Isolated points of spectrum of k-quasi-$*$-class A operators

by

SALAH MECHERI (Medina)

Abstract. Let T be a bounded linear operator on a complex Hilbert space H. In this paper we introduce a new class, denoted KQA^*, of operators satisfying $T^{*k}(|T^2| - |T^*|^2)T^k \geq 0$ where k is a natural number, and we prove basic structural properties of these operators. Using these results, we also show that if E is the Riesz idempotent for a non-zero isolated point μ of the spectrum of $T \in KQA^*$, then E is self-adjoint and $EH = \ker(T - \mu) = \ker(T - \mu)^*$. Some spectral properties are also presented.

1. Introduction. Let $B(H)$ be the algebra of all bounded linear operators acting on an infinite-dimensional separable complex Hilbert space H. An operator $T \in B(H)$ is said to have the single-valued extension property (or SVEP) if for every open subset G of \mathbb{C} and any analytic function $f : G \to H$ such that $(T - z)f(z) \equiv 0$ on G, we have $f(z) \equiv 0$ on G. For $T \in B(H)$ and $x \in H$, the set $\rho_T(x)$, called the local resolvent set of T at x, is defined to consist of all $z_0 \in \mathbb{C}$ such that there exists an analytic function $f(z)$ defined in a neighborhood of z_0, with values in H, which satisfies $(T - z)f(z) = x$. We denote by $\sigma_T(x)$ the complement of $\rho_T(x)$, called the local spectrum of T at x, and define the local spectral subspace of T, $H_T(F) = \{x \in H : \sigma_T(x) \subset F\}$, for each subset F of \mathbb{C}.

An operator $T \in B(H)$ is said to have Bishop’s property (β) if for every open subset G of \mathbb{C} and every sequence $f_n : G \to H$ of H-valued analytic functions such that $(T - z)f_n(z)$ converges uniformly to 0 in norm on compact subsets of G, $f_n(z)$ converges uniformly to 0 in norm on compact subsets of G. An operator $T \in B(H)$ is said to have Dunford’s property (C) if $H_T(F)$ is closed for each closed subset F of \mathbb{C}. It is well known that

Bishop’s property (β) \Rightarrow Dunford’s property (C) \Rightarrow SVEP.

As an easy extension of normal operators, hyponormal operators have been studied by many mathematicians. Though there are many unsolved 2010 Mathematics Subject Classification: Primary 47B47, 47A30, 47B20; Secondary 47B10.

Key words and phrases: $*$-paranormal operators, $*$-class A operators, k-quasi-$*$-class A operators.

DOI: 10.4064/sm208-1-6 [87] c Instytut Matematyczny PAN, 2012
interesting problems for hyponormal operators (e.g., the invariant subspace problem), one of recent trends in operator theory is to study natural extensions of hyponormal operators. Below we introduce some of these non-hyponormal operators. Recall (3, 14) that \(T \in B(H) \) is called hyponormal if \(T^*T \geq TT^* \), paranormal (resp. \(\ast \)-paranormal) if \(\|T^2x\| \geq \|Tx\|^2 \) (resp. \(\|T^2x\| \geq \|T^*x\|^2 \)) for all unit vectors \(x \in H \). Following [14] and [21] we say that \(T \in B(H) \) belongs to class \(A \) if \(|T^2| \geq |T|^2 \) where \(T^*T = |T|^2 \).

Recently, B. P. Duggal, I. H. Jeon and I. H. Kim [12] considered the following new class of operators: we say that \(T \in B(H) \) belongs to \(\ast \)-class \(A \) if \(|T^2| \geq |T^*|^2 \).

For brevity, we shall denote classes of hyponormal operators, paranormal operators, \(\ast \)-paranormal operators, class \(A \) operators, and \(\ast \)-class \(A \) operators by \(\mathcal{H}, \mathcal{PN}, \mathcal{PN}^\ast, A, \) and \(A^\ast \), respectively. From [3] and [14], it is well known that \(\mathcal{H} \subset A \subset \mathcal{PN} \) and \(\mathcal{H} \subset A^\ast \subset \mathcal{PN}^\ast \).

