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Shift inequalities of Gaussian type
and norms of barycentres

by

F. Barthe, D. Cordero-Erausquin and
M. Fradelizi (Marne-la-Vallée)

Abstract. We derive the equivalence of different forms of Gaussian type shift in-
equalities. This completes previous results by Bobkov. Our argument strongly relies on
the Gaussian model for which we give a geometric approach in terms of norms of barycen-
tres. Similar inequalities hold in the discrete setting; they improve the known results on
the so-called isodiametral problem for the discrete cube. The study of norms of barycentres
for subsets of convex bodies completes the exposition.

1. Introduction. Let µ be a measure on R and consider the product
measure µ∞ on R∞. For h ∈ R∞, the translate µ∞h of µ∞ is defined for Borel
subsets A ⊂ R∞ by

µ∞h (A) = µ∞(A+ h).

Feldman and Shepp proved that µ∞ and µ∞h are equivalent for every h ∈ `2 if
([S]) and only if ([F]) µ is absolutely continuous with respect to the Lebesgue
measure, with a.e. positive density % and finite Fisher information

J(µ) =
�
(%′/%)2 dµ <∞,

where %′ is the derivative of % in the sense of distributions. More precisely,
if one sets h =

√
%, the condition on the Fisher information is equivalent to

h′ ∈ L2(dx). Under this hypothesis, it is natural to quantify the equivalence
of µ∞ and µ∞h . One can look for functions Rh and Sh such that for all A,

Sh(µ∞(A)) ≤ µ∞h (A) ≤ Rh(µ∞(A)).

This question is extensively studied by Bobkov in [Bo2]. For the canoni-
cal Gaussian measure γ, the optimal bounds are given by Kuelbs and Li
([Ku-Li]):

Φ(Φ−1(γ∞(A))− |h|) ≤ γ∞h (A) ≤ Φ(Φ−1(γ∞(A)) + |h|)
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where equality occurs when A is a half-space orthogonal to h. In the previous
inequality, Φ(t) = � t−∞ exp(−s2/2) ds/

√
2π is the distribution function of

γ, Φ−1 is its reciprocal and | · | is the Euclidean norm. Bobkov gives a
necessary and sufficient condition for a measure µ to satisfy a Gaussian-like
shift inequality: with the previous notation, there exists c > 0 such that for
every Borel set A ⊂ R∞, and for all h ∈ `2,

Φ(Φ−1(µ∞(A))− c|h|) ≤ µ∞h (A) ≤ Φ(Φ−1(µ∞(A)) + c|h|)(1)

if and only if µ has an a.e. positive density % with
�
exp(ε%′2/%2) dµ <∞

for some ε > 0. The first step of his proof is to show that, if we set µn = µ⊗n,
the shift inequality (1) is equivalent to the following: for every n ≥ 1 and
every smooth, compactly supported function f : Rn → [0, 1],

∣∣∣
�
∇f dµn

∣∣∣ ≤ cI
( �
f dµn

)
,(2)

where I = Φ′ ◦ Φ−1 is the Gaussian isoperimetric function. In fact, this
inequality is the infinitesimal form of (1).

The starting point of our work was the following improvement of the
differential form (2) of the Gaussian shift inequality: for f as above

√( �

Rn
I(f) dγn

)2
+
∣∣∣

�

Rn
∇f dγn

∣∣∣
2
≤ I
( �

Rn
f dγn

)
.(3)

We learnt this inequality from Beckner during his lectures at the Institut
Henri Poincaré in May 1998. His proof consisted in showing that the left
hand side term is non-decreasing along the Ornstein–Uhlenbeck semigroup
(Pt)t≥0:

Pt(g)(x) =
�

Rn
g(e−tx+ (1− e−2t)1/2y) dγn(y).

Actually, (3) appeared earlier in the article of Bakry and Ledoux [BL] in
the following form:

I(Ptf)2 − Pt(I(f))2 ≥ (e2t − 1)|∇Ptf |2.
Indeed, for F = f ◦ (1− e−2t)1/2Id, one has Ptf(0) = � F dγn.

Inequality (3) is a formal inverse of Bobkov’s form of Gaussian isoperime-
try in [Bo1]:

I
( �

Rn
f dγn

)
≤

�

Rn

√
I2(f) + |∇f |2 dγn.

