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Abstract. Let s : [1,∞)→ C be a locally Lebesgue integrable function. We say that
s is summable (L, 1) if there exists some A ∈ C such that

(∗) lim
t→∞

τ(t) = A, where τ(t) :=
1

log t

t�

1

s(u)

u
du.

It is clear that if the ordinary limit s(t) → A exists, then also τ(t) → A as t → ∞.
We present sufficient conditions, which are also necessary, in order that the converse
implication hold true. As corollaries, we obtain so-called Tauberian theorems which are
analogous to those known in the case of summability (C, 1). For example, if the function
s is slowly oscillating, by which we mean that for every ε > 0 there exist t0 = t0(ε) > 1
and λ = λ(ε) > 1 such that

|s(u)− s(t)| ≤ ε whenever t0 ≤ t < u ≤ tλ,

then the converse implication holds true: the ordinary convergence limt→∞ s(t) = A follows
from (∗).

We also present necessary and sufficient Tauberian conditions under which the ordi-
nary convergence of a numerical sequence (sk) follows from its logarithmic summability.
Furthermore, we give a more transparent proof of an earlier Tauberian theorem due to
Kwee.

1. Introduction: Summability (C, 1) and (L, 1) of functions. Let
s : [0,∞)→ C be a function Lebesgue integrable on every bounded interval
[0, t], t > 0, in symbols s ∈ Lloc[0,∞). We recall (see, e.g., [2, p. 11]) that
s is said to be Cesàro summable of first order, briefly: summable (C, 1), if
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there exists some A ∈ C such that

(1.1) lim
t→∞

σ(t) = A, where σ(t) :=
1

t

t�

0

s(u) du, t > 0.

Clearly, if the ordinary limit

(1.2) lim
t→∞

s(t) = A

exists, then (1.1) holds. The converse implication holds true only under some
supplementary, so-called Tauberian condition(s).

We note that the left endpoint of the definition domain of s is irrelevant
in (1.1). That is, given any a > 0, the existence of the limit in (1.1) is
equivalent to

lim
t→∞

1

t

t�

a

s(u) du = A.

For the Cesàro summability of order α, where α ≥ 0 is a real number,
briefly: summability (C,α), we refer to [7, p. 26]. The case α = 0 is ordinary
convergence.

Next, let s : [1,∞) → C be such that s ∈ Lloc[1,∞). Motivated by the
concept of logarithmic (sometimes also called harmonic) summability of a
numerical sequence (see, e.g., [5]), the function s is said to be logarithmic
summable of first order, briefly: summable (L, 1), if there exists some A ∈ C
such that

(1.3) lim
t→∞

τ(t) = A, where τ(t) :=
1

log t

t�

1

s(u)

u
du, t > 1,

where the logarithm is to the natural base e.
In Section 4, we will prove that summability (C, 1) of a function implies

its summability (L, 1) to the same limit, but the converse implication is not
true in general.

We note that a complex-valued function s ∈ Lloc[e,∞) is said to be
logarithmic summable of order 2, briefly: summable (L, 2), if there exists
some A ∈ C such that

(1.4) lim
t→∞

τ2(t) = A where τ2(t) :=
1

log log t

t�

e

s(u)

u log u
du, t > e.

We also note that in the particular cases when

(1.5) (i) s(u) :=

u�

0

f(x) dx, u > 0, or (ii) s(u) :=

u�

1

f(x) dx, u > 1,

where f is a locally integrable function on [0,∞) or [1,∞), respectively, the
above summability methods may be applied to assign a value to the following
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integrals, respectively:

(1.6) (i)

∞�

0

f(x) dx or (ii)

∞�

1

f(x) dx.

If the finite limit in (1.2) exists, then the improper integrals
	→∞
0 f(x) dx

and
	→∞
1 f(x) dx exist, respectively. In the case when the finite limit in (1.1)

exists, the integral in (1.6)(i) is said to be summable (C, 1); while in the case
when only the finite limit in (1.3) exists, the integral in (1.6)(ii) is said to
be summable (L, 1).

2. Main results. In our first new result we characterize the converse
implication when the ordinary limit of a real-valued function at ∞ follows
from its summability (L, 1).

