state Mazur's Problem 8 of the S
ottish Book [SB℄,
onsider the bilinear form B on c × c de�ned by
B({xn}n≥0, {yn}n≥0) = {zn}n≥0,where
zn =

1

n + 1

n∑

k=0

xkyn−k, n ≥ 0.It is easy to see that B maps c × c into c. Stanisªaw Mazur asked inProblem 8 whether B maps c × c onto c.As mentioned in the Introdu
tion, a negative solution to Problem 8 fol-lows immediately from the results of �5 of [P1℄. To state Theorem 5.1 of [P1℄,we de�ne an operator A on the spa
e of matri
es. Let Q = {qjk}j,k≥0. Then
AQ is the sequen
e de�ned by

AQ = {zn}n≥0, where zn =
1

n + 1

∑

j+k=n

qjk.Theorem (5.1 of [P1℄). A maps the spa
e V 2 onto the spa
e of Fourier
oe�
ients of the Besov spa
e B0
1,∞.



194 V. V. PellerRe
all that the spa
e V 2 is de�ned in Se
tion 2. In parti
ular, it followsfrom Theorem 5.1 of [P1℄ that
A(c ⊗̂ c) ⊂ A(ℓ∞ ⊗̂ ℓ∞) ⊂ A(V 2) ⊂ {{f̂(n)}n≥0 : f ∈ B0

1,∞},and so
B(c × c) ⊂ {{f̂(n)}n≥0 : f ∈ B0

1,∞}.It is easy to see that
c 6⊂ {{f̂(n)}n≥0 : f ∈ B0

1,∞}.Indeed, if f ∈ B0
1,∞, then it follows immediately from (2.3) and from [R,�8.6℄ that

sup
n≥0

n∑

k=0

|f̂(2n + 2k)|2 < ∞.This gives a negative solution to Problem 8.In fa
t, Theorem 5.1 of [P1℄ allows one to des
ribe A(c ⊗̂ c). First, let usobserve that Theorem 5.1 of [P1℄ easily implies the following des
ription of
A(c0 ⊗̂ c0).Theorem 3.1.

A(c0 ⊗̂ c0) = {{f̂(n)}n≥0 : f ∈ b0
1,∞}.Re
all that b0

1,∞ is the 
losure of the polynomials in B0
1,∞ (see �2). The-orem 3.1, in turn, easily implies the following des
ription of A(c ⊗̂ c).Theorem 3.2.

A(c ⊗̂ c) = {{f̂(n) + d}n≥0 : f ∈ b0
1,∞, d ∈ C}.4. Problem 88. Re
all that in Problem 88 of [SB℄, S. Mazur askedwhether a Hankel matrix {γj+k}j,k≥0 in the inje
tive tensor produ
t ℓ1 ⊗̌ ℓ1must satisfy the 
ondition

∞∑

k=0

(1 + k)|γk| < ∞,i.e., whether the sum of the moduli of the matrix entries must be �nite.As mentioned in the Introdu
tion, a negative solution to Problem 88follows immediately from the results of �5 of [P1℄. A 
omplete des
ription ofHankel matri
es in ℓ1 ⊗̌ ℓ1 is given by Theorem 5.2 of [P1℄:Theorem (5.2 of [P1℄). A Hankel matrix {γj+k}j,k≥0 belongs to ℓ1 ⊗̌ ℓ1if and only if the fun
tion f de�ned by
f(z) =

∑

n≥0

γnzn

belongs to the Besov 
lass B1
∞,1.



On S. Mazur's problems 8 and 88 195Let us obtain the best possible estimate on the moduli of the matrixentries of Hankel matri
es in ℓ1 ⊗̌ ℓ1.Sin
e ‖f ∗ Wn‖L2 ≤ ‖f‖L2‖Wn‖L1 ≤ 3
2‖f‖L2 , it follows easily from (2.3)that if f ∈ B1

∞,1, then
∞∑

n=0

2n
( 2n+1−1∑

k=2n

|f̂(k)|2
)1/2

< ∞.(4.1)
Let us show that this is the best possible estimate for the moduli of theFourier 
oe�
ients of fun
tions in B1

∞,1. To show this, we are going to usea version of the de Leeuw�Katznelson�Kahane theorem. It was proved in[dLKK℄ that if {βn}n∈Z is a sequen
e of nonnegative numbers in ℓ2(Z), thenthere exists a 
ontinuous fun
tion f on T su
h that
|f̂(n)| ≥ βn, n ∈ Z.We refer the reader to [K1℄, [K2℄, and [N℄ for re�nements of the de Leeuw�Katznelson�Kahane theorem and di�erent proofs. We need the followingversion of the de Leeuw�Katznelson�Kahane theorem:Lemma 4.1. There is a positive number K su
h that for arbitrary non-negative numbers β0, β1, . . . , βm, there exists a polynomial f of degree m su
hthat

|f̂(j)| ≥ βj , 0 ≤ j ≤ n, and ‖f‖L∞ ≤ K
( n∑

j=0

β2
j

)1/2
.

