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Sobolev–Besov spaces of measurable functions

by

Hans Triebel (Jena)

Abstract. The paper deals with spaces Lsp(Rn) of Sobolev type where s > 0,
0 < p ≤ ∞, and their relations to corresponding spaces Bs

p,q(Rn) of Besov type where
s > 0, 0 < p ≤ ∞, 0 < q ≤ ∞, in terms of embedding and real interpolation.

1. Introduction. Let

(∆1
hf)(x) = f(x+ h)− f(x), (∆k+1

h f)(x) = ∆1
h(∆k

hf)(x)

with h ∈ Rn, x ∈ Rn, k ∈ N, be the usual differences of complex-valued
Lebesgue measurable functions in Rn. Let 0 < p, q ≤ ∞ and 0 < s < k ∈ N.
Then Bs

p,q(Rn) is the collection of all f ∈ Lp(Rn) such that

(1.1) ‖f |Bs
p,q(Rn)‖k = ‖f |Lp(Rn)‖+

( 1�

0

t−sq sup
|h|≤t
‖∆k

hf |Lp(Rn)‖q dt
t

)1/q

is finite (these are equivalent quasi-norms for all k > s). If s > n max(0,
1/p−1) then Bs

p,q(Rn) coincides with the Fourier-analytically defined spaces
Bs
p,q(Rn) (appropriately interpreted). If 1 < p <∞ then the classical Sobolev

spaces W 1
p (Rn) with

(1.2) ‖f |W 1
p (Rn)‖ = ‖f |Lp(Rn)‖+

n∑
j=1

∥∥∥∥ ∂f∂xj
∣∣∣∣Lp(Rn)

∥∥∥∥
can be equivalently normed by

(1.3) ‖f |W 1
p (Rn)‖ ∼ ‖f |Lp(Rn)‖+ sup

0<|h|≤t<1
t−1‖∆1

hf |Lp(Rn)‖,

[30, Proposition 3, p. 139] or [39, pp. 45–46]. One may also consult [24,
Section 6, pp. 226–227] for a very early attempt to extend (1.3) to 0 < p < 1.
According to B. Bojarski and P. Hajłasz, [8] based on [4], the spaceW 1

p (Rn),
1 < p < ∞, can also be described as the collection of all f ∈ Lp(Rn) such

2010 Mathematics Subject Classification: Primary 46E35.
Key words and phrases: Sobolev spaces, Besov spaces, embedding, real interpolation.

DOI: 10.4064/sm201-1-6 [69] c© Instytut Matematyczny PAN, 2010



70 H. Triebel

that there exists a function 0 ≤ g ∈ Lp(Rn) with

(1.4) |f(x)− f(y)| ≤ |x− y|(g(x) + g(y)), x, y ∈ Rn a.e.

Furthermore,

(1.5) ‖f |W 1
p (Rn)‖ ∼ ‖f |Lp(Rn)‖+ inf ‖g |Lp(Rn)‖

where the infimum is taken over all g with (1.4) (where the Hardy–Littlewood
maximal function g ∼ Mf is an optimal choice). Characterisations of type
(1.4), (1.5) in terms of variable Lipschitz coefficients g have been extended in
[4, 5] and in the recent papers [2, 3] to higher order Sobolev spaces W k

p (Rn),
1 < p < ∞, k ∈ N. In [8] the observation (1.4), (1.5) was taken as a point
of departure to introduce Sobolev spaces W 1

p (X), 1 < p ≤ ∞, on abstract
metric spaces X. Let 0 < s < 1 and 1 ≤ p, q < ∞. If we modify (1.1) with
k = 1 (first differences) appropriately, the corresponding equivalent norms in
Bs
p,q(Rn) = Bs

p,q(Rn) have direct counterparts on metric spaces X resulting
in respective Besov spacesBs

p,q(X). Under some additional assumptions (X is
furnished with a doubling measure supporting suitable Poincaré inequalities)
the real interpolation

(1.6) (Lp(X),W 1
p (X))θ,q = Bθ

p,q(X), 0 < θ < 1,

1 < p, q <∞, is one of the main assertions of the recent paper [7].
The following is motivated by (1.3)–(1.5), its indicated generalisations to

higher order Sobolev spaces and (1.6). Let 0 < p ≤ ∞, s > 0 and k ∈ N
with s ≤ k. Then Lsp(Rn)k is the collection of all f ∈ Lp(Rn) for which there
exists a function 0 ≤ g ∈ Lp(Rn) such that for all h ∈ Rn, 0 < |h| ≤ 1,

(1.7) |h|−s|∆k
hf(x)| ≤

k∑
l=0

g(x+ lh), a.e. in Rn.

