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Product equivalence of quasihomogeneous Toeplitz operators
on the harmonic Bergman space

by

Xing-Tang Dong and Ze-Hua Zhou (Tianjin)

Abstract. We present here a quite unexpected result: If the product of two quasiho-
mogeneous Toeplitz operators TfTg on the harmonic Bergman space is equal to a Toeplitz
operator Th, then the product TgTf is also the Toeplitz operator Th, and hence Tf com-
mutes with Tg. From this we give necessary and sufficient conditions for the product of
two Toeplitz operators, one quasihomogeneous and the other monomial, to be a Toeplitz
operator.

1. Introduction. Let dA denote the Lebesgue area measure on the unit
disk D, normalized so that the measure of D equals 1, and let L2(D, dA)
be the Hilbert space of Lebesgue square integrable functions on D with the
inner product

〈f, g〉 =
�

D

f(z)g(z) dA(z).

The harmonic Bergman space L2
h is the closed subspace of L2(D, dA) con-

sisting of the harmonic functions on D. We will write Q for the orthogonal
projection from L2(D, dA) onto L2

h. Each point evaluation is easily verified
to be a bounded linear functional on L2

h. Hence, for each z ∈ D, there exists
a unique function Rz (called the harmonic Bergman kernel) in L2

h that has
the following reproducing property:

f(z) = 〈f,Rz〉 for every f ∈ L2
h.

Given z ∈ D, let Kz(w) = 1/(1− wz)2 be the well-known reproduc-
ing kernel for the analytic Bergman space L2

a consisting of all L2-analytic
functions on D. The well-known Bergman projection P is then the integral
operator

Pf(z) =
�

D

f(w)Kz(w) dA(w)
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for f ∈ L2(D, dA). Since L2
h = L2

a + L2
a, it is easily checked that Rz =

Kz +Kz − 1. Thus, Q can be represented by

Qf = Pf + Pf − Pf(0).

For u ∈ L1(D, dA), the Toeplitz operator Tu with symbol u is the operator
on L2

h defined by

(1.1) Tuf = Q(uf)

for f ∈ L2
h. This operator is always densely defined on the polynomials and

not bounded in general. We are interested in the case where it is bounded in
the L2

h norm. In this paper we will consider the case where u is a T -function.
Recall that u is a T -function if the equation (1.1) defines a bounded operator
on L2

h. Also, if u is a T -function, we write Tu for the continuous extension of
the operator defined by (1.1) (see [DZ3] or [LSZ]). Generally, the T -functions
form a proper subset of L1(D, dA) which contains all bounded and “nearly
bounded” functions.

A function f is said to be quasihomogeneous of degree k ∈ Z if

f(reiθ) = eikθϕ(r),

where ϕ is a radial function. In this case the associated Toeplitz operator
Tf is also called a quasihomogeneous Toeplitz operator of degree k.

In 1964, Brown and Halmos [BH] proved that TfTg = Th on the classical
Hardy space H2 if and only if either (I) g is analytic, or (II) f is conjugate
analytic. They also showed that in both cases h = fg. In the setting of ana-
lytic Bergman space, conditions (I) and (II) are still sufficient, but they are
no longer necessary. Ahern and Čučković [AC] showed that a Brown–Halmos
type result holds for Toeplitz operators with harmonic symbols on L2

a. Later
in [LSZ], Louhichi, Strouse and Zakariasy gave necessary and sufficient con-
ditions for the product of two quasihomogeneous Toeplitz operators on L2

a

to be a Toeplitz operator. Recently, we studied some algebraic properties of
quasihomogeneous Toeplitz operators on the analytic Bergman space of the
unit ball in [DZ1] and [ZD].

The theory of Toeplitz operators on L2
h is quite different from that on L2

a.
We list here some examples.

1. Choe and Lee [CL] showed that two analytic Toeplitz operators on
L2
h commute only when their symbols and the constant function 1 are

linearly dependent.
2. Ding [D] showed that an analytic Toeplitz operator and a co-analytic

Toeplitz operator on L2
h can commute only when one of their symbols

is constant.
3. We showed in [DZ3] that a Toeplitz operator with an analytic or co-

analytic monomial symbol commutes with another Toeplitz operator
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only when their symbols and the constant function 1 are linearly de-
pendent.

4. We showed in [DZ2] that the product of two Toeplitz operators on L2
h

with monomial symbols is a Toeplitz operator only when both of them
are radial.

