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Surjectivity of partial differential operators
on ultradistributions of Beurling type in two dimensions

by

Thomas Kalmes (Trier)

Abstract. We show that if Ω is an open subset of R2, then the surjectivity of a
partial differential operator P (D) on the space of ultradistributions D ′(ω)(Ω) of Beurling
type is equivalent to the surjectivity of P (D) on C∞(Ω).

1. Introduction. It is a classical result by Malgrange [10, Chapitre 1,
Théorème 4] that for a polynomial P ∈ C[X1, . . . , Xd] and for an open set
Ω ⊂ Rd the constant coefficient differential operator P (D) : C∞(Ω) →
C∞(Ω) is surjective if and only if Ω is P -convex for supports, that is, if and
only if for every compact subset K of Ω there is another compact subset
L of Ω such that for each u ∈ E ′(Ω) with suppP (−D)u ⊂ K we have
suppu ⊂ L.

Hörmander showed in [6] that P (D) is surjective as an operator on D ′(Ω)
if and only if Ω is P -convex for supports and P -convex for singular supports,
i.e. for every compact subset K of Ω there is another compact subset L of
Ω such that for each u ∈ E ′(Ω) with sing suppP (−D)u ⊂ K we have
sing suppu ⊂ L.

It is well-known that the surjectivity of P (D) as an operator on C∞(Ω)
does not imply its surjectivity on D ′(Ω) in general. However, Trèves conjec-
tured [12, p. 389, Problem 2] that in the case of Ω ⊂ R2 this implication is
true. A proof of this conjecture is given in [8].

In the present paper, we prove an adaption of the Trèves conjecture
to the setting of ultradistributions of Beurling type associated with a non-
quasianalytic weight function ω. These generalize classical distributions by
allowing more flexible growth conditions for the Fourier transforms of the
corresponding test functions than the Paley–Wiener weights. More precisely,
we prove the following theorem.
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Theorem 1.1. Let Ω ⊂ R2 be open and P ∈ C[X1, X2]. Then the fol-
lowing are equivalent:

(i) P (D) : C∞(Ω)→ C∞(Ω) is surjective.
(ii) P (D) : D ′(Ω)→ D ′(Ω) is surjective.
(iii) P (D) : D ′(ω)(Ω)→ D ′(ω)(Ω) is surjective for each non-quasianalytic

weight function ω.
(iv) P (D) : D ′(ω)(Ω)→ D ′(ω)(Ω) is surjective for some non-quasianalytic

weight function ω.

The above theorem complements the following result proved by Zampieri
which shows the peculiarity of d = 2, too. For an open subset Ω of Rd we
denote as usual by A(Ω) the space of real analytic functions on Ω.

Theorem 1.2 (Zampieri [13]). Let Ω ⊂ R2 be open and P ∈ C[X1, X2].
The following are equivalent:

(i) P (D) : C∞(Ω)→ C∞(Ω) is surjective.
(ii) P (D) : A(Ω)→ A(Ω) is surjective.

The article is organized as follows. In the preliminary Section 2 we fix
the notation and recall some well known facts about ultradistributions of
Beurling type. In Section 3 we explain the connection of continuation of
ultradifferentiability and certain localizations of P at infinity. Moreover this
section contains the key result which sets apart the case d = 2 from d ≥ 3.
Namely, we show that in R2 certain hyperplanes which arise in the context
of continuation of ultradifferentiability are always characteristic hyperplanes
for P . Section 4 provides a sufficient condition for an open subset Ω of Rd

to be P -convex for (ω)-singular supports by means of an exterior cone con-
dition. This condition is applied in Section 5 in order to prove Theorem 1.1.

2. Preliminaries. In this section we introduce ultradistributions of
Beurling type in the sense of Braun, Meise, and Taylor [4].

Definition 2.1. A continuous increasing function ω : [0,∞) → [0,∞)
is called a (non-quasianalytic) weight function if it satisfies the following
properties:

(α) there exists K ≥ 1 with ω(2t) ≤ K(1 + ω(t)) for all t ≥ 0,

(β)
∞�

0

ω(t)
1 + t2

dt <∞,

(γ) lim
t→∞

log t
ω(t)

= 0,

(δ) ϕ = ω ◦ exp is convex.
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ω is extended to Cd by setting ω(z) := ω(|z|). Since we are not dealing
with quasianalytic weight functions in this article we simply speak of weight
functions for brevity.

For K ⊂ Rd compact let

D(ω)(K) =
{
f ∈ C∞(Rd); supp f ⊂ K and

�

Rd

|f̂(x)| exp(λω(x)) dx <∞ for all λ ≥ 1
}

be equipped with its natural Fréchet space topology, and set D(ω)(Ω) =⋃
D(ω)(K), where K runs through all compact subsets of the open subset

Ω of Rd, equipped with its natural (LF)-space topology. The elements of its
dual space D ′(ω)(Ω) are ultradistributions of Beurling type.

The associated local space in the sense of Hörmander [7, 10.1.19]

E(ω)(Ω) = D(ω)(Ω)loc = {u ∈ D ′(ω)(Ω); ϕu ∈ D(ω)(Ω) for all ϕ ∈ D(ω)(Ω)}
is the space of ultradifferentiable functions of Beurling type.