Furthermore,

‖f |Lsp(Rn)k‖ = ‖f |Lp(Rn)‖+ inf ‖g |Lp(Rn)‖,

where the infimum is taken over all g with (1.7). These are quasi-Banach
spaces. If s = k ∈ N then

Wk
p(Rn) = Lkp(Rn)k, 0 < p ≤ ∞, k ∈ N,

are spaces of Sobolev type related to the above construction (1.3)–(1.5)
and the indicated generalisations to higher order Sobolev spaces W k

p (Rn). If
0 < s < k ∈ N then Lsp(Rn)k seems to be nearer to Bs

p,∞(Rn). Let Lipk(Rn)
be suitable Lipschitz spaces of order k and Ck(Rn) = Bk

∞,∞(Rn) be the cor-
responding Zygmund spaces (details may be found below). It is the main
aim of this paper to prove the following assertion.
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Theorem. (i) Let 0 < s ≤ k ∈ N and 0 < p ≤ ∞. Then

(1.8) Bs
p,min(p,1)(R

n) ↪→ Lsp(Rn)k ↪→ Bs
p,∞(Rn)

(continuous embeddings).
(ii) Let 0 < s ≤ k ∈ N, 0 < p ≤ ∞, 0 < θ < 1 and 0 < q ≤ ∞. Then

(1.9) (Lp(Rn),Lsp(Rn)k)θ,q = Bsθ
p,q(Rn)

(real interpolation).
(iii) Let k ∈ N. If 1 < p <∞ then

(1.10) Wk
p(Rn) = W k

p (Rn).

Furthermore,

(1.11) Wk
∞(Rn) = Lipk(Rn) ↪→ Ck(Rn), Lipk(Rn) 6= Ck(Rn).

In Section 2 we collect definitions, explanations and some prerequisites.
The above theorem will be proved in Section 3. In Section 4 we add some
comments.

All arguments in this paper are rather straightforward with the exception
of the left-hand embedding of (1.8), which is based on subatomic decompo-
sitions in the spaces Bs

p,q(Rn). It might be considered as a second aim of this
paper to demonstrate that building blocks in function spaces are useful also
in the above context.

2. Definitions and prerequisites

2.1. Definitions. We use standard notation. Let Rn be Euclidean n-
space, n ∈ N (natural numbers) and N0 = N ∪ {0}. Let C be the complex
plane. Furthermore, Lp(Rn) with 0 < p ≤ ∞ is the standard quasi-Banach
space with respect to the Lebesgue measure, quasi-normed by

‖f |Lp(Rn)‖ =
( �

Rn
|f(x)|p dx

)1/p

with the obvious modification if p = ∞. Let M(Rn) be the collection of
the equivalence classes of all almost everywhere finite complex-valued func-
tions with respect to the Lebesgue measure in Rn. This linear space, fur-
nished with the convergence in measure, can be converted into a complete
metric space. A short description may be found in [36, p. 19] where we re-
ferred for more details to [20, Section I,5]. One may consider M(Rn) as the
largest space covering everything what appears, including the definition of
the spaces Bs

p,q(Rn), Lsp(Rn)k, and the convergence of series. (It is the substi-
tute of D′(Rn) and S′(Rn) in the context of distributionally defined function
spaces.) But for our purpose it is sufficient to remark that the convergence
in the quasi-Banach spaces Lp(Rn), 0 < p ≤ ∞, is stronger than in M(Rn),
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[36, p. 19]. For f ∈M(Rn), k ∈ N and h ∈ Rn let as usual

(2.1) (∆1
hf)(x) = f(x+ h)− f(x), (∆k+1

h f)(x) = ∆1
h(∆k

hf)(x), x ∈ Rn,

be the iterated differences in Rn. Let 0 < p, q ≤ ∞ and 0 < s < k ∈ N. Then
Bs
p,q(Rn) is the collection of all f ∈ Lp(Rn) (or likewise f ∈ M(Rn)) such

that

(2.2) ‖f |Bs
p,q(Rn)‖k = ‖f |Lp(Rn)‖+

( 1�

0

t−sq sup
|h|≤t
‖∆k

hf |Lp(Rn)‖q dt
t

)1/q

is finite (with the usual modification if q = ∞). These spaces have some
history. Relevant comments and references may be found in [34, pp. 387–389].
In particular, Bs

p,q(Rn) are quasi-Banach spaces which are independent of
k ∈ N with s < k (equivalent quasi-norms). Some more specific properties,
needed later on, are shifted to the next section. We only mention that

(2.3) Bs
p,q(Rn) = Bs

p,q(Rn) if 0 < p, q ≤ ∞ and s > nmax(0, 1/p− 1)

(appropriately interpreted), where Bs
p,q(Rn) are the well-known Fourier-ana-

lytically defined spaces, including the classical Besov spaces with p, q ≥ 1.
Let 1 ≤ p ≤ ∞ and k ∈ N. Then W k

p (Rn) are the well-known Sobolev spaces
collecting all f ∈ Lp(Rn) such that

‖f |W k
p (Rn)‖ =

∑
|α|≤k

‖Dαf |Lp(Rn)‖

is finite. Here, as usual,

Dαf =
∂|α|f

∂xα1
1 . . . ∂xαnn

, α = (α1, . . . , αn), αj ∈ N0, |α| =
n∑
j=1

|αj |.

If 1 < p < ∞ then one has the equivalent characterisation (1.3)–(1.5) for
W 1
p (Rn).

Definition 2.1. (i) Let 0 < p ≤ ∞ and s > 0. Let k ∈ N with s ≤ k.
Then Lsp(Rn)k is the collection of all f ∈ Lp(Rn) for which there exists
a function g ∈ Lp(Rn) with g(x) ≥ 0 a.e. such that for all h ∈ Rn with
0 < |h| ≤ 1,

(2.4) |h|−s|∆k
hf(x)| ≤

k∑
l=0

g(x+ lh) a.e. in Rn.