Theorem 2.1. If a real-valued function s ∈ Lloc[1,∞) is summable
(L, 1) to some A ∈ R, then the ordinary limit (1.2) exists if and only if

(2.1) lim sup
λ→1+

lim inf
t→∞

1

(λ− 1) log t

tλ�

t

s(u)− s(t)
u

du ≥ 0

and

(2.2) lim sup
λ→1−

lim inf
t→∞

1

(1− λ) log t

t�

tλ

s(t)− s(u)
u

du ≥ 0.

Motivated by the definition of ‘slow decrease’ with respect to summability
(C, 1) (see, e.g., [2, pp. 124–125; and cf. our Remark 2.1 below]), we say that
a function s : [1,∞) → R is slowly decreasing with respect to summability
(L, 1) if for every ε > 0 there exist t0 = t0(ε) > 1 and λ = λ(ε) > 1 such
that

(2.3) s(u)− s(t) ≥ −ε whenever t0 ≤ t < u ≤ tλ.

It is easy to check that a function s is slowly decreasing with respect to
summability (L, 1) if and only if

(2.4) lim
λ→1+

lim inf
t→∞

inf
t<u≤tλ

(s(u)− s(t)) ≥ 0.

Since the auxiliary function

a(λ) := lim inf
t→∞

inf
t<u≤tλ

(s(u)− s(t))

is evidently decreasing in λ on the infinite interval (1,∞), the right limit in
(2.4) exists and limλ→1+ can be replaced by supλ>1.

It is clear that if a function s ∈ Lloc[1,∞) is slowly decreasing with
respect to summability (L, 1), then conditions (2.1) and (2.2) are trivially
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satisfied. Thus, the next corollary is an immediate consequence of Theo-
rem 2.1.

Corollary 2.2. Suppose a real-valued function s ∈ Lloc[1,∞) is slowly
decreasing with respect to summability (L, 1). If s is summable (L, 1) to some
A ⊂ R, then the ordinary limit (1.2) also exists.

Historically, the term ‘slow decrease’ was introduced by Schmidt [6] in
the case of the summability (C, 1) of sequences of real numbers.

In our second new result we characterize the converse implication when the
ordinary convergence of a complex-valued function follows from its summa-
bility (L, 1).

Theorem 2.3. If a complex-valued function s ∈ Lloc[1,∞) is summable
(L, 1) to some A ∈ C, then the ordinary limit (1.2) exists if and only if

(2.5) lim inf
λ→1+

lim sup
t→∞

∣∣∣∣ 1

(λ− 1) log t

tλ�

t

s(u)− s(t)
u

du

∣∣∣∣ = 0.

Motivated by the definition of ‘slow oscillation’ with respect to summa-
bility (C, 1) of numerical sequences introduced by Hardy [1] (see also in [2,
pp. 124–125]), we say that a function s : [1,∞) → C is slowly oscillating
with respect to summability (L, 1) if for every ε > 0 there exist t0 = t0(ε) > 1
and λ = λ(ε) > 1 such that

(2.6) |s(u)− s(t)| ≤ ε whenever t0 ≤ t < u ≤ tλ.

It is easy to check that a function s is slowly oscillating with respect to
summability (L, 1) if and only if

(2.7) lim
λ→1+

lim sup
t→∞

sup
t<u≤tλ

|s(u)− s(t)| = 0.

It is clear that if a function s ∈ Lloc[1,∞) is slowly oscillating with
respect to summability (L, 1), then condition (2.5) is trivially satisfied. Thus,
the next corollary is an immediate consequence of Theorem 2.3.

Corollary 2.4. Suppose a complex-valued function s ∈ Lloc[1,∞) is
slowly oscillating with respect to summability (L, 1). If s is summable (L, 1)
to some A ∈ C, then the ordinary limit (1.2) also exists.

Remark 2.1. According to Hardy’s definition (see [2, pp. 124–125]), a
function s : (0,∞)→ C is said to be slowly oscillating if

(2.8) lim(s(u)− s(t)) = 0 whenever u > t→∞ and u/t→ 1;

and a function s : (0,∞)→ R is said to be slowly decreasing if

(2.9) lim inf(s(u)− s(t)) ≥ 0 under the same circumstances.
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We claim that definition (2.8) is equivalent to the following: for every
ε > 0 there exist t0 = t0(ε) > 0 and λ = λ(ε) > 1 such that

(2.10) |s(u)− s(t)| ≤ ε whenever t0 ≤ t < u ≤ λt.
The implication (2.8)⇒(2.10) is trivial. To justify the converse, let λ > 1

be arbitrarily close to 1 and set ε := log λ. Then by (2.10), we have

|s(u)− s(t)| ≤ ε whenever u > t ≥ t0 and 0 < log
u

t
≤ log λ = ε.

