Surjectivity of partial differential operators on ultradistributions of Beurling type in two dimensions

by
Thomas Kalmes (Trier)

Abstract

We show that if Ω is an open subset of \mathbb{R}^{2}, then the surjectivity of a partial differential operator $P(D)$ on the space of ultradistributions $\mathscr{D}_{(\omega)}^{\prime}(\Omega)$ of Beurling type is equivalent to the surjectivity of $P(D)$ on $C^{\infty}(\Omega)$.

1. Introduction. It is a classical result by Malgrange [10, Chapitre 1, Théorème 4] that for a polynomial $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ and for an open set $\Omega \subset \mathbb{R}^{d}$ the constant coefficient differential operator $P(D): C^{\infty}(\Omega) \rightarrow$ $C^{\infty}(\Omega)$ is surjective if and only if Ω is P-convex for supports, that is, if and only if for every compact subset K of Ω there is another compact subset L of Ω such that for each $u \in \mathscr{E}^{\prime}(\Omega)$ with $\operatorname{supp} P(-D) u \subset K$ we have $\operatorname{supp} u \subset L$.

Hörmander showed in [6] that $P(D)$ is surjective as an operator on $\mathscr{D}^{\prime}(\Omega)$ if and only if Ω is P-convex for supports and P-convex for singular supports, i.e. for every compact subset K of Ω there is another compact subset L of Ω such that for each $u \in \mathscr{E}^{\prime}(\Omega)$ with $\operatorname{sing} \operatorname{supp} P(-D) u \subset K$ we have sing supp $u \subset L$.

It is well-known that the surjectivity of $P(D)$ as an operator on $C^{\infty}(\Omega)$ does not imply its surjectivity on $\mathscr{D}^{\prime}(\Omega)$ in general. However, Trèves conjectured [12, p. 389, Problem 2] that in the case of $\Omega \subset \mathbb{R}^{2}$ this implication is true. A proof of this conjecture is given in [8].

In the present paper, we prove an adaption of the Trèves conjecture to the setting of ultradistributions of Beurling type associated with a nonquasianalytic weight function ω. These generalize classical distributions by allowing more flexible growth conditions for the Fourier transforms of the corresponding test functions than the Paley-Wiener weights. More precisely, we prove the following theorem.

[^0]Theorem 1.1. Let $\Omega \subset \mathbb{R}^{2}$ be open and $P \in \mathbb{C}\left[X_{1}, X_{2}\right]$. Then the following are equivalent:
(i) $P(D): C^{\infty}(\Omega) \rightarrow C^{\infty}(\Omega)$ is surjective.
(ii) $P(D): \mathscr{D}^{\prime}(\Omega) \rightarrow \mathscr{D}^{\prime}(\Omega)$ is surjective.
(iii) $P(D): \mathscr{D}_{(\omega)}^{\prime}(\Omega) \rightarrow \mathscr{D}_{(\omega)}^{\prime}(\Omega)$ is surjective for each non-quasianalytic weight function ω.
(iv) $P(D): \mathscr{D}_{(\omega)}^{\prime}(\Omega) \rightarrow \mathscr{D}_{(\omega)}^{\prime}(\Omega)$ is surjective for some non-quasianalytic weight function ω.

The above theorem complements the following result proved by Zampieri which shows the peculiarity of $d=2$, too. For an open subset Ω of \mathbb{R}^{d} we denote as usual by $A(\Omega)$ the space of real analytic functions on Ω.

TheOrem 1.2 (Zampieri [13]). Let $\Omega \subset \mathbb{R}^{2}$ be open and $P \in \mathbb{C}\left[X_{1}, X_{2}\right]$. The following are equivalent:
(i) $P(D): C^{\infty}(\Omega) \rightarrow C^{\infty}(\Omega)$ is surjective.
(ii) $P(D): A(\Omega) \rightarrow A(\Omega)$ is surjective.

The article is organized as follows. In the preliminary Section 2 we fix the notation and recall some well known facts about ultradistributions of Beurling type. In Section 3 we explain the connection of continuation of ultradifferentiability and certain localizations of P at infinity. Moreover this section contains the key result which sets apart the case $d=2$ from $d \geq 3$. Namely, we show that in \mathbb{R}^{2} certain hyperplanes which arise in the context of continuation of ultradifferentiability are always characteristic hyperplanes for P. Section 4 provides a sufficient condition for an open subset Ω of \mathbb{R}^{d} to be P-convex for (ω)-singular supports by means of an exterior cone condition. This condition is applied in Section 5 in order to prove Theorem 1.1.
2. Preliminaries. In this section we introduce ultradistributions of Beurling type in the sense of Braun, Meise, and Taylor [4].

Definition 2.1. A continuous increasing function $\omega:[0, \infty) \rightarrow[0, \infty)$ is called a (non-quasianalytic) weight function if it satisfies the following properties:
(α) there exists $K \geq 1$ with $\omega(2 t) \leq K(1+\omega(t))$ for all $t \geq 0$,
(β) $\int_{0}^{\infty} \frac{\omega(t)}{1+t^{2}} d t<\infty$,
($\gamma) \lim _{t \rightarrow \infty} \frac{\log t}{\omega(t)}=0$,
$(\delta) \varphi=\omega \circ \exp$ is convex.
ω is extended to \mathbb{C}^{d} by setting $\omega(z):=\omega(|z|)$. Since we are not dealing with quasianalytic weight functions in this article we simply speak of weight functions for brevity.

For $K \subset \mathbb{R}^{d}$ compact let

$$
\begin{aligned}
\mathscr{D}_{(\omega)}(K)=\left\{f \in C^{\infty}\left(\mathbb{R}^{d}\right) ;\right. & \operatorname{supp} f \subset K \text { and } \\
& \left.\int_{\mathbb{R}^{d}}|\hat{f}(x)| \exp (\lambda \omega(x)) d x<\infty \text { for all } \lambda \geq 1\right\}
\end{aligned}
$$

be equipped with its natural Fréchet space topology, and set $\mathscr{D}_{(\omega)}(\Omega)=$ $\bigcup \mathscr{D}(\omega)(K)$, where K runs through all compact subsets of the open subset Ω of \mathbb{R}^{d}, equipped with its natural (LF)-space topology. The elements of its dual space $\mathscr{D}_{(\omega)}^{\prime}(\Omega)$ are ultradistributions of Beurling type.

The associated local space in the sense of Hörmander [7, 10.1.19]

$$
\mathscr{E}_{(\omega)}(\Omega)=\mathscr{D}_{(\omega)}(\Omega)^{\mathrm{loc}}=\left\{u \in \mathscr{D}_{(\omega)}^{\prime}(\Omega) ; \varphi u \in \mathscr{D}_{(\omega)}(\Omega) \text { for all } \varphi \in \mathscr{D}_{(\omega)}(\Omega)\right\}
$$ is the space of ultradifferentiable functions of Beurling type.