5. Louhichi and Zakariasy [LZ] proved that the product of two Toeplitz
operators on L2

h, one quasihomogeneous and the other radial, is a
Toeplitz operator only in the trivial case.

In general, it requires more on their symbols for two quasihomogeneous
Toeplitz operators to commute on L2

h than on L2
a, as the orthonormal basis

for L2
h involves a co-analytic monomial. In fact, the above five results confirm

this view. However, we were quite surprised to find in [DZ3] that to check
the commutativity of two quasihomogeneous Toeplitz operators on L2

h, the
vanishing of the commutator on only “half” of the orthonormal basis is
needed.

In this paper we will show some other quite unexpected results. First,
we give the following theorem.

Theorem 1.1. Let f1 and f2 be two quasihomogeneous T -functions onD.
If there exists a T -function f such that Tf1Tf2 = Tf , then Tf2Tf1 = Tf .

Obviously, Theorem 1.1 yields the following result which shows the con-
nection between the product and the commutativity of two quasihomoge-
neous Toeplitz operators on L2

h.

Theorem 1.2. Let f1 and f2 be two quasihomogeneous T -functions onD.
If there exists a T-function f such that Tf1Tf2 = Tf , then Tf1Tf2 = Tf2Tf1 .

We would like to point out that we have not seen any similar results for
Toeplitz operators on function spaces. So the research of algebraic properties
of Toeplitz operators on L2

h is quite meaningful and interesting.

According to Theorem 1.2 we can use the commutativity of two quasiho-
mogeneous Toeplitz operators to discuss when their product is a Toeplitz op-
erator. The next theorem will show that the product of Teik1θrm and Teik2θϕ(r)
is a Toeplitz operator only in the trivial cases.

Theorem 1.3. Let k1, k2 ∈ Z and let m be a nonnegative real number.
Then for a nonzero bounded radial function ϕ on D, Teik1θrmTeik2θϕ is a
Toeplitz operator if and only if one of the following conditions holds:

(1) k1 = m = 0.
(2) k1 = k2 = 0.
(3) k2 = 0 and ϕ is a constant function.

A special case of Theorem 1.3 with ϕ = rn was proved by us in [DZ2].
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2. Some preliminary results. Before we state our results, we need to
introduce the concept of the Mellin transform. For f ∈ L1([0, 1], rdr), the

Mellin transform of f is the function f̂ defined by

f̂(z) =

1�

0

f(s)sz−1 ds.

It is known that f̂ is well defined on the right half-plane {z : Re z ≥ 2} and
analytic on {z : Re z > 2}.

In [DZ2] we proved the following results which we shall use often in this
paper.

Lemma 2.1. Let k ∈ Z and let ϕ be a radial T-function. Then for each
n ∈ N,

Teikθϕ(zn) =

{
2(n+ k + 1)ϕ̂(2n+ k + 2)zn+k if n ≥ −k,
2(−n− k + 1)ϕ̂(−k + 2)z−n−k if n < −k;

Teikθϕ(zn) =

{
2(n− k + 1)ϕ̂(2n− k + 2)zn−k if n ≥ k,
2(k − n+ 1)ϕ̂(k + 2)zk−n if n < k.

A direct calculation gives the following essential lemma.

Lemma 2.2. Let k1, k2 ∈ Z and let ϕ1, ϕ2, ψ be radial T -functions.

(a) If k1 + k2 ≥ 0, then the following properties hold:

(I) For any n ∈ N, Teik1θϕ1
Teik2θϕ2

(zn) = Tei(k1+k2)θψ(zn)

⇔ Teik2θϕ2
Teik1θϕ1

(zn+k1+k2) = Tei(k1+k2)θψ(zn+k1+k2).

(II) For any n ∈ N such that n ≥ k1 + k2,
Teik1θϕ1

Teik2θϕ2
(zn) = Tei(k1+k2)θψ(zn)

⇔ Teik2θϕ2
Teik1θϕ1

(zn−k1−k2) = Tei(k1+k2)θψ(zn−k1−k2).

(III) For any n ∈ N such that 1 ≤ n < k1 + k2,
Teik1θϕ1

Teik2θϕ2
(zn) = Tei(k1+k2)θψ(zn)

⇔ Teik2θϕ2
Teik1θϕ1

(zk1+k2−n) = Tei(k1+k2)θψ(zk1+k2−n).