Now, the claimed equivalence is obvious.
It is worth considering the special case (1.6)(ii), where f ∈ Lloc[1,∞). If

f is a real-valued function and

(2.11) x(log x)f(x) ≥ −C for almost every x > x0,

where C > 0 and x0 ≥ 1 are constants, then s defined in (1.5)(ii) is slowly
decreasing with respect to summability (L, 1), and Corollary 2.2 applies.
Likewise, if f is a complex-valued function and

(2.12) x(log x)|f(x)| ≤ C for almost every x > x0,

where C > 0 and x0 ≥ 1 are constants, then s is slowly oscillating with
respect to summability (L, 1), and Corollary 2.4 applies.

Condition (2.11) is called a one-sided Tauberian condition, while (2.12)
is called a two-sided Tauberian condition with respect to summability (L, 1).
These terms go back to Landau [4] with respect to summability (C, 1) of
sequences of real numbers, as well as to Hardy [1] (see also [2, p. 149]) with
respect to summability (C, 1) of sequences of complex numbers.

We note that theorems containing appropriate additional conditions such
as (2.11), (2.12), etc. are called ‘Tauberian’, after A. Tauber, who first proved
one of the simplest theorems of this kind; and these supplementary conditions
are called ‘Tauberian conditions’.

3. Proofs of Theorems 2.1 and 2.3. The following two representa-
tions of s(t)− τ(t) will be of vital importance in our proofs below.

Lemma 3.1.

(i) If λ > 1 and t > 1, then

(3.1) s(t)− τ(t) = λ

λ− 1
(τ(tλ)− τ(t))− 1

(λ− 1) log t

tλ�

t

s(u)− s(t)
u

du.

(ii) If 0 < λ < 1 and t > 1, then

(3.2) s(t)− τ(t) = λ

1− λ
(τ(t)− τ(tλ)) + 1

(1− λ) log t

t�

tλ

s(t)− s(u)
u

du.
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Proof. (i) By definition in (1.3), we have

τ(tλ)− τ(t) = 1

λ log t

tλ�

1

s(u)

u
du− 1

log t

t�

1

s(u)

u
du

=
1− λ
λ log t

t�

1

s(u)

u
du+

1

λ log t

tλ�

t

s(u)

u
du

= −λ− 1

λ
τ(t) +

1

λ log t

tλ�

t

s(u)

u
du.

Multiplying both sides by λ/(λ− 1) gives

λ

λ− 1
(τ(tλ)− τ(t)) = −τ(t) + 1

(λ− 1) log t

tλ�

t

s(u)

u
du

= s(t)− τ(t) + 1

(λ− 1) log t

tλ�

t

s(u)− s(t)
u

du,

whence (3.1) follows.
(ii) The proof of (3.2) is analogous to that of (3.1).

Proof of Theorem 2.1. Necessity. Suppose that (1.2) is satisfied. By (1.2)
and (1.3),

(3.3)
(i) lim

t→∞
(s(t)− τ(t)) = 0,

(ii) lim
t→∞

(τ(tλ)− τ(t)) = 0

for each fixed λ > 1. By (3.1) and (3.3), we conclude that

(3.4) lim
t→∞

1

log t

tλ�

t

s(u)− s(t)
u

du = 0

for every λ > 1. This proves (2.1) even in a stronger form.
An analogous argument yields (2.2) for every 0 < λ < 1, also in a stronger

form.

Sufficiency. Suppose that (2.1) and (2.2) are satisfied. By (2.1), there
exists a sequence λj ↓ 1 such that

(3.5) lim
j→∞

lim inf
t→∞

1

(λj − 1) log t

tλj�

t

s(u)− s(t)
u

du ≥ 0.
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By (1.3), (3.1) and (3.5), we conclude that

(3.6) lim sup
t→∞

(s(t)− τ(t)) ≤ lim
j→∞

lim sup
t→∞

λj
λj − 1

(τ(tλj )− τ(t))

+ lim
j→∞

lim sup
t→∞

(
− 1

(λj − 1) log t

tλj�

t

s(u)− s(t)
u

du

)

= − lim
j→∞

lim inf
t→∞

1

(λj − 1) log t

tλj�

t

s(u)− s(t)
u

du ≤ 0.

