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Abstract. This article is divided into two parts. The first one is on the linear struc-
ture of the set of norm-attaining functionals on a Banach space. We prove that every
Banach space that admits an infinite-dimensional separable quotient can be equivalently
renormed so that the set of norm-attaining functionals contains an infinite-dimensional
vector subspace. This partially solves a question proposed by Aron and Gurariy. The
second part is on the linear structure of dominated operators. We show that the set of
dominated operators which are not absolutely summing is lineable.

1. Introduction to the lineability problem for functionals. We
begin by introducing the following concepts related to the “algebraic size”
of subsets of Banach spaces.

Definition 1.1 (Gurariy, 1991). A subset M of a Banach space is said
to be

(1) lineable if M ∪{0} contains an infinite-dimensional vector subspace;
(2) dense-lineable if M ∪{0} contains an infinite-dimensional dense vec-

tor subspace;
(3) spaceable if M ∪ {0} contains an infinite-dimensional closed vector

subspace;
(4) µ-lineable if M∪{0} contains a µ-dimensional vector subspace, where

µ is a cardinal number.

In order to have a better perspective of these new concepts, we refer the
reader to the papers [G] and [AGS], where it is proved that several patholog-
ical properties occur more often than one might expect in connection with
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the definitions above. Framed in between lineability and geometry we found
the following question.

Problem 1.2 (Aron and Gurariy, 2004). Given an infinite-dimensional
Banach space X, is the set of norm-attaining functionals on X, NA(X),
always lineable? Or, at least, can X always be equivalently renormed to make
NA(X) lineable?

We call this question the Lineability Problem for Functionals. In [BG]
the following result related to this question was provided.

Theorem 1.3 (Bandyopadhyay and Godefroy, 2006). Let X be an As-
plund Banach space with the Dunford–Pettis property. The closed vector
subspaces of NA(X) are finite-dimensional. In particular, X cannot be equiv-
alently renormed to make NA(X) spaceable.

In [AG] the following theorem related to Problem 1.2 was proved.

Theorem 1.4 (Aizpuru and Garćıa-Pacheco, 2008). Let X be an infinite-
dimensional Banach space. Fix n ∈ N. Then X can be equivalently renormed
so that NA(X) is n-lineable.

In [AAAG] the following results related to Problem 1.2 were obtained.

Theorem 1.5 (Acosta, Aizpuru, Aron, and Garćıa-Pacheco, 2007). Let
K be an infinite compact Hausdorff topological space. Then NA(C(K)) is
lineable.

Theorem 1.6 (Acosta, Aizpuru, Aron, and Garćıa-Pacheco, 2007). Let
X be an infinite-dimensional Banach space with a Schauder basis (en, e∗n)n∈N
⊂ SX × SX∗ . Then:

(1) If (en)n∈N is monotone, then NA(X) is lineable.
(2) If (en)n∈N is monotone and shrinking, then NA(X) is dense-lineable.

To finish this introduction on lineability of functionals we would like to
present the following two questions proposed in [BG] that are closely related
to Problem 1.2.

Problem 1.7 (Bandyopadhyay and Godefroy, 2006).

(1) Does there exist a non-reflexive Banach space X such that NA(X∗)
is a vector space?

(2) Given an infinite-dimensional Banach space X, does NA(X) contain
at least a 2-dimensional vector subspace?

As far as we know, these two questions still remain open.

2. Classical Banach spaces. In this section we will prove that the
set of norm-attaining functionals is always lineable on spaces of continuous
functions and always spaceable on spaces of integrable functions.
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Theorem 2.1. Let K be an infinite compact Hausdorff topological space.
Let X be a non-zero Banach space. Then NA(C(K,X)) is lineable.

Proof. We will show that every element in span{x∗ ◦ δt : t ∈ K} is a
norm-attaining functional, where x∗ ∈ SX∗ ∩NA(X). Let t1, . . . , tp ∈ K and
λ1, . . . , λp ∈ K\{0}. Define the continuous function f : {t1, . . . , tp} → [−1, 1]
as

f(ti) = |λi|/λi for 1 ≤ i ≤ p.
Since K is normal and {t1, . . . , tp} is closed, by Urysohn’s Lemma there
exists a continuous extension f̃ : K → [−1, 1] of f . To finish, we note that
‖f̃x‖∞ = 1, where x ∈ SX and x∗(x) = 1, and( p∑

i=1

λi(x∗ ◦ δti)
)

(f̃x) =
p∑
i=1

|λi| =
∥∥∥ p∑
i=1

λi(x∗ ◦ δti)
∥∥∥
∞
.