Remark 2.2. (i) For each weight function ω we have $\lim _{t \rightarrow \infty} \omega(t) / t=0$ by the remark following 1.3 of Meise, Taylor, and Vogt [11].
(ii) It is shown in [4] that condition (β) guarantees that $\mathscr{D}_{(\omega)}(\Omega) \neq\{0\}$ and that there are partitions of unity consisting of elements of $\mathscr{D}_{(\omega)}(\Omega)$.
(iii) By [4] we have

$$
\begin{aligned}
& \mathscr{E}_{(\omega)}(\Omega)=\left\{f \in C^{\infty}(\Omega) ; \text { for all } k \in \mathbb{N} \text { and } K \Subset \Omega\right. \\
& \left.\qquad|f|_{k, K}:=\sup _{\alpha \in \mathbb{N}_{0}^{d}, x \in K}\left|f^{(\alpha)}(x)\right| \exp \left(-k \varphi^{*}(|\alpha| / k)\right)<\infty\right\},
\end{aligned}
$$

where $\varphi^{*}(s)=\sup \{s t-\varphi(t) ; t \geq 0\}$ is the Young conjugate of φ.
(iv) For $\delta>1$ the function $\omega(t)=t^{1 / \delta}$ is a weight function for which the corresponding class of ultradifferentiable functions coincides with the small Gevrey class

$$
\gamma^{\delta}(\Omega)=\left\{f \in C^{\infty}(\Omega) ; \forall K \Subset \Omega \forall C \geq 1: \sup _{x \in K, \alpha \in \mathbb{N}_{0}^{d}} \frac{\left|f^{(\alpha)}(x)\right|}{\alpha!^{\delta} C^{|\alpha|}}<\infty\right\}
$$

DEFINITION 2.3. $\mathscr{E}_{(\omega)}(\Omega)$ equipped with the seminorms $\left(|\cdot|_{k, K}\right)_{k \in \mathbb{N}, K \subseteq \Omega}$ is a nuclear Fréchet space. Its dual $\mathscr{E}_{(\omega)}^{\prime}(\Omega)$ is equal to the space of $u \in$ $\mathscr{D}_{(\omega)}^{\prime}(\Omega)$ for which

$$
\operatorname{supp} u=\mathbb{R}^{d} \backslash \bigcup\left\{B \subset \mathbb{R}^{d} \text { open; } u(\varphi)=0 \text { for all } \varphi \in \mathscr{D}_{(\omega)}(B)\right\}
$$

is a compact subset of Ω.
The next theorem is a special case of a result due to Frerick and Wengenroth (see [5]), which completes a result of Bonet, Galbis, and Meise (see [3]),
characterising the surjectivity of convolution operators on ultradistributions of Beurling type.

Theorem 2.4. Let $\Omega \subset \mathbb{R}^{d}$ be open, ω be a weight function, and $P \in$ $\mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$. Then the following are equivalent:
(i) $P(D): \mathscr{D}_{(\omega)}^{\prime}(\Omega) \rightarrow \mathscr{D}_{(\omega)}^{\prime}(\Omega)$ is surjective.
(ii) Ω is P-convex for (ω)-supports as well as P-convex for (ω)-singular supports.

Recall that an open subset Ω of \mathbb{R}^{d} is called P-convex for (ω)-supports if for every compact subset K of Ω there is a compact subset L of Ω such that $\operatorname{supp} \varphi \subset L$ whenever $\operatorname{supp} P(-D) \varphi \subset K$, for every $\varphi \in \mathscr{D}_{(\omega)}(\Omega)$. Analogously, Ω is called P-convex for (ω)-singular supports if for every compact subset K of Ω there is a compact subset L of Ω such that $\operatorname{sing} \operatorname{supp}_{(\omega)} u \subset L$ whenever sing $\operatorname{supp}_{(\omega)} P(-D) u \subset K$, for every $u \in \mathscr{E}_{(\omega)}^{\prime}(\Omega)$.

Remark 2.5. (i) Clearly, P-convexity for supports of Ω implies P convexity for (ω)-supports of Ω. On the other hand, $\mathscr{D}_{(\omega)}(\Omega)$ is sequentially dense in $\mathscr{D}(\Omega)$, as shown by Braun et al. [4, Proposition 3.9], so that P-convexity for supports is implied by P-convexity for (ω)-supports. Hence, P-convexity for supports and P-convexity for (ω)-supports are in fact equivalent.
(ii) If P is elliptic the same is obviously true for \check{P}. Hence $P(-D)$ has a fundamental solution E which is analytic in $\mathbb{R}^{d} \backslash\{0\}$. Since the analytic functions are contained in $\mathscr{E}_{(\omega)}(\Omega)$ for each weight function ω (cf. [4, Proposition 4.10]) we have in particular

$$
\operatorname{ch}\left(\operatorname{sing} \operatorname{supp}_{(\omega)} E\right)=\operatorname{ch}\left(\operatorname{sing} \operatorname{supp}_{(\omega)} P(-D) \delta_{0}\right)
$$

where $\operatorname{ch}(A)$ denotes the convex hull of a set $A \subset \mathbb{R}^{d}$. By [2, Theorem 2.1] it therefore follows that for each open set $\Omega \subset \mathbb{R}^{d}$ and every $u \in \mathscr{D}_{(\omega)}^{\prime}(\Omega)$ we have

$$
\operatorname{sing} \operatorname{supp}_{(\omega)} P(-D) u=\operatorname{sing} \operatorname{supp}_{(\omega)} u
$$

In particular, Ω is P-convex for (ω)-singular supports. This and the wellknown fact that every open subset Ω of \mathbb{R}^{d} is P-convex for supports for elliptic P imply by Theorem 2.4 the surjectivity of

$$
P(D): \mathscr{D}_{(\omega)}^{\prime}(\Omega) \rightarrow \mathscr{D}_{(\omega)}^{\prime}(\Omega)
$$

whenever P is elliptic.
From now on, let P always be a non-constant polynomial.
3. (ω)-Localizations at infinity and continuation of ultradifferentiability. Obviously, P-convexity for (ω)-singular supports is closely related to the continuation of (ω)-ultradifferentiability of $P(-D) u$ to u. Anal-
ogously to the tools introduced by Hörmander in order to deal with the classical case (see e.g. [7, Section 11.3, Vol. II]) Langenbruch introduced the following notions in [9]. For a polynomial P, a subspace V of \mathbb{R}^{d}, and $t>0$, $\xi \in \mathbb{R}^{d}$ let

$$
\tilde{P}_{V}(\xi, t)=\sup \{|P(\xi+\eta)| ; \eta \in V,|\eta| \leq t\}, \quad \tilde{P}(\xi, t)=\tilde{P}_{\mathbb{R}^{d}}(\xi, t) .
$$

Moreover, let

$$
\sigma_{P,(\omega)}(V):=\inf _{t \geq 1} \liminf _{\xi \rightarrow \infty} \frac{\tilde{P}_{V}(\xi, t \omega(\xi))}{\tilde{P}(\xi, t \omega(\xi))}
$$

If we formally set $\omega \equiv 1$, we obtain Hörmander's classical definition of $\sigma_{P}(V)$, [7, Section 11.3, Vol. II]. In order to simplify notation we write $\sigma_{P,(\omega)}(N)$ instead of $\sigma_{P,(\omega)}(\operatorname{span}\{N\})$ for $N \in S^{d-1}$.

The next theorem is an almost immediate consequence of [9, Theorem 2.5].

Theorem 3.1. Let $\Omega_{1} \subset \Omega_{2}$ be open convex subsets of \mathbb{R}^{d}. Assume that every hyperplane $H=\left\{x \in \mathbb{R}^{d} ;\langle x, N\rangle=\alpha\right\}, N \in S^{d-1}, \alpha \in \mathbb{R}$, with $\sigma_{P,(\omega)}(N)=0$ which intersects Ω_{2} already intersects Ω_{1}. Then for every $u \in \mathscr{D}_{(\omega)}^{\prime}\left(\Omega_{2}\right)$ satisfying $\operatorname{sing} \operatorname{supp}_{(\omega)} P(D) u=\emptyset$ as well as $\operatorname{sing} \operatorname{supp}_{(\omega)} u \subset$ $\Omega_{2} \backslash \Omega_{1}$ we already have sing $\operatorname{supp}_{(\omega)} u=\emptyset$.

