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A local Landau type inequality for semigroup orbits

by

Gerd Herzog and Peer Christian Kunstmann (Karlsruhe)

Abstract. Given a strongly continuous semigroup (S(t))t≥0 on a Banach space X
with generator A and an element f ∈ D(A2) satisfying ‖S(t)f‖ ≤ e−ωt‖f‖ and ‖S(t)A2f‖
≤ e−ωt‖A2f‖ for all t ≥ 0 and some ω > 0, we derive a Landau type inequality for ‖Af‖
in terms of ‖f‖ and ‖A2f‖. This inequality improves on the usual Landau inequality that
holds in the case ω = 0.

1. Introduction. For C2-functions f : [0,∞) → R, Edmund Landau
proved in 1913 that ‖f ′‖2∞ ≤ 4‖f ′′‖∞‖f‖∞. Hardy, Littlewood, and Pólya
proved in 1934 that ‖f ′‖22 ≤ 2‖f ′′‖2‖f‖2, and Hardy, Landau, and Little-
wood proved in 1935 that ‖f ′‖2p ≤ 4‖f ′′‖p‖f‖p for 1 ≤ p ≤ ∞ (see also, e.g.,
[4], where much more results can be found, and the references therein).

Later on, these inequalities were recognized as special cases of more gen-
eral inequalities that hold in Banach spaces X for generators A of strongly
continuous semigroups (S(t))t≥0 = (etA)t≥0 which are contractive, i.e. which
satisfy ‖S(t)‖ ≤ 1 for all t ≥ 0. If f ∈ D(A2), then

(1.1) ‖Af‖2 ≤ 4‖A2f‖‖f‖
(cf. [2, 1]), and if X is in addition a Hilbert space, then

(1.2) ‖Af‖2 ≤ 2‖A2f‖ ‖f‖, f ∈ D(A2)

(cf. [3]). The constants 4 and 2 are known to be optimal.
In this paper we study estimates of ‖Af‖ for f ∈ D(A2) in terms of ‖f‖

and ‖A2f‖ under the assumption that

(1.3) ‖S(t)f‖ ≤ e−ωt‖f‖ and ‖S(t)A2f‖ ≤ e−ωt‖A2f‖, t ≥ 0,

where ω > 0. Compared to the contractivity assumption we assume an
exponential decay, but only for the two elements f and A2f . It turns out
that our estimate is best formulated in terms of the three quantities

a = ‖f‖, b = ‖Af‖/ω, c = ‖A2f‖/ω2.
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This corresponds to the fact that changing the time s = t/ω, or in other
words, replacing A by A/ω in (1.3), we can resort to the case ω = 1.

Remark 1.1. If ω > 0 is such that

(1.4) ‖S(t)‖ ≤ e−ωt, t ≥ 0,

then 0 ∈ ρ(A) and

−A−1f =

∞�

0

S(t)f dt, f ∈ X,

which implies ‖A−1‖ ≤ 1/ω. In this case we clearly have

‖f‖ = ‖A−1Af‖ ≤ ‖Af‖/ω = ‖A−1A2f‖/ω ≤ ‖A2f‖/ω2

for any f ∈ D(A2), i.e. a ≤ b ≤ c.

In our main result, we relax the assumption (1.4) on the semigroup
considerably. We only assume that f ∈ D(A2) is such that the estimate (1.3)
holds. In contrast to the situation in Remark 1.1, the inequality a ≤ b ≤ c is
then no longer immediate. Nevertheless, this inequality still holds true, and
much more can be said.

2. Main result

Theorem 2.1. Let (S(t))t≥0 be a strongly continuous semigroup in a
Banach space with generator A. Suppose that f ∈ D(A2) \ {0} and ω > 0
are such that

‖S(t)f‖ ≤ e−ωt‖f‖, ‖S(t)A2f‖ ≤ e−ωt‖A2f‖, t ≥ 0.

Writing a = ‖f‖, b = ‖Af‖/ω and c = ‖A2f‖/ω2, we have

a ≤ b ≤ c and b = c⇒ a = c.