Remark 2.2. Let K be a compact Hausdorff topological space. Then
C(K) has the Dunford–Pettis property (see, for instance, [JL]). If, in addi-
tion, K is scattered, then C(K) is Asplund (see [FHHMPZ] or [JL]). Hence,
by Theorem 1.3, NA(C(K)) is not spaceable.

Lemma 2.3. Let (Ω,Σ, µ) be a non-zero σ-finite measure space. Let X
be an Asplund Banach space. An element f ∈ L∞(µ,X∗) attains its norm
on L1(µ,X) if and only if there is a measurable set A ∈ Σ with µ(A) > 0
such that, for all t ∈ A, f(t) is norm-attaining and ‖f(t)‖ = ‖f‖∞.

Proof. Suppose there is a measurable set A ∈ Σ with µ(A) > 0 such
that, for all t ∈ A, f(t) is norm-attaining and ‖f(t)‖ = ‖f‖∞. For every
t ∈ A there exists g(t) ∈ SX such that f(t)(g(t)) = ‖f(t)‖. Since (Ω,Σ, µ)
is σ-finite, there is a measurable subset B ⊆ A such that 0 < µ(B) < ∞.
Now,

χB
µ(B)

g ∈ SL1(µ,X)

and �

Ω

f(t)
(
χB
µ(B)

g(t)
)
dµ(t) = ‖f‖∞.

Conversely, assume that f 6= 0 attains its norm at g ∈ SL1(µ,X). Then

‖f‖∞ ≤
�

Ω

|f(t)(g(t))| dµ(t) ≤
�

Ω

‖f(t)‖ ‖g(t)‖ dµ(t) ≤ ‖f‖∞‖g‖1 = ‖f‖∞.

Take C = {t ∈ Ω : g(t) 6= 0}. Clearly, C is measurable and µ(C) > 0 since
g 6= 0. Therefore, there exists a measurable set Z1 ⊂ C such that µ(Z1) = 0
and |f(t)(g(t))| = ‖f(t)‖ ‖g(t)‖ for all t ∈ C \ Z1. On the other hand, there
exists a measurable set Z2 ⊂ C such that µ(Z2) = 0 and ‖f(t)‖ = ‖f‖∞ for
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all t ∈ C \ Z2. Finally, if t ∈ A := C \ (Z1 ∪ Z2), then f(t) attains its norm
at g(t) and ‖f(t)‖ = ‖f‖∞.

Theorem 2.4. Let (Ω,Σ, µ) be a non-trivial σ-finite measure space. Let
X be a non-zero Asplund Banach space. Then NA(L1(µ,X)) is spaceable.

Proof. By (Ω,Σ, µ) being a non-trivial σ-finite measure space we mean
that there exists a countably infinite family (An)n∈N of pairwise disjoint
measurable sets such that, for every n ∈ N, 0 < µ(An) < ∞. Consider the
infinite-dimensional closed subspace

M :=
{ ∞∑
n=1

αnχAnx
∗ : (αn)n∈N ∈ c0

}
where x∗ ∈ NA(X). Observe that M is a closed subspace of L∞(µ,X∗)
linearly isometric to c0. If (αn)n∈N ∈ c0, then there exists m ∈ N such that
|αm| = ‖

∑∞
n=1 αnχAnx

∗‖∞. If t ∈ Am, then ‖
∑∞

n=1 αnχAnx
∗(t)‖ = |αm|.

From Lemma 2.3, we conclude that M ⊆ NA(L1(µ,X)).

3. The separable case. In this section we will relate the Lineability
Problem for Functionals to the Separable Quotient Problem (see [M] for a
survey on the latter problem).

Lemma 3.1. Let X be a Banach space. Assume that M is a closed sub-
space of X. Then:

(1) If M is 1-complemented and NA(M) is lineable, then NA(X) is lin-
eable.

(2) If M is proximinal and NA(X/M) is lineable, then NA(X) is lineable.

Proof. (1) It is sufficient to observe that if p : X → M is a linear
projection of norm 1, then p∗(NA(M)) ⊆ NA(X).

(2) It is sufficient to notice that if p : X → X/M denotes the quotient
map, then p∗(NA(X/M)) ⊆ NA(X).

Observe that, taking into account Lemma 3.1, Theorem 2.1 is a direct
consequence of Theorem 1.5.