Proof. Let $u \in \mathscr{D}_{(\omega)}^{\prime}\left(\Omega_{2}\right)$ satisfy $P(D) u \in \mathscr{E}_{(\omega)}\left(\Omega_{2}\right)$ and $\left.u\right|_{\Omega_{1}} \in \mathscr{E}_{(\omega)}\left(\Omega_{1}\right)$. Since Ω_{2} is convex it follows from the theorem of supports (see e.g. [7], Theorem 4.3.3, Vol. I]) and [3, Theorem A] that there is $v \in \mathscr{E}_{(\omega)}\left(\Omega_{2}\right)$ such that $P(D) v=P(D) u$ so that $w:=u-v \in \mathscr{D}_{(\omega)}^{\prime}\left(\Omega_{2}\right)$ satisfies $P(D) w=0$ as well as $\left.w\right|_{\Omega_{1}} \in \mathscr{E}_{(\omega)}\left(\Omega_{1}\right)$. Hence, by [9, Theorem 2.5] it follows that $w \in$ $\mathscr{E}_{(\omega)}\left(\Omega_{2}\right)$, which proves the theorem.

When investigating P-convexity for (ω)-singular supports by means of the above theorem it is necessary to study the zeros of $\sigma_{P,(\omega)}$ in S^{d-1}. In order to do so, recall the definition of ω-localizations of P at infinity, as introduced by Langenbruch in 9 . For a polynomial P and $\xi \in \mathbb{R}^{d}$ we set $P_{\xi, \omega}(x):=P(\xi+\omega(\xi) x)$, which is again a polynomial of the same degree as P. Clearly, $\hat{P}:=\sqrt{\sum_{\alpha}\left|P^{(\alpha)}(0)\right|^{2}}$ defines a norm on the vector space $\mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$. From now on let $\mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ be equipped with the topology induced by this norm. The set of all limits in $\mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ of the normalized polynomials

$$
x \mapsto \frac{P_{\xi, \omega}(x)}{\hat{P}_{\xi, \omega}}
$$

as ξ tends to infinity is denoted by $L_{\omega}(P)$. More precisely, if $N \in S^{d-1}$ then the set of limits where $\xi /|\xi| \rightarrow N$ (with ξ tending to infinity) is denoted by $L_{\omega, N}(P)$. Obviously, $L_{\omega}(P)$ as well as $L_{\omega, N}(P)$ are closed subsets of
the unit sphere of all polynomials in d variables, equipped with the norm $Q \mapsto \hat{Q}$, of degree not exceeding the degree of P. The non-zero multiples of elements of $L_{\omega}(P)$ (resp. of $L_{\omega, N}(P)$) are called ω-localizations of P at infinity (resp. ω-localizations of P at infinity in direction N). Since $\omega(\xi)=$ $\omega(|\xi|), Q \in L_{\omega, N}(\check{P})$ if and only if $\check{Q} \in L_{\omega,-N}(P)$. Again, if we formally set $\omega \equiv 1$ we obtain the well-known set $L(P)$ of localizations of P at infinity (see Hörmander [7, Definition 10.2.6]).

For the classical case, i.e. if formally $\omega \equiv 1$, the next lemma is proved in [8]. The proof here is almost the same, but we include it for the reader's convenience.

Lemma 3.2. Let P be of degree m with principal part P_{m}.
(i) For every subspace V of \mathbb{R}^{d} and $t \geq 1$ we have

$$
\liminf _{\xi \rightarrow \infty} \frac{\tilde{P}_{V}(\xi, t \omega(\xi))}{\tilde{P}(\xi, t \omega(\xi))}=\inf _{Q \in L_{\omega}(P)} \frac{\tilde{Q}_{V}(0, t)}{\tilde{Q}(0, t)}
$$

(ii) Let $N \in S^{d-1}$ and $Q \in L_{\omega, N}(P)$. If $P_{m}(N) \neq 0$ then Q is constant.
(iii) If P is non-elliptic then for every subspace V of \mathbb{R}^{d} and $t \geq 1$ we have

$$
\liminf _{\xi \rightarrow \infty} \frac{\tilde{P}_{V}(\xi, t \omega(\xi))}{\tilde{P}(\xi, t \omega(\xi))}=\inf _{N \in S^{d-1}, P_{m}(N)=0} \inf _{Q \in L_{\omega, N}(P)} \frac{\tilde{Q}_{V}(0, t)}{\tilde{Q}(0, t)}
$$

Proof. (i) Since for every subspace V and each $t>0$ the maps $R \mapsto \tilde{R}_{V}(0, t)$ are continuous seminorms on $\mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ and because $\tilde{P}_{V}(\xi, t \omega(\xi))=\left(\tilde{P}_{\xi, \omega}\right)_{V}(0, t)$ it follows immediately from the definition that

$$
\frac{\tilde{Q}_{V}(0, t)}{\tilde{Q}(0, t)} \geq \liminf _{\xi \rightarrow \infty} \frac{\tilde{P}_{V}(\xi, t \omega(\xi))}{\tilde{P}(\xi, t \omega(\xi))}
$$

for every $Q \in L_{\omega}(P)$.
Moreover, if $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ tending to infinity is such that

$$
\liminf _{\xi \rightarrow \infty} \frac{\tilde{P}_{V}(\xi, t \omega(\xi))}{\tilde{P}(\xi, t \omega(\xi))}=\lim _{n \rightarrow \infty} \frac{\tilde{P}_{V}\left(\xi_{n}, t \omega\left(\xi_{n}\right)\right)}{\tilde{P}\left(\xi_{n}, t \omega\left(\xi_{n}\right)\right)}=\lim _{n \rightarrow \infty} \frac{\left(\tilde{P}_{\xi_{n}, \omega}\right)_{V}(0, t)}{\tilde{P}_{\xi_{n}, \omega}(0, t)}
$$

we can extract a subsequence of $\left(\xi_{n}\right)_{n \in \mathbb{N}}$, again denoted by $\left(\xi_{n}\right)_{n \in \mathbb{N}}$, such that the sequence of normalized polynomials $P_{\xi_{n}, \omega} / \hat{P}_{\xi_{n}, \omega}$ converges in the compact unit sphere of all polynomials in d variables of degree at most m. This limit belongs to $L_{\omega}(P)$ and we get

$$
\liminf _{\xi \rightarrow \infty} \frac{\tilde{P}_{V}(\xi, t \omega(\xi))}{\tilde{P}(\xi, t \omega(\xi))} \geq \inf _{Q \in L_{\omega}(P)} \frac{\tilde{Q}_{V}(0, t)}{\tilde{Q}(0, t)}
$$

completing the proof of (i).
The proof of (ii) is an easy application of Taylor's formula. Let $P=$ $\sum_{j=0}^{m} P_{j}$, where P_{j} is a homogeneous polynomial of degree j. Let $\left(\xi_{n}\right)_{n \in \mathbb{N}}$
tend to infinity with $\lim _{n \rightarrow \infty} \xi_{n} /\left|\xi_{n}\right|=N$ and $P_{m}(N) \neq 0$. Then

$$
\begin{aligned}
& P_{\xi_{n}, \omega}(\eta)=\sum_{0 \leq|\alpha| \leq j \leq m} \frac{P_{j}^{(\alpha)}\left(\xi_{n}\right)}{\alpha!} \omega\left(\xi_{n}\right)^{|\alpha|} \eta^{\alpha} \\
& =\left|\xi_{n}\right|^{m}\left(\sum_{0 \leq j \leq m} \frac{\left|\xi_{n}\right|^{j}}{\left|\xi_{n}\right|^{m}} P_{j}\left(\frac{\xi_{n}}{\left|\xi_{n}\right|}\right)+\sum_{0<|\alpha| \leq j \leq m} \frac{\left|\xi_{n}\right|^{j-|\alpha|} \omega\left(\xi_{n}\right)^{|\alpha|}}{\left|\xi_{n}\right|^{m} \alpha!} P_{j}^{(\alpha)}\left(\frac{\xi_{n}}{\left|\xi_{n}\right|}\right) \eta^{\alpha}\right)
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& \hat{P}_{\xi_{n}, \omega}=\sqrt{\sum_{0 \leq|\alpha| \leq m}\left|\sum_{j=|\alpha|}^{m} P_{j}^{(\alpha)}\left(\xi_{n}\right)\right|^{2} \omega\left(\xi_{n}\right)^{2|\alpha|}} \\
& =\left|\xi_{n}\right|^{m} \sqrt{\left|\sum_{j=0}^{m} P_{j}\left(\frac{\xi_{n}}{\left|\xi_{n}\right|}\right) \frac{\left|\xi_{n}\right|^{j}}{\left|\xi_{n}\right|^{m}}\right|^{2}+\sum_{0<|\alpha| \leq m}\left|\sum_{j=|\alpha|}^{m} P_{j}^{(\alpha)}\left(\frac{\xi_{n}}{\left|\xi_{n}\right|}\right) \frac{\left|\xi_{n}\right|^{j-|\alpha|} \omega\left(\xi_{n}\right)^{|\alpha|}}{\left|\xi_{n}\right|^{m}}\right|^{2}}
\end{aligned}
$$