Lemma 4.1 follows easily from the results of [K2℄.Theorem 4.2. Let {αk}k≥0 be a sequen
e of nonnegative numbers su
hthat
∞∑

n=0

2n
( 2n+1−1∑

k=2n

α2
k

)1/2
< ∞.(4.2)

Then there exists a fun
tion ϕ in the spa
e B1
∞,1 su
h that |ϕ̂(k)| ≥ αk for

k ≥ 0.Proof. By Lemma 4.1, there exists K > 0 and a sequen
e of polynomials
fn, n ≥ 0, su
h that

f0(z) = f̂0(0) + f̂0(1)z, fn(z) =
2n+1−1∑

k=2n

f̂n(k)zk for n ≥ 1,

|f̂0(k)| ≥ αk for k = 0, 1, |f̂n(k)| ≥ αk for n ≥ 1, 2n ≤ k ≤ 2n+1 − 1,



196 V. V. Pellerand
‖f0‖L∞ ≤ K(α2

0 + α2
1)

1/2, ‖fn‖L∞ ≤ K
( 2n+1−1∑

k=2n

α2
k

)1/2 for n ≥ 1.We 
an now de�ne the fun
tion ϕ by
ϕ =

∑

n≥0

fn.Obviously, |ϕ̂(k)| ≥ αk for k ≥ 0. Let us show that ϕ ∈ B1
∞,1. We have

∑

n≥1

2n‖ϕ ∗ Wn‖L∞ =
∑

n≥1

2n‖(fn−1 + fn + fn+1) ∗ Wn‖L∞

≤
∑

n≥1

2n‖(fn−1 + fn + fn+1)‖L∞‖Wn‖L1

≤ 3
∑

n≥1

2n‖fn‖L∞‖Wn‖L1 ≤ 3 ·
3

2

∑

n≥1

2n‖fn‖L∞

≤
9

2
K

∞∑

n=0

2n
( 2n+1−1∑

k=2n

α2
k

)1/2
< ∞.In [PS℄ the following problem was 
onsidered. Let Ψ be the fun
tion on

(0,∞) de�ned by
Ψ(t) =

{ 3
2t − 1, 0 < t ≤ 2,

t, t > 2.Let {γj+k}j,k≥0 be a Hankel matrix. The following result was proved in [PS℄(Theorem 6.7):(i) if β < Ψ(t), then
∑

k≥0

|γk|
t(1 + k)β < ∞ whenever {γj+k}j,k≥0 ∈ ℓ1 ⊗̌ ℓ1;(ii) if β > Ψ(t), then

∑

k≥0

|γk|
t(1 + k)β = ∞ for some {γj+k}j,k≥0 ∈ ℓ1 ⊗̌ ℓ1;(iii) if β = Ψ(t) and 4/3 ≤ t < ∞, then

∑

k≥0

|γk|
t(1 + k)β < ∞ whenever {γj+k}j,k≥0 ∈ ℓ1 ⊗̌ ℓ1.In [PS℄ the problem is raised of �nding whether

∑

k≥0

|γk|
t(1 + k)Ψ(t)

has to be �nite for t ∈ (0, 4/3) whenever {γj+k}j,k≥0 ∈ ℓ1 ⊗̌ ℓ1.



On S. Mazur's problems 8 and 88 197It is easy to dedu
e Theorem 6.7 of [PS℄ from (4.1) and the above The-orem 4.2. Moreover, using (4.1) and Theorem 4.2, we 
an solve the problemposed in [PS℄ and settle the 
ase t ∈ (0, 4/3).Theorem 4.3. If 1 ≤ t < 4/3, then
∑

k≥0

|γk|
t(1 + k)3t/2−1 < ∞ whenever {γj+k}j,k≥0 ∈ ℓ1 ⊗̌ ℓ1.

If 0 < t < 1, then
∑

k≥0

|γk|
t(1 + k)3t/2−1 = ∞ for some {γj+k}j,k≥0 ∈ ℓ1 ⊗̌ ℓ1.

Proof. Suppose that 1 ≤ t < 2. By Hölder's inequality, we have
∑

k≥1

|γk|
t(1 + k)3t/2−1 ≤ const

∑

n≥0

2n(3t/2−1)
2n+1∑

k=2n

|γk|
t

≤ const
∑

n≥0

23nt/22−n
( 2n+1∑

k=2n

|γk|
2
)t/2

2n(1−t/2)

= const
∑

n≥0

2nt
( 2n+1∑

k=2n

|γk|
2
)t/2

.

Sin
e t ≥ 1, the ℓt norm of a sequen
e does not ex
eed its ℓ1 norm, and so
∑

n≥0

2nt
( 2n+1∑

k=2n

|γk|
2
)t/2

≤
( ∑

n≥0

2n
( 2n+1∑

k=2n

|γk|
2
)1/2)t

.

The result now follows from Theorem 5.2 of [P1℄ and (4.1).Suppose now that 0 < t < 1. It follows from Theorem 4.2 that it su�
esto �nd a sequen
e {αk}k≥0 of nonnegative numbers that satis�es (4.2) and
∑

k≥0

αt
k(1 + k)3t/2−1 = ∞.

Let {δn}n≥0 be a sequen
e of positive numbers su
h that {23n/2δn}n≥0

∈ ℓ1, but {23n/2δn}n≥0 6∈ ℓt. Put
α0 = 0, αk = δn if 2n ≤ k ≤ 2n+1 − 1.We have
∑

n≥0

2n
( 2n+1−1∑

k=2n

α2
k

)1/2
=

∑

n≥0

23n/2δn < ∞.



198 V. V. PellerHowever,
∑

k≥0

αt
k(1 + k)3t/2−1 ≥ const

∑

n≥0

2n(3t/2−1)
2n+1∑

k=2n

αt
k

= const
∑

n≥0

2n(3t/2−1)2nδt
n = const

∑

n≥0

23nt/2δt
n = ∞.
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