Let

(2.5) ‖f |Lsp(Rn)k‖ = ‖f |Lp(Rn)‖+ inf ‖g |Lp(Rn)‖
where the infimum is taken over all g with (2.4).

(ii) Let 0 < p ≤ ∞ and k ∈ N. Then

(2.6) Wk
p(Rn) = Lkp(Rn)k.
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Remark 2.2. Recall that everything must be understood in the context
of M(Rn), hence in terms of equivalence classes,

Lsp(Rn)k ↪→ Lp(Rn) ↪→ M(Rn).

This applies in particular to (2.4) for any fixed h ∈ Rn, 0 < |h| ≤ 1. We add
some comments. First we remark that

Lsp(Rn)k are quasi-Banach spaces.

If {fj} is a Cauchy sequence in Lsp(Rn)k then it is also a Cauchy sequence
in Lp(Rn). The standard arguments for the completeness of Lp(Rn) as may
be found for example in [20, pp. 51–52], must now be complemented by
appropriate convergence of optimally chosen functions gj(x) ≥ 0 according
to (2.4), (2.5) with, say, fj+1 − fj in place of f . Then the same measure-
theoretical arguments as in [20] ensure the completeness of Lsp(Rn)k. One
may also consult [13, Theorem 5.7, pp. 35–36] for more details. It is sufficient
to restrict (1.4) to |x−y| ≤ 1. Then it follows from the above definition that

(2.7) W1
p(Rn) = W 1

p (Rn), 1 < p <∞.

This equality (and similar assertions below) have to be understood in the
sense that one can find in the equivalence class of each f ∈ W 1

p (Rn) a dis-
tinguished representative satisfying (2.4)–(2.6). Let k ∈ N. Then Lipk(Rn)
are Lipschitz spaces collecting all functions f having bounded classical pure
derivatives up to order k − 1 such that

(2.8) ‖f |Lipk(Rn)‖ = ‖f |L∞(Rn)‖+ sup |h|−1

∣∣∣∣∆1
h

∂k−1f

∂νk−1
(x)
∣∣∣∣ <∞

where the supremum is taken over all directions ν ∈ Rn, |ν| = 1, all x ∈ Rn

and all h ∈ Rn with 0 < |h| ≤ 1. If one replaces in (2.8) the first differences
∆1
h by the second differences ∆2

h then one gets the Zygmund spaces Ck(Rn) =
Bk
∞,∞(Rn),

(2.9) ‖f | Ck(Rn)‖ = ‖f |L∞(Rn)‖+ sup |h|−1|∆2
hD

αf(x)|

where the supremum is taken over all α with |α| = k− 1, all x ∈ Rn and all
h ∈ Rn with 0 < |h| ≤ 1. It is well known that one can replace Dαf in (2.9)
by |h|−k+1∆k−1

h f . Similarly one has

(2.10) ‖f |Lipk(Rn)‖ ∼ ‖f |L∞(Rn)‖+ sup |h|−k|∆k
hf(x)|

where the supremum is taken over all x ∈ Rn and all h ∈ Rn with 0 < |h| ≤ 1.
But in contrast to the corresponding assertions for Zygmund spaces, (2.10)
cannot be proved by Fourier-analytical arguments. This formula follows from
integral representations of functions, their differences and derivatives, as may
be found in [1, Chapter 4, §16, Section 16.1]. Then it follows from (2.4), (2.6)
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and well known properties of Ck(Rn) that

(2.11) Wk
∞(Rn) = Lipk(Rn) ↪→ Ck(Rn), Lipk(Rn) 6= Ck(Rn).

This proves (1.11). If k = 1 then (1.10) is covered by (2.7). The proof of the
corresponding assertion for 2 ≤ k ∈ N is shifted to Section 3. Furthermore
one may ask:

(2.12) Is Lsp(Rn)k, 0 < p ≤ ∞, 0 < s < k ∈ N, independent of k?

The corresponding assertion for Bs
p,q(Rn) is a cornerstone of the theory of

these spaces. One cannot extend the question (2.12) to s = k. But (2.4) and
also the comparison of (2.9) and (2.10) suggest asking:

(2.13) Do Lsp(Rn)k, 0 < p ≤ ∞, 0 < s < k ∈ N, and Bs
p,∞(Rn) coincide?

If p =∞ then by (2.2), (2.3) one has the affirmative answer

(2.14) Ls∞(Rn)k = Bs
∞,∞(Rn) = Bs

∞,∞(Rn) = Cs(Rn), 0 < s < k ∈ N.
If p <∞ then there is a second and even more promising candidate. This is
the smaller space Fsp,∞(Rn). We return to this point in Remark 4.1 below.

2.2. Interpolation and subatomic decompositions. We collect the
decisive ingredients to prove the Theorem.

Interpolation. We assume that the reader is familiar with the real in-
terpolation (A0, A1)θ,q where {A0, A1} is an interpolation couple of complex
quasi-Banach spaces, 0 < θ < 1 and 0 < q ≤ ∞. We will specify A0 and
A1 to be Lp(Rn), 0 < p ≤ ∞, and the above spaces Bs

p,q(Rn) and Lsp(Rn)k.
All those spaces are continuously embedded in the complete metric space
M(Rn) mentioned at the beginning of Section 2.1. Hence, real interpolation
makes sense. Let p, q1, q2 ∈ (0,∞], s > 0, and 0 < θ < 1. Then

(2.15) (Lp(Rn),Bs
p,q1(Rn))θ,q2 = Bsθ

p,q2(Rn).