Remark 2.2. (i) For each weight function ω we have limt→∞ ω(t)/t = 0
by the remark following 1.3 of Meise, Taylor, and Vogt [11].

(ii) It is shown in [4] that condition (β) guarantees that D(ω)(Ω) 6= {0}
and that there are partitions of unity consisting of elements of D(ω)(Ω).

(iii) By [4] we have

E(ω)(Ω) = {f ∈ C∞(Ω); for all k ∈ N and K b Ω,

|f |k,K := sup
α∈Nd

0, x∈K
|f (α)(x)| exp(−kϕ∗(|α|/k)) <∞},

where ϕ∗(s) = sup{st− ϕ(t); t ≥ 0} is the Young conjugate of ϕ.
(iv) For δ > 1 the function ω(t) = t1/δ is a weight function for which the

corresponding class of ultradifferentiable functions coincides with the small
Gevrey class

γδ(Ω) =
{
f ∈ C∞(Ω); ∀K b Ω ∀C ≥ 1 : sup

x∈K,α∈Nd
0

|f (α)(x)|
α!δC |α|

<∞
}
.

Definition 2.3. E(ω)(Ω) equipped with the seminorms (| · |k,K)k∈N,KbΩ

is a nuclear Fréchet space. Its dual E ′(ω)(Ω) is equal to the space of u ∈
D ′(ω)(Ω) for which

suppu = Rd \
⋃
{B ⊂ Rd open; u(ϕ) = 0 for all ϕ ∈ D(ω)(B)}

is a compact subset of Ω.

The next theorem is a special case of a result due to Frerick and Wengen-
roth (see [5]), which completes a result of Bonet, Galbis, and Meise (see [3]),



90 T. Kalmes

characterising the surjectivity of convolution operators on ultradistributions
of Beurling type.

Theorem 2.4. Let Ω ⊂ Rd be open, ω be a weight function, and P ∈
C[X1, . . . , Xd]. Then the following are equivalent:

(i) P (D) : D ′(ω)(Ω)→ D ′(ω)(Ω) is surjective.
(ii) Ω is P -convex for (ω)-supports as well as P -convex for (ω)-singular

supports.

Recall that an open subset Ω of Rd is called P -convex for (ω)-supports if
for every compact subset K of Ω there is a compact subset L of Ω such that
suppϕ ⊂ L whenever suppP (−D)ϕ ⊂ K, for every ϕ ∈ D(ω)(Ω). Analo-
gously, Ω is called P -convex for (ω)-singular supports if for every compact
subset K of Ω there is a compact subset L of Ω such that sing supp(ω) u ⊂ L
whenever sing supp(ω) P (−D)u ⊂ K, for every u ∈ E ′(ω)(Ω).

Remark 2.5. (i) Clearly, P -convexity for supports of Ω implies P -
convexity for (ω)-supports of Ω. On the other hand, D(ω)(Ω) is sequen-
tially dense in D(Ω), as shown by Braun et al. [4, Proposition 3.9], so that
P -convexity for supports is implied by P -convexity for (ω)-supports. Hence,
P -convexity for supports and P -convexity for (ω)-supports are in fact equiv-
alent.

(ii) If P is elliptic the same is obviously true for P̌ . Hence P (−D) has
a fundamental solution E which is analytic in Rd\{0}. Since the analytic
functions are contained in E(ω)(Ω) for each weight function ω (cf. [4, Propo-
sition 4.10]) we have in particular

ch(sing supp(ω)E) = ch(sing supp(ω) P (−D)δ0),

where ch(A) denotes the convex hull of a set A ⊂ Rd. By [2, Theorem 2.1]
it therefore follows that for each open set Ω ⊂ Rd and every u ∈ D ′(ω)(Ω)
we have

sing supp(ω) P (−D)u = sing supp(ω) u.

In particular, Ω is P -convex for (ω)-singular supports. This and the well-
known fact that every open subset Ω of Rd is P -convex for supports for
elliptic P imply by Theorem 2.4 the surjectivity of

P (D) : D ′(ω)(Ω)→ D ′(ω)(Ω)

whenever P is elliptic.

From now on, let P always be a non-constant polynomial.

3. (ω)-Localizations at infinity and continuation of ultradiffer-
entiability. Obviously, P -convexity for (ω)-singular supports is closely re-
lated to the continuation of (ω)-ultradifferentiability of P (−D)u to u. Anal-
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ogously to the tools introduced by Hörmander in order to deal with the
classical case (see e.g. [7, Section 11.3, Vol. II]) Langenbruch introduced the
following notions in [9]. For a polynomial P , a subspace V of Rd, and t > 0,
ξ ∈ Rd let

P̃V (ξ, t) = sup{|P (ξ + η)|; η ∈ V, |η| ≤ t}, P̃ (ξ, t) = P̃Rd(ξ, t).

Moreover, let

σP,(ω)(V ) := inf
t≥1

lim inf
ξ→∞

P̃V (ξ, tω(ξ))
P̃ (ξ, tω(ξ))

.