Recently, the authors of [35] have extended \(\ast \)-class \(A \) operators to quasi-\(\ast \)-class \(A \) operators. An operator \(T \) is said to be a quasi-\(\ast \)-class \(A \) operator if \(T^*|T^2| - |T^*|^2 T \geq 0 \), where \(k \) is a natural number. 1-quasi-\(\ast \)-class \(A \) is quasi-\(\ast \)-class \(A \).

Let \(T \in B(H) \). Then ker\(T \) denotes the null space of \(T \) and [ran\(T \)] denotes the closure of ran\(T \), where ran\(T \) is the range of \(T \). The operator \(T \) is called isoloid if every isolated point of \(\sigma(T) \) is an eigenvalue of \(T \).

Let \(\mu \) be an isolated point of \(\sigma(T) \). Then the Riesz idempotent \(E \) of \(T \) with respect to \(\mu \) is defined by

\[
E := \frac{1}{2\pi i} \int_{\partial D} (\mu I - T)^{-1} d\mu,
\]

where \(D \) is a closed disk centered at \(\mu \) which contains no other points of the spectrum of \(T \). It is well known that \(E^2 = E, ET = TE, \sigma(T|_{E(H)}) = \{\mu\} \) and ker\((T - \mu I) \subseteq E(H) \). In [36], Stampfli showed that if \(T \) satisfies the growth condition \(G_1 \), then \(E \) is self-adjoint and \(E(H) = \ker(T - \mu) \).

Recently, Jeon and Kim [21] and Uchiyama [38] obtained Stampfli’s result
for quasi-class A operators and paranormal operators. In general even if T is a paranormal operator, the Riesz idempotent E of T with respect to μ is not necessarily self-adjoint.

Recently the authors of [39] showed that every \ast-paranormal operator has Bishop’s property (β). In this paper we give basic properties of k-quasi-\ast-class A operators. We show that every k-quasi-\ast-class A operator has Bishop’s property (β). It is also shown that if E is the Riesz idempotent for a nonzero isolated point μ of the spectrum of a k-quasi-\ast-class A operator T, then E is self-adjoint and $EH = \ker(T - \mu) = \ker(T^* - \bar{\mu})$. Some spectral properties are also presented.

2. Main results. We begin with the following lemma which is the essence of this paper; it is a structure theorem for k-quasi-\ast-class A operators.

Lemma 2.1. Let $T \in B(H)$ be a k-quasi-\ast-class A operator, and suppose the range of T^k is not dense and

$$ T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \quad \text{on } H = [\text{ran} T^k] \oplus \ker T^{*k}. $$

Then T_1 is a \ast-class A operator, $T_3^k = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Proof. Let P be the orthogonal projection of H onto $[\text{ran} T^k]$. Since T is k-quasi-\ast-class A, we have

$$ P(T^{*2}T^2 - TT^*)P \geq 0, \quad P(T^{*2}T^2)P - P(TT^*)P \geq 0. $$

Hence $T_1^{*2}T^2 - T_1 T_1^* \geq 0$. This shows that T_1 is \ast-class A on $[\text{ran} T^k]$.

Further, we have

$$ \langle T_3^k x_2, x_2 \rangle = \langle T^k (I - P)x, (I - P)x \rangle = \langle (I - P)x, T^{*k}(I - Px) \rangle = 0 $$

for any $x = (x_1, x_2) \in H$. Thus $T_3^k = 0$.