This remarkable interpolation formula is covered by [6, Theorem 6.3, p. 859]
where the (bounded) extension domain can be replaced by Rn. This theorem
has a little history which we discussed in [32, pp. 373–374], where one also
finds further related references.

Subatomic decompositions. We follow [34, Sections 9.1, 9.2] based
on [33] where one finds further explanations and discussions. We use again
standard notation. As usual Zn stands for the lattice of all points in Rn with
integer-valued components. Let Nn

0 with n ∈ N be the set of all multi-indices

α = (α1, . . . , αn), αj ∈ N0, |α| =
n∑
j=1

|αj |.

If x = (x1, . . . , xn) ∈ Rn and β = (β1, . . . , βn) ∈ Nn
0 then we put

xβ = xβ1
1 · · ·x

βn
n (monomials).
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Let
Rn

++ = {x ∈ Rn : x = (x1, . . . , xn), xj > 0}
and let K be a non-negative C∞ function in Rn with

(2.16) suppK ⊂ {y ∈ Rn : |y| < 2J−ε} ∩ Rn
++

for some fixed ε > 0 and some fixed natural number J (one may choose
J = n once and for all), and

(2.17)
∑
m∈Zn

K(x−m) = 1, x ∈ Rn.

Let

(2.18) Kβ(x) = (2−Jx)βK(x), x ∈ Rn, β ∈ Nn
0 ,

and

(2.19) Kβ
jm(x) = Kβ(2jx−m), j ∈ N0, m ∈ Zn.

Obviously, Kβ
jm(x) ≥ 0. We need some sequence spaces. Let s ∈ R and

0 < p, q ≤ ∞. Then
bsp,q = {λ : ‖λ | bsp,q‖ <∞}

where
λ = {λβjm ∈ C : β ∈ Nn

0 , j ∈ N0, m ∈ Zn}
and

(2.20) ‖λ | bsp,q‖ = sup
β∈Nn0

( ∞∑
j=0

2j(s−n/p)q
( ∑
m∈Zn

|λβjm|
p
)q/p)1/q

with the usual modifications if p = ∞ and/or q = ∞. Let Bs
p,q(Rn) be the

above spaces, quasi-normed by (2.2). Then f ∈ Lp(Rn) belongs to Bs
p,q(Rn)

if, and only if, it can be represented as

(2.21) f =
∑
β,j,m

λβjmK
β
jm, λ ∈ bsp,q.

Furthermore,

(2.22) ‖f |Bs
p,q(Rn)‖ ∼ inf ‖λ | bsp,q‖

where the infimum is taken over all admissible representations (2.21).
We add a few comments. If p < ∞ then the series in (2.21) converges

absolutely in Lp(Rn) and hence in M(Rn). If p = ∞ then (2.21) converges
absolutely in the weighted space L∞(Rn, wσ), σ > 0, normed by

‖g |L∞(Rn, wσ)‖ = ‖wσf |L∞(Rn)‖, wσ(x) = (1 + |x|2)σ/2,

and hence again in M(Rn). The representation (2.21), (2.22) is neither a
basis nor a frame. The above assertion is covered by [34, Definitions 9.6,
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9.12, Proposition 9.14, pp. 382, 387–389]. The proofs in [33, 34] rely in a
decisive way on atomic decompositions of Bs

p,q(Rn) due to Yu. V. Netrusov
[22] and Hedberg and Netrusov [12].

3. Proof of the Theorem. In this section we prove the Theorem as
stated in the Introduction.

Step 1. Let f ∈ Lsp(Rn)k according to Definition 2.1. Let 0 < s ≤ k < M
∈ N and h ∈ Rn, 0 < |h| ≤ t < 1. If g in (2.4), (2.5) is optimally chosen then

‖∆M
h f |Lp(Rn)‖ ≤ cts‖f |Lsp(Rn)k‖.

Then it follows from (2.2) that

‖f |Bs
p,∞(Rn)‖M = ‖f |Lp(Rn)‖+ sup

0<|h|≤t≤1
t−s
∥∥∆M

h f |Lp(Rn)
∥∥

≤ c ‖f |Lsp(Rn)k‖.

This proves the right-hand embedding of (1.8).

Step 2. We prove the left-hand embedding of (1.8). We represent f ∈
Bs
p,q(Rn) with 0 < p ≤ ∞, 0 < q ≤ 1, by (2.21), (2.22) based on (2.16)–

(2.19). Let χjm be the characteristic function of the ball{
x ∈ Rn : |x− 2−jm| < 2J−j

}
, j ∈ N0, m ∈ Zn.

Then it follows from (2.16) and (2.18), (2.19) that for any γ ∈ Nn
0 there is a

constant cγ > 0 such that

(3.1) |DγKβ
jm(x)| ≤ cγ 2j|γ|2−ε|β| χjm(x), x ∈ Rn,

for all β ∈ Nn
0 , j ∈ N0, m ∈ Zn. Let 0 < s ≤ k ∈ N. By (2.21) we have, for

0 < |h| ≤ 1, h ∈ Rn,

(3.2) |h|−s∆k
hf(x) =

∑
β,j,m

λβjm |h|
−s∆k

hK
β
jm(x).