We will see that (3) has a similar formal behaviour. For this reason, the
development will parallel the work about isoperimetry of Bobkov [Bo1],
Bakry and Ledoux [BL] and of the first named author and Maurey [Ba-M].
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The organization of the paper is as follows: in Section 2, we give a sim-
plified proof of (3). Integration by parts transforms the problem into a very
simple question about norms of barycentres. The third section is devoted to
the study of probability measures µ on Rn which satisfy

√√√√
( �

Rn
I(f) dµ

)2
+

∣∣∣∣
1
c

�

Rn
∇f dµ

∣∣∣∣
2

≤ I
( �

Rn
f dµ

)
(4)

for some positive c and all functions f as above. It turns out that this
is equivalent to the weaker form (2); thus (2) inherits the tensorization
property of (4). Moreover, the stronger form (4) is adapted to semigroup
methods, which allows us to prove it for a class of Boltzmann measures.

In Section 4, we study the corresponding inequalities in the discrete
cube. They provide a simple way to study the average isodiametral problem
of Ahlswede and Katona [AK]. We improve the results of Althöfer and Sillke
[Al-Si] and recover the fact that among subsets of {−1, 1}n containing half
of the points, half-cubes have largest “norm of barycentres”.

In Section 5, we show that in the “continuous” cube [−1, 1]n, half-cubes
have the same extremal property.

2. The Gaussian model. Let (Rn; 〈·, ·〉, | · |) be the Euclidean n-space
endowed with the canonical scalar product and norm. Let γ1 be the measure
on R with density ϕ(t) = exp(−t2/2)/

√
2π. From now on, γn = γ⊗n1 will

be the standard n-dimensional Gaussian probability. Recall that Φ(t) =
� t−∞ ϕ(u) du and I = ϕ ◦ Φ−1.

Let µ be a measure on Rn. For a measurable A ⊂ Rn we denote, when-
ever it exists, gµ(A) = � A x dµ(x). Then gµ(A)/µ(A) is the barycentre of A
for µ.

The infinitesimal version of the shift inequality for γn (see [Bo2]) states
that for smooth and compactly supported f : Rn → [0, 1], one has

∣∣∣
�

Rn
∇f dγn

∣∣∣ ≤ I
( �

Rn
f dγn

)
.(5)

On integrating by parts, this is equivalent to
∣∣∣

�

Rn
xf(x) dγn(x)

∣∣∣ ≤ I
( �

Rn
f dγn

)
,

which can be extended to any measurable f with values in [0, 1]. On char-
acteristic functions of sets, this inequality means that among the sets A of
given Gaussian measure, half-spaces are the ones whose barycentres have
maximal Euclidean norm. Indeed, if |e| = 1 and A = {x : 〈x, e〉 ≤ a}, then
γn(A) = Φ(a) and
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�

A

x dγn(x) =
( a�

−∞
t dγ1(t)

)
e = −ϕ(a) e = −I(γn(A))e.

But such a property of half-spaces is very general and simple:

Lemma 1. Let µ be a probability measure on Rn such that µ(h) = 0
for every hyperplane h. Let Ψ be a convex function on Rn and assume that

� Rn |x| dµ(x) <∞. Let 0 < a < 1. Then

sup
µ(A)=a

Ψ(gµ(A)) = sup{Ψ(gµ(H)) : H half-space such that µ(H) = a}.(6)

When {x : Ψ(x) = inf Ψ} is empty or reduced to a single point , only the
half-spaces can be extremal , up to sets of zero measure in the sense of µ.

Proof. For y ∈ Rn \ {0}, the function t 7→ µ({〈x, y〉 ≥ t}) is continuous
on R. So we may set Hy = {x ∈ Rn : 〈x, y〉 ≥ my}, where my is such
that µ(Hy) = a. If A is the set of all affine functions dominated by Ψ , then
Ψ(x) = supl∈A l(x) for every x ∈ Rn. For A ⊂ Rn with µ(A) = a and l ∈ A
we will prove that l(gµ(A)) ≤ l(H) for some half-space H with µ(H) = a.
If l is constant, this is obvious. If l is not constant, there exist y ∈ Rn \ {0}
and c ∈ R such that l(x) = 〈x, y〉+ c. The main observation is

�

A

〈x, y〉dµ−
�

Hy

〈x, y〉 dµ =
�

A\Hy
〈x, y〉dµ−

�

Hy\A
〈x, y〉 dµ(7)