We have $\sigma(T_1) \cup \sigma(T_3) = \sigma(T) \cup G$, where G is the union of certain holes in $\sigma(T)$ which are subsets of $\sigma(T_1) \cap \sigma(T_3)$ [19, Corollary 7]. Since $\sigma(T_1) \cap \sigma(T_3)$ has no interior points, we have

$$ \sigma(T) = \sigma(T_1) \cup \sigma(T_3) = \sigma(T_1) \cup \{0\}. $$

Let K be an infinite-dimensional separable Hilbert space. The above decomposition of k-quasi-\ast-class A operators motivates the following question: Is the operator matrix

$$ T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} $$
acting on \(H \oplus K \) a \(k \)-quasi-\(* \)-class \(A \) operator if \(A \) is \(* \)-class \(A \) and \(C^k = 0 \)? We do not know the answer. However, for \(k = 1 \) we have

Theorem 2.1. Let \(T \) be an operator on \(H \oplus K \) defined as

\[
T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}.
\]

If \(A \) is \(* \)-class \(A \), then \(T \) is \(1 \)-quasi-\(* \)-class \(A \).

Proof. A simple calculation shows that

\[
T^*(T^*T^2 - TT^*)T = \begin{pmatrix} A^*(A^2A^2 - AA^*)A & A^*(A^2A^2 - AA^*)B \\ B^*(A^2A^2 - AA^*)A & B^*(A^2A^2 - AA^*)B \end{pmatrix}.
\]

Let \(u = x \oplus y \in H \oplus K \). Then

\[
\langle (T^*(T^*T^2 - TT^*)T)u, u \rangle = \langle A^*(A^2A^2 - AA^*)Ax, x \rangle + \langle A^*(A^2A^2 - AA^*)By, x \rangle
+ \langle B^*(A^2A^2 - AA^*)Ax, y \rangle + \langle B^*(A^2A^2 - AA^*)By, y \rangle
= \langle (A^2A^2 - AA^*)(Ax + By), (Ax + By) \rangle \geq 0
\]

because \(A \) is \(* \)-class \(A \). This proves the result.

Theorem 2.2. Let \(T \in B(H) \) be a \(k \)-quasi-\(* \)-class \(A \) operator. Then \(T \) has Bishop’s property (\(\beta \)), the single-valued extension property and Dunford property (\(C \)).

Proof. From the introduction, it suffices to prove that \(T \) has Bishop’s property (\(\beta \)). If the range of \(T^k \) is dense, then \(T \) is a \(* \)-class \(A \) operator, and hence has Bishop’s property (\(\beta \)) by [12]. So, we assume that the range of \(T^k \) is not dense. Suppose \((T - z)f_n(z) \to 0\) uniformly on every compact subset of \(D \) for analytic functions \(f_n(z) \) on \(D \). Then we can write

\[
\begin{pmatrix} T_1 - z & T_2 \\ 0 & T_3 - z \end{pmatrix} \begin{pmatrix} f_{n1}(z) \\ f_{n2}(z) \end{pmatrix} = \begin{pmatrix} (T_1 - z)f_{n1}(z) + T_2f_{n2}(z) \\ (T_3 - z)f_{n2}(z) \end{pmatrix} \to 0.
\]

Since \(T_3 \) is nilpotent, it has Bishop’s property (\(\beta \)). Hence \(f_{n2}(z) \to 0 \) uniformly on every compact subset of \(D \). Then \((T_1 - z)f_{n1}(z) \to 0\). Since \(T_1 \) is a \(* \)-class \(A \) operator, it has Bishop’s property (\(\beta \)) [12]. Hence \(f_{n1}(z) \to 0 \) uniformly on every compact subset of \(D \). Thus \(T \) has Bishop’s property (\(\beta \)).

\(T \) is called **isoloid** if every isolated point of \(\sigma(T) \) is an eigenvalue of \(T \).

Lemma 2.2. Let \(T \in B(H) \) be a \(k \)-quasi-\(* \)-class \(A \) operator. Then \(T \) is **isoloid**.

Proof. Suppose \(T \) has a representation given in Lemma 2.1. Let \(z \) be an isolated point in \(\sigma(T) \). Since \(\sigma(T) = \sigma(T_1) \cup \{0\} \), \(z \) is an isolated point in \(\sigma(T_1) \) or \(z = 0 \). If \(z \) is an isolated point in \(\sigma(T_1) \), then \(z \in \sigma_p(T_1) \). Assume
that $z = 0$ and $z \notin \sigma(T_1)$. Then for $x \in \ker T_3$, $-T_1^{-1}T_2x \oplus x \in \ker T$. This completes the proof.