(b) If k1 + k2 < 0, then the following properties hold:

(I) For any n ∈ N, Teik1θϕ1
Teik2θϕ2

(zn) = Tei(k1+k2)θψ(zn)

⇔ Teik2θϕ2
Teik1θϕ1

(zn−k1−k2) = Tei(k1+k2)θψ(zn−k1−k2).

(II) For any n ∈ N such that n ≥ −k1 − k2,
Teik1θϕ1

Teik2θϕ2
(zn) = Tei(k1+k2)θψ(zn)

⇔ Teik2θϕ2
Teik1θϕ1

(zn+k1+k2) = Tei(k1+k2)θψ(zn+k1+k2).

(III) For any n ∈ N such that 1 ≤ n < −k1 − k2,
Teik1θϕ1

Teik2θϕ2
(zn) = Tei(k1+k2)θψ(zn)

⇔ Teik2θϕ2
Teik1θϕ1

(z−k1−k2−n) = Tei(k1+k2)θψ(z−k1−k2−n).
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Proof. First suppose that k1 +k2 ≥ 0. Without loss of generality, we can
also assume that k1 ≥ 0.

For any n ∈ N, by Lemma 2.1 we get

Teik1θϕ1
Teik2θϕ2

(zn)

=


2(n+ k1 + k2 + 1)ϕ̂1(2n+ k1 + 2k2 + 2)

× 2(n+ k2 + 1)ϕ̂2(2n+ k2 + 2)zn+k1+k2 if n ≥ −k2,
2(n+ k1 + k2 + 1)ϕ̂1(k1 + 2)

× 2(−n− k2 + 1)ϕ̂2(−k2 + 2)zn+k1+k2 if n < −k2;
Teik2θϕ2

Teik1θϕ1
(zn+k1+k2)

=


2(n+ 1)ϕ̂2(2n+ k2 + 2)

× 2(n+ k2 + 1)ϕ̂1(2n+ k1 + 2k2 + 2)zn if n ≥ −k2,
2(n+ 1)ϕ̂2(−k2 + 2)2(−n− k2 + 1)ϕ̂1(k1 + 2)zn if n < −k2;

Tei(k1+k2)θψ(zn) = 2(n+ k1 + k2 + 1)ψ̂(2n+ k1 + k2 + 2)zn+k1+k2 ;

Tei(k1+k2)θψ(zn)

=

{
2(n− k1 − k2 + 1)ψ̂(2n− k1 − k2 + 2)zn−k1−k2 if n ≥ k1 + k2,

2(k1 + k2 − n+ 1)ψ̂(k1 + k2 + 2)zn if n < k1 + k2.

Thus, if n ≥ −k2,

(2.1) Teik1θϕ1
Teik2θϕ2

(zn) = Tei(k1+k2)θψ(zn)

⇔ 2(n+ k2 + 1)ϕ̂1(2n+ k1 + 2k2 + 2)ϕ̂2(2n+ k2 + 2)

= ψ̂(2n+ k1 + k2 + 2)

⇔ Teik2θϕ2
Teik1θϕ1

(zn+k1+k2) = Tei(k1+k2)θψ(zn+k1+k2),

and if n < −k2,

(2.2) Teik1θϕ1
Teik2θϕ2

(zn) = Tei(k1+k2)θψ(zn)

⇔ 2(−n− k2 + 1)ϕ̂1(k1 + 2)ϕ̂2(−k2 + 2)

= ψ̂(2n+ k1 + k2 + 2)

⇔ Teik2θϕ2
Teik1θϕ1

(zn+k1+k2) = Tei(k1+k2)θψ(zn+k1+k2).

So condition (I) holds.

Similarly, for any n ∈ N such that n ≥ k1 + k2, by Lemma 2.1,

Teik1θϕ1
Teik2θϕ2

(zn) = 2(n− k1 − k2 + 1)ϕ̂1(2n− k1 − 2k2 + 2)

× 2(n− k2 + 1)ϕ̂2(2n− k2 + 2)zn−k1−k2 ;
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Teik2θϕ2
Teik1θϕ1

(zn−k1−k2)

= 2(n− k2 + 1)ϕ̂1(2n− k1 − 2k2 + 2)2(n+ 1)ϕ̂2(2n− k2 + 2)zn,

and hence

(2.3) Teik1θϕ1
Teik2θϕ2

(zn) = Tei(k1+k2)θψ(zn)

⇔ 2(n− k2 + 1)ϕ̂1(2n− k1 − 2k2 + 2)ϕ̂2(2n− k2 + 2)

= ψ̂(2n− k1 − k2 + 2)

⇔ Teik2θϕ2
Teik1θϕ1

(zn−k1−k2) = Tei(k1+k2)θψ(zn−k1−k2).