≤ myµ(A \Hy)−myµ(Hy \ A) = 0,

which implies l(gµ(A)) ≤ l(gµ(Hy)) and proves (6). Let A ⊂ Rn be an
extremal set in (6). If Ψ does not attain its minimum at gµ(A), there is a
non-constant l ∈ A, l(x) = 〈x, y〉 + c, such that l(gµ(A)) = Ψ(gµ(A)). But
if µ(A \Hy) 6= 0 then inequality (7) is strict. Now if Ψ attains its minimum
at gµ(A), then every set of measure a should have the same barycentre; in
particular gµ(Hy) = gµ(H−y) for any fixed y 6= 0. But as before this would
imply µ(Hy \H−y) = µ(H−y \Hy) = 0, which certainly cannot hold unless
a = µ(Hy) = 0 or 1.

Remark. When Ψ is the Euclidean norm, from the proof above and with
the same notation one gets

sup
µ(A)=a

|gµ(A)| = sup
|y|=1
|gµ(Hy)| = sup

|y|=1
〈gµ(Hy), y〉.

Now, we give a simple proof of (3): Let f : Rn → [0, 1] and consider

S = {(t, x) ∈ R× Rn : t ≤ Φ−1(f(x))}.
It is clear by Fubini that γn+1(S) = � Rn f(x) dγn(x). The components
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(tg(S), xg(S)) of the Gaussian “barycentre” of S, � S(t, x) dγn+1(t, x), are

tg(S) =
�

Rn

Φ−1(f(x))�

−∞
t dγ1(t) dγn(x) = −

�

Rn
ϕ(Φ−1(f(x))) dγn(x),

xg(S) =
�

Rn
x

Φ−1(f(x))�

−∞
dγ1(t) dγn(x) =

�

Rn
xf(x) dγn(x).

From the previous lemma and from the computation for half-spaces we get
|(tg(S), xg(S))| ≤ I(γn+1(S)). Equivalently,

√( �

Rn
I(f) dγn

)2
+
∣∣∣

�

Rn
xf(x) dγn(x)

∣∣∣
2
≤ I
( �

Rn
f dγn

)
,

with equality if and only if the subgraph Φ−1 ◦ f is a half-space. When f
has suitable properties, integration by parts gives (3) with the same equality
cases.

As a conclusion, inequality (3) in Rn is nothing else than the shift in-
equality (5) in Rn+1. This strengthening of the shift inequality is possible
because in the Gaussian case the “shift” function I does not depend on the
dimension.

3. Shift inequalities of Gaussian type. We begin by deriving the
equivalence of different forms of the shift inequality of Gaussian type. In
particular, it is equivalent to the reverse log-Sobolev inequality (see [Be])
involving the entropy

Entµ(f) =
�
f log f dµ−

( �
f dµ

)
log
( �
f dµ

)
.

Some of the following statements have been shown by Bobkov in the set-
ting of product measures. For this reason, we will skip some details. The
interested reader will find them in [Bo2].

In this section we will consider a measure µ on Rn with a density % a.e.
positive which satisfies the following condition: there exists a Borel function
Λ : Rn → Rn such that we have the following integration by parts:

�

Rn
∇f dµ =

�

Rn
fΛdµ(8)

for every smooth and compactly supported f : Rn → R. In other words,
the derivative of % in the sense of distributions is a (vector-valued) measure
which has a density −Λ with respect to µ. If we note by ∇% the derivative
of % in the sense of distributions we have %Λ = −∇%. When the density
% = e−V is smooth, the measure µ satisfies the required integration by parts
and the above equality holds in Rn, and we have Λ = −(∇%)/% = ∇V .



250 F. Barthe et al.

For a measure µ of the form dµ = % dx, Λ as above and c > 0, let us
define the following properties:

P1(c): For every compactly supported smooth function f : Rn → [0, 1],
√( �

Rn
I(f) dµ

)2
+

1
c2

∣∣∣
�

Rn
∇f dµ

∣∣∣
2
≤ I
( �

Rn
f dµ

)
.

P2(c): For every compactly supported smooth function f : Rn → [0, 1],
∣∣∣

�

Rn
∇f dµ

∣∣∣ ≤ cI
( �

Rn
f dµ

)
.

P3(c): For every Borel set A ⊂ Rn, | � A Λdµ| ≤ cI(µ(A)).
P4(c): For every Borel set A ⊂ Rn,

∣∣∣
�

A

Λdµ
∣∣∣ ≤ cµ(A)

√
log

1
µ(A)

.