The following theorems are structural results.

Theorem 2.3. Let $T \in B(H)$ be a k-quasi-$*$-class A operator, and let M be a closed T-invariant subspace of H. Then the restriction $T|_M$ of T to M is a k-quasi-$*$-class A operator.

Proof. Let

$$T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$

on $H = M \oplus M^\perp$.

Since T is quasi-$*$-class A, we have

$$T^{*2}T^2 - TT^* \geq 0.$$

Hence

$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^{*k} \left[\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^{*2} \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^2 - \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^* \right] \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^k \geq 0.$$

Therefore

$$\begin{pmatrix} A^{*k}(A^{*2}A^2 - (AA^* + CC^*))A^k & E \\ F & G \end{pmatrix} \geq 0$$

for some operators E, F and G. Hence

$$A^{*k}(A^{*2}A^2 - AA^*)A^k \geq A^{*k}(CC^*)A^k \geq 0.$$

This implies that $A = T|_M$ is k-quasi-$*$-class A.

Theorem 2.4. Let M be a closed non-trivial invariant subspace for a k-quasi-$*$-class A operator T. If $T|_M$ is an injective normal operator, then M reduces T.

Proof. Suppose that P is an orthogonal projection of H onto $[\text{ran } T^k]$. Since T is a k-quasi-$*$-class A operator, we have $P(T^{*2}T^2 - TT^*)P \geq 0$. Since by assumption $T|_M$ is an injective normal operator, we have $E \leq P$ for the orthogonal projection E of H onto M and $[\text{ran } T^k|_M] = M$ because $T|_M$ has dense range. Therefore $M \subseteq [\text{ran } T^k]$ and hence $E(T^{*2}T^2 - TT^*)E \geq 0$. Let

$$T = \begin{pmatrix} T|_M & A \\ 0 & B \end{pmatrix}$$

on $H = M \oplus M^\perp$.

Then we have

$$TT^* = \begin{pmatrix} T|M^*|_M + AA^* & AB^* \\ B^*A & BB^* \end{pmatrix}.$$
and

\[T^*T^2 = \begin{pmatrix} T^*2|MT^2|_M & E \\ F & G \end{pmatrix} \]

for some operators \(E, F \) and \(G \). Thus

\[
\begin{pmatrix} T|MT^*|_M + AA^* & 0 \\ 0 & 0 \end{pmatrix} = ETT^*E = E|T^*|^2E \leq E(T^*2T^2)^{1/2}E
\]

\[
\leq (ET^*2T^2E)^{1/2} = \begin{pmatrix} T^*2|MT^2|_M & 0 \\ 0 & 0 \end{pmatrix}^{1/2}.
\]

This implies that \(T|MT^*|_M + AA^* \leq T|MT^*|_M \). Since \(T|_M \) is normal and \(AA^* \) is positive, it follows that \(A = 0 \). Hence \(M \) reduces \(T \).

Remark 2.1. In Theorem 2.4 we cannot drop the injectivity condition. Without it, \(M \) may not reduce \(T \). Indeed, take any nilpotent operator \(T \) with \(T^{k-1} \neq 0 = T^k \). Then \(T|_{\text{ran}T^{k-1}} = 0 \) is normal. If \([\text{ran}T^{k-1}] \) reduces \(T \), then \(T^*T^{k-1} \subset [\text{ran}T^{k-1}] \). Hence \(T^{k-1}T^k \subset [\text{ran}T^{k-1}] \) and \(\ker T^{k-1} = \ker T^{k-1}T^k \subset \ker T^{k-1} \). Since \(T^k = T^{k-1}T^k = 0 \), we have \(T^{k-1}T^k = 0 \). Hence \(T^{k-1}T^k = 0 \), and hence \(T^{k-1} = 0 \). This is a contradiction.