which implies, since $\omega\left(\xi_{n}\right)=o\left(\left|\xi_{n}\right|\right)$ as n tends to infinity, that

$$
\lim _{n \rightarrow \infty} \frac{P_{\xi_{n}, \omega}(\eta)}{\hat{P}_{\xi_{n}, \omega}}=\frac{P_{m}(N)}{\left|P_{m}(N)\right|}
$$

for every $\eta \in \mathbb{R}^{d}$ showing (ii).
(iii) is an immediate consequence of $\liminf _{\xi \rightarrow \infty} \tilde{P}_{V}(\xi, t \omega(\xi)) / \tilde{P}(\xi, t \omega(\xi))$ ≤ 1, (i), and (ii).

Before we continue, we recall the following definition (cf. Hörmander 77, Section 10.2]). Let

$$
\Lambda(P)=\left\{\eta \in \mathbb{R}^{d} ; \forall \xi \in \mathbb{R}^{d}, t \in \mathbb{R}: P(\xi+t \eta)=P(\xi)\right\}
$$

which is obviously a subspace of \mathbb{R}^{d} which coincides with \mathbb{R}^{d} if and only if P is constant. In the case of $\omega \equiv 1$ the result corresponding to the next proposition is due to Hörmander [7, Theorem 10.2.8, Vol. II] and its proof uses the Tarski-Seidenberg theorem. In our case, the proof is rather elementary.

Lemma 3.3. If $Q \in L_{\omega, N}(P)$ then $N \in \Lambda(Q)$.
Proof. Since $\omega(\xi)=\omega(|\xi|)$ we can assume without loss of generality that $N=e_{1}=(1,0, \ldots, 0)$. We denote the degree of P by m. In the case of $P^{\left(e_{1}\right)} \equiv 0$ we see by Taylor's theorem that $e_{1} \in \Lambda(P)$, which clearly implies $e_{1} \in \Lambda(Q)$ by the definition of $L_{\omega}(P)$.

Now, if $P^{\left(e_{1}\right)}$ does not vanish identically it follows that $P_{\xi, \omega}^{\left(e_{1}\right)}$ does not either, for every $\xi \in \mathbb{R}^{d}$. Since $P \mapsto \sum_{\alpha}\left|P^{(\alpha)}(0)\right|$ is a norm on the space of all polynomials in d variables, it follows that for every $\xi \in \mathbb{R}^{d}$,

$$
0 \neq \sum_{\alpha}\left|P_{\xi, \omega}^{\left(e_{1}\right)}(0)\right|=\sum_{\alpha}\left|P^{\left(\alpha+e_{1}\right)}(\xi)\right| \omega(\xi)^{|\alpha|}=\sum_{0 \leq|\alpha| \leq m-1}\left|P^{\left(\alpha+e_{1}\right)}(\xi)\right| \omega(\xi)^{|\alpha|}
$$

because P has degree m. Hence, for every $\xi \in \mathbb{R}^{d}, t \in \mathbb{R}$ we have by Taylor's theorem

$$
\begin{aligned}
0 & \leq \frac{\left|P^{\left(e_{1}+\alpha\right)}\left(\xi+\omega(\xi)\left(x+s e_{1}\right)\right)\right|}{\sum_{\alpha}\left|P^{(\alpha)}(\xi)\right| \omega(\xi)^{|\alpha|}} \\
& =\frac{\left|\sum_{0 \leq|\alpha| \leq m-1} P^{\left(\alpha+e_{1}\right)}(\xi) \omega(\xi)^{|\alpha|} \frac{1}{\alpha!}\left(x+s e_{1}\right)^{\alpha}\right|}{\sum_{\alpha}\left|P^{(\alpha)}(\xi)\right| \omega(\xi)^{|\alpha|}} \\
& \leq \frac{\sum_{0 \leq|\alpha| \leq m-1}\left|P^{\left(\alpha+e_{1}\right)}(\xi)\right| \omega(\xi)^{|\alpha|} \frac{1}{\alpha!}\left|\left(x+s e_{1}\right)^{\alpha}\right|}{\sum_{0 \leq|\alpha| \leq m-1}\left|P^{\left(\alpha+e_{1}\right)}(\xi)\right| \omega(\xi)^{1+|\alpha|}} \\
& \leq \frac{\max _{0 \leq|\alpha| \leq m-1} \frac{1}{\alpha!}\left|\left(x+s e_{1}\right)^{\alpha}\right|}{\omega(\xi)}
\end{aligned}
$$

Since $Q \in L_{\omega}(P)$ there is $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ tending to infinity such that

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{P\left(\xi_{n}+\omega\left(\xi_{n}\right) x\right)}{\hat{P}_{\xi_{n}, \omega}}
$$

in the vector space topology of the polynomials in d variables of degree not exceeding m. In particular, we also have

$$
Q^{\left(e_{1}\right)}(x)=\lim _{n \rightarrow \infty} \frac{P^{\left(e_{1}\right)}\left(\xi_{n}+\omega\left(\xi_{n}\right) x\right)}{\hat{P}_{\xi_{n}, \omega}}
$$

The space of all polynomials in d variables of degree not exceeding m being finite-dimensional, all norms on it are equivalent. Therefore, by passing to a subsequence of $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ if necessary, there is $c>0$ such that for every $x \in \mathbb{R}^{d}$ and $s \in \mathbb{R}$,

$$
\begin{aligned}
\left|Q^{\left(e_{1}\right)}\left(x+s e_{1}\right)\right| & =\lim _{n \rightarrow \infty} \frac{\left|P^{\left(e_{1}\right)}\left(\xi_{n}+\omega\left(\xi_{n}\right)\left(x+s e_{1}\right)\right)\right|}{\hat{P}_{\xi_{n}, \omega}} \\
& \leq c \lim _{n \rightarrow \infty} \frac{\left|P^{\left(e_{1}\right)}\left(\xi_{n}+\omega\left(\xi_{n}\right)\left(x+s e_{1}\right)\right)\right|}{\sum_{\alpha}\left|P^{\left(\alpha+e_{1}\right)}\left(\xi_{n}\right)\right| \omega\left(\xi_{n}\right)^{|\alpha|}} \\
& \leq c \lim _{n \rightarrow \infty} \frac{\max _{0 \leq|\alpha| \leq m-1} \frac{1}{\alpha!}\left|\left(x+s e_{1}\right)^{\alpha}\right|}{\omega\left(\xi_{n}\right)}=0
\end{aligned}
$$

Hence, for each $x \in \mathbb{R}^{d}$ the polynomial $q_{x}: \mathbb{R} \rightarrow \mathbb{C}, s \mapsto Q\left(x+s e_{1}\right)$, satisfies $q_{x}^{\prime}(s)=Q^{\left(e_{1}\right)}\left(x+s e_{1}\right)=0$. Thus q_{x} is constant, which shows $e_{1} \in \Lambda(Q)$.