So condition (II) holds.

For any n ∈ N such that 1 ≤ n < k1 + k2, by Lemma 2.1,

Teik1θϕ1
Teik2θϕ2

(zn)

=


2(k1 + k2 − n+ 1)ϕ̂1(k1 + 2k2 − 2n+ 2)

×2(k2 − n+ 1)ϕ̂2(k2 + 2)zk1+k2−n if 1 ≤ n < k2,

2(k1 + k2 − n+ 1)ϕ̂1(k1 + 2)

×2(n− k2 + 1)ϕ̂2(2n− k2 + 2)zk1+k2−n if k2≤ n< k1 +k2;

Teik2θϕ2
Teik1θϕ1

(zk1+k2−n)

=


2(k2 − n+ 1)ϕ̂1(k1 + 2k2 − 2n+ 2)

×2(n+ 1)ϕ̂2(k2 + 2)zn if 1 ≤ n < k2,

2(n− k2 + 1)ϕ̂1(k1 + 2)

×2(n+ 1)ϕ̂2(2n− k2 + 2)zn if k2 ≤ n < k1 + k2.

Thus, if 1 ≤ n < k2,

(2.4) Teik1θϕ1
Teik2θϕ2

(zn) = Tei(k1+k2)θψ(zn)

⇔ 2(k2 − n+ 1)ϕ̂1(k1 + 2k2 − 2n+ 2)ϕ̂2(k2 + 2) = ψ̂(k1 + k2 + 2)

⇔ Teik2θϕ2
Teik1θϕ1

(zk1+k2−n) = Tei(k1+k2)θψ(zk1+k2−n),

and if k2 ≤ n < k1 + k2,

(2.5) Teik1θϕ1
Teik2θϕ2

(zn) = Tei(k1+k2)θψ(zn)

⇔ 2(n− k2 + 1)ϕ̂1(k1 + 2)ϕ̂2(2n− k2 + 2) = ψ̂(k1 + k2 + 2)

⇔ Teik2θϕ2
Teik1θϕ1

(zk1+k2−n) = Tei(k1+k2)θψ(zk1+k2−n).

It follows that condition (III) holds.

The proof of (b) is similar. This completes the proof.

Remark 2.3. Let f1, f2 and f be three quasihomogeneous T -functions
of degree k1, k2, k1 + k2 ∈ Z respectively. Then Lemma 2.2 implies that, for
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any k ∈ Z,

Tf1Tf2(r|k|eikθ) = Tf (r|k|eikθ)

⇔ Tf2Tf1(r|−k−k1−k2|ei(−k−k1−k2)θ) = Tf (r|−k−k1−k2|ei(−k−k1−k2)θ).

In [DZ3] we characterized the commutativity of two quasihomogeneous
Toeplitz operators Teik1θrm and Teik2θϕ(r) in the case of |k1| ≤ |k2|. The
following lemma will study another case which will be used later.

Lemma 2.4. Let k1, k2 ∈ Z such that k1 > 0, k2 < 0 and |k1| > |k2|, and
let m be a nonnegative real number. Then for a bounded radial function ϕ
on D,

Teik1θrmTeik2θϕ = Teik2θϕTeik1θrm

if and only if ϕ = 0.

Proof. Suppose Teik1θrm commutes with Teik2θϕ. Then the equality

Teik1θrmTeik2θϕ(zn) = Teik2θϕTeik1θrm(zn)

for each n ∈ Z such that n ≥ −k2 together with Lemma 2.1 gives

ϕ̂(2n+2k1+k2+2) = ϕ̂(2n+k2+2)
(2n+ 2k2 + 2)(2n+ k1 +m+ 2)

(2n+ 2k1 + 2)(2n+ k1 + 2k2 +m+ 2)
,

which is the same as equation (2.4) of [CR]. However, here m is a real
number. In fact, by the same proof we can also get

ϕ̂(z) = C
Γ
(
z+k2
2k1

)
Γ
(
z+m+k1−k2

2k1

)
Γ
(
z+2k1−k2

2k1

)
Γ
(
z+m+k1+k2

2k1

)
for some constant C. In what follows, we will show C = 0, and hence ϕ = 0.