By (2.2), there exists a sequence 0 < λk ↑ 1 such that

(3.7) lim
k→∞

lim inf
t→∞

1

(1− λk) log t

t�

tλk

s(t)− s(u)
u

du ≥ 0.

By (1.3), (3.2) and (3.7), we conclude that

(3.8) lim inf
t→∞

(s(t)− τ(t)) ≥ lim
k→∞

lim inf
t→∞

λk
1− λk

(τ(t)− τ(tλk))

+ lim
k→∞

lim inf
t→∞

1

(1− λk) log t

t�

tλk

s(t)− s(u)
u

du

= lim
k→∞

lim inf
t→∞

1

(1− λk) log t

t�

tλk

s(t)− s(u)
u

du ≥ 0.

Combining (3.6) and (3.8) yields (3.3)(i), and a fortiori (1.2), due to summa-
bility (L, 1) of the function s.

The proof of Theorem 2.1 is complete.

Proof of Theorem 2.3. It also hinges on Lemma 3.1 and runs along similar
lines to the proof of Theorem 2.1. The details are left to the reader.

4. Inclusions. We will prove that summability (L, 1) is more effective
than summability (C, 1).

Theorem 4.1. If a complex-valued function s ∈ Lloc[1,∞) is summable
(C, 1) to some A ∈ C, then it is also summable (L, 1) to the same A. The
converse implication is not true in general.

Proof. (i) First, let t := m, where m = 2, 3, . . . . By definition in (1.4)
and applying the Second Mean-Value Theorem, we get
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τ(m) logm =

m−1∑
k=1

k+1�

k

s(u)

u
du(4.1)

=
m−1∑
k=1

(
1

k

ξk�

k

s(u) du+
1

k + 1

k+1�

ξk

s(u) du

)

=

ξ1�

1

s(u) du+
m−2∑
k=1

1

k + 1

ξk+1�

ξk

s(u) du+
1

m

m�

ξm−1

s(u) du,

where

(4.2) k < ξk < k + 1 for k = 1, . . . ,m− 1.

By the definition in (1.1), we may write

(4.3)

η�

ξ

s(u) du = ησ(η)− ξσ(ξ), 0 < ξ < η.

Making use of this equality, from (4.1) it follows that

τ(m) logm = −(ξ1σ(ξ1)− σ(1))

+

m−2∑
k=1

1

k + 1
(ξk+1σ(ξk+1)− ξkσ(ξk)) +

1

m
(mσ(m)− ξm−1σ(ξm−1))

= −σ(t) +
m−1∑
k=1

1

k(k + 1)
ξkσ(ξk) + σ(m)− σ(1),

whence

(4.4) τ(m) =
1

logm

m−1∑
k=1

ξk
k(k + 1)

σ(ξk) +
1

logm
(σ(m)− σ(1)).

We will apply Toeplitz’ theorem on the summability of numerical se-
quences (see, e.g., [8, p. 74]) in the case of (4.4) with the infinite triangular
matrix (

am,k :=
1

logm

ξk
k(k + 1)

, k = 1, . . . ,m− 1; m = 2, 3, . . .

)
.

By (4.2), we have

1

logm

m−1∑
k=1

1

k + 1
<

m−1∑
k=1

am,k <
1

logm

m−1∑
k=1

1

k
, m = 2, 3, . . . ,

whence

lim
m→∞

m−1∑
k=1

am,k = 1.
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It is also clear that

0 < am,k <
1

k logm
→ 0 as m→∞ for k = 1, 2, . . . .

Thus, the sufficient conditions in Toeplitz’ theorem are satisfied, and we
conclude that the limit in (1.3) holds for the particular choice t = m ∈ N.

(ii) Second, given any real number t > 3, let m := [t], the integer part
of t. We use (4.3) and the Second Mean-Value Theorem again to obtain

(4.5) τ(t) log t− τ(m) logm =

t�

m

s(u)

u
du

=
1

m

ξ�

m

s(u) du− 1

t

t�

ξ

s(u) du

=

(
1

m
− 1

t

)
ξσ(ξ)− σ(m) + σ(t), m < ξ < t.