Now we are able to prove the main result of this section. In the classical case, i.e. if we formally set $\omega \equiv 1$, the corresponding result was proved in 8]. Again the proof is almost identical but we include it for completeness.

Lemma 3.4. Let $P \in \mathbb{C}\left[X_{1}, X_{2}\right]$ be of degree m with principal part P_{m}. Then

$$
\left\{y \in S^{1} ; \sigma_{P,(\omega)}(y)=0\right\} \subset\left\{y \in S^{1} ; P_{m}(y)=0\right\}
$$

Proof. By Lemma 3.2 (i)\&(ii) we can assume without loss of generality that P is not elliptic. Since we are in \mathbb{R}^{2} the principal part P_{m} can only have a finite number of zeros in S^{1}. Let $\left\{N \in S^{1} ; P_{m}(N)=0\right\}=\left\{N_{1}, \ldots, N_{l}\right\}$. For each $1 \leq j \leq l$ choose $x_{j} \in S^{1}$ orthogonal to N_{j}. Without loss of generality, let $\left\{y \in S^{1} ; \sigma_{P}(y)=0\right\} \neq \emptyset$. By Lemma 3.2 there is a non-constant $Q \in$ $L_{\omega, N_{j}}(P)$ for some $1 \leq j \leq l$. By Lemma 3.3 we have $Q\left(\xi+s N_{j}\right)=Q(\xi)$ for any $\xi \in \mathbb{R}^{2}$ and $s \in \mathbb{R}$. Hence $Q(\xi)=Q\left(\left\langle\xi, x_{j}\right\rangle x_{j}\right)$ for all $\xi \in \mathbb{R}^{2}$. Defining

$$
q: \mathbb{R} \rightarrow \mathbb{C}, \quad s \mapsto Q\left(s x_{j}\right)
$$

it follows that for fixed $y \in S^{1}$,

$$
\begin{aligned}
\tilde{Q}_{\mathrm{span}\{y\}}(0, t) & =\sup \{|Q(\lambda y)| ;|\lambda| \leq t\}=\sup \left\{\left|Q\left(\lambda\left\langle y, x_{j}\right\rangle x_{j}\right)\right| ;|\lambda| \leq t\right\} \\
& =\sup \left\{\left|q\left(\lambda t\left\langle y, x_{j}\right\rangle\right)\right| ;|\lambda| \leq 1\right\}
\end{aligned}
$$

and because $\left|x_{j}\right|=1$ we also have

$$
\begin{aligned}
\tilde{Q}(0, t) & =\sup \left\{|Q(\xi)| ; \xi \in \mathbb{R}^{2},|\xi| \leq t\right\}=\sup \left\{\left|Q\left(\left\langle\xi, x_{j}\right\rangle x_{j}\right)\right| ; \xi \in \mathbb{R}^{2},|\xi| \leq t\right\} \\
& =\sup \left\{\left|Q\left(\lambda x_{j}\right)\right| ;|\lambda| \leq t\right\}=\sup \{|q(\lambda t)| ;|\lambda| \leq 1\}
\end{aligned}
$$

Since $Q \in L_{\omega}(P)$ it follows that q is a polynomial of degree at most m. Because on the finite-dimensional space of all polynomials in one variable of degree at most m the norms $\sup _{|s| \leq 1}|p(s)|$ and $\sum_{k=0}^{m}\left|p^{(k)}(0)\right|$ are equivalent there is $C>0$ such that

$$
C \sup _{|s| \leq 1}|p(s)| \geq \sum_{k=0}^{m}\left|p^{(k)}(0)\right| \geq(1 / C) \sup _{|s| \leq 1}|p(s)|
$$

for all $p \in \mathbb{C}[X]$ with degree at most m. Applying this to the polynomials $s \mapsto q(s t)$ and $s \mapsto q\left(s t\left\langle y, x_{j}\right\rangle\right)$ gives

$$
\frac{\tilde{Q}_{\mathrm{span}\{y\}}(0, t)}{\tilde{Q}(0, t)} \geq \frac{\sum_{k=0}^{m}\left|q^{(k)}(0)\right| t^{k}\left|\left\langle y, x_{j}\right\rangle\right|^{k}}{C^{2} \sum_{k=0}^{m}\left|q^{(k)}(0)\right| t^{k}} \geq\left|\left\langle y, x_{j}\right\rangle\right|^{m} / C^{2}
$$

where we used $\left|\left\langle y, x_{j}\right\rangle\right| \leq 1$ in the last inequality. We conclude that for every $1 \leq j \leq l$,

$$
\inf _{Q \in L_{\omega, N_{j}}(P)} \frac{\tilde{Q}_{\operatorname{span}\{y\}}(0, t)}{\tilde{Q}(0, t)} \geq \frac{\left|\left\langle y, x_{j}\right\rangle\right|^{m}}{C^{2}}
$$

where C only depends on the degree m of P. It follows from Lemma 3.2 (iii) and $\left\{N \in S^{1} ; P_{m}(N)=0\right\}=\left\{N_{1}, \ldots, N_{l}\right\}$ that for all $t \geq 1$,

$$
\liminf _{\xi \rightarrow \infty} \frac{\tilde{P}_{\mathrm{span}\{y\}}(\xi, t \omega(\xi))}{\tilde{P}(\xi, t \omega(\xi))}=\min _{1 \leq j \leq l} \inf _{Q \in L_{\omega, N_{j}}(P)} \frac{\tilde{Q}_{\mathrm{span}\{y\}}(0, t)}{\tilde{Q}(0, t)} \geq \min _{1 \leq j \leq l} \frac{\left|\left\langle y, x_{j}\right\rangle\right|^{m}}{C^{2}}
$$

Therefore, if $y \in S^{1}$ and

$$
0=\sigma_{P,(\omega)}(y)=\inf _{t \geq 1} \liminf _{\xi \rightarrow \infty} \frac{\tilde{P}_{\text {span }\{y\}}(\xi, t \omega(\xi))}{\tilde{P}(\xi, t \omega(\xi))}
$$

then y is orthogonal to some x_{j}, hence $y \in\left\{N_{j},-N_{j}\right\}$ since $|y|=1=\left|N_{j}\right|$, which shows $P_{m}(y)=0$.

In particular, for $P \in \mathbb{C}\left[X_{1}, X_{2}\right] \backslash\{0\}$ the set

$$
\left\{y \in S^{1} ; \sigma_{P,(\omega)}(y)=0\right\}
$$

is finite. Moreover, it follows immediately from the above lemma that in the case of $d=2$ every hyperplane $H=\{x ;\langle x, N\rangle=\alpha\}, N \in S^{d-1}, \alpha \in \mathbb{R}$, with $\sigma_{P,(\omega)}(N)=0$ is characteristic for P. That this is not the case in general for $d \geq 3$ is shown by the next example.

Example 3.5. Let $d>2$ and $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ be given by

$$
P\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{2}-x_{2}^{2}-\cdots-x_{d}^{2}
$$

Then for each weight function ω an ω-localization of P at infinity in direction $(1 / \sqrt{2})(1,1,0, \ldots, 0)$ is given by $Q\left(x_{1}, \ldots, x_{d}\right)=\left(x_{1}-x_{2}\right) / \sqrt{2}$. Hence it follows for $e_{d}=(0, \ldots, 0,1)$ that $\tilde{Q}_{\text {span }\left\{e_{d}\right\}}(0, t)=0$ for every $t \geq 1$ so that in particular $\sigma_{P,(\omega)}\left(e_{d}\right)=0$ by Lemma 3.2. On the other hand, we clearly have $P_{2}\left(e_{d}\right)=P\left(e_{d}\right)=-1$.
4. A sufficient condition for P-convexity for (ω)-singular supports. In this section we will prove a sufficient condition for an open subset Ω of \mathbb{R}^{d} to be P-convex for (ω)-singular supports in terms of an exterior cone condition, similar to those proved in [8].