P5(c): The measure µ is such that � Rn exp(|Λ/c|2) dµ ≤ 2.
P6(c): For every compactly supported smooth function f : Rn → R+,

∣∣∣
�

Rn
∇f dµ

∣∣∣
2
≤ c2

( �

Rn
f dµ

)
Entµ(f).

Proposition 2. Let µ be a probability measure on Rn with a.e. positive
density % and Λ as above. Then the assertions

Pi : There exists c > 0 such that Pi(c)

are equivalent for i = 1, . . . , 6. Furthermore, the following control on the
constants holds:

P1(c) ⇔ P2(c) ⇔ P3(c),

P3(c) ⇒ P4(c
√

2) and P4(c) ⇒ P3(c
√

2),

P1(c) ⇒ P6(c
√

2) and P6(c) ⇒ P4(c),

P4(c) ⇒ P5(c
√

3n) and P5(c) ⇒ P6(c
√

8n).

Remark. As we already mentioned, Bobkov [Bo2] has proved that P2(c)
is equivalent to the global form of the shift inequality: for every Borel set
A ⊂ Rn and every vector h ∈ Rn,

Φ(Φ−1(µ(A))− c|h|) ≤ µ(A+ h) ≤ Φ(Φ−1(µ(A)) + c|h|).
Therefore the assertions Pi, i ≤ 6, are also equivalent to the global form of
the shift inequality.

Proof of Proposition 2. Let c > 0. We first prove that P1(c) and P2(c)
are equivalent. Of course P1(c) ⇒ P2(c). For the converse suppose that for



Shift inequalities 251

every smooth function g : Rn → [0, 1] one has∣∣∣
�

Rn
∇g dµ

∣∣∣ ≤ cI
( �

Rn
g dµ

)
.(9)

We now follow an argument of Bakry and Ledoux [BL]. Let f : Rn → [0, 1] be
a smooth function, and let ν be its distribution with respect to µ. One may
assume that ν is absolutely continuous with respect to Lebesgue’s measure
on R. Let r ∈ R and ε > 0. Define ψε(x) = 1 if x ≤ r, 0 if x ≥ r + ε, and
1− (x− r)/ε in between. If we apply (9) to g = ψε(f) and let ε→ 0, we get

1
c
N ′(r)|θ(r)| ≤ I(N(r))(10)

where N(r) := ν([0, r]) = µ(f ≤ r) and θ(r) := E[∇f |f = r]. Next, we set
k = N−1 ◦ Φ. Differentiation yields k′ · N ′ ◦ k = ϕ. Thus, inequality (10)
applied to r = k(x) becomes

1
c
|θ(k)| ≤ k′.(11)

Next, we apply (3) to k:
√( �

R
I(k) dγ1

)2
+
( �

R
k′ dγ1

)2
≤ I
( �

R
k dγ1

)
.

Since k is non-decreasing and the law of k under γ1 is ν, one has, using (11),
√√√√(

1�

0

I(r) dν(r)
)2

+
1
c2

( 1�

0

|θ(r)| dν(r)
)2
≤ I
( 1�

0

r dν(r)
)
.(12)

Recall that ν is the law of f under µ and that
�
|θ(r)| dν(r) ≥

∣∣∣
�
θ(r) dν(r)

∣∣∣ =
∣∣∣

�
∇f dµ

∣∣∣.
So using (12) one gets the result.

To prove that P3(c) follows from P2(c), we use P2(c) and the relation
� ∇f dµ = � fΛdµ for approximations of characteristic functions of sets.
Conversely, as noticed by Bobkov [Bo2], in the inequality∣∣∣

�

Rn
fΛdµ

∣∣∣ ≤ cI
( �

Rn
f dµ

)
,

the left hand side is convex in f and the right hand side is concave in f .
Therefore it is enough to prove this inequality for characteristic functions of
sets. Thus P3(c) implies P2(c).

The implications P3(c)⇒ P4(c
√

2)⇒ P3(2c) follow directly from Lemma
4.2 of [Bo2]:

p

√
1
2

log
1
p
≤ I(p) ≤ p

√
2 log

1
p



252 F. Barthe et al.

where the left hand side inequality holds for p ∈ [0, 1/2] and the right
hand side inequality for p ∈ [0, 1]. Notice that, since � Rn Λdµ = 0 and I is
symmetric, it is enough to prove P3(c) for sets A with µ(A) ≤ 1/2.