If we formally set ω ≡ 1, we obtain Hörmander’s classical definition of
σP (V ), [7, Section 11.3, Vol. II]. In order to simplify notation we write
σP,(ω)(N) instead of σP,(ω)(span{N}) for N ∈ Sd−1.

The next theorem is an almost immediate consequence of [9, Theo-
rem 2.5].

Theorem 3.1. Let Ω1 ⊂ Ω2 be open convex subsets of Rd. Assume that
every hyperplane H = {x ∈ Rd; 〈x,N〉 = α}, N ∈ Sd−1, α ∈ R, with
σP,(ω)(N) = 0 which intersects Ω2 already intersects Ω1. Then for every
u ∈ D ′(ω)(Ω2) satisfying sing supp(ω) P (D)u = ∅ as well as sing supp(ω) u ⊂
Ω2\Ω1 we already have sing supp(ω) u = ∅.

Proof. Let u ∈ D ′(ω)(Ω2) satisfy P (D)u ∈ E(ω)(Ω2) and u|Ω1 ∈ E(ω)(Ω1).
Since Ω2 is convex it follows from the theorem of supports (see e.g. [7,
Theorem 4.3.3, Vol. I]) and [3, Theorem A] that there is v ∈ E(ω)(Ω2) such
that P (D)v = P (D)u so that w := u − v ∈ D ′(ω)(Ω2) satisfies P (D)w = 0
as well as w|Ω1 ∈ E(ω)(Ω1). Hence, by [9, Theorem 2.5] it follows that w ∈
E(ω)(Ω2), which proves the theorem.

When investigating P -convexity for (ω)-singular supports by means of
the above theorem it is necessary to study the zeros of σP,(ω) in Sd−1. In
order to do so, recall the definition of ω-localizations of P at infinity, as
introduced by Langenbruch in [9]. For a polynomial P and ξ ∈ Rd we set
Pξ,ω(x) := P (ξ + ω(ξ)x), which is again a polynomial of the same degree

as P . Clearly, P̂ :=
√∑

α |P (α)(0)|2 defines a norm on the vector space
C[X1, . . . , Xd]. From now on let C[X1, . . . , Xd] be equipped with the topol-
ogy induced by this norm. The set of all limits in C[X1, . . . , Xd] of the
normalized polynomials

x 7→
Pξ,ω(x)

P̂ξ,ω

as ξ tends to infinity is denoted by Lω(P ). More precisely, if N ∈ Sd−1 then
the set of limits where ξ/|ξ| → N (with ξ tending to infinity) is denoted
by Lω,N (P ). Obviously, Lω(P ) as well as Lω,N (P ) are closed subsets of



92 T. Kalmes

the unit sphere of all polynomials in d variables, equipped with the norm
Q 7→ Q̂, of degree not exceeding the degree of P . The non-zero multiples
of elements of Lω(P ) (resp. of Lω,N (P )) are called ω-localizations of P at
infinity (resp. ω-localizations of P at infinity in direction N). Since ω(ξ) =
ω(|ξ|), Q ∈ Lω,N (P̌ ) if and only if Q̌ ∈ Lω,−N (P ). Again, if we formally set
ω ≡ 1 we obtain the well-known set L(P ) of localizations of P at infinity
(see Hörmander [7, Definition 10.2.6]).

For the classical case, i.e. if formally ω ≡ 1, the next lemma is proved
in [8]. The proof here is almost the same, but we include it for the reader’s
convenience.

Lemma 3.2. Let P be of degree m with principal part Pm.

(i) For every subspace V of Rd and t ≥ 1 we have

lim inf
ξ→∞

P̃V (ξ, tω(ξ))
P̃ (ξ, tω(ξ))

= inf
Q∈Lω(P )

Q̃V (0, t)
Q̃(0, t)

.

(ii) Let N ∈ Sd−1 and Q ∈ Lω,N (P ). If Pm(N) 6= 0 then Q is constant.
(iii) If P is non-elliptic then for every subspace V of Rd and t ≥ 1 we

have

lim inf
ξ→∞

P̃V (ξ, tω(ξ))
P̃ (ξ, tω(ξ))

= inf
N∈Sd−1, Pm(N)=0

inf
Q∈Lω,N (P )

Q̃V (0, t)
Q̃(0, t)

.

Proof. (i) Since for every subspace V and each t > 0 the maps
R 7→ R̃V (0, t) are continuous seminorms on C[X1, . . . , Xd] and because
P̃V (ξ, tω(ξ)) = (P̃ξ,ω)V (0, t) it follows immediately from the definition that

Q̃V (0, t)
Q̃(0, t)

≥ lim inf
ξ→∞

P̃V (ξ, tω(ξ))
P̃ (ξ, tω(ξ))

for every Q ∈ Lω(P ).
Moreover, if (ξn)n∈N tending to infinity is such that

lim inf
ξ→∞

P̃V (ξ, tω(ξ))
P̃ (ξ, tω(ξ))

= lim
n→∞

P̃V (ξn, tω(ξn))
P̃ (ξn, tω(ξn))