Recall that a cone C is called proper if it does not contain any affine subspace of dimension one. Moreover, recall that for an open convex cone $\Gamma \subset \mathbb{R}^{d}$ its dual cone is defined as

$$
\Gamma^{\circ}:=\left\{\xi \in \mathbb{R}^{d} ; \forall y \in \Gamma:\langle y, \xi\rangle \geq 0\right\}
$$

For $\Gamma \neq \emptyset$ it is a closed proper convex cone in \mathbb{R}^{d}. On the other hand, every closed proper convex cone C in \mathbb{R}^{d} is the dual cone of a unique non-empty, open, convex cone which is given by

$$
\Gamma:=\left\{y \in \mathbb{R}^{d} ; \forall \xi \in C \backslash\{0\}:\langle y, \xi\rangle>0\right\}
$$

The proof uses the Hahn-Banach Theorem (cf. [7, p. 257, Vol. I]). Therefore, we write Γ° also for arbitrary closed convex proper cones. Moreover, from now on we assume that all open convex cones Γ considered are non-empty.

As a first result we obtain from Theorem 3.1 the next proposition which is an analogue of [7, Corollary 8.6.11, Vol. I].

Lemma 4.1. Let Γ be an open proper convex cone in \mathbb{R}^{d}, and let $x_{0} \in \mathbb{R}^{d}$. If for $\Omega:=x_{0}+\Gamma$ no hyperplane $H=\left\{x \in \mathbb{R}^{d} ;\langle x, N\rangle=\alpha\right\}, N \in S^{d-1}$, $\alpha \in \mathbb{R}$, with $\sigma_{P,(\omega)}(N)=0$ intersects $\bar{\Omega}$ only in x_{0}, the following holds.

Each $u \in \mathscr{D}_{(\omega)}^{\prime}(\Omega)$ with $\operatorname{sing} \operatorname{supp}_{(\omega)} P(D) u=\emptyset$ and $\operatorname{sing} \operatorname{supp}_{(\omega)} u$ bounded already satisfies $\operatorname{sing} \operatorname{supp}_{(\omega)} u=\emptyset$.

Proof. Let $u \in \mathscr{D}_{(\omega)}^{\prime}(\Omega)$ satisfy $P(D) u \in \mathscr{E}_{(\omega)}(\Omega)$ and assume that u is $\mathscr{E}_{(\omega)}$ outside a bounded subset of Ω. Since Γ is a proper cone, there is a hyperplane π intersecting Ω only in x_{0}. Let H_{π} be a halfspace with boundary parallel to π such that $\Omega_{1}:=\Omega \cap H_{\pi} \neq \emptyset$ is unbounded and $\left.u\right|_{\Omega_{1}} \in \mathscr{E}_{(\omega)}\left(\Omega_{1}\right)$. Denoting $\Omega_{2}:=\Omega$ we have convex sets $\Omega_{1} \subset \Omega_{2}$ and by the hypothesis, each hyperplane $H=\left\{x \in \mathbb{R}^{d} ;\langle x, N\rangle=\alpha\right\}, N \in S^{d-1}, \alpha \in \mathbb{R}$, with $\sigma_{P,(\omega)}(N)=0$ and $H \cap \Omega_{2} \neq \emptyset$ already intersects Ω_{1}. Theorem 3.1 now gives $\operatorname{sing} \operatorname{supp}_{(\omega)} u=\emptyset$.

Before we come to the main result of this section, we need one more result.

Theorem 4.2.

(i) If $u \in \mathscr{E}_{(\omega)}^{\prime}\left(\mathbb{R}^{d}\right)$ then

$$
\operatorname{ch}\left(\operatorname{sing} \operatorname{supp}_{(\omega)} u\right)=\operatorname{ch}\left(\operatorname{sing} \operatorname{supp}_{(\omega)} P(-D) u\right) .
$$

(ii) For an open subset Ω of \mathbb{R}^{d} the following are equivalent.
(a) Ω is P-convex for (ω)-singular supports.
(b) For each $u \in \mathscr{E}_{(\omega)}^{\prime}(\Omega)$ one has

$$
\operatorname{dist}\left(\operatorname{sing} \operatorname{supp}_{(\omega)} u, \Omega^{c}\right)=\operatorname{dist}\left(\operatorname{sing} \operatorname{supp}_{(\omega)} P(-D) u, \Omega^{c}\right)
$$

Proof. (i) By a result of Bonet et al. [2, Remark 2.10], for a convex compact subset K of \mathbb{R}^{d} and $u \in \mathscr{E}_{(\omega)}\left(\mathbb{R}^{d}\right)$, the inclusion sing $\operatorname{supp}_{(\omega)} u \subset K$ is equivalent to the existence of $b>0$ such that for each $m \in \mathbb{N}$ there is $C_{m}>0$ such that

$$
|\hat{u}(\zeta)| \leq C_{m} \exp \left(H_{K}(\operatorname{Im} \zeta)+b \omega(\zeta)\right)
$$

for all $\zeta \in \mathbb{C}^{d}$ with $|\operatorname{Im} \zeta| \leq m \omega(\zeta)$ and $|\zeta| \geq C_{m}$, where H_{K} denotes the supporting function of K. Moreover, by [2, Remark 1.2(c)] we can assume without loss of generality that $\omega \geq 1$.

Since by Braun et al. [4, Lemma 1.2] there is some constant $K>0$ such that $\omega(\zeta+\eta) \leq K(1+\omega(\zeta)+\omega(\eta))$ for all $\zeta, \eta \in \mathbb{C}^{d}$, it follows that for all $\zeta \in \mathbb{C}^{d}$ with $|\operatorname{Im} \zeta| \leq m \omega(\zeta)$ and all $z \in \mathbb{C}$ with $|z|=1$,

$$
\begin{aligned}
\left|\operatorname{Im}\left(\zeta+z e_{1}\right)\right| & \leq m \omega(\zeta)+1=m \omega\left(\zeta+z e_{1}-z e_{1}\right)+1 \\
& \leq m \omega\left(\left|\zeta+z e_{1}\right|+1\right)+1 \leq K m\left(1+\omega\left(\zeta+z e_{1}\right)+\omega(1)\right)+1 \\
& \leq K m \omega\left(\zeta+z e_{1}\right)+(K m(1+\omega(1))+1) \omega\left(\zeta+z e_{1}\right) \\
& =(K m(2+\omega(1))+1) \omega\left(\zeta+z e_{1}\right) .
\end{aligned}
$$

Hence, if $|\operatorname{Im} \zeta| \leq m \omega(\zeta)$ for some $m \in \mathbb{N}$ there is $k \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\operatorname{Im}\left(\zeta+z e_{1}\right)\right| \leq k \omega\left(\zeta+z e_{1}\right) \quad \text { for all } z \in \mathbb{C},|z|=1 \tag{4.1}
\end{equation*}
$$