We now deal with the inverse log-Sobolev inequality P6(c). The fact that
P1(c) implies P6(c

√
2) was explained by Beckner during his lectures at the

IHP (see [L] for a written reference). His method is as follows: apply P1(c)
to εf for a bounded and smooth f : Rn → R+ and use I(ε) ∼ ε

√
2 log(1/ε)

as ε → 0+. Conversely, if P6(c) holds then P4(c) also holds: we use again
� Rn ∇f dµ = � Rn f Λdµ and then apply P6(c) to characteristic functions.

The equivalence of P4 and P5 is shown in [Bo2] for product measures,
but the method applies in general. Assume that P4(c) holds. In particular
for any i ≤ n,

∣∣∣
�

A

Λi dµ
∣∣∣ ≤ cµ(A)

√
log

1
µ(A)

,

where Λi : Rn → R is the ith coordinate of Λ. Applied to level sets of Λi,
the latter yields µ(|Λi| > t) ≤ 2 exp(−t2/c2). After a standard calculation,
one gets

�

Rn
exp

(
(Λi)2

3c2

)
dµ ≤ 2.

From Hölder’s inequality, we conclude that � Rn exp(|Λ|2/(3nc2)) dµ ≤ 2.
Conversely, assume that P5(c) holds. Then for any i ≤ n,�

Rn
e(Λi/c)2

dµ ≤ 2.(13)

The argument of [Bo2] proves that for every bounded function f : Rn → R+,∣∣∣
�

Rn
fΛi dµ

∣∣∣
2
≤ 8c2

( �

Rn
f dµ

)
Entµ(f).

Summing these inequalities for i = 1, . . . , n, we obtain P6(c
√

8n). This com-
pletes the proof of the proposition.

Remark. One can easily check that P1(c) has the tensorization property:
if µ on Rn and ν on Rp satisfy P1(c), then so does the product measure µ⊗ν.
Indeed, let f : Rn+p → [0, 1] be a smooth compactly supported function.
One has( �

Rn+p

I(f) dµ⊗ ν
)2

+
1
c2

∣∣∣
�

Rn+p

∇f dµ⊗ ν
∣∣∣
2

=
( �

Rn
dµ(x)

�

Rp
I(f(x, y)) dν(y)

)2
+

1
c2

∣∣∣
�

Rn
dµ(x)

�

Rp
∇y f(x, y) dν(y)

∣∣∣
2

+
1
c2

∣∣∣
�

Rn
dµ(x)∇x

�

Rp
f(x, y) dν(y)

∣∣∣
2
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≤
( �

Rn
dµ(x)

√( �

Rp
I(f(x, y)) dν(y)

)2
+

1
c2

∣∣∣
�

Rp
∇y f(x, y) dν(y)

∣∣∣
2
)2

+
1
c2

∣∣∣
�

Rn
dµ(x)∇x

�

Rp
f(x, y) dµ(y)

∣∣∣
2

≤
( �

Rn
dµ(x)I

( �

Rp
f(x, y) dν(y)

))2
+

1
c2

∣∣∣
�

Rn
dµ(x)∇x

�

Rp
f(x, y) dν(y)

∣∣∣
2

≤ I2
( �

Rn
dµ(x)

�

Rp
f(x, y) dν(y)

)
= I2

( �

Rn+p

f dµ⊗ ν
)

where we used successively the Minkowski inequality, P1(c) for the measure
ν and P1(c) for the measure µ. The above computations can be handled in
a more abstract setting, for instance in the case of discrete measures (on
the discrete cube or on Zn). One has only to define a suitable notion of
gradient. It follows from Proposition 2 that P2(c) and P3(c) also have the
tensorization property: if µ satisties P2(c), then so do the product mea-
sures µ⊗n for n ≥ 1. Notice that [Bo2] proved only that the µ⊗n satisfy
P2(4c).

The integrability criterion P5 is an easy way to derive shift inequalities,
but with poor constants. In the following, we get sharper constants by ex-
tending the semigroup method to Boltzmann measures. One should remark
that, as far as we know, among the equivalent forms of the shift inequality,
only the reverse log-Sobolev P6 and the reverse Bobkov P1 inequalities can
be proved with semigroups.