So assume C 6= 0. Noting that k2 < 0, by Theorem 4 of [CR] one of

2k2 − 2k1
2k1

, −m+ k1
2k1

,
m− k1

2k1
, −2k2

2k1

must be an integer. Since |k1| > |k2| > 0 and m ≥ 0, it is easy to see that

m = (2n+ 1)k1

for some n ∈ N. Hence

ϕ̂(z) = C
Γ
(
z+k2
2k1

)
Γ
(
z−k2
2k1

+ n+ 1
)

Γ
(
z−k2
2k1

+ 1
)
Γ
(
z+k2
2k1

+ n+ 1
) .
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Denote F (i) = (−k2 + i)ϕ̂(−k2 + 2i) for positive integers i. Then

F (i) = C(−k2 + i)
Γ
(
i
k1

)
Γ
(−k2+i

k1
+ n+ 1

)
Γ
(−k2+i

k1
+ 1
)
Γ
(
i
k1

+ n+ 1
)

= C(−k2 + i)

(−k2+i
k1

+ n
)(−k2+i

k1
+ n− 1

)
· · ·
(−k2+i

k1
+ 1
)(

i
k1

+ n
)(

i
k1

+ n− 1
)
· · ·
(
i
k1

+ 1
)
i
k1

= Ck1

(
−k2
i

+ 1

)(
1 +

−k2
i
k1

+ n

)(
1 +

−k2
i
k1

+ n− 1

)
· · ·
(

1 +
−k2
i
k1

+ 1

)
,

which is strictly monotonic. However, by Lemma 2.1,

Teik1θrmTeik2θϕ(z0) = Teik2θϕTeik1θrm(z0)

gives
(−k2 + 1)ϕ̂(−k2 + 2) = (k1 + 1)ϕ̂(2k1 + k2 + 2),

and consequently
F (1) = F (k1 + k2 + 1),

which is a contradiction since k1 + k2 > 0.
The converse implication is clear. This completes the proof.

3. Proofs of the theorems. In this section we will prove our main
theorems and give some corollaries.

Proof of Theorem 1.1. Suppose the quasihomogeneous degrees of f1
and f2 are k1 and k2 respectively. If there exists a T-function f such that
Tf1Tf2 = Tf , then by Theorem 1.2 of [DZ2], f must be a quasihomogeneous
function of degree k1 + k2. Now for any k ∈ Z, the equality

Tf1Tf2(r|k|eikθ) = Tf (r|k|eikθ)

together with Remark 2.3 gives

Tf2Tf1(r|−k−k1−k2|ei(−k−k1−k2)θ) = Tf (r|−k−k1−k2|ei(−k−k1−k2)θ).

Since
{
√
n+ 1 zn}∞n=0 ∪ {

√
n+ 1 zn}∞n=1

is an orthonormal basis for the harmonic Bergman space, the desired result
is obvious.

Theorem 1.2 is a direct consequence of Theorem 1.1, but it is very use-
ful. By Theorem 1.2 it seems a natural idea to use the commutativity of
two quasihomogeneous Toeplitz operators to discuss when their product is
a Toeplitz operator. Moreover, in [DZ3] we have characterized the commut-
ing Toeplitz operators with quasihomogeneous symbols on L2

h. So in what
follows, we will use Theorem 1.2 and the results of [DZ3] to get some corol-
laries.
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Here we need a known fact about the Mellin convolution. If f and g are
in L1([0, 1], rdr), then their Mellin convolution is defined by

(f ∗M g)(r) =

1�

r

f

(
r

t

)
g(t)

dt

t
, 0 ≤ r < 1.

The following corollary gives a complete description of the product of two
quasihomogeneous Toeplitz operators with the same or opposite degrees.

Corollary 3.1. Let ϕ1 and ϕ2 be two radial T -functions on D. Then
the following properties hold:

(a) For any integer p 6= 0, Teipθϕ1
Teipθϕ2

= Tei2pθψ if and only if ϕ1 =
Cϕ2 for some constant C, and ψ such that

I ∗M ψ = (rpϕ1) ∗M (r−pϕ2)

and

2(p− n+ 1)ϕ̂1(3p− 2n+ 2)ϕ̂2(p+ 2) = ψ̂(2p+ 2), ∀1 ≤ n ≤ p.