Lemma 3.2. Let X be a Banach space. Assume that M is a closed sub-
space of X. Then:

(1) If M is complemented in X and admits an equivalent norm for which
NA(M) is lineable, then X admits an equivalent norm for which
NA(X) is lineable.

(2) If X/M admits an equivalent norm for which NA(X/M) is lineable,
then X admits an equivalent norm for which NA(X) is lineable.
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Proof. (1) Let N be a complement for M in X. Assume that M is already
endowed with an equivalent norm for which NA(M) is lineable. Then M⊕2N
is isomorphic to X and NA(M ⊕2 N) is lineable via Lemma 3.1(1).

(2) Let |·| be an equivalent norm onX/M such that NA(X/M) is lineable.
According to [BG, Lemma 2.4], there exists an equivalent norm ||| · ||| on X
which coincides with the original norm on M , whose quotient norm on X/M
is a positive multiple of | · |, and which makes M proximinal. To summarize,
X endowed with the norm ||| · ||| has a proximinal subspace M such that
NA(X/M) is lineable, and hence, by Lemma 3.1(2), NA(X) is lineable.

Now, Theorem 1.6 together with the previous two lemmas will give us
the following partial positive solution to Problem 1.2.

Corollary 3.3. Let X be a Banach space. If X admits an infinite-
dimensional separable quotient, then X can be equivalently renormed so that
NA(X) is lineable.

Proof. According to [M], if X admits an infinite-dimensional separa-
ble quotient, then X admits an infinite-dimensional quotient X/M with a
Schauder basis. According to [D], X/M can be endowed with an equivalent
norm | · | so that X/M has a monotone Schauder basis. In virtue of Theorem
1.6, NA(X/M) is lineable if X/M is endowed with the equivalent norm | · |.
Finally, by Lemma 3.2(2), X admits an equivalent norm for which NA(X)
is lineable.

4. The non-separable case. The next step is to obtain a similar ver-
sion of Theorem 1.6 for non-separable spaces. We will then need an “un-
countable” version of the Schauder basis concept: projection basis (see [JL],
[P1], and the fourth chapter of [HMVZ] for a wider perspective).

Definition 4.1 (Banach, 1932; Markushevich, 1943; Plichko, 1983). Let
X be a Banach space. Let (xi, x∗i )i∈I ⊆ X × X∗. We say that the system
(xi, x∗i )i∈I is

(1) biorthogonal if x∗i (xj) = δi,j for all i, j ∈ I;
(2) fundamental if span{xi : i ∈ I} = X;
(3) total if

⋂
i∈I ker(x∗i ) = {0};

(4) a Markushevich basis if it is biorthogonal, fundamental, and total;
(5) a projection basis if it is a Markushevich basis and I can be well-

ordered in such a way that for all i ∈ I there exist collectively
bounded projections Pi : X → span{xj : j < i} parallel to span{xj :
j ≥ i}.

(6) a monotonic projection basis if it is a projection basis where the
norms of all the projections are equal to 1.
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The following is a very helpful characterization of Banach spaces ad-
mitting a fundamental and biorthogonal system in terms of quotients and
monotonic projection bases (see [P2]).

Theorem 4.2 (Plichko, 1983). Let X be a non-separable Banach space.
The following conditions are equivalent:

(1) X admits a fundamental and biorthogonal system.
(2) X has a quotient that admits a monotonic projection basis of cardi-

nality dens(X), the density character of X.

Unfortunately, there are non-separable Banach spaces that do not admit
fundamental and biorthogonal systems (see [GK] and [P2]).

Remark 4.3 (Godun and Kadets, 1980; Plichko, 1983). For an index-
set Γ of cardinality greater than 2ℵ0 the space `c∞(Γ ) (the closed subspace
of `∞(Γ ) consisting of vectors with countable support) does not admit a
fundamental and biorthogonal system.

The non-separable version of Theorem 1.6 follows.

Theorem 4.4. Let X be a Banach space that admits a monotonic pro-
jection basis (xi, x∗i )i∈I ⊆ X ×X∗. Then NA(X) is card(I)-lineable.

Proof. Consider the infinite-dimensional subspace of X∗ given by M :=
span{x∗i : i ∈ I}. Let x∗ = λ1x

∗
i1

+ · · · + λnx
∗
in
∈ M . Since (xi, x∗i )i∈I is

fundamental, biorthogonal, and monotonic, we have

supx∗(BX) = supx∗(BX ∩ span{xi1 , . . . , xin}),

and the above sup is attained since the set

BX ∩ span{xi1 , . . . , xin} = Bspan{xi1
,...,xin}

is compact. Therefore, each element of M attains its norm, and hence NA(X)
is card(I)-lineable.

As a corollary, we obtain a result that could be seen as a non-separable
version of Corollary 3.3.

Corollary 4.5. Let X be a non-separable Banach space that admits a
fundamental biorthogonal system. Then X can be equivalently renormed so
that NA(X) is dens(X)-lineable.

Proof. By Theorem 4.2, X admits a quotient X/M with a monotonic
projection basis of cardinality dens(X). Then NA(X/M) is dens(X)-lineable
in view of Lemma 4.4. Finally, by Lemma 3.2(2), X admits an equivalent
norm for which NA(X) is dens(X)-lineable.
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5. Preliminaries on dominated operators. Our results on domi-
nated operators are a continuation of the study of lineability of sets of op-
erators initiated in [PS]. Following [DJT] we recall the following definitions.

Definition 5.1 (Grothendieck, 1955). Let X and Y be Banach spaces.
A bounded linear operator T ∈ L(X,Y ) is said to be absolutely sum-
ming if for each unconditionally convergent series

∑∞
i=1 xi in X, the series∑∞

i=1 T (xi) is absolutely convergent.

Absolutely summing operators can be characterized as follows.

Theorem 5.2 (Grothendieck, 1955). Let X and Y be Banach spaces. A
bounded linear operator T ∈ L(X,Y ) is absolutely summing if and only if
there exists a constant C ≥ 0 such that for any natural number m and any
choice of x1, . . . , xm in X we have

m∑
i=1

‖T (xi)‖ ≤ C sup
{ m∑
i=1

〈x∗, xi〉x∗ ∈ BX∗
}
.

The space Π1(X,Y ) of absolutely summing operators from X to Y becomes
a Banach space when endowed with the norm π1, which is the least constant
C for which the inequality above holds.

Definition 5.3 (Pietsch, 1965). Let X and Y be Banach spaces. Let
K be a Hausdorff compact topological space. A bounded linear operator
T : C(K,X) → Y is said to be dominated if there exists a positive regular
measure ν on B(K) such that

‖T (f)‖ ≤
�

K

‖f(t)‖ dν(t) for all f ∈ C(K,X).

In [PI, 2.3.4], Pietsch showed the following result.

Theorem 5.4 (Pietsch, 1965). Let K be a compact Hausdorff topological
space. Let X and Y be Banach spaces, and T : C(K,X) → Y a bounded
linear operator. Then:

(1) If T is absolutely summing, then T is dominated.
(2) If X is finite-dimensional, then T is dominated if and only if T is

absolutely summing.

From [PS] we know that dominated operators on spaces of continuous
functions with values in infinite-dimensional Banach spaces are actually far
from being absolutely summing. Finally, in the next section we will need the
following fundamental and spectacular result in analysis (see [DR] and also
[DJT, 1.2]).

Theorem 5.5 (Dvoretzky–Rogers, 1950). Let X be a Banach space. The
following are equivalent:
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(1) X is finite-dimensional.
(2) Every unconditionally convergent series in X is absolutely conver-

gent.

6. Dominated operators which are not absolutely summing. In
this section we will prove that the set of dominated operators that are not
absolutely summing is lineable. We will need the following lemma.

Lemma 6.1. Let X be a Banach space and K a compact Hausdorff topo-
logical space. Let

∑∞
k=1 xk be an unconditionally convergent series in X and

let (φk)k∈N ⊆ C(K) be such that ‖φk‖∞ ≤ 1 for all k ∈ N. Then
∑∞

k=1 φkxk
is unconditionally convergent in C(K,X).

Proof. Let σ : N→N be a permutation. It suffices to note that (φk(t))k∈N
∈ B`∞ for each t ∈ K. By [DJT, 1.9] we have∥∥∥∑

k∈N
φσ(k)xσ(k)

∥∥∥ = sup
t∈K

∥∥∥∑
k∈N

φσ(k)(t)xσ(k)

∥∥∥ ≤ ∥∥∥∑
k∈N

xk

∥∥∥ <∞.
Finally, we are in a position to state and prove the main result in this

section.

Theorem 6.2. Let X be an infinite-dimensional Banach space and K
an infinite compact Hausdorff topological space. The set of dominated oper-
ators from C(K,X) to X that are not absolutely summing is lineable. If, in
addition, K is sequentially compact and X contains `1 isometrically, then
the set of dominated operators from C(K,X) to X that are not absolutely
summing is `1-spaceable.

Proof. Since X is infinite-dimensional, according to the Dvoretzky–Ro-
gers Theorem there exists a sequence (xk)k∈N in X such that

∑∞
k=1 xk is

unconditionally convergent but not absolutely convergent. Pick a sequence
(tn)n∈N of points of K such that ti 6= tj if i 6= j. For every n ∈ N, define

Tn : C(K,X)→ X, φ 7→ Tn(φ) := φ(tn).

We will consider the vector space span{Tn : n ∈ N}. So, fix m ∈ N and
c1, . . . , cm ∈ K not all zero:

(1) If c1T1 + · · ·+ cmTm = 0, then c1 = · · · = cm = 0: Indeed, for every
i ∈ {1, . . . ,m} define

ψi : {t1, . . . , tm} → {0, 1}, tj 7→ ψi(tj) = δij .

Since {t1, . . . , tm} is closed in K and K is normal, we may extend
ψi to a continuous function on K that we will keep denoting by ψi.
Now pick any x ∈ X \ {0} and evaluate

0 = (c1T1 + · · ·+ cmTm)(ψix) = cix.
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(2) c1T1 + · · · + cmTm is not absolutely summing: Indeed, there exists
i ∈ {1, . . . ,m} such that ci 6= 0. According to Lemma 6.1,

∑∞
k=1 ψixk

is unconditionally convergent in C(K,X). Then

(c1T1 + · · ·+ cmTm)
( ∞∑
k=1

ψixk

)
= ci

∞∑
k=1

xk.

(3) c1T1 + · · · + cmTm is a dominated operator: Indeed, for every φ ∈
C(K,X),

(c1T1 + · · ·+ cmTm)(φ) =
�

K

φd(c1δt1 + · · ·+ cmδtm),

where δx denotes the Dirac measure at x.

We now assume that K is sequentially compact and X contains `1 iso-
metrically. We can then assume that tn → t∞ ∈ K \ {tn : n ∈ N}. Bearing
in mind that K is Hausdorff, for every n ∈ N we can find an open neighbor-
hood Un of tn such that Ui ∩ Uj = ∅ if i 6= j. Fix n ∈ N. We can define the
following continuous function:

ϕn : {tn} ∪ (K \ Un)→ [0, 1], t 7→ ϕn(t) =
{

1 if t = tn,
0 otherwise.

Since {tn} ∪ (K \ Un) is closed and K is normal, we can extend ϕn to a
[0, 1]-valued function defined on the whole of K which we will keep denoting
by ϕn. The sequence (ϕn)n∈N enjoys the following property: if t ∈ K, then∑∞

n=1 ϕn(t) ≤ 1. Indeed, if
∑∞

n=1 ϕn(t) > 1, then there are least two indices,
say i 6= j, for which ϕi(t) and ϕj(t) are strictly positive. This means that
t ∈ Ui ∩ Uj , which is impossible. We will consider the closed vector space
{
∑∞

n=1 λnTn : (λn)n∈N ∈ `1}. So, fix (λn)n∈N ∈ `1 \ {0}:

(1) ‖
∑∞

n=1 λnTn‖ =
∑∞

n=1 |λn|: Indeed, let (en)n∈N denote the canonical
basis of `1. For all t ∈ K, ‖

∑∞
n=1 ϕn(t)en‖ =

∑∞
n=1 ϕn(t) ≤ 1.

Therefore, ‖
∑∞

n=1 ϕnen‖ ≤ 1. Finally,( ∞∑
n=1

λnTn

)( ∞∑
m=1

ϕmem

)
=
∞∑
n=1

λnen,

which indicates that ∥∥∥ ∞∑
n=1

λnTn

∥∥∥ =
∞∑
n=1

|λn|.

(2)
∑∞

n=1 λnTn is not absolutely summing: Indeed, there exists i ∈ N
such that λi 6= 0. According to Lemma 6.1,

∑∞
k=1 ϕixk is uncondi-
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tionally convergent in C(K,X). Then( ∞∑
n=1

λnTn

)( ∞∑
k=1

ϕixk

)
= λi

∞∑
k=1

xk.

(3)
∑∞

n=1 λnTn is a dominated operator: Indeed, for every φ ∈ C(K,X),( ∞∑
n=1

λnTn

)
(φ) =

�

K

φd
( ∞∑
n=1

λnδtn

)
.
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