Theorem 3. Let µ be a probability on Rn such that dµ = e−V dx. As-
sume that V is twice differentiable on Rn and that its Hessian, considered
as an endomorphism of the Euclidean space, satisfies V ′′ ≥ εIdRn at infinity
for some ε > 0. If ‖V ′′‖ is uniformly bounded by c > 0, then for every
smooth function f : Rn → [0, 1],

√( �

Rn
I(f) dµ

)2
+

1
c

∣∣∣
�

Rn
∇f dµ

∣∣∣
2
≤ I
( �

Rn
f dµ

)
.

Proof. The measure µ is invariant for the semigroup Pt with generator

L =
1
2
∆− 1

2
∇V · ∇.

In the case of the Gaussian measure, this is the Ornstein–Uhlenbeck semi-
group. Because of the limit assumptions on V , we have Pt(f) → � f dµ as
t→∞, for every bounded smooth function f on Rn. We prove by differen-
tiation that the quantity
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J(t) =
( �
I(Ptf) dµ

)2
+

1
c

∣∣∣
�
∇Ptf dµ

∣∣∣
2

=
( �
I(Ptf) dµ

)2
+

1
c

∣∣∣
�
Ptf∇V dµ

∣∣∣
2

is non-decreasing. Its derivative J ′(t) is equal to

2
�
I(Ptf) dµ

�
I ′(Ptf)LPtf dµ+

2
c

〈 �
Ptf∇V dµ,

�
LPtf∇V dµ

〉
.

We set F = Ptf and use integration by parts for L: for suitable functions u
and v, one has

2
�
uLv dµ = −

�
〈∇u,∇v〉 dµ.

Since II ′′ = −1, we get

J ′(t) = −
�
I(F ) dµ

�
I ′′(F )|∇F |2 dµ− 1

c

〈 �
F∇V dµ,

�
V ′′ · ∇F dµ

〉

=
�
I(F ) dµ

� |∇F |2
I(F )

dµ− 1
c

〈 �
F∇V dµ,

�
V ′′ · ∇F dµ

〉
.

But∣∣∣
〈 �
F∇V dµ,

�
V ′′ · ∇F dµ

〉∣∣∣ ≤
�
|∇F | dµ

�
|V ′′ · ∇F | dµ ≤ c

( �
|∇F | dµ

)2
,

so J ′(t) ≥ 0 by Cauchy–Schwarz.

4. Discrete and spherical inequalities. In this section, we first apply
the shift inequality for the Gaussian measure to the average isodiametral
problem of Ahlswede and Katona [AK]. Let us introduce some notation.
We denote by ε = (εi)ni=1 the elements of Ωn = {−1, 1}n. We consider the
uniform probability µn on this set, and denote by En the corresponding
expectation. If f is a function on Ωn, we write En(εf) for the vector of
coordinates ( �

Ωn

εif(ε) dµ(ε)
)n
i=1

.

The Hamming distance on Ωn is defined by d(ε, η) = #{i : εi 6= ηi}. Con-
sidering Ωn as a subset of Rn, one also has

d(ε, η) =

∣∣∣∣
ε− η

2

∣∣∣∣
2

=
n− 〈ε, η〉

2
.

The problem is to find subsets A ⊂ Ωn of given cardinality which minimize
the average inner distance:

1
(#A)2

∑

ε∈A,η∈A
d(ε, η) =

1
2(#A)2

∑

ε,η∈A
(n− 〈ε, η〉) =

1
2

(
n−

∣∣∣∣
Eε1A
µn(A)

∣∣∣∣
2)
.

Thus it is equivalent to the maximization of the norm of barycentres. Finding
the extremal sets seems difficult. Ahlswede and Althöfer [A-Al] proved that
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among the families of sets An ⊂ Ωn of cardinality 2λn, for λ ∈ (0, 1), the
Hamming spheres are asymptotically optimal. Althöfer and Sillke [Al-Si]
gave a lower bound of the inner distance, which holds for all cardinalities.
With our notation, their result states that for A ⊂ Ωn,

|Enε1A| ≤
√
µn(A)(1− µn(A)).

When µn(A) = 1/2, this is an equality for {ε : ε1 = 1} and for the other half-
cubes. The Gaussian shift inequality has a discrete version which provides
an improvement of the latter estimate.

Proposition 4. Letf be defined on Ωn with values in [0, 1]. Then

(EnI(f))2 +
2
π
|Enεf |2 ≤ I2(Enf),(14)

with equality if and only if f is constant or is the characteristic function of
a half-cube.