(b) For any integer p 6= 0, Teipθϕ1
Te−ipθϕ2

= Tψ if and only if |p| = 1
and

ϕ1 ∗M ϕ2 = C(r ∗M r−1)

for some constant C. In this case ψ = C.
(c) For p = 0, Teipθϕ1

Teipθϕ2
= Tψ if and only if ψ is a solution of the

equation

I ∗M ψ = ϕ1 ∗M ϕ2.

Proof. First assume p 6= 0. Without loss of generality, we can assume
that p > 0, for otherwise we could take the adjoints.

It follows from (2.1), (2.3), (2.4) and (2.5) that Teipθϕ1
Teipθϕ2

= Tei2pθψ
if and only if

(3.1) 2(n+p+1)ϕ̂1(2n+3p+2)ϕ̂2(2n+p+2) = ψ̂(2n+2p+2), ∀n ∈ N;

(3.2) 2(n− p+ 1)ϕ̂1(2n− 3p+ 2)ϕ̂2(2n− p+ 2)

= ψ̂(2n− 2p+ 2), ∀n ∈ N, n ≥ 2p;

(3.3) 2(p−n+ 1)ϕ̂1(3p−2n+2)ϕ̂2(p+2) = ψ̂(2p+2), ∀n∈N, 1≤ n< p;
(3.4) 2(n− p+ 1)ϕ̂1(p+ 2)ϕ̂2(2n− p+ 2)

= ψ̂(2p+ 2), ∀n ∈ N, p ≤ n < 2p.

First we suppose Teipθϕ1
Teipθϕ2

= Tei2pθψ; then Theorem 1.2 shows that
Teipθϕ1

commutes with Teipθϕ2
, and according to Proposition 3.4 of [DZ3] we

get

ϕ1 = Cϕ2.
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Now, we replace n by n+ 2p; then (3.2) turns into

2(n+ p+ 1)ϕ̂1(2n+ p+ 2)ϕ̂2(2n+ 3p+ 2) = ψ̂(2n+ 2p+ 2), ∀n ∈ N,
which is the same as (3.1) since ϕ1 = Cϕ2. Similarly, replacing n by 2p− n
we see that (3.4) is the same as (3.3). Moreover, using the same reasoning
as in the proof of Proposition 4.3 of [LSZ], one can show that (3.1) holds if
and only if

I ∗M ψ = (rpϕ1) ∗M (r−pϕ2).

The converse implication of (a) is clear, and hence condition (a) holds.
Similarly, (2.1)–(2.3) show that Teipθϕ1

Te−ipθϕ2
= Tψ if and only if

(3.5) 2(n−p+1)ϕ̂1(2n−p+2)ϕ̂2(2n−p+2) = ψ̂(2n+2), ∀n ∈ N, n ≥ p;
(3.6) 2(p− n+ 1)ϕ̂1(p+ 2)ϕ̂2(p+ 2) = ψ̂(2n+ 2), ∀n ∈ N, 0 ≤ n < p;

(3.7) 2(n+ p+ 1)ϕ̂1(2n+ p+ 2)ϕ̂2(2n+ p+ 2) = ψ̂(2n+ 2), ∀n ∈ N.
Now we suppose Teipθϕ1

Te−ipθϕ2
= Tψ; then according to Theorem 1.2 and

Proposition 3.4 of [DZ3] we get p = 1 and

ϕ1 ∗M ϕ2 = C(r ∗M r−1).

So (3.5) becomes

ψ̂(2n+ 2) =
C

2n+ 2
,

which implies ψ = C.
Conversely, if p = 1, ψ = C and ϕ1 ∗M ϕ2 = C(r ∗M r−1), then by a

direct calculation, one can get (3.5)–(3.7), and hence condition (b) holds.
If p = 0, then by Lemma 2.2, one can easily show that Teipθϕ1

Teipθϕ2
= Tψ

if and only if

2(n+ 1)ϕ̂1(2n+ 2)ϕ̂2(2n+ 2) = ψ̂(2n+ 2), ∀n ∈ N,
which implies that

I ∗M ψ = ϕ1 ∗M ϕ2.

The following two corollaries concern the product of two quasihomoge-
neous Toeplitz operators Teik1θrm and Teik2θϕ(r).