Moreover,

(2.1) b ≤ c− (a+ c)h

(
c− a
c+ a

)
where h : [0, 1] → [0, 1] is the inverse function of the continuous, bijective,
and strictly increasing function

g : [0, 1]→ [0, 1], β 7→

{
β(1− log β), β ∈ (0, 1],

0, β = 0.
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Graph of the function h : [0, 1]→ [0, 1]

We start the proof with the following

Lemma 2.2. Under the assumptions of Theorem 2.1 we have a ≤ c, i.e.
‖f‖ ≤ ‖A2f‖/ω2.

Proof. This follows by a standard estimate, once we have shown

f =

∞�

0

tS(t)A2f dt.

Observe that the integral on the right hand side converges absolutely by
assumption. Let T > 0. Integration by parts gives

T�

0

tS(t)A2f dt = TS(T )Af −
T�

0

S(t)Af dt = f − S(T )f + TS(T )Af.

Letting T →∞ we obtain

lim
T→∞

TS(T )Af =

∞�

0

tS(t)A2f dt− f =: f̃ .

We shall show f̃ = 0. To this end we take ε > 0. First we find γ0 > 0 such
that

‖tS(t)Af − f̃‖ < ε for t ≥ γ0.

For γ ≥ γ0 we then have

‖f̃‖ =

∥∥∥∥ eγ�
γ

f̃

t
dt

∥∥∥∥ ≤ ∥∥∥ eγ�
γ

S(t)Af dt
∥∥∥+

eγ�

γ

‖f̃ − tS(t)Af‖
t

dt

≤
∥∥∥ eγ�
γ

S(t)Af dt
∥∥∥+ ε

eγ�

γ

dt

t
=
∥∥∥ eγ�
γ

S(t)Af dt
∥∥∥+ ε.
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Taking γ large we see that the first term is ≤ ε, since

T�

0

S(t)Af dt = S(T )f − f

shows that the integral
	∞
0 S(t)Af dt converges as an improper Riemann

integral. We thus have ‖f̃‖ ≤ 2ε, and f̃ = 0 follows.

Proof of Theorem 2.1. For any f ∈ D(A2) we have

S(t)f − f =

t�

0

S(τ)Af dτ, t ≥ 0,

S(τ)Af −Af =

τ�

0

S(s)A2f ds, τ ≥ 0,

which implies

S(t)f = f + tAf +

t�

0

(t− τ)S(τ)A2f dτ, t ≥ 0.

For f ∈ D(A2) satisfying the assumptions we hence obtain, for any t ≥ 0,

e−ωt‖f‖ ≥ ‖S(t)f‖ ≥ ‖f + tAf‖ −
t�

0

(t− τ)e−ωτ dτ ‖A2f‖

≥ t‖Af‖ − ‖f‖ − ‖A2f‖
(
e−ωt

ω2
− 1− ωt

ω2

)
.

We rewrite this as

e−ωt
(
‖f‖+

‖A2f‖
ω2

)
+ ωt

(
‖A2f‖
ω2

− ‖Af‖
ω

)
+

(
‖f‖ − ‖A

2f‖
ω2

)
≥ 0.

Using a = ‖f‖, b = ‖Af‖/ω and c = ‖A2f‖/ω2 and writing s = ωt, we
arrive at

(2.2) e−s(a+ c) + s(c− b) + (a− c) ≥ 0 for any s ≥ 0.

By Lemma 2.2 we have a ≤ c. Moreover, we can rewrite (2.2) as

e−s(a+ c) ≥ s(b− c) + (c− a), s ≥ 0,

and letting s → ∞ we see that b ≤ c and that b = c implies c = a via
Lemma 2.2.