= lim
n→∞

(P̃ξn,ω)V (0, t)
P̃ξn,ω(0, t)

we can extract a subsequence of (ξn)n∈N, again denoted by (ξn)n∈N, such
that the sequence of normalized polynomials Pξn,ω/P̂ξn,ω converges in the
compact unit sphere of all polynomials in d variables of degree at most m.
This limit belongs to Lω(P ) and we get

lim inf
ξ→∞

P̃V (ξ, tω(ξ))
P̃ (ξ, tω(ξ))

≥ inf
Q∈Lω(P )

Q̃V (0, t)
Q̃(0, t)

,

completing the proof of (i).
The proof of (ii) is an easy application of Taylor’s formula. Let P =∑m
j=0 Pj , where Pj is a homogeneous polynomial of degree j. Let (ξn)n∈N
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tend to infinity with limn→∞ ξn/|ξn| = N and Pm(N) 6= 0. Then

Pξn,ω(η) =
∑

0≤|α|≤j≤m

P
(α)
j (ξn)
α!

ω(ξn)|α|ηα

= |ξn|m
( ∑

0≤j≤m

|ξn|j

|ξn|m
Pj

(
ξn
|ξn|

)
+

∑
0<|α|≤j≤m

|ξn|j−|α|ω(ξn)|α|

|ξn|mα!
P

(α)
j

(
ξn
|ξn|

)
ηα
)
.

Moreover

P̂ξn,ω =

√√√√ ∑
0≤|α|≤m

∣∣∣ m∑
j=|α|

P
(α)
j (ξn)

∣∣∣2ω(ξn)2|α|

= |ξn|m
√√√√∣∣∣∣ m∑

j=0

Pj

(
ξn
|ξn|

)
|ξn|j
|ξn|m

∣∣∣∣2+
∑

0<|α|≤m

∣∣∣∣ m∑
j=|α|

P
(α)
j

(
ξn
|ξn|

)
|ξn|j−|α|ω(ξn)|α|

|ξn|m

∣∣∣∣2,
which implies, since ω(ξn) = o(|ξn|) as n tends to infinity, that

lim
n→∞

Pξn,ω(η)

P̂ξn,ω
=

Pm(N)
|Pm(N)|

for every η ∈ Rd showing (ii).
(iii) is an immediate consequence of lim infξ→∞ P̃V (ξ, tω(ξ))/P̃ (ξ, tω(ξ))

≤ 1, (i), and (ii).

Before we continue, we recall the following definition (cf. Hörmander [7,
Section 10.2]). Let

Λ(P ) = {η ∈ Rd; ∀ ξ ∈ Rd, t ∈ R : P (ξ + tη) = P (ξ)},
which is obviously a subspace of Rd which coincides with Rd if and only if P
is constant. In the case of ω ≡ 1 the result corresponding to the next propo-
sition is due to Hörmander [7, Theorem 10.2.8, Vol. II] and its proof uses
the Tarski–Seidenberg theorem. In our case, the proof is rather elementary.

Lemma 3.3. If Q ∈ Lω,N (P ) then N ∈ Λ(Q).

Proof. Since ω(ξ) = ω(|ξ|) we can assume without loss of generality that
N = e1 = (1, 0, . . . , 0). We denote the degree of P by m. In the case of
P (e1) ≡ 0 we see by Taylor’s theorem that e1 ∈ Λ(P ), which clearly implies
e1 ∈ Λ(Q) by the definition of Lω(P ).

Now, if P (e1) does not vanish identically it follows that P (e1)
ξ,ω does not

either, for every ξ ∈ Rd. Since P 7→
∑

α |P (α)(0)| is a norm on the space of
all polynomials in d variables, it follows that for every ξ ∈ Rd,

0 6=
∑
α

|P (e1)
ξ,ω (0)| =

∑
α

|P (α+e1)(ξ)|ω(ξ)|α| =
∑

0≤|α|≤m−1

|P (α+e1)(ξ)|ω(ξ)|α|,
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because P has degree m. Hence, for every ξ ∈ Rd, t ∈ R we have by Taylor’s
theorem

0 ≤ |P
(e1+α)(ξ + ω(ξ)(x+ se1))|∑

α |P (α)(ξ)|ω(ξ)|α|

=
|
∑

0≤|α|≤m−1 P
(α+e1)(ξ)ω(ξ)|α| 1

α!(x+ se1)α|∑
α |P (α)(ξ)|ω(ξ)|α|

≤
∑

0≤|α|≤m−1 |P (α+e1)(ξ)|ω(ξ)|α| 1
α! |(x+ se1)α|∑

0≤|α|≤m−1 |P (α+e1)(ξ)|ω(ξ)1+|α|

≤
max0≤|α|≤m−1

1
α! |(x+ se1)α|

ω(ξ)
.

Since Q ∈ Lω(P ) there is (ξn)n∈N tending to infinity such that

Q(x) = lim
n→∞

P (ξn + ω(ξn)x)
P̂ξn,ω

in the vector space topology of the polynomials in d variables of degree not
exceeding m. In particular, we also have

Q(e1)(x) = lim
n→∞

P (e1)(ξn + ω(ξn)x)
P̂ξn,ω

.