Theorem 2.5. Let \(T \) be \(k \)-quasi-\(* \)-class \(A \). If \(\lambda \neq 0 \) and \((T - \lambda)x = 0 \), then \((T - \lambda)^*x = 0 \).

Proof. We may assume \(x \neq 0 \). Let \(M = \text{span}\{x\} \) and

\[T = \begin{pmatrix} \lambda & A \\ 0 & B \end{pmatrix} \quad \text{on} \quad M \oplus M^\perp, \]

and let \(P \) be the orthogonal projection from \(H \) onto \(M \). Then \(T|_M = \lambda \) and \(T|_M \) is an injective normal operator. This implies that \(M \) reduces \(T \) by Theorem 2.4. Hence \(A = 0 \).

Proposition 2.1. If \(T \in B(H) \) is quasi-\(* \)-class \(A \), then it is quasi-\(* \)-paranormal.

Proof. Since \(T \) is quasi-\(* \)-class \(A \), we have \(T^*|T^*|^2T \leq T^*|T^2|T \). Let \(x \in H \). Then

\[
\|T^*T\|^2 = \langle T^*Tx, T^*Tx \rangle = \langle T^*|T^*|^2Tx, x \rangle
\]

\[
\leq \langle T^*|T^2|Tx, x \rangle \leq \|T^2|Tx\|\|Tx\| = \|T^3x\|\|Tx\|.
\]

Therefore \(\|T^*Tx\|^2 \leq \|T^3x\|\|Tx\| \). Hence \(T \) is quasi-\(* \)-paranormal.

Theorem 2.6. Let \(T \in B(H) \) be a quasi-\(* \)-paranormal operator. Then it is normaloid, i.e. \(\|T\| = r(T) \) (the spectral radius of \(T \)).

Proof. It suffices to show

\[
\|T^{2m}\| = \|T\|^{2m} \quad \tag{*}
\]
for \(m = 1, 2, \ldots \). We argue by induction. First we prove (*) for \(m = 1 \). Since \(T \) is quasi \(* \)-paranormal,

\[
\|T\|^4 = \|T^*T\|^2 \leq \|T^3\| \|T\| \leq \|T^2\| \|T\|^2 \leq \|T\|^4.
\]

Hence \(\|T\|^2 = \|T^2\| \). Now assume that (*) is true for \(m = k \). Since

\[
\|T^m x\|^2 + \lambda^2 \|Tx\|^2 \geq 2\lambda \|T^*Tx\|^2,
\]

we have

\[
\|T^{2(k+1)} x\| + \lambda^2 \|T^{2k} x\| \geq 2\lambda \|T^*T^{2k} x\|^2
\]

\[
\Rightarrow \|T^{2(k+1)}\|^2 + \lambda^2 \|T^{2k}\|^2 \geq 2\lambda \|T^*T^{2k}\|^2
\]

\[
\Rightarrow \|T\|^{2(k-1)} \|T^2(k+1)\|^2 + \lambda^2 \|T^{2k}\|^2 \geq 2\lambda \|T\|^{2(k-1)} \|T^*T^{2k}\|^2
\]

\[
\geq 2\lambda \|T^*T^{2k}\|^2
\]

\[
\Rightarrow \|T\|^{2(k-1)} \|T^2(k+1)\|^2 + \lambda^2 \|T^{2k}\|^2 \geq 2\lambda \|T^{2k}\|^4.
\]

Since (*) is true for \(m = k \), we find

\[
\|T^{2(k+1)}\|^2 + \lambda^2 \|T\|^{4k} \geq 2\lambda \|T\|^{4k+2}.
\]

Let \(\lambda = \|T\|^2 \). Then the last inequality gives

\[
\|T^{2(k+1)}\|^2 + \|T\|^{4} \|T\|^{4k} \geq 2\|T\|^{4k+4}.
\]

Hence

\[
2\|T\|^{4k+4} \geq \|T^{2(k+1)}\|^2 + \|T\|^{4k+4} \geq 2\|T\|^{4k+4}.
\]

Clearly \(\|T\|^{2(k+1)} = \|T^{2(k+1)}\| \). This proves the result. \(\blacksquare \)