If s < k then it follows from the homogeneity property of Cs(Rn)=Bs
∞,∞(Rn)

according to [35, Theorem 2.11, p. 34] that for x ∈ Rn, β ∈ Nn
0 , j ∈ N0,

m ∈ Zn,

(3.3) |h|−s
∣∣∆k

hK
β
jm(x)

∣∣ ≤ c 2−ε|β| 2js
k∑
l=0

χjm(x+ lh).

But this can also be proved directly. If s = k then it follows from (2.10),
(3.1) and well-known assertions that

|h|−k|∆k
hK

β
jm(x)| ≤ c‖Kβ

jm |Lip
k(Rn)‖ ≤ c′

∑
|α|=k

‖DαKβ
jm |L∞(Rn)‖
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and hence for x ∈ Rn, β ∈ Nn
0 , j ∈ N0, m ∈ Zn,

|h|−k|∆k
hK

β
jm(x)| ≤ c 2−ε|β|2jk

k∑
l=0

χjm(x+ lh).

Inserted in (3.2) one has in all cases

(3.4) |h|−s
∣∣∆k

hf(x)
∣∣ ≤ k∑

l=0

g(x+ lh), x ∈ Rn,

with

(3.5) g(x) = c
∑
β∈Nn0

2−ε|β|
∞∑
j=0

2js
∑
m∈Zn

|λβjm|χjm(x), λ ∈ bsp,q.

If p ≥ 1 then

‖g |Lp(Rn)‖ ≤ c
∑
β∈Nn0

2−ε|β|
∞∑
j=0

2js−jn/p
( ∑
m∈Zn

|λβjm|
p
)1/p

(3.6)

≤ c‖λ | bsp,1‖ ≤ c′‖f |Bs
p,1(Rn)‖,

where we assume that λ in (2.20), (2.22) is optimally chosen. If 0 < p < 1
then we apply the p-triangle inequality to (3.5) and obtain

(3.7) ‖g |Lp(Rn)‖p ≤ c‖λ | bsp,p‖p ≤ c′‖f |Bs
p,p(Rn)‖p.

Now the left-hand embedding of (1.8) follows from (3.6), (3.7) and Defini-
tion 2.1.

Step 3. The interpolation (1.9) follows from (1.8), (2.15) and the reiter-
ation theorem of interpolation theory.

Step 4. We prove part (iii), where (1.11) is covered by (2.11). If 1 < p <
∞ and k = 1 then (1.10) coincides with (2.7). Let B(x, r) be a ball in Rn,
centred at x ∈ Rn and of radius r > 0. Then

(3.8) (M1f)(x) = (Mf)(x) = sup
r>0

r−n
�

B(x,r)

|f(y)| dy

is the usual Hardy–Littlewood maximal function (up to a constant). Accord-
ing to [8] there is a constant c > 0 such that for all f ∈ W 1

p (Rn), x ∈ Rn

and h ∈ Rn with 0 < |h| ≤ 1,

(3.9) |h|−1|∆1
hf(x)| ≤ c

∑
|α|=1

[M(Dαf)(x) +M(Dαf)(x+ h)].

Let
(Mkf)(x) = M(Mk−1f)(x), 2 ≤ k ∈ N,
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be the iteration of M in (3.8). Then it follows from (3.9) that

|h|−k|∆k
hf(x)| ≤ c

k∑
l=0

∑
|α|=k

Mk(Dαf)(x+ lh)

for some c > 0, and all f ∈W k
p (Rn), x ∈ Rn, h ∈ Rn with 0 < |h| ≤ 1. Since

Mk is a bounded map in Lp(Rn) with 1 < p <∞ it follows from Definition
2.1 that f ∈Wk

p(Rn) and

(3.10) ‖f |Wk
p(Rn)‖ ≤ c‖f |W k

p (Rn)‖, f ∈W k
p (Rn).

We prove the converse and assume that f ∈ Wk
p(Rn). Let g ∈ Lp(Rn) be

a corresponding dominating function according to (2.4) with s = k. For
ϕ ∈ S(Rn) one has

(3.11)
�

Rn
|h|−k∆k

hf(x)ϕ(x) dx =
�

Rn
f(x)|h|−k∆k

−hϕ(x) dx.

Let h = (h1, 0, . . . , 0) with h1 > 0. Then

(3.12) lim
h1→0

h−k1 ∆k
−hϕ(x) = (−1)k

∂kϕ

∂xk1
(x)

uniformly in x ∈ Rn. To justify (3.12), we may assume that the Fourier
transform Fϕ of ϕ has a compact support. Then

F

[
h−k1 ∆k

−hϕ−(−1)k
∂kϕ

∂xk1

]
(ξ) = [h−k1 (e−ih1ξ1−1)k−(−iξ1)k]Fϕ(ξ), ξ ∈ Rn,

converges in S(Rn) to zero. Then one obtains (3.12) in S(Rn) and the corre-
sponding convergence on the right-hand side of (3.11). For the left-hand side
of (3.11), we remark that |h|−k ∆k

hf(x) again with h = (h1, 0, . . . , 0), h1 > 0,
is a bounded set in the reflexive spaces Lp(Rn), and hence weakly precom-
pact. Let fk be the limit of a corresponding weakly convergent sequence.
Then it follows that

�

Rn
fk(x)ϕ(x) dx = (−1)k

�

Rn
f(x)

∂kϕ

∂xk1
(x) dx

and
‖fk |Lp(Rn)‖ ≤ c ‖g |Lp(Rn)‖.