The space of all polynomials in d variables of degree not exceeding m being
finite-dimensional, all norms on it are equivalent. Therefore, by passing to
a subsequence of (ξn)n∈N if necessary, there is c > 0 such that for every
x ∈ Rd and s ∈ R,

|Q(e1)(x+ se1)| = lim
n→∞

|P (e1)(ξn + ω(ξn)(x+ se1))|
P̂ξn,ω

≤ c lim
n→∞

|P (e1)(ξn + ω(ξn)(x+ se1))|∑
α |P (α+e1)(ξn)|ω(ξn)|α|

≤ c lim
n→∞

max0≤|α|≤m−1
1
α! |(x+ se1)α|

ω(ξn)
= 0.

Hence, for each x ∈ Rd the polynomial qx : R→ C, s 7→ Q(x+ se1), satisfies
q′x(s) = Q(e1)(x+ se1) = 0. Thus qx is constant, which shows e1 ∈ Λ(Q).

Now we are able to prove the main result of this section. In the classical
case, i.e. if we formally set ω ≡ 1, the corresponding result was proved in [8].
Again the proof is almost identical but we include it for completeness.

Lemma 3.4. Let P ∈ C[X1, X2] be of degree m with principal part Pm.
Then

{y ∈ S1; σP,(ω)(y) = 0} ⊂ {y ∈ S1; Pm(y) = 0}.
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Proof. By Lemma 3.2(i)&(ii) we can assume without loss of generality
that P is not elliptic. Since we are in R2 the principal part Pm can only have a
finite number of zeros in S1. Let {N ∈ S1; Pm(N) = 0} = {N1, . . . , Nl}. For
each 1 ≤ j ≤ l choose xj ∈ S1 orthogonal to Nj . Without loss of generality,
let {y ∈ S1; σP (y) = 0} 6= ∅. By Lemma 3.2 there is a non-constant Q ∈
Lω,Nj (P ) for some 1 ≤ j ≤ l. By Lemma 3.3 we have Q(ξ+ sNj) = Q(ξ) for
any ξ ∈ R2 and s ∈ R. Hence Q(ξ) = Q(〈ξ, xj〉xj) for all ξ ∈ R2. Defining

q : R→ C, s 7→ Q(sxj),

it follows that for fixed y ∈ S1,

Q̃span{y}(0, t) = sup{|Q(λy)|; |λ| ≤ t} = sup{|Q(λ〈y, xj〉xj)|; |λ| ≤ t}
= sup{|q(λt〈y, xj〉)|; |λ| ≤ 1},

and because |xj | = 1 we also have

Q̃(0, t) = sup{|Q(ξ)|; ξ ∈ R2, |ξ| ≤ t} = sup{|Q(〈ξ, xj〉xj)|; ξ ∈ R2, |ξ| ≤ t}
= sup{|Q(λxj)|; |λ| ≤ t} = sup{|q(λt)|; |λ| ≤ 1}.

Since Q ∈ Lω(P ) it follows that q is a polynomial of degree at most m.
Because on the finite-dimensional space of all polynomials in one variable of
degree at most m the norms sup|s|≤1 |p(s)| and

∑m
k=0 |p(k)(0)| are equivalent

there is C > 0 such that

C sup
|s|≤1
|p(s)| ≥

m∑
k=0

|p(k)(0)| ≥ (1/C) sup
|s|≤1
|p(s)|

for all p ∈ C[X] with degree at most m. Applying this to the polynomials
s 7→ q(st) and s 7→ q(st〈y, xj〉) gives

Q̃span{y}(0, t)

Q̃(0, t)
≥
∑m

k=0 |q(k)(0)|tk|〈y, xj〉|k

C2
∑m

k=0 |q(k)(0)|tk
≥ |〈y, xj〉|m/C2,

where we used |〈y, xj〉| ≤ 1 in the last inequality. We conclude that for every
1 ≤ j ≤ l,

inf
Q∈Lω,Nj

(P )

Q̃span{y}(0, t)

Q̃(0, t)
≥ |〈y, xj〉|

m

C2
,

where C only depends on the degree m of P . It follows from Lemma 3.2(iii)
and {N ∈ S1; Pm(N) = 0} = {N1, . . . , Nl} that for all t ≥ 1,

lim inf
ξ→∞

P̃span{y}(ξ, tω(ξ))

P̃ (ξ, tω(ξ))
= min

1≤j≤l
inf

Q∈Lω,Nj
(P )

Q̃span{y}(0, t)

Q̃(0, t)
≥ min

1≤j≤l

|〈y, xj〉|m

C2
.

Therefore, if y ∈ S1 and

0 = σP,(ω)(y) = inf
t≥1

lim inf
ξ→∞

P̃span{y}(ξ, tω(ξ))

P̃ (ξ, tω(ξ))
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then y is orthogonal to some xj , hence y ∈ {Nj ,−Nj} since |y| = 1 = |Nj |,
which shows Pm(y) = 0.

In particular, for P ∈ C[X1, X2] \ {0} the set

{y ∈ S1; σP,(ω)(y) = 0}
is finite. Moreover, it follows immediately from the above lemma that in the
case of d = 2 every hyperplane H = {x; 〈x,N〉 = α}, N ∈ Sd−1, α ∈ R, with
σP,(ω)(N) = 0 is characteristic for P . That this is not the case in general for
d ≥ 3 is shown by the next example.