Proof. For t ∈ R let s(t) = 1 if t > 0 and s(t) = −1 else. We define
a function F on Rn by F (x1, . . . , xn) = f(s(x1), . . . , s(xn)). The law of F
under γn is the law of f under µn. Furthermore

�

Rn
xkF (x) dγn(x) =

∑

ε∈Ωn

�
xkf(ε)1{εixi>0,∀i} dγn(x)

=
∑

ε∈Ωn
f(ε)εk

�
yk1{yi>0,∀i} dγn(y) =

√
2/πEn(εkf(ε)).

The proposition follows from the inequality
√( �

Rn
I(F ) dγn

)2
+
∣∣∣

�

Rn
xF (x) dγn(x)

∣∣∣
2
≤ I
( �

Rn
F dγn

)
,

where equality occurs if and only if the subgraph of Φ−1 ◦ F in Rn+1 is a
half-space.

Remarks. (i) As in Proposition 2, one can derive from (14) an inverse
form of the Gross log-Sobolev inequality in Ωn.

(ii) The derivation of these discrete inequalities does not loose much
information: one can recover a weak form of the inequality on Gauss space
by a standard central limit argument. Let f be a continuous compactly
supported function on R with values in [0, 1]. For n ∈ N, let

fn(ε1, . . . , εn) = f

(
ε1 + . . .+ εn√

n

)
.

When n tends to infinity, Enfn tends to � f dγ1 and EnI(fn) to � I(f) dγ1.
For the barycentre term, using the permutation invariance of fn, for all
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i = 1, . . . , n we get Enεifn = En(ε1 + . . .+ εn)fn/n. Thus

|Enεfn| =
( n∑

i=1

(Enεifn)2
)1/2

=
√
n

∣∣∣∣En
ε1 + . . .+ εn

n
fn

∣∣∣∣

=

∣∣∣∣En
ε1 + . . .+ εn√

n
f

(
ε1 + . . .+ εn√

n

)∣∣∣∣

tends to | � R xf(x) dγ1(x)|. Hence Proposition 4 implies that γ1 satisfies the
inequality P1(

√
π/2), which implies the same for γn, by the tensorization

property noticed in Section 3.

Applying Proposition 4 to characteristic functions of sets, we get

Proposition 5. Let A ⊂ {−1, 1}n. Then

|gµn(A)| = |Enε1A| ≤
√
π/2 I(µn(A)),

with equality if and only if A is Ωn, a half-cube or the empty set.

This result improves [Al-Si]. Indeed, for t ∈ [0, 1], one has
√
π I(t) ≤

√
2t(1− t).

To prove this inequality, one can assume that 1/2 ≤ t ≤ 1 since both
functions are symmetric with respect to 1/2. Let r = Φ−1(t) > 0. We
have [−r, r]2 ⊂ r

√
2B2

2 , where B2
2 is the Euclidean unit ball of R2. Thus

γ2([−r, r]2) = (2Φ(r) − 1)2 = 1 − 4Φ(r) + 4Φ2(r) is less than γ2(r
√

2B2
2) =

� r
√

2
0 e−s

2/2s ds = 1− e−r2
= 1− 2πϕ(r)2. The result follows.

Up to the multiplicative factor
√
π/2, the inequality of Proposition 5 is

the best possible dimension free estimate. Indeed, taking f = 1(−∞,t] in the
previous remark, one can see that the Hamming balls

An,t =
{
ε :

n∑

i=1

εi ≤
√
n t
}

satisfy |Enε1An,t| ∼
∣∣∣ � t−∞ x dγ1(x)

∣∣∣ = I(Φ(t)) ∼ I(µn(An,t)) when n is large.

We denote by σn the uniform probability on Sn−1. The Gaussian shift
inequality also has a spherical version.

Proposition 6. Let f be defined on Sn−1 with values in [0, 1]. Then
( �

Sn−1

I(f)
)2

+ c2
n

∣∣∣
�

Sn−1

uf(u) dσn(u)
∣∣∣
2
≤ I2

( �

Sn−1

f
)
,(15)

with cn =
√

2Γ ((n+ 1)/2)/Γ (n/2) ∼ √n when n is large and with equality
if and only if f is constant or is the characteristic function of a half-sphere.
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Proof. We define a function F on Rn \ {0} by F (x) = f(x/|x|). The law
of F under γn is the law of f under σn. Furthermore

�

Rn
xF (x) dγn(x) = cn

�

Sn−1

uf(u) dσn(u)

where cn = |gγn(H)|/|gσn(H)|, H being a half-space of measure 1/2. A little
calculation gives cn =

√
2Γ ((n+ 1)/2)/Γ (n/2) ∼ √n when n is large. As

in the discrete case, the proposition follows.