Now, for $u \in \mathscr{E}_{(\omega)}^{\prime}(\Omega)$ set $f:=P(-D) u$ and let K be the convex hull of $\operatorname{sing} \operatorname{supp}_{(\omega)} f$. Clearly, we have $\operatorname{ch}\left(\operatorname{sing} \operatorname{supp}_{(\omega)} u\right) \supset K$. In order to show
the opposite inclusion observe that by [2, Remark 2.10] there is $b>0$ such that for all $m \in \mathbb{N}$ there is $C_{m}>0$ such that

$$
|P(-\zeta) \hat{u}(\zeta)|=|\hat{f}(\zeta)| \leq C_{m} \exp \left(H_{K}(\operatorname{Im} \zeta)+b \omega(\zeta)\right)
$$

for all $\zeta \in \mathbb{C}^{d}$ with $|\zeta| \geq C_{m}$ and $|\operatorname{Im} \zeta| \leq m \omega(\zeta)$. By [7, Lemma 7.3.3, Vol. I] there is $a>0$ such that

$$
a|\hat{u}(\zeta)| \leq \sup _{|z|=1}\left|\hat{f}\left(\zeta+z e_{1}\right)\right|
$$

for all $\zeta \in \mathbb{C}^{d}$. Consequently, for all $\zeta \in \mathbb{C}^{d}$ such that $\left|\zeta+z e_{1}\right| \geq C_{m}$ and $\left|\operatorname{Im}\left(\zeta+z e_{1}\right)\right| \leq m \omega\left(\zeta+z e_{1}\right)$ for every $z \in \mathbb{C}$ with $|z|=1$ we obtain

$$
\begin{aligned}
a|\hat{u}(\zeta)| & \leq \sup _{|z|=1} C_{m} \exp \left(H_{K}\left(\operatorname{Im}\left(\zeta+z e_{1}\right)\right)+b \omega\left(\zeta+z e_{1}\right)\right) \\
& \leq \sup _{|z|=1} C_{m} \exp \left(H_{K}(\operatorname{Im} \zeta)+H_{K}\left(\operatorname{Im} z e_{1}\right)+b K(1+\omega(\zeta)+\omega(1))\right) \\
& =\sup _{|z|=1} C_{m} \exp \left(H_{K}\left(\operatorname{Im} z e_{1}\right)+b K(1+\omega(1))\right) \exp \left(H_{K}(\operatorname{Im} \zeta)+b K \omega(\zeta)\right) .
\end{aligned}
$$

Combining this and inequality (4.1) gives $\tilde{b}>0$ such that for all $m \in \mathbb{N}$ there is $\tilde{C}_{m}>0$ such that

$$
|\hat{u}(\zeta)| \leq \tilde{C}_{m} \exp \left(H_{K}(\operatorname{Im} \zeta)+\tilde{b} \omega(\zeta)\right)
$$

for all $\zeta \in \mathbb{C}^{d}$ with $|\zeta| \geq \tilde{C}_{m}$ and $|\operatorname{Im} \zeta| \leq m \omega(\zeta)$, proving $\operatorname{ch}\left(\operatorname{sing} \operatorname{supp}_{(\omega)} u\right)$ $\subset K$, hence (i).

Using (i), ultradifferentiable cut-off functions, and taking into account that $\mathscr{E}_{(\omega)}(\Omega)$ is an algebra with continuous multiplication (cf. [4, Proposition 4.4]), the proof of (ii) follows along the same lines as the proofs of [7, Theorem 10.6.3 and/or Theorem 10.7.3, Vol. II].

The following proposition (cf. [8]) contains some elementary geometric facts which will be used later.

LEMMA 4.3. Let $\Gamma^{\circ} \neq\{0\}$ be a closed proper convex cone in \mathbb{R}^{d} and $N \in S^{d-1}$. For $c \in \mathbb{R}$ let $H_{c}:=\left\{x \in \mathbb{R}^{d} ;\langle x, N\rangle=c\right\}$. Then the following are equivalent:
(i) $N \in \Gamma$ or $-N \in \Gamma$.
(ii) If $x \in H_{c}$ then $H_{c} \cap\left(x+\Gamma^{\circ}\right)=\{x\}$.

We are now able to prove the main result of this section. Compare also [8, Theorem 9].

Theorem 4.4. Let Ω be an open connected subset of \mathbb{R}^{d} and $P \in$ $\mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ a non-constant polynomial with principal part P_{m}. Then Ω is P-convex for (ω)-singular supports if for every $x \in \partial \Omega$ there is an open convex cone Γ such that $\left(x+\Gamma^{\circ}\right) \cap \Omega=\emptyset$ and $\sigma_{P,(\omega)}(y) \neq 0$ for all $y \in \Gamma$.

Proof. Let $u \in \mathscr{E}_{(\omega)}^{\prime}(\Omega)$. We set $K:=\operatorname{sing} \operatorname{supp}_{(\omega)} P(-D) u$ and $\delta:=$ $\operatorname{dist}\left(K, \Omega^{c}\right)$. We will show that

$$
\operatorname{dist}\left(\operatorname{sing} \operatorname{supp}_{(\omega)} u, \Omega^{c}\right) \geq \delta
$$

which in view of

$$
\operatorname{sing} \operatorname{supp}_{(\omega)} u \supset \operatorname{sing} \operatorname{supp}_{(\omega)} P(-D) u
$$

will imply

$$
\operatorname{dist}\left(\operatorname{sing} \operatorname{supp}_{(\omega)} u, \Omega^{c}\right)=\delta
$$

hence P-convexity for (ω)-singular supports of Ω by Theorem 4.2.
Let $x_{0} \in \partial \Omega$ and let Γ be as in the hypothesis for $x_{0} \in \partial \Omega$. Then $\left(x_{0}+\Gamma^{\circ}\right) \cap \Omega=\emptyset$, thus $\left(x_{0}+y+\Gamma^{\circ}\right) \cap K=\emptyset$ for all $y \in \mathbb{R}^{d}$ with $|y|<\delta$. Therefore, for fixed y with $|y|<\delta$, there is an open proper convex cone $\tilde{\Gamma}$ in \mathbb{R}^{d} with $\tilde{\Gamma} \supset \Gamma^{\circ} \backslash\{0\}$ such that $\left(x_{0}+y+\tilde{\Gamma}\right) \cap K=\emptyset$. Hence, $u \in \mathscr{E}_{(\omega)}^{\prime}(\Omega) \subset$ $\mathscr{D}_{(\omega)}^{\prime}\left(x_{0}+y+\tilde{\Gamma}\right)$ satisfies $P(-D) u \in \mathscr{E}_{(\omega)}\left(x_{0}+y+\tilde{\Gamma}\right)$.

We will show that $u \in \mathscr{E}_{(\omega)}\left(x_{0}+y+\tilde{\Gamma}\right)$ by applying Lemma 4.1. Hence, let $H=\left\{v \in \mathbb{R}^{d} ;\langle v, N\rangle=\alpha\right\}$ be a hyperplane with $\sigma_{P,(\omega)}(N)=0$. As $\bar{\Gamma}$ is a closed proper convex cone with non-empty interior, it is the dual cone of some open proper convex cone Γ_{1}. It follows from $\Gamma_{1}^{\circ}=\overline{\tilde{\Gamma}} \supset \Gamma^{\circ}$ that $\Gamma_{1} \subset \Gamma$. Because $\sigma_{P,(\omega)}(N)=0$ it follows from the hypothesis that $\{N,-N\} \cap \Gamma=\emptyset$, hence $\{N,-N\} \cap \Gamma_{1}=\emptyset$, so that by Lemma 4.3, H does not intersect $x_{0}+y+\bar{\Gamma}$ only in $x_{0}+y$. Since $u \in \mathscr{E}_{(\omega)}^{\prime}(\Omega)$ we know that sing supp u is compact. Moreover $P(-D) u \in \mathscr{E}_{(\omega)}\left(x_{0}+y+\tilde{\Gamma}\right)$, so that $u \in \mathscr{E}_{(\omega)}\left(x_{0}+y+\tilde{\Gamma}\right)$ by Lemma 4.1. Since $x_{0} \in \partial \Omega$ and y with $|y|<\delta$ were chosen arbitrarily, we conclude that dist $\left(\operatorname{sing} \operatorname{supp}_{(\omega)} u, \Omega^{c}\right) \geq \delta$, which proves the theorem.
5. Proof of the main theorem. Recall that for elliptic P every open subset $\Omega \subset \mathbb{R}^{d}$ is P-convex for supports. In the case of $d=2$ a complete characterization of P-convexity for supports is due to Hörmander (see e.g. [7, Theorem 10.8.3, Vol. II]).