Example 3.5. Let d > 2 and P ∈ C[X1, . . . , Xd] be given by

P (x1, . . . , xd) = x2
1 − x2

2 − · · · − x2
d.

Then for each weight function ω an ω-localization of P at infinity in direction
(1/
√

2)(1, 1, 0, . . . , 0) is given by Q(x1, . . . , xd) = (x1 − x2)/
√

2. Hence it
follows for ed = (0, . . . , 0, 1) that Q̃span{ed}(0, t) = 0 for every t ≥ 1 so that
in particular σP,(ω)(ed) = 0 by Lemma 3.2. On the other hand, we clearly
have P2(ed) = P (ed) = −1.

4. A sufficient condition for P -convexity for (ω)-singular sup-
ports. In this section we will prove a sufficient condition for an open subset
Ω of Rd to be P -convex for (ω)-singular supports in terms of an exterior
cone condition, similar to those proved in [8].

Recall that a cone C is called proper if it does not contain any affine
subspace of dimension one. Moreover, recall that for an open convex cone
Γ ⊂ Rd its dual cone is defined as

Γ ◦ := {ξ ∈ Rd; ∀y ∈ Γ : 〈y, ξ〉 ≥ 0}.
For Γ 6= ∅ it is a closed proper convex cone in Rd. On the other hand, every
closed proper convex cone C in Rd is the dual cone of a unique non-empty,
open, convex cone which is given by

Γ := {y ∈ Rd; ∀ξ ∈ C \ {0} : 〈y, ξ〉 > 0}.
The proof uses the Hahn–Banach Theorem (cf. [7, p. 257, Vol. I]). Therefore,
we write Γ ◦ also for arbitrary closed convex proper cones. Moreover, from
now on we assume that all open convex cones Γ considered are non-empty.

As a first result we obtain from Theorem 3.1 the next proposition which
is an analogue of [7, Corollary 8.6.11, Vol. I].

Lemma 4.1. Let Γ be an open proper convex cone in Rd, and let x0 ∈ Rd.
If for Ω := x0 + Γ no hyperplane H = {x ∈ Rd; 〈x,N〉 = α}, N ∈ Sd−1,
α ∈ R, with σP,(ω)(N) = 0 intersects Ω only in x0, the following holds.

Each u ∈ D ′(ω)(Ω) with sing supp(ω) P (D)u = ∅ and sing supp(ω) u

bounded already satisfies sing supp(ω) u = ∅.
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Proof. Let u ∈ D ′(ω)(Ω) satisfy P (D)u ∈ E(ω)(Ω) and assume that u
is E(ω) outside a bounded subset of Ω. Since Γ is a proper cone, there is a
hyperplane π intersecting Ω only in x0. Let Hπ be a halfspace with boundary
parallel to π such that Ω1 := Ω∩Hπ 6= ∅ is unbounded and u|Ω1 ∈ E(ω)(Ω1).
Denoting Ω2 := Ω we have convex sets Ω1 ⊂ Ω2 and by the hypothesis,
each hyperplane H = {x ∈ Rd; 〈x,N〉 = α}, N ∈ Sd−1, α ∈ R, with
σP,(ω)(N) = 0 and H ∩Ω2 6= ∅ already intersects Ω1. Theorem 3.1 now gives
sing supp(ω) u = ∅.

Before we come to the main result of this section, we need one more
result.

Theorem 4.2.

(i) If u ∈ E ′(ω)(R
d) then

ch(sing supp(ω) u) = ch(sing supp(ω) P (−D)u).

(ii) For an open subset Ω of Rd the following are equivalent.

(a) Ω is P -convex for (ω)-singular supports.
(b) For each u ∈ E ′(ω)(Ω) one has

dist(sing supp(ω) u,Ω
c) = dist(sing supp(ω) P (−D)u,Ωc).

Proof. (i) By a result of Bonet et al. [2, Remark 2.10], for a convex
compact subset K of Rd and u ∈ E(ω)(Rd), the inclusion sing supp(ω) u ⊂ K
is equivalent to the existence of b > 0 such that for each m ∈ N there is
Cm > 0 such that

|û(ζ)| ≤ Cm exp(HK(Im ζ) + bω(ζ))

for all ζ ∈ Cd with |Im ζ| ≤ mω(ζ) and |ζ| ≥ Cm, where HK denotes the
supporting function of K. Moreover, by [2, Remark 1.2(c)] we can assume
without loss of generality that ω ≥ 1.

Since by Braun et al. [4, Lemma 1.2] there is some constant K > 0 such
that ω(ζ + η) ≤ K(1 + ω(ζ) + ω(η)) for all ζ, η ∈ Cd, it follows that for all
ζ ∈ Cd with |Im ζ| ≤ mω(ζ) and all z ∈ C with |z| = 1,

|Im(ζ + ze1)| ≤ mω(ζ) + 1 = mω(ζ + ze1 − ze1) + 1
≤ mω(|ζ + ze1|+ 1) + 1 ≤ Km(1 + ω(ζ + ze1) + ω(1)) + 1
≤ Kmω(ζ + ze1) + (Km(1 + ω(1)) + 1)ω(ζ + ze1)
= (Km(2 + ω(1)) + 1)ω(ζ + ze1).