Remark 2.2. For \(k > 1 \), a nilpotent operator is \(k \)-quasi-\(* \)-class \(A \). This shows that operators in this class need not be normaloid. However, it is obvious that for \(k = 1 \), this is not true. But for \(k = 1 \), operators of this class are normaloid. Indeed, a quasi-\(* \)-class \(A \) operator is quasi-\(* \)-paranormal by Proposition 2.1 and a quasi-\(* \)-paranormal operator is normaloid by Theorem 2.6. Hence a quasi-\(* \)-class \(A \) operator is normaloid.

Corollary 2.1. A \(* \)-paranormal operator \(T \) is normaloid. In particular a \(* \)-class \(A \) operator is normaloid.

Theorem 2.7. Let \(A \) be a \(k \)-quasi-\(* \)-class \(A \) operator and \(\lambda \) be a non-zero isolated point of \(\sigma(A) \). Then the Riesz idempotent \(E \) for \(\lambda \) is self-adjoint and

\[
EH = \ker(A - \lambda) = \ker(A - \lambda)^*.
\]

Proof. If \(A \) is \(k \)-quasi-\(* \)-class \(A \), then \(\lambda \) is an eigenvalue of \(A \) and \(EH = \ker(A - \lambda) \) by Lemma 2.2. Since \(\ker(A - \lambda) \subset \ker(A - \lambda)^* \) by Theorem 2.5, it suffices to show that \(\ker(A - \lambda)^* \subset \ker(A - \lambda) \). Since \(\ker(A - \lambda) \) is a reducing subspace of \(A \) by Theorem 2.5 and the restriction of a \(k \)-quasi-\(* \)-class \(A \) operator to its reducing subspace is also a \(k \)-quasi-\(* \)-class \(A \) operator...
by Theorem 2.3, A can be written as

$$A = \lambda \oplus A_1$$

on $H = \ker(A - \lambda) \oplus (\ker(A - \lambda))^\perp$, where A_1 is k-quasi-\ast-class A with $\ker(A_1 - \lambda) = \{0\}$. Since $\lambda \in \sigma(A) = \{\lambda\} \cup \sigma(A_1)$ is isolated, only two cases occur: either $\lambda \notin \sigma(A_1)$, or λ is an isolated point of $\sigma(A_1)$ and this contradicts the fact that $\ker(A_1 - \lambda) = \{0\}$. Since A_1 is invertible as an operator on $\ker(A - \lambda)^\perp$, we have $\ker(A - \lambda) = \ker(A - \lambda)^\ast$.

Next, we show that E is self-adjoint. Since

$$EH = \ker(A - \lambda) = \ker(A - \lambda)^\ast,$$

we have

$$((z - A)^\ast)^{-1} E = (z - \lambda)^{-1} E.$$

Therefore

$$E^*E = -\frac{1}{2\pi i} \int_{\partial D} ((z - A)^\ast)^{-1} E \, d\bar{z} = -\frac{1}{2\pi i} \int_{\partial D} (z - A)^{-1} E \, d\bar{z}$$

$$= \left(\frac{1}{2\pi i} \int_{\partial D} (z - A)^{-1} \, dz\right) E = E.$$

This completes the proof. □

Corollary 2.2. Let $A \in B(H)$ be quasi-\ast-class A and λ be a non-zero isolated point of $\sigma(A)$. Then the Riesz idempotent E for λ is self-adjoint and

$$EH = \ker(A - \lambda) = \ker(A - \lambda)^\ast.$$

Acknowledgements. I would like to express my cordial gratitude to the referee for valuable advice and suggestions. I would also like to thank Prof. Dr. M. Samman, dean of our faculty, for his encouragement and support for my research work.

References

Salah Mecheri
Department of Mathematics
College of Sciences
Taibah University
P.O. Box 20003
Al-Madinah Al Munawarah, Saudi Arabia
E-mail: mecherisalah@hotmail.com

Received December 21, 2011
Revised version January 20, 2012 (7385)