Remarks. (i) Inequality (15) is optimal in the sense that, by Poincaré’s
limit argument, it allows us to recover the initial shift inequality for γn.

(ii) Lemma 1 implies that among the subsets of Sn−1 of given measure
the caps have the largest barycentre norm, whereas inequality (15) implies
this only for the sets of measure one half.

5. Barycentres in the cube. The aim of this section is to derive an
analogue of Proposition 5 for subsets of volume 1/2 in the “continuous”
cube. The proof involves classical methods of convexity theory. If K ⊂ Rn is
convex with k-dimensional affine hull, |K| will be its k-dimensional Lebesgue
measure.

Proposition 7. Let f : R+ → R+ be a non-increasing function. Then
the function

F (p) = (p+ 1)
+∞�

0

tpf(t) dt if p > −1 and F (−1) = f(0)

is a log-convex function of p on [−1,+∞[. Moreover F is log-affine if and
only if f is constant on its support.

Proof. For s > 0, we define h(s) = sup{t : f(t) ≥ s}. Let p > −1. Then

F (p) =
+∞�

0

(p+ 1)tp
f(t)�

0

ds dt =
f(0)�

0

h(s)�

0

(p+ 1)tp dt ds =
f(0)�

0

h(s)p+1 ds.

The result follows from Hölder’s inequality.

Remark. As a corollary, we recover a lemma of Milman and Pajor [Mi-P]:
(
F (p)
F (−1)

)1/(p+1)

=
(

(p+ 1)
+∞�

0

tp
f(t)
f(0)

dt

)1/(p+1)

is an increasing function on ]−1,+∞[. Proposition 7 is also related to results
of Borell [Bor].
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Corollary 8. Let K be a symmetric convex body in Rn and u ∈ Sn−1.
Then

�

K

|〈x, u〉| dx ≤
√

3
2
|K|1/2

( �

K

|〈x, u〉|2 dx
)1/2

,

with equality if and only if K is cylindrical in the direction u, i.e. there
exists x ∈ Rn such that K = K ∩ u⊥ + [−x, x].

Proof. Let f(t) = |K∩{x ∈ Rn : 〈x, u〉 = t}| be the parallel section func-
tion. We know by the Brunn–Minkowski theorem that f is non-increasing on
R+ and is constant if and only if K is cylindrical in the direction u. Hence,
we can apply Proposition 7 to f . We get F (1) ≤ (F (0)F (2))1/2 (with the
same notation). Moreover, Fubini’s theorem yields, for p > −1,

�

K

|〈x, u〉|p dx = 2
+∞�

0

tpf(t) dt =
2

p+ 1
F (p).

This proves the corollary.

Remark. This corollary gives the sharp constant in the comparison be-
tween the Legendre ellipsoid of K and its centroid body Z(K) (defined by
‖x‖Z(K)◦ = (2|K|)−1 � K |〈x, u〉| dx). The fact that such a constant exists was
noticed in Milman–Pajor [Mi-P].

Proposition 9. Among the Borel subsets A of the unit cube [−1/2, 1/2]n

such that |A| = 1/2, the half-cube {x1 ≤ 0} has the largest norm of bary-
centre.

Proof. Let A ⊂ [−1/2, 1/2]n be such that |A| = 1/2. By the remark after
Lemma 1, we have, for g(A) = � A x dx,

|g(A)| ≤ sup
u∈Sn−1

〈g(Hu), u〉,

where Hu = {x ∈ [−1/2, 1/2]n : 〈x, u〉 ≥ 0}. Corollary 8 yields

〈g(Hu), u〉 =
1
2

�

[−1/2,1/2]n

|〈x, u〉| dx ≤
√

3
4

( �

[−1/2,1/2]n

|〈x, u〉|2dx
)1/2

=
1
8
.

Indeed, the last integral does not depend on u ∈ Sn−1 (the cube is in
isotropic position). There is equality in the previous inequality if and only
if the cube is cylindrical in the direction u; this happens if and only if u is
a basis vector.
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Université de Marne-la-Vallée
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