We postpone the proof of a ≤ b and discuss the properties of g. We have
g(0) = 0, g(1) = 1, and g is continuous. On (0, 1], g is differentiable with
g′(β) = − log β for β ∈ (0, 1]. We conclude that g is strictly increasing and
maps [0, 1] onto [0, 1]. The inverse function h : [0, 1] → [0, 1] of g is thus
bijective, strictly increasing and differentiable on [0, 1).
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For the proof of a ≤ b we modify the estimate above and use ‖f+tAf‖ ≥
‖f‖ − t‖Af‖ instead of ‖f + tAf‖ ≥ t‖Af‖ − ‖f‖. This yields

(2.3) e−s(a+ c) + s(c+ b)− (a+ c) ≥ 0, s ≥ 0.

For s = 0 the left hand side of (2.3) equals 0. Hence its derivative at s = 0
has to be ≥ 0, i.e. −(a+ c) + (c+ b) ≥ 0, which means a ≤ b.

For (2.1) we may assume b < c. We minimize the left hand side of (2.2),
i.e. we take s = s0 given by e−s0(a + c) = c − b and let β0 = e−s0 = c−b

a+c .
This yields

e−s0(a+ c)(s0 + 1) ≥ c− a, or g(β0) = β0(1− log β0) ≥
c− a
a+ c

,

and finally

c− b
a+ c

= β0 ≥ h
(
c− a
a+ c

)
, or b ≤ c− (a+ c)h

(
c− a
a+ c

)
,

as asserted.

Remark 2.3. We discuss the quality of the estimate (2.1). First observe
that (2.1) is invariant under the scaling f 7→ λf . Hence we may assume
a = 1. Taking, for the moment, c = αb2 where α > 0, we study the quotient

c− (a+ c)h
(
c−a
c+a

)
b

= αb− 1 + αb2

b
h

(
αb2 − 1

1 + αb2

)
for b→∞. Since h(1) = 1 we have

1

b
h

(
αb2 − 1

1 + αb2

)
→ 0 (b→∞),

and we have to study

ψ(b) := αb

(
1− h

(
αb2 − 1

1 + αb2

))
.

To this end we let

γ =
2

1 + αb2
so that

αb2 − 1

1 + αb2
= 1− γ.

Letting s = h(1− γ) we have γ = 1− g(s) and

lim
γ→0+

(1− h(1− γ))2

γ
= lim

s→1−

(1− s)2

1− g(s)
= lim

s→1−

−2 + 2s

−g′(s)

= 2 lim
s→1

s− 1

log s− 1
= 2.

Hence 1−h(1−γ)√
γ →

√
2 as γ → 0+, and recalling the definition of γ we obtain

lim
b→∞

ψ(b) = lim
b→∞

(
αb

√
2√

1 + αb2

)
· lim
γ→0+

1− h(1− γ)
√
γ

= 2
√
α.
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In particular, we can take f ∈ D(A2) with a = ‖f‖ = 1 satisfying the as-
sumptions of Theorem 2.1 for some ω0 > 0, and then also for all ω ∈ (0, ω0).
We have b = ‖Af‖/ω and c = ‖A2f‖/ω2 = αb2 for α = ‖A2f‖/‖Af‖2. Now
ω → 0+ means b→∞, and the limit inequality reads 1 ≤ 2

√
α, i.e.

‖Af‖ ≤ 2‖A2f‖1/2,
which is exactly (1.1).

This means that (2.1) can be understood as an interpolation between
the classical Kallmann–Landau–Rota inequality (1.1), which in our notation
reads b ≤ 2

√
ca, and the case a = b = c, which happens, e.g., if f is an eigen-

vector for the eigenvalue ω and satisfies the assumptions of Theorem 2.1.
We study this in a classical example and show in particular that (1.1) is also
optimal for f ∈ D(A2) satisfying the assumptions of Theorem 2.1 for some
ω > 0.