This proves fk = ∂kf/∂xk1 ∈ Lp(Rn) distributionally and

f ∈W k
p (Rn) with ‖f |W k

p (Rn)‖ ≤ c‖f |Wk
p(Rn)‖.

Together with (3.10) one obtains (1.10). This type of argument is not new. It
goes back to S. L. Sobolev [29, §5.2, pp. 41–43] and has been used afterwards
by several authors including [23, p. 177].
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4. Complements. We add a few comments and further references com-
plementing the above considerations.

Remark 4.1. First we return to Remark 2.2. If p = ∞ then one has
(2.11), (2.14). Otherwise there is the classical observation (2.7) by B. Bo-
jarski and P. Hajłasz complemented now by (1.10). According to [17] one
can extend (2.7), based on (the inhomogeneous version of) (1.4), (1.5) to
all distributionally defined first-order Sobolev (–Hardy) spaces which can be
continuously embedded into some Lr(Rn) with r > 1. In other words,

(4.1) W1
p(Rn) = H1

p (Rn) = F 1
p,2(Rn),

n

n+ 1
< p <∞.

Recall that H1
p (Rn) = W 1

p (Rn) if 1 < p < ∞ whereas the Hardy–Sobolev
space H1

1 (Rn) is smaller than the Sobolev space W 1
1 (Rn) normed by (1.2)

with p = 1. What can be said about W 1
1 (Rn) in the above context has

been studied in detail in [9]. If p = n/(n+ 1) then H1
n/(n+1)(R

n) is still
continuously embedded in L1(Rn) and it makes sense to ask whether (4.1)
can be extended to this case. But this is unlikely. In this limiting situation
the diverse settings of B-spaces and F -spaces behave rather differently as
came out quite recently, [26, 27]. We complemented the above assertions by
the question (2.13). The right-hand side of the inclusion (1.8) and also the
question (2.13) can be strengthened as follows. Let ∆k

hf(x) be the differences
(2.1) and let f ∈ Lp(Rn) with 0 < p <∞. Then

(4.2) dkt,pf(x) =
(
t−n

�

|h|≤t

|(∆k
hf)(x)|p dh

)1/p
, 0 < t <∞, x ∈ Rn,

are local ball means. Let 0 < p < ∞, 0 < q ≤ ∞, 0 < s < k ∈ N. Then
Fsp,q(Rn) is the collection of all f ∈ Lp(Rn) such that

(4.3) ‖f |Fsp,q(Rn)‖k = ‖f |Lp(Rn)‖+
∥∥∥∥( 1�

0

t−sq dkt,pf(·)q dt
t

)1/q ∣∣∣∣Lp(Rn)
∥∥∥∥

is finite, where

(4.4) ‖f |Fsp,∞(Rn)‖k = ‖f |Lp(Rn)‖+ ‖ sup
0<t<1

t−s dkt,pf(·) |Lp(Rn)‖

is the usual modification if q =∞.
We refer to [34, Chapter 9], based on [33], where we developed the theory

of these spaces parallel to the spaces Bs
p,q(Rn). Compared with the better

known Fourier-analytically defined spaces F sp,q(Rn) one has

Fsp,q(Rn) = F sp,q(Rn)(4.5)

if 0 < p <∞, 0 < q ≤ ∞, s > n

(
1

min(p, q)
− 1

max(1, p)

)
,
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as a counterpart of (2.3). Furthermore,

Bs
p,min(p,q)(R

n) ↪→ Fsp,q(Rn) ↪→ Bs
p,max(p,q)(R

n)

for s > 0, 0 < p < ∞, 0 < q ≤ ∞. We refer to [36, Section 1.1.8] and the
recent papers [11, 25]. Of interest for us are the spaces Fsp,∞(Rn). Then one
has

(4.6) Fsp,∞(Rn) = F sp,∞(Rn) if s > nmax(0, 1/p− 1)

as in (2.3). The right-hand embedding of (1.8) can be strengthened to

(4.7) Lsp(Rn)k ↪→ Fsp,∞(Rn), 0 < p <∞, 0 < s < k ∈ N.

For the proof we first remark that one can replace dkt,pf in (4.3), (4.4) by
dkt,uf with 0 < u ≤ p. This is covered for the spaces F sp,q(Rn) in (4.5), (4.6)
by [31, Theorem 3.5.3, p. 194]. The extension to all spaces Fsp,q(Rn) is not
explicitly mentioned in [34] but is a consequence of the underlying assertion
[12, Theorem 1.1.14, p. 14]. Let f ∈ Lsp(Rn)k. We insert (2.4) in (4.2) with
dkt,uf , u < p, to obtain

dkt,uf(x) ≤ cts(M |g|u)1/u(x), 0 < t ≤ 1, x ∈ Rn,

where M is the usual Hardy–Littlewood maximal function. Then it follows
from (4.4) with dkt,uf in place of dkt,pf that

‖f |Fsp,∞(Rn)‖ ≤ c‖(M |g|u)1/u |Lp(Rn)‖ ≤ c′‖g |Lp(Rn)‖.
This proves (4.7). Now one can replace (2.13) by the sharper question:

Do Lsp(Rn)k, 0 < p <∞, 0 < s < k ∈ N, and Fsp,∞(Rn) coincide?