Hence, if |Im ζ| ≤ mω(ζ) for some m ∈ N there is k ∈ N such that

(4.1) |Im(ζ + ze1)| ≤ kω(ζ + ze1) for all z ∈ C, |z| = 1.

Now, for u ∈ E ′(ω)(Ω) set f := P (−D)u and let K be the convex hull
of sing supp(ω) f . Clearly, we have ch(sing supp(ω) u) ⊃ K. In order to show
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the opposite inclusion observe that by [2, Remark 2.10] there is b > 0 such
that for all m ∈ N there is Cm > 0 such that

|P (−ζ)û(ζ)| = |f̂(ζ)| ≤ Cm exp(HK(Im ζ) + bω(ζ))

for all ζ ∈ Cd with |ζ| ≥ Cm and |Im ζ| ≤ mω(ζ). By [7, Lemma 7.3.3, Vol. I]
there is a > 0 such that

a|û(ζ)| ≤ sup
|z|=1
|f̂(ζ + ze1)|

for all ζ ∈ Cd. Consequently, for all ζ ∈ Cd such that |ζ + ze1| ≥ Cm and
|Im(ζ + ze1)| ≤ mω(ζ + ze1) for every z ∈ C with |z| = 1 we obtain

a|û(ζ)| ≤ sup
|z|=1

Cm exp(HK(Im(ζ + ze1)) + bω(ζ + ze1))

≤ sup
|z|=1

Cm exp(HK(Im ζ) +HK(Im ze1) + bK(1 + ω(ζ) + ω(1)))

= sup
|z|=1

Cm exp(HK(Im ze1)+ bK(1+ω(1))) exp(HK(Im ζ)+ bKω(ζ)).

Combining this and inequality (4.1) gives b̃ > 0 such that for all m ∈ N
there is C̃m > 0 such that

|û(ζ)| ≤ C̃m exp(HK(Im ζ) + b̃ω(ζ))

for all ζ ∈ Cd with |ζ| ≥ C̃m and |Im ζ| ≤ mω(ζ), proving ch(sing supp(ω) u)
⊂ K, hence (i).

Using (i), ultradifferentiable cut-off functions, and taking into account
that E(ω)(Ω) is an algebra with continuous multiplication (cf. [4, Proposi-
tion 4.4]), the proof of (ii) follows along the same lines as the proofs of [7,
Theorem 10.6.3 and/or Theorem 10.7.3, Vol. II].

The following proposition (cf. [8]) contains some elementary geometric
facts which will be used later.

Lemma 4.3. Let Γ ◦ 6= {0} be a closed proper convex cone in Rd and
N ∈ Sd−1. For c ∈ R let Hc := {x ∈ Rd; 〈x,N〉 = c}. Then the following
are equivalent:

(i) N ∈ Γ or −N ∈ Γ .
(ii) If x ∈ Hc then Hc ∩ (x+ Γ ◦) = {x}.

We are now able to prove the main result of this section. Compare also
[8, Theorem 9].

Theorem 4.4. Let Ω be an open connected subset of Rd and P ∈
C[X1, . . . , Xd] a non-constant polynomial with principal part Pm. Then Ω
is P -convex for (ω)-singular supports if for every x ∈ ∂Ω there is an open
convex cone Γ such that (x+ Γ ◦) ∩Ω = ∅ and σP,(ω)(y) 6= 0 for all y ∈ Γ .
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Proof. Let u ∈ E ′(ω)(Ω). We set K := sing supp(ω) P (−D)u and δ :=
dist(K,Ωc). We will show that

dist(sing supp(ω) u,Ω
c) ≥ δ,

which in view of

sing supp(ω) u ⊃ sing supp(ω) P (−D)u

will imply
dist(sing supp(ω) u,Ω

c) = δ,

hence P -convexity for (ω)-singular supports of Ω by Theorem 4.2.
Let x0 ∈ ∂Ω and let Γ be as in the hypothesis for x0 ∈ ∂Ω. Then

(x0 + Γ ◦) ∩Ω = ∅, thus (x0 + y + Γ ◦) ∩K = ∅ for all y ∈ Rd with |y| < δ.
Therefore, for fixed y with |y| < δ, there is an open proper convex cone Γ̃ in
Rd with Γ̃ ⊃ Γ ◦\{0} such that (x0 + y+ Γ̃ )∩K = ∅. Hence, u ∈ E ′(ω)(Ω) ⊂
D ′(ω)(x0 + y + Γ̃ ) satisfies P (−D)u ∈ E(ω)(x0 + y + Γ̃ ).

We will show that u ∈ E(ω)(x0 + y + Γ̃ ) by applying Lemma 4.1. Hence,
let H = {v ∈ Rd; 〈v,N〉 = α} be a hyperplane with σP,(ω)(N) = 0. As

Γ̃ is a closed proper convex cone with non-empty interior, it is the dual
cone of some open proper convex cone Γ1. It follows from Γ ◦1 = Γ̃ ⊃ Γ ◦

that Γ1 ⊂ Γ . Because σP,(ω)(N) = 0 it follows from the hypothesis that
{N,−N} ∩ Γ = ∅, hence {N,−N} ∩ Γ1 = ∅, so that by Lemma 4.3, H
does not intersect x0 + y + Γ̃ only in x0 + y. Since u ∈ E ′(ω)(Ω) we know

that sing suppu is compact. Moreover P (−D)u ∈ E(ω)(x0 + y + Γ̃ ), so that
u ∈ E(ω)(x0 + y + Γ̃ ) by Lemma 4.1. Since x0 ∈ ∂Ω and y with |y| < δ
were chosen arbitrarily, we conclude that dist(sing supp(ω) u,Ω

c) ≥ δ, which
proves the theorem.