TheOrem 5.1. If P is non-elliptic then the following conditions on an open connected set $\Omega \subset \mathbb{R}^{2}$ are equivalent:
(i) Ω is P-convex for supports.
(ii) The intersection of every characteristic hyperplane with Ω is convex.
(iii) For every $x_{0} \in \partial \Omega$ there is a closed proper convex cone $\Gamma^{\circ} \neq\{0\}$ with $\left(x_{0}+\Gamma^{\circ}\right) \cap \Omega=\emptyset$ such that no characteristic hyperplane intersects $x_{0}+\Gamma^{\circ}$ only in x_{0}.

It is not hard to see that in the above theorem condition (iii) is equivalent to the following condition (see [8]):
(iii') For every $x_{0} \in \partial \Omega$ there is an open convex cone $\Gamma \neq \mathbb{R}^{2}$ with $\left(x_{0}+\Gamma^{\circ}\right) \cap \Omega=\emptyset$ and $P_{m}(y) \neq 0$ for all $y \in \Gamma$, where P_{m} denotes the principal part of P.
ThEOREM 5.2. Let $\Omega \subset \mathbb{R}^{2}$ be open, ω a weight function, and $P \in$ $\mathbb{C}\left[X_{1}, X_{2}\right]$. If Ω is P-convex for supports then Ω is P-convex for (ω)-singular supports.

Proof. Without loss of generality we can assume that P is not elliptic. Clearly, by passing to the different components of Ω if necessary, we can assume that Ω is connected. Since P is not elliptic, it follows from Theorem 5.1 with (iii'), Lemma 3.4, and Theorem 4.4 that Ω is P-convex for (ω)-singular supports.

As a corollary we now obtain Theorem 1.1.
Proof of Theorem 1.1. That (i) and (ii) are equivalent is shown in 8]. Clearly, (iii) implies (iv). By Theorem 2.4 and Remark 2.5 (i), (iv) implies that Ω is P-convex for supports, so that (i) follows from (iv). So, all that remains to be shown is that (i) implies (iii). But this follows from Theorems 5.2 and 2.4 .

Combining Theorems 1.2, 5.1, and 1.1 gives the next result.
TheOrem 5.3. Let $\Omega \subset \mathbb{R}^{2}$ be open and $P \in \mathbb{C}\left[X_{1}, X_{2}\right]$. The following are equivalent.
(i) $P(D): A(\Omega) \rightarrow A(\Omega)$ is surjective.
(ii) $P(D): C^{\infty}(\Omega) \rightarrow C^{\infty}(\Omega)$ is surjective.
(iii) $P(D): \mathscr{D}^{\prime}(\Omega) \rightarrow \mathscr{D}^{\prime}(\Omega)$ is surjective.
(iv) $P(D): \mathscr{D}_{(\omega)}^{\prime}(\Omega) \rightarrow \mathscr{D}_{(\omega)}^{\prime}(\Omega)$ is surjective for some non-quasianalytic weight function ω.
(v) $P(D): \mathscr{D}_{(\omega)}^{\prime}(\Omega) \rightarrow \mathscr{D}_{(\omega)}^{\prime}(\Omega)$ is surjective for each non-quasianalytic weight function ω.
(vi) The intersection of every characteristic hyperplane with any connected component of Ω is convex.

The next example shows that for $d \geq 3$ a result analogous to Theorem 1.1 is not true in general. See also Langenbruch [9, Example 3.13], where it is shown that the surjectivity of $P(D)$ on $\mathscr{D}_{(\omega)}^{\prime}(\Omega)$ for $d \geq 3$ depends explicitly on the weight function ω in general.

ExAmple 5.4. Let $d>2$ and $P\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{2}-x_{2}^{2}-\cdots-x_{d}^{2}$. Moreover, let $\Gamma:=\left\{x \in \mathbb{R}^{d} ; x_{d}>\left(x_{1}^{2}+\cdots+x_{d-1}^{2}\right)^{1 / 2}\right\}$. Then Γ is an open convex cone with $\Gamma^{\circ}=\bar{\Gamma}$. Set $\Omega:=\mathbb{R}^{d} \backslash \bar{\Gamma}$. Then it is not hard to show that Ω is
P-convex for supports. This follows for example by [8, Theorem 9(i)]. Hence, $P(D)$ is surjective on $C^{\infty}(\Omega)$ but not on $\mathscr{D}^{\prime}(\Omega)$ (see [8, Example 12]).

Moreover, it follows from Example 3.5 and Lemma 3.2 that

$$
\liminf _{\xi \rightarrow \infty} \frac{\tilde{P}_{\text {span }\left\{e_{d}\right\}}(\xi, \omega(\xi))}{\tilde{P}(\xi, \omega(\xi))}=0,
$$

where $e_{d}=(0, \ldots, 0,1)$. Setting $H=\left\{x \in \mathbb{R}^{d} ;\left\langle x, e_{d}\right\rangle=-1\right\}$ and

$$
K:=H \cap\left\{x \in \mathbb{R}^{d} ;|x| \leq 2\right\}
$$

it is easily seen that the distance of $\partial \Omega=\partial \Gamma$ to K is 1 while the distance of $\partial \Gamma$ to $\partial_{H} K$, i.e. to the boundary of K relative to H, strictly exceeds 1 . Hence, it follows from [9, Corollary 2.7] that $P(D)$ cannot be surjective on $\mathscr{D}_{(\omega)}^{\prime}(\Omega)$.

Acknowledgments. I want to thank M. Langenbruch for fruitful communication. Moreover, I want to thank D. Jornet for pointing out [2].

References

[1] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1965), 351-407.
[2] J. Bonet, C. Fernández and R. Meise, Characterization of the ω-hypoelliptic convolution operators on ultradistributions, Ann. Acad. Sci. Fenn. Math. 25 (2000), 261-284.
[3] J. Bonet, A. Galbis and R. Meise, On the range of convolution operators on nonquasianalytic ultradifferentiable functions, Studia Math. 126 (1997), 171-198.
[4] R. W. Braun, R. Meise and B. A. Taylor, Ultradifferentiable functions and Fourier analysis, Results Math. 17 (1990), 206-237.
[5] L. Frerick and J. Wengenroth, Convolution equations for ultradifferentiable functions and ultradistributions, J. Math. Anal. Appl. 297 (2004), 506-517.
[6] L. Hörmander, On the range of convolution operators, Ann. of Math.
[7] -, The Analysis of Linear Partial Differential Operators I, II, Springer, Berlin, 1983.
[8] T. Kalmes, Every P-convex subset of \mathbb{R}^{2} is already strongly P-convex, Math. Z., to appear.
[9] M. Langenbruch, Continuation of Gevrey regularity for solutions of partial differential operators, in: Functional Analysis (Trier, 1994), S. Dierolf et al. (eds.), de Gruyter, Berlin, 1996, 249-280.
[10] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble) 6 (1955-1956), 271-355.
[11] R. Meise, B. A. Taylor and D. Vogt, Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729-756.
[12] F. Trèves, Linear Partial Differential Operators with Constant Coefficients, Math. Appl. 6, Gordon and Breach, New York, 1966.
[13] G. Zampieri, A link between C^{∞} and analytic solvability for p.d.e. with constant coefficients, Rend. Sem. Mat. Univ. Padova 63 (1980), 145-150.

Thomas Kalmes
Universität Trier, Mathematik 54286 Trier, Germany
E-mail: kalmesth@uni-trier.de

[^0]: 2010 Mathematics Subject Classification: Primary 35E10, 46F05, 46F10; Secondary 46E10. Key words and phrases: constant coefficient partial differential equation, ultradistributions of Beurling type.