Example 2.4. Let X = C0[0,∞), the space of all continuous functions
f : [0,∞) → R satisfying limx→∞ f(x) = 0 equipped with the sup-norm.
The operator A = d

dx with domain

D(A) = {f ∈ C1[0,∞) : f, f ′ ∈ X}
is the generator of the left shift semigroup (S(t))t≥0 given by

(S(t)f)(x) = f(x+ t), x ≥ 0, t ≥ 0,

which is clearly contractive: ‖S(t)‖ ≤ 1 for all t ≥ 0. Moreover, we see that

A2 = d2

dx2
with

D(A2) = {f ∈ C2[0,∞) : f, f ′, f ′′ ∈ X}.
We take the extremal for (1.1) given in [1], i.e. we let

f(x) :=


1− 6(x− ξ)2, x ∈ [0, ξ],

1− 6(x− ξ)2 + 8(x− ξ)3 − 3(x− ξ)4, x ∈ (ξ, ξ + 1],

0, x > ξ + 1,

where ξ = 1/
√

3. It is easy to check that f is a C2-function, hence f ∈ D(A2).
Moreover, f is increasing on [0, ξ] with f(0) = −1, f(ξ) = 1, f ′ is decreasing
on [0, ξ] with f ′(0) = 4

√
3, f ′(ξ) = 0, and f ′′ = −12 on [0, ξ]. Concerning

the interval [ξ, ξ + 1] we have f(ξ + 1) = f ′(ξ + 1) = f ′′(ξ + 1) = 0, f ′′ has
an additional zero at ξ + 1/3 with f ′(ξ + 1/3) = −16/9, and f ′′′ has a zero
at ξ + 2/3 with f ′′(ξ + 2/3) = 4. We conclude

‖f‖∞ = 1, ‖f ′‖∞ = 4
√

3, ‖f ′′‖∞ = 12,

so that equality holds in (1.1). Now let ω > 0 and define fω := e−ω(·)f . Then
fω ∈ D(A2), ‖fω‖∞ = 1 (since |f | attains its maximal value at x = 0), and

∀t ≥ 0 : ‖S(t)fω‖∞ ≤ e−ωt‖fω‖∞.
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We have to check the assumption for

A2fω = f ′′ω = e−ω(·)(f ′′ − 2ωf ′ + ω2f).

We clearly have

‖f ′′ω‖∞ ≤ ‖f ′′‖∞ + 2ω‖f ′‖∞ + ω2‖f‖∞
= 12 + 8

√
3ω + ω2 = −(f ′′ − 2ωf ′ + ω2f)(0) = −f ′′ω(0),

and this implies

‖f ′′ω‖∞ = 12 + 8
√

3ω + ω2 and ∀t ≥ 0 : ‖S(t)f ′′ω‖∞ ≤ e−ωt‖f ′′ω‖∞.

We also have

‖f ′ω‖∞ ≤ ‖f ′‖∞ + ω‖f‖∞ ≤ 4
√

3 + ω = (f ′ − ωf)(0) = f ′ω(0),

which implies ‖f ′ω‖∞ = 4
√

3 + ω. Hence we can apply Theorem 2.1 to

a = 1, bω = 1 +
4
√

3

ω
, cω = 1 +

8
√

3

ω
+

12

ω2
.

Arguments similar to those in Remark 2.3 show what happens for ω → 0+:
since cω ∼ b2ω/4 we have α = 1/4 here and

cω − (a+ cω)h
(
cω−bω
a+cω

)
bω

→ 1 (ω → 0+).

For ω →∞ we observe that bω → 1 and cω → 1, which implies

cω − (a+ cω)h
(
cω−bω
a+cω

)
bω

→ 1 (ω →∞).

We illustrate the behaviour of the quotient for intermediate values by a
picture:

Numerical plot of the quotient
cω−(a+cω)h( cω−bω

a+cω
)

bω
for ω ∈ [0, 50]
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This should be compared with (1.1), which reads here bω ≤ 2
√
cω. For

ω → 0+ we also have 2
√
cω/bω → 1 (since cω ∼ b2ω/4), but for ω → ∞

we have 2
√
cω/bω → 2. In particular, we see that, in contrast to (1.1), the

inequality (2.1) is asymptotically optimal in this example and, numerically,
the maximum value of the plotted quotient is 1.1952.

Open problem. Is it possible to give an analog of Theorem 2.1 in
Hilbert spaces that is related to Kato’s inequality (1.2) in the way The-
orem 2.1 is related to (1.1)?
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