5. Proof of the main theorem. Recall that for elliptic P every open
subset Ω ⊂ Rd is P -convex for supports. In the case of d = 2 a complete
characterization of P -convexity for supports is due to Hörmander (see e.g.
[7, Theorem 10.8.3, Vol. II]).

Theorem 5.1. If P is non-elliptic then the following conditions on an
open connected set Ω ⊂ R2 are equivalent:

(i) Ω is P -convex for supports.
(ii) The intersection of every characteristic hyperplane with Ω is convex.

(iii) For every x0 ∈ ∂Ω there is a closed proper convex cone Γ ◦ 6= {0}
with (x0 + Γ ◦) ∩ Ω = ∅ such that no characteristic hyperplane in-
tersects x0 + Γ ◦ only in x0.
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It is not hard to see that in the above theorem condition (iii) is equivalent
to the following condition (see [8]):

(iii′) For every x0 ∈ ∂Ω there is an open convex cone Γ 6= R2 with
(x0 + Γ ◦) ∩Ω = ∅ and Pm(y) 6= 0 for all y ∈ Γ , where Pm denotes
the principal part of P .

Theorem 5.2. Let Ω ⊂ R2 be open, ω a weight function, and P ∈
C[X1, X2]. If Ω is P -convex for supports then Ω is P -convex for (ω)-singular
supports.

Proof. Without loss of generality we can assume that P is not elliptic.
Clearly, by passing to the different components of Ω if necessary, we can
assume that Ω is connected. Since P is not elliptic, it follows from Theo-
rem 5.1 with (iii′), Lemma 3.4, and Theorem 4.4 that Ω is P -convex for
(ω)-singular supports.

As a corollary we now obtain Theorem 1.1.

Proof of Theorem 1.1. That (i) and (ii) are equivalent is shown in [8].
Clearly, (iii) implies (iv). By Theorem 2.4 and Remark 2.5(i), (iv) implies
that Ω is P -convex for supports, so that (i) follows from (iv). So, all that re-
mains to be shown is that (i) implies (iii). But this follows from Theorems 5.2
and 2.4.

Combining Theorems 1.2, 5.1, and 1.1 gives the next result.

Theorem 5.3. Let Ω ⊂ R2 be open and P ∈ C[X1, X2]. The following
are equivalent.

(i) P (D) : A(Ω)→ A(Ω) is surjective.
(ii) P (D) : C∞(Ω)→ C∞(Ω) is surjective.
(iii) P (D) : D ′(Ω)→ D ′(Ω) is surjective.
(iv) P (D) : D ′(ω)(Ω)→ D ′(ω)(Ω) is surjective for some non-quasianalytic

weight function ω.
(v) P (D) : D ′(ω)(Ω)→ D ′(ω)(Ω) is surjective for each non-quasianalytic

weight function ω.
(vi) The intersection of every characteristic hyperplane with any con-

nected component of Ω is convex.

The next example shows that for d ≥ 3 a result analogous to Theorem 1.1
is not true in general. See also Langenbruch [9, Example 3.13], where it is
shown that the surjectivity of P (D) on D ′(ω)(Ω) for d ≥ 3 depends explicitly
on the weight function ω in general.

Example 5.4. Let d > 2 and P (x1, . . . , xd) = x2
1 − x2

2 − · · · − x2
d. More-

over, let Γ := {x ∈ Rd; xd > (x2
1 + · · ·+x2

d−1)1/2}. Then Γ is an open convex
cone with Γ ◦ = Γ . Set Ω := Rd\Γ . Then it is not hard to show that Ω is
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P -convex for supports. This follows for example by [8, Theorem 9(i)]. Hence,
P (D) is surjective on C∞(Ω) but not on D ′(Ω) (see [8, Example 12]).

Moreover, it follows from Example 3.5 and Lemma 3.2 that

lim inf
ξ→∞

P̃span{ed}(ξ, ω(ξ))

P̃ (ξ, ω(ξ))
= 0,

where ed = (0, . . . , 0, 1). Setting H = {x ∈ Rd; 〈x, ed〉 = −1} and

K := H ∩ {x ∈ Rd; |x| ≤ 2}

it is easily seen that the distance of ∂Ω = ∂Γ to K is 1 while the distance
of ∂Γ to ∂HK, i.e. to the boundary of K relative to H, strictly exceeds 1.
Hence, it follows from [9, Corollary 2.7] that P (D) cannot be surjective
on D ′(ω)(Ω).

Acknowledgments. I want to thank M. Langenbruch for fruitful com-
munication. Moreover, I want to thank D. Jornet for pointing out [2].
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