Corollary 3.2. Let k1, k2 ∈ Z be such that k1k2 ≤ 0 and |k1| ≤ |k2|,
and let m be a real number greater than or equal to −1. Then for a nonzero
radial T-function ϕ on D, there exists a radial T-function ψ such that

Teik1θrmTeik2θϕ = Tei(k1+k2)θψ

if and only if one of the following conditions holds:

(1) k1 = m = 0.
(2) k1 = k2 = 0.
(3) k1k2 = −1 and ϕ = C

(
m+1
2 r−1 − m−1

2 r
)
.
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Proof. If condition (1) or (2) holds, then the desired result is obvious.
Assume condition (3) holds. A direct calculation shows that

(rm) ∗M
(
m+ 1

2
r−1 − m− 1

2
r

)
=

1

2

(
1

r
− r
)

= r ∗M r−1,

so Corollary 3.1 implies that Teik1θrmTeik2θϕ = Tei(k1+k2)θC .

Conversely, assume that Teik1θrmTeik2θϕ = Tei(k1+k2)θψ. Then by Theo-
rem 1.2, Teik1θrm commutes with Teik2θϕ. Thus, Theorem 3.8 of [DZ3] shows
that one of conditions (1)–(3) holds.

Corollary 3.3. Let k1, k2 ∈ Z be such that k1k2 > 0, and let m be a
real number greater than or equal to −1. Then for a radial T-function ϕ on
D, there exists a radial T-function ψ such that

Teik1θrmTeik2θϕ = Tei(k1+k2)θψ

if and only if ϕ = 0.

Proof. First we assume that Teik1θrmTeik2θϕ = Tei(k1+k2)θψ. Combining
Theorem 1.1 with the use of adjoint operators, we can further assume
k1, k2 > 0. Thus by (2.1) and (2.4),

Teik1θrmTeik2θϕ(z0) = Tei(k1+k2)θψ(z0)

gives
2(k2 + 1)

m+ k1 + 2k2 + 2
ϕ̂(k2 + 2) = ψ̂(k1 + k2 + 2),

and

Teik1θrmTeik2θϕ(z1) = Tei(k1+k2)θψ(z1)

gives
2k2

m+ k1 + 2k2
ϕ̂(k2 + 2) = ψ̂(k1 + k2 + 2).

Hence

(3.8)
2(k2 + 1)

m+ k1 + 2k2 + 2
ϕ̂(k2 + 2) =

2k2
m+ k1 + 2k2

ϕ̂(k2 + 2).

If ϕ is nonzero, noting that Teik1θrm commutes with Teik2θϕ, by taking ϕ1 to
be rm in Lemma 3.7 of [DZ3] we obtain

ϕ̂(k2 + 2) 6= 0.

Then it follows from (3.8) that

m = −k1.
Using the fact that m ≥ −1 and k1 > 0, we get

k1 = −m = 1.
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Obviously, 1 = k1 ≤ k2 since k2 > 0; then Theorem 3.8 of [DZ3] shows that

k2 = k1 = 1 and ϕ = Crm = Cr−1.

Now Corollary 3.1 shows that, if Teiθr−1Teiθr−1 were a Toeplitz operator, its
symbol would be ei2θr−2. However, ei2θr−2 is not a T-function, so ϕ = 0.

The converse implication is clear.

Proof of Theorem 1.3. First we suppose Teik1θrmTeik2θϕ is a Toeplitz op-
erator. We need to discuss several cases.

Case 1. Suppose k1k2 > 0. Then Corollary 3.3 implies ϕ = 0, which is
a contradiction.

Case 2. Suppose k1k2 ≤ 0 and |k1| ≤ |k2|. Noticing that ϕ is bounded,
by Corollary 3.2 we infer that one of conditions (1) or (2) holds.

Case 3. Suppose k1k2 < 0 and |k1| > |k2|. Combining Theorem 1.1 with
the use of adjoint operators, we can further assume k1 > 0 and k2 < 0.
However, noticing that ϕ is bounded and Teik1θrm commutes with Teik2θϕ,
Lemma 2.4 implies ϕ = 0, which is a contradiction.

Case 4. Suppose k1k2 = 0 and |k1| > |k2|. This implies that k2 = 0 and
k1 6= 0; then Theorem 2 of [LZ] shows that ϕ must be a constant function,
and so condition (3) holds.

The converse implication is clear.
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