There are a few affirmative answers in the context of the spaces F sp,∞(Rn)
(and their extensions to some metric spaces X). Dachun Yang proved in [38,
Corollary 1.3, p. 686] that

(4.8) Lsp(Rn)1 = F sp,∞(Rn), 1 < p <∞, 0 < s < 1.

This has been extended substantially in [18] dealing with counterparts
of (4.1). This leads in particular to assertions of type (4.8) with 0 < s < 1,
n/(n+ s) < p <∞. Again it makes sense to ask what happens in the limit-
ing case p = n/(s+ n). But as said above it is unlikely that this delicate case
can be incorporated in this theory. Furthermore we refer to [21] for recent
characterisations of spaces of type F sp,q(X) on some metric spaces in terms
of first differences. This fits in the above scheme at least if X = Rn.

Remark 4.2. Sharp Sobolev embeddings between the distributionally de-
fined spaces Bs

p,q(Rn), F sp,q(Rn) (and their special cases) are a cornerstone
of the related theory of function spaces and its applications. We recall two
outstanding assertions. Let

(4.9) 1 < p <∞, 0 < σ = n/r − n/p.



Sobolev–Besov spaces 81

Then

(4.10) Bσ
r,q(Rn) ↪→ Lp(Rn) if, and only if, 0 < q ≤ p.

Furthermore,

(4.11) F σr,q(Rn) ↪→ F σr,∞(Rn) ↪→ Lp(Rn) for all 0 < q ≤ ∞.
One may consult [32, Theorem 11.4, p. 170] and the references given there,
in particular [28]. Let Hs

p(Rn) = F sp,2(Rn) be the usual (fractional) Sobolev
spaces. Let p, r, σ be as in (4.9) and let s ∈ R. Then it follows from (4.10),
(4.11) by lifting that

(4.12) Bσ+s
r,q (Rn) ↪→ Hs

p(Rn) if, and only if, 0 < q ≤ p,
and

(4.13) F σ+s
r,q (Rn) ↪→ F σ+s

r,∞ (Rn) ↪→ Hs
p(Rn) for all 0 < q ≤ ∞.

We ask for counterparts of (4.10), (4.11) and also of (4.12), (4.13) for B-
spaces, F-spaces and with Lsp(Rn)k in place of Hs

p(Rn).

Let
0 < p <∞, 0 < σ = n/r − n/p.

Then

(4.14) Bσ
r,q(Rn) ↪→ Bσ

r,p(Rn) ↪→ Lp(Rn) if 0 < q ≤ p,
[11, Theorem 1.15, (1.34), pp. 732–733], and

(4.15) Fσr,q(Rn) ↪→ Fσr,∞(Rn) ↪→ Lp(Rn) for all 0 < q ≤ ∞,
[25, Proposition 2.19, pp. 267–268].

Based on these observations we prove the following counterparts of
(4.12), (4.13).

Let
0 < p <∞, 0 < s ≤ k ∈ N, 0 < σ = n/r − n/p.

Then

(4.16) Bs+σ
r,q (Rn) ↪→ Lsp(Rn)k if 0 < q ≤ p,

and

(4.17) Fs+σr,q (Rn) ↪→ Fs+σr,∞ (Rn) ↪→ Lsp(Rn)k for all 0 < q ≤ ∞.

For the proof of these assertions we first remark that one can replace the
characteristic functions χjm in (3.3) by

0 ≤ ψjm ∈ C∞(Rn), suppψjm ⊂ {x ∈ Rn : |x− 2−jm| < c 2J−j}
with

ψjm(x) = 1 if |x− 2−jm| ≤ 2J−ε−j .
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One may think about

ψjm(x) =
∑
|l−m|≤a

K0
jl(x),

according to (2.19) and with a suitably chosen a > 0. Then one has again
(3.4), now with

(4.18) g(x) = c
∑
β∈Nn0

2−ε|β|
∞∑
j=0

2js
∑
m∈Zn

|λβjm|ψjm(x), λ ∈ bs+σr,q ,

in place of (3.5). We interpret (4.18) as a subatomic decomposition in
Bσ
r,q(Rn). Then it follows from (2.20)–(2.22) and an optimal choice of λ

that

‖g |Bσ
r,q(Rn)‖ ≤ c sup

β∈Nn0

( ∞∑
j=0

2j(s+σ−n/r)q
( ∑
m∈Zn

|λβjm|
r
)q/r)1/q

≤ c′‖f |Bs+σ
r,q (Rn)‖.

Together with (4.14) one obtains the counterpart of (3.6) and hence (4.16).
Then (4.17) follows from (4.15) and the corresponding subatomic decom-
positions for Fs+σr,∞ (Rn) according to [34, Definition 9.4, Proposition 9.14,
pp. 381, 388].