By (1.1) and (4.5), we get

|τ(t) log t− τ(m) logm| = t−m
mt

ξ|σ(ξ)|+ |σ(t)− σ(m)|

≤ 1

m
|σ(ξ)|+ |σ(t)− σ(m)| → 0 as m→∞.

Hence
lim
t→∞

τ(t) = lim
t→∞

τ(m)
logm

log t
= A, where m = [t].

(iii) Third, to see that the converse implication is not true in general, we
consider the function s defined by

s(t) :=

{
me2

m if t ∈ [e2
m
, e2

m
+ 1], m = 1, 2, . . . ,

0 otherwise on [1,∞).
We claim that this function s is not summable (C, 1) to any finite number A.
To see this, we recall that if we had (1.1), then for any number a > 0 we
would have

1

t

t+a�

t

s(u) du =
t+ a

t
σ(t+ a)− σ(t)→ 0 as t→∞.

But for t := e2
m and a := 1, we have

1

t

t+1�

t

s(u) du = e−2
m
t+1�

t

me2
m
du = m9 0 as m→∞.

Consequently, for this function s the limit (1.1) does not exist for any finite
number A.
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On the other hand, if t is such that

e2
m−1 ≤ t < e2

m
, m = 1, 2, . . . ,

then we estimate as follows:

0 ≤ τ(t) ≤ 1

2m−1

m−1∑
k=1

e2
k�

e2k−1

s(u)

u
du

≤ 1

2m−1

m−1∑
k=1

k → 0 as t→∞.

This proves that the limit in (1.3) exists with A = 0.
The proof of Theorem 4.1 is complete.

Remark 4.1. We note that summability (L, 2) is more effective than
summability (L, 1). This can be proved in an analogous way to Theorem 4.1
above. We refer to [5, p. 382], where an analogous result is proved for the
logarithmic mean τ2(n) of second order of a numerical sequence (sk) (see
also (5.2) below).

5. Summability (L, 1) of numerical sequences. The above methods
of summability are the nondiscrete version of the methods of logarithmic
summability of numerical sequences (sk) = (sk : k = 1, 2, . . .) of complex
numbers. We recall that a sequence (sk) is said to be logarithmic summable
of order 1 (see [5], where the term ‘harmonic summable of order 1’ was used),
briefly: summable (L, 1), if there exists some A ∈ C such that

(5.1) lim
n→∞

1

`n

n∑
k=1

sk
k

= A, where `n :=

n∑
k=1

1

k
∼ log n,

where for two sequences (an) and (bn) of positive numbers we write an ∼ bn
if

lim
n→∞

an
bn

= 1.

We note that the sequence (sk) is said to be logarithmic summable of
order 2 (see also [5]), briefly: summable (L, 2), if there exists some A ∈ C
such that

(5.2) lim
n→∞

τ2(n) :=
1

`n(2)

n∑
k=1

sk
k`k

, where `n(2) :=
n∑
k=1

1

k`k
∼ log logn.

It is clear that if the ordinary limit

(5.3) lim
n→∞

sn = A
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exists, then the limit in (5.1) also exists with the same A. Even more is true
(see, e.g., [5, p. 376]): If a sequence (sk) is such that the finite limit

lim
n→∞

1

n

n∑
k=1

sk = A

exists, then the limit in (5.1) also exists with the same A. The converse is
not true in general.

We note that if the finite limit in (5.1) exists, then the limit in (5.2) also
exists with the same A (see also in [5, p. 382]. Again, the converse is not
true in general.

Now, the discrete analogue of Theorem 2.1 reads as follows.

Theorem 5.1. If a sequence (sk) of real numbers is summable (L, 1) to
some A ∈ R, then the ordinary limit (5.3) exists if and only if

(5.4) lim sup
λ→1+

lim inf
n→∞

1

([nλ]− n)`n

[nλ]∑
k=n+1

sk − sn
k

≥ 0

and

(5.5) lim sup
λ→1−

lim inf
n→∞

1

(n− [nλ])`n

n∑
k=[nλ]+1

sn − sk
k

≥ 0,

where [ · ] denotes integer part, and `n is defined in (5.1).

Analogously to (2.3), we say that a sequence (sk) of real numbers is slowly
decreasing with respect to summability (L, 1) if for every ε > 0 there exist a
natural number n0 = n0(ε) and a real number λ = λ(e) > 1 such that

(5.6) sk − sn ≥ −ε whenever n0 ≤ n < k ≤ nλ.

It is easy to check (cf. (2.4)) that a sequence (sk) is slowly decreasing
with respect to summability (L, 1) if and only if

(5.7) lim
λ→1+

lim inf
n→∞

min
n<k≤nλ

(sk − sn) ≥ 0.

Clearly, if a sequence (sk) is slowly decreasing with respect to summabil-
ity (L, 1), then both conditions (5.4) and (5.5) are satisfied. Thus, the next
corollary is an immediate consequence of Theorem 5.1.

Corollary 5.2. Suppose a sequence (sk) of real numbers is slowly de-
creasing with respect to summability (L, 1). If (sk) is summable (L, 1) to
some A ∈ R, then the ordinary limit (5.3) also exists.

Corollary 5.2 was earlier proved by Kwee [3, Lemma 3] in a different
way. We note that the definition of slow decrease of a sequence (sk) in [3] is
formally different from the definitions given in (5.6) and (5.7) above.
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Remark 5.1. According to Kwee’s definition in [3, a condition in both
Theorem A and Lemma 3], a sequence (sk) of real numbers is said to be
slowly decreasing if

(5.8) lim inf(sk − sn) ≥ 0 whenever k > n→∞ and
log k

log n
→ 1.

We claim that definition (5.8) is equivalent to the one in (5.6) (as well
as to (5.7)). The implication (5.8)⇒(5.6) is trivial. To justify the converse,
let λ > 1 be arbitrarily close to 1 and set ε := log λ. By (5.8), there exists
n0 = n0(λ) > 1 such that

sk − sn ≥ −ε whenever k > n ≥ n0 and 0 < log
log k

log n
≤ log λ = ε.

Now, the claimed equivalence is obvious.
Next, the discrete analogue of Theorem 2.3 reads as follows:

Theorem 5.3. If a sequence (sn) of complex numbers is summable (L, 1)
to some A ∈ C, then the ordinary limit (5.3) exists if and only if

(5.9) lim
λ→1+

lim sup
t→∞

∣∣∣∣ 1

([nλ]− n)`n

[nλ]∑
k=n+1

sk − sn
k

∣∣∣∣ = 0.

Analogously to (2.6), we say that a sequence (sk) of complex numbers is
slowly oscillating with respect to summability (L, 1) if for every ε > 0 there
exist n0 = n0(ε) > 1 and λ = λ(ε) > 1 such that

(5.10) |sk − sn| ≤ ε whenever n0 ≤ n < k ≤ nλ.
It is easy to check that a sequence (sk) is slowly oscillating with respect to
summability (L, 1) if and only if

(5.11) lim
λ→1+

lim sup
n→∞

max
n<k≤nλ

|sk − sn| = 0.

Remark 5.2. The concept of slow oscillation with respect to summabil-
ity (L, 1) is not defined in [3]. However, analogously to (5.8), a sequence (sk)
of complex numbers may be called slowly oscillating if

(5.12) lim(sk − sn) = 0 whenever k > n→∞ and
log k

log n
→ 1.

A reasoning similar to the one in Remark 5.1 gives that the definitions (5.12)
and (5.10) (as well as (5.11)) are equivalent.

It is clear that if a sequence (sk) is slowly oscillating with respect to (L, 1),
then condition (5.11) is satisfied. Thus, the next corollary is an immediate
consequence of Theorem 5.3.

Corollary 5.4. Suppose a sequence (sk) of complex numbers is slowly
oscillating with respect to summability (L, 1). If (sk) is summable (L, 1) to
some A ∈ C, then the ordinary limit (5.3) also exists.
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The proofs of Theorems 5.1 and 5.3 run along similar lines to those of
Theorems 2.1 and 2.3, respectively; the key ingredient is provided by the
following

Lemma 5.5.
(i) For all λ > 1 and large enough n, namely when [nλ] > n, we have

the representation

sn − τn =
`[nλ]

`[nλ] − `n
(τ[nλ] − τn)−

1

`[nλ] − `n

[nλ]∑
k=n+1

sk − sn
k

.

(ii) For all 0 < λ < 1 and large enough n, namely when n > [nλ], we
have

sn − τn =
`[nλ]

`n − `[nλ]
(τn − τ[nλ]) +

1

`n − `[nλ]

n∑
k=[nλ]+1

sn − sk
k

.

Proof. Performing steps analogous to those in the proof of Lemma 3.1
yields the above representations.
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