At first glance the situation looks a little bit curious. On one hand one
has the rather final sharp Sobolev embeddings (4.16), (4.17). On the other
hand, the left-hand embedding of (1.8) is less satisfactory (but sufficient
to justify (1.9)). The difference comes from (4.18). It can be interpreted
as a subatomic decomposition in Bσ

r,q(Rn), but not in Lp(Rn). The corre-
sponding estimate in (3.6) is obtained by brute force. One may ask whether
expansions of type (4.18) can be interpreted as atomic decompositions in,
say, Lp(Rn) = F 0

p,2(Rn), 1 < p < ∞, in the context of distributionally de-
fined spaces on Rn. It was an open problem for a long time whether one
really needs first moment conditions for atomic expansions of the spaces
B0
p,q(Rn) and F 0

p,q(Rn), say, with 1 < p, q < ∞, including Lp(Rn) and
in particular L2(Rn). It came out only quite recently that first moment
conditions are indispensable. We refer to [37, Remark 3.7, pp. 32–33], ex-
tended afterwards in [26, Section 3.2, pp. 126–127] and [27, Section 3.2,
pp. 160–161].

Remark 4.3. We return to Remark 4.1. With respect to the Fourier-
analytically defined spaces one has so far the identification (4.1) extending
Hajłasz’s observation (2.7) to the Hardy–Sobolev spaces F 1

p,2(Rn) = H1
p (Rn),

n/(n+ 1) < p ≤ 1. If 0 < s < 1 then we mentioned above that Dachun
Yang’s assertion (4.8) has been extended in [18] to n/(n+ s) < p <∞. One
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may ask whether{
F 1
p,2(Rn), n/(n+ 1) < p <∞,
F sp,∞(Rn), 0 < s < 1, n/(n+ s) < p <∞,

are exceptional spaces admitting pointwise characterisations of the above
type. But according to the recent paper [19] (almost) all (homogeneous)
spaces of type Bs

p,q(Rn) and F sp,q(Rn) with 0 < s < 1 and n/(n+ s) < p <∞
can be described by appropriate modifications of (2.4) with k = 1 (first dif-
ferences). One has to replace g by gj if 2−j ≤ |h| < 2−j+1 and g ∈ Lp(Rn)
in (2.5) by {gj}∞j=0 ∈ `q(Lp(Rn)) for B-spaces and {gj}∞j=0 ∈ Lp(Rn, `q) for
F -spaces. Adapted to our situation, a corresponding modification of Defini-
tion 2.1 may look as follows. One replaces (2.4) by

|h|−s|∆k
hf(x)| ≤

k∑
l=0

gj(x+ lh), 2−j ≤ |h| < 2−j+1,

where j ∈ N, and ‖g |Lp(Rn)‖ in (2.5) by{
(
∑∞

j=1 ‖gj |Lp(Rn)‖q)1/q in the case of B-spaces,
‖(
∑∞

j=1 |gj(x)|q)1/q |Lp(Rn)‖ in the case of F-spaces.

The question arises what can be said about the corresponding spaces intro-
duced in this way and whether they coincide with Bs

p,q(Rn) and Fsp,q(Rn).

Remark 4.4. So far we dealt exclusively with spaces on Rn. There is
little doubt that these considerations can be extended to, say, bounded Lip-
schitz domains Ω in Rn. In particular (2.15) remains valid if one replaces Rn

by bounded Lipschitz domains (with the same references as there). On the
other hand the observation (1.4), (1.5) was just the point of departure in [8]
to introduce and study first order Sobolev spaces W 1

p (X, %, µ), 1 ≤ p ≤ ∞,
on, say, metric spaces (X, %) furnished with a doubling Radon measure µ.
Nowadays there are several proposals for first order Sobolev spaces and re-
lated Besov spaces of type Bs

p,q with 0 < s < 1, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞.
This theory becomes especially rich and coherent if one assumes in addi-
tion that (X, %, µ) supports some Poincaré inequalities. We refer again to
[7, 8, 21, 38] and in particular to [10, 16]. One may ask whether spaces
Lsp(X, %, µ)k similar to those in Definition 2.1 make sense. This seems to be
the case if 0 < p ≤ ∞ and 0 < s ≤ 1 = k ∈ N (first differences). The
subatomic decompositions in Section 2.2 have a counterpart for spaces on
sets ([34, Section 9.3], based on [33]). Even the extension of this theory to
spaces defined by higher differences ∆k

h with 2 ≤ k ∈ N is not so hope-
less as it seems to be at first glance. First one can deal with the metric
space (Rn, %εL, µL), where %L is the Euclidean distance, 0 < ε < 1, and the
Lebesgue measure µL. Here Rn can be replaced by the unit cube in Rn or
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the unit interval I = (0, 1) in case of n = 1. Afterwards the snowflaked
bi-Lipschitzian transform maps these metric spaces onto distinguished frac-
tals in higher-dimensional Euclidean spaces. One may consult [34, Sections
1.17.6, 8.2, pp. 119–120] for details and references. The most prominent ex-
ample is the Koch curve (or snowflake) in R2 furnished with the Euclidean
distance in R2 and the Hausdorff measure Hd, d = log 4/log 3, as the bi-
Lipschitzian image of the unit interval I = (0, 1), furnished with the metric
%
1/d
L and the Lebesgue measure. This may pave the way to transferring the

above theory to some distinguished fractals, to defining higher differences
on these fractals and to comparing the outcome with already existing func-
tion spaces on these sets. First steps in this direction have been made in
[14, 15].

Acknowledgements. I wish to thank the referee for careful reading and
